
AUTOMATED DESIGN OF THE DEEP
NEURAL NETWORK PIPELINE

by
Mia Gerber

Submitted in fulfillment of the requirements for the degree
Master of Science (Computer Science)

in the
Department of Computer Science

Faculty of Engineering, Built Environment and Information Technology
UNIVERSITY OF PRETORIA

December 2021

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ii

ABSTRACT

AUTOMATED DESIGN OF THE DEEP NEURAL NETWORK

PIPELINE

by

Mia Gerber

Supervisor: Prof Nelishia Pillay

Department: Department of Computer Science

University: University of Pretoria

Degree: MSc Computer Science

Keywords: automated design, deep neural

network pipeline, transfer learning, sentiment analysis, spam detection, image

segmentation, image classification

Deep neural networks have been shown to be very effective for image pro-

cessing and text processing. However the big challenge is designing the deep

neural network pipeline, as it is time consuming and requires machine learning

expertise. More and more non-experts are using deep neural networks in their

day-to-day lives, but do not have the expertise to parameter tune and construct

optimal deep neural network pipelines. AutoML has mainly focused on neural

architecture design and parameter tuning, but little attention has been given

to optimal design of the deep neural network pipeline and all of its constituent

parts. In this work a single point hyper heuristic (SPHH) was used to automate

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

iii

the design of the deep neural network pipeline. The SPHH constructed a deep

neural network pipeline design by selecting techniques to use at the various stages

of the pipeline, namely: the preprocessing stage, the feature engineering stage,

the augmentation stage as well as selecting a deep neural network architecture

and relevant hyper-parameters. This work also investigated transfer learning by

using a design that was created for one dataset as a starting point for the design

process for a different dataset and the effect thereof was evaluated. The reusabil-

ity of the designs themselves were also tested. The SPHH designed pipelines for

both the image processing and text processing domain. The image processing

domain covered maize disease detection and oral lesion detection specifically

and text processing used sentiment analysis and spam detection, with multiple

datasets being used for all the aforementioned tasks. The pipeline designs cre-

ated by means of automated design were compared to manually derived pipelines

from the literature for the given datasets. This research showed that automated

design of a deep neural network pipeline using a single point hyper-heuristic is

effective. Deep neural network pipelines designed by the SPHH are either better

than or just as good as manually derived pipeline designs in terms of performance

and application time. The results showed that the pipeline designs created by

the SPHH are not reusable as they do not provide comparable performance to

the results achieved when specifically creating a design for a dataset. Transfer

learning using the designed pipelines is found to produce results comparable

to or better than the results achieved when using the SPHH without transfer

learning. Transfer learning is only effective when the correct target and source

are chosen, for some target datasets negative transfer occurs when using certain

datasets as the transfer learning source. Future work will include applying the

automated design approach to more domains and making designs reusable. The

transfer learning process will also be automated in future work to ensure posi-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

iv

tive transfer occurs. The last recommendation for future work is to construct a

pipeline for unsupervised deep neural network techniques instead of supervised

deep neural network techniques.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

v

PLAGIARISM DECLARATION

I, Mia Gerber (Student Number: 15016502), declare that:

1. The research reported in this thesis, except where otherwise indicated or

acknowledged, is my original work;

2. This thesis has not been submitted in full or in part for any degree or

examination to any other university;

3. This thesis does not contain other persons data, pictures, graphs or other

information, unless specifically acknowledged as sourced from other persons;

4. This thesis does not contain other persons writing, unless specifically

acknowledged as being sourced from other researchers. Where other written

sources have been quoted, then:

(a) their words have been re-written but the general information attributed to

them has been referenced;

(b) where their exact words have been used, their writing has been placed

inside quotation marks, and referenced

5. Where I have reproduced a publication of which I am author, co-author or

editor, I have indicated in detail which part of the publication was actually

written by myself along and have fully referenced such publications.

6. This thesis does not contain text, graphics and tables copied and pasted from

the internet, unless specifically acknowledged, and the source being detailed in

the thesis and in the References sections.

Student Name: Student Signature:

Date:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

vi

SUPERVISOR DECLARATION

I confirm that this work was done under my supervision and it is the

candidate’s original work. As the candidate’s supervisor, I have approved this

thesis for submission.

Supervisor Name: Supervisor Signature:

Date:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

vii

PUBLICATIONS

The following publications are associated with the research presented in this

thesis:

1. Gerber,M., Pillay,N. Automated Design of the Deep Neural Network Pipeline,

Expert Systems with Applications, Elsevier (under review)

2. Gerber,M., Pillay,N.,Khammissa, R. A Comparative Study of Supervised and

Unsupervised Neural Networks for Oral Lesion Detection, Proceedings of the

2021 IEEE Symposium Series on Computational Intelligence (SSCI 2021),

December 2021.

3. Gerber, M.,Pillay, N., Holan, K., Whitham, S. A.,Berger,D. K. Automated

Hyper-Parameter Tuning of a Mask R-CNN for Quantifying Common Rust

Severity in Maize,2021 International Joint Conference on Neural Networks

(IJCNN), 2021, pp. 1-7, doi: 10.1109/IJCNN52387.2021.9534417.

4. Pillay N., Gerber M., Holan K., Whitham S.A., Berger D.K. (2021)

Quantifying the Severity of Common Rust in Maize Using Mask R-CNN. In:

Rutkowski L., Scherer R., Korytkowski M., Pedrycz W., Tadeusiewicz R.,

Zurada J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021.

Lecture Notes in Computer Science, vol 12854., pp. 202-213, Springer, Cham.

https://doi.org/10.1007/978-3-030-87986-018. Student Name:

Student Signature:

Date:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

viii

ACKNOWLEDGEMENTS

I would like to offer my sincerest gratitude to Prof Nelishia Pillay for her

mentorship and support in the development of this thesis.

The work presented in this thesis is supported by the National Research

Foundation of South Africa (Grant Numbers 46712). Opinions expressed and

conclusions arrived at, are those of the author and are not necessarily to be

attributed to the NRF.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ix

LIST OF ABBREVIATIONS

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

SPHH Single Point Hyper Heuristic

DNNP Deep Neural Network Pipeline

DS Design String

LLPH Low Level Perturbative Heuristic

EA Evolutionary Algorithm

GP Genetic Programming

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

TABLE OF CONTENTS

1 Introduction . 1

1.1 Purpose of study . 1

1.2 Objectives of study . 2

1.3 Contributions . 2

1.4 Layout of thesis . 3

2 Deep neural networks . 5

2.1 Introduction to Neural Networks . 5

2.2 History of Neural Networks . 7

2.3 Convolution Neural Network . 10

2.4 Recurrent Neural Network . 14

2.5 Long Short-Term Memory. 16

2.6 Summary . 17

3 Text processing with deep neural networks 18

3.1 Introduction to text processing . 18

3.2 Deep neural network pipeline - preprocessing stage techniques 20

3.3 Deep neural network pipeline - feature engineering stage techniques . . 22

3.4 Deep neural network pipeline - classification stage techniques 24

3.5 Deep neural network pipelines for text processing in the literature 26

3.6 Summary . 27

4 Image processing with deep neural networks 29

4.1 Introduction to image processing . 29

4.2 Deep neural network pipeline - augmentation stage techniques 31

4.3 Deep neural network pipeline - preprocessing stage techniques 32

4.4 Deep neural network pipeline - processing stage techniques 33

4.5 Deep neural network pipelines for image processing in the literature . . 42

4.6 Summary . 42

5 Critical analysis and related work . 43

5.1 Introduction . 43

5.2 Critical analysis . 43

5.3 Automated design . 46

5.4 Hyper-heuristics . 47

5.5 Transfer learning . 49

5.6 Summary . 52

x

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

xi

6 Research methodology . 53
6.1 Introduction . 53
6.2 Proof by demonstration research methodology . 53
6.3 Problem domains and datasets . 55
6.4 Experiments . 57
6.5 Performance measures . 60
6.6 Statistical comparison . 60
6.7 Technical specifications . 61
6.8 Summary . 61

7 Single point hyper-heuristic approach 63
7.1 Introduction . 63
7.2 The design string (DS) . 63
7.3 Single point hyper-heuristic algorithm . 68
7.4 Summary . 74

8 Results and discussion . 75
8.1 Introduction . 75
8.2 Experiment 1 - Automated design of the deep neural network pipeline 75
8.3 Experiment 2 - Transfer learning for automated design 80
8.4 Experiment 3 - Reusability of the deep neural network pipeline designs 86
8.5 Summary . 87

9 Conclusions and future work . 89
9.1 Introduction . 89
9.2 Conclusions . 89
9.3 Future work . 90
9.4 Summary . 91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

xii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1

Introduction

This chapter provides an overview of what this study aims to investigate by
presenting the objectives and contributions. This chapter also presents the layout
of the remainder of the thesis, providing a short summary of each chapter.

1.1 Purpose of study

Deep neural networks have led to significant advances in the fields of text and
image processing [1] [2]. One of the challenges associated with applying deep
neural networks is the high design time associated with the deep neural network
pipeline and the expertise needed for this process [3]. Thus, there is a need to
automate the design of this pipeline. While there has been a fair amount of
research into automating the design of specific neural network aspects like the
architecture for example NAS [4] and the weights for example Auto-Net [3], there
has not been previous research into automating the design of the entire pipeline.
There has been previous work on automating the pipeline for data classification
resulting in the development of TPOT [5], however this has not been done for
the deep neural network pipeline.

The first purpose of this study is to automate the design of the deep neu-
ral network pipeline by means of a single point selection perturbative hyper-
heuristic (SPHH). Various techniques, including evolutionary algorithms [6] and
hyper-heuristics [7] have been successfully employed for the automated design
of machine learning techniques. An advantage of using selection hyper-heuristics
for automated design is that in certain instances the same performance can be
achieved with less computational effort than needed by evolutionary algorithms.
The SPHH selects the preprocessing techniques, augmentation techniques, fea-
ture engineering techniques, the neural network architecture and the neural net-
work parameters to construct an end-to-end deep neural network pipeline. The
SPHH is used to design deep neural network pipelines for datasets in both the
text processing and image processing domain, the reason being as deep neural
network pipelines are frequently used for both text processing and image process-
ing. The SPHH automated design technique is validated using sentiment analy-
sis, spam detection, maize disease detection and oral lesion detection datasets.

The second purpose of this study is to evaluate the effect of transfer learning
on the automated design of the deep neural network pipeline. Transfer learning
is a concept that has seen some initial research in the automated design field
[8] but has not been evaluated at all for the automated design of deep neural

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2

network pipelines. Transfer learning generally is used to boost the performance
of a system by applying knowledge obtained during prior executions to a cur-
rent execution. The effect of transfer learning on the SPHH is analysed by using
the deep neural network pipeline designs created as the means of transferring
knowledge.

This study also evaluates whether the deep neural network pipelines designed
by the SPHH are reusable. Reusability testing is done by applying a deep neural
network pipeline designed for one dataset as-is for a different dataset. For a de-
sign to be reusable, it must produce results that are comparable to results that
a deep neural network pipeline that is specially designed from scratch would
produce.

The work presented here helps to advance the field of automated design, specifi-
cally pertaining to deep neural networks, and in doing so contributes to making
machine learning more accessible to non-experts and more effective for experts.

1.2 Objectives of study

The work presented starts with a thorough review of the literature in the fields
of deep neural networks, text processing, image processing and automated de-
sign. The literature survey informs the construction of a selection perturbative
hyper-heuristic (SPHH) which is used as the mechanism to automate the de-
sign of the deep neural network pipeline. The SPHH is applied to both the text
processing domain specifically sentiment analysis, spam detection as well as the
image processing domain specifically maize disease detection and oral lesion de-
tection. Experimentation performed using the SPHH is done in order to fulfill
the objectives of this study, which can be summarized as follows:

1. To automate the design of the deep neural network pipeline using a selection
perturbative hyper-heuristic for both text processing and image processing.

2. To investigate the effects of transfer learning on the automated design of a
deep neural network pipeline.

1.3 Contributions

The main contribution of this work is automating the design of the deep neural
network pipeline for both text processing and image processing. In addition, the
other contributions made by this study are outlined below:

1. Is the first study to use a selection perturbative hyper-heuristic for auto-
mated design in the deep neural network domain.

2. Is the first study to automate the design of an end-to-end deep neural net-
work pipeline.

3. Is the first study to analyse the effect of transfer learning when transferring
the deep neural network pipeline designs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3

1.4 Layout of thesis

This section gives an overview and description of each of the chapters that follows
Chapter 1.

1.4.1 Chapter 2 - Deep neural networks

This chapter presents fundamental deep neural network concepts as well as a
brief history of neural networks. Several popular deep neural network architec-
tures are presented. The neural network architectures included are those that are
incorporated into the automated design technique described in later chapters.

1.4.2 Chapter 3 - Text processing with deep neural networks

This chapter focuses on the application of deep neural networks to the text
processing domain. Basic text processing concepts are discussed and the two
relevant domains this study uses, namely sentiment analysis and spam detec-
tion are introduced. Techniques that have previously been applied to sentiment
analysis and spam detection are discussed. The deep neural network pipeline for
text processing and the various stages it comprises is also outlined.

1.4.3 Chapter 4 - Image processing with deep neural networks

This chapter discusses deep neural networks as applied to the image processing
domain. Fundamental concepts and terminology within image processing are
explained including the two relevant domains this study uses, namely segmen-
tation and classification. For both segmentation and classification the various
techniques that have been previously applied to these domains are concisely dis-
cussed. The deep neural network pipeline for image processing and the various
stages it comprises is also described.

1.4.4 Chapter 5 - Critical analysis

This chapter presents a critical analysis of the work discussed in Chapters 2, 3
and 4. The critical analysis shows which aspects from the literature this study
uses and the gaps in research this study addresses. From the critical analysis
three areas of focus are defined: automated design, hyper-heuristics and transfer
learning. Each focus area is then discussed in turn. First basic automated design
concepts and terminology are presented briefly before discussing how automated
design has been used in the deep neural network field. Attention is given specifi-
cally to hyper-parameter optimization and methods that design pipelines as they
are most relevant to this work. Secondly the use of hyper-heuristics to perform
automated design is presented by describing hyper-heuristics generally then dis-
cussing literature wherein hyper-heuristics have been used for automated design.
Lastly general terminology relating to transfer learning is presented as well as

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4

the motivations for performing transfer learning. Transfer learning has not been
used for the automated design of a deep neural network pipeline, so the use of
transfer learning within automated design is described by referring to literature
wherein transfer learning is done for various other automated design techniques.

1.4.5 Chapter 6 - Research methodology

This chapter describes the research methodology that was followed in order to
achieve the objectives described. This work makes use of a proof by demon-
stration methodology, this methodology and the experimentation that is done
is described in detail. This chapter also provides an overview of the datasets,
performance measures, statistical measures and technical specifications for the
hardware that were used as part of the experimentation process.

1.4.6 Chapter 7 - Single point hyper-heuristic

This chapter describes the single point selection perturbative hyper-heuristic
(SPHH) employed to design the deep neural network pipeline. This chapter
presents both the structure of the design that the SPHH creates as well as the
structure of the SPHH itself. This chapter also lists the hyper-parameter values
and various design decisions and explains how they were derived.

1.4.7 Chapter 8 - Results and discussion

This chapter presents the results of the three experiments performed (as de-
scribed in Chapter 7) both in terms of text processing and image processing.
For Experiment 1 the designs from the SPHH are compared to the results of
manually derived pipelines from the literature. For Experiment 2 the results of
using transfer learning with the SPHH are compared to the results of not using
transfer learning with the SPHH. For Experiment 3 the results from reusing
pipeline designs is compared to the results of designing a deep neural network
pipeline from scratch for each dataset. The results are discussed in the context
of this study’s objectives.

1.4.8 Chapter 9 - Conclusions and future work

Finally this chapter summarizes the results from Chapter 8, linking them to the
research objectives. Recommendations for future work are also presented.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2

Deep neural networks

This chapter presents fundamental deep neural network concepts as well as a
brief history of neural networks. In Section 2.1 basic deep neural network con-
cepts and terminology are discussed and Section 2.2 presents a brief history of
neural networks up to the present day. Section 2.3, Section 2.4 and Section 2.5
each present a popular deep neural network architecture in turn, namely the
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM). The neural network architectures included
are those that are focused on in this thesis. Finally Section 2.6 summarizes the
chapter.

2.1 Introduction to Neural Networks

In order to discuss deep neural networks and the state of the literature sur-
rounding them, it is necessary to first understand what a neural network is. A
neural network can be defined as an interconnected system of artificial neurons
organized in a layered structure where a layer can consist of multiple neurons. A
single neuron receives one or more inputs, processes the input, and then outputs
the result of processing. Each input is associated with a weight, which determines
the contribution of that specific input towards calculating the output. Once the
weighted inputs are summed, they are processed using an activation function.

The activation function is used to transform the input into an output. Rea-
sons for transformation include: scaling a value within a certain range and mod-
elling non-linear relationships. Activation functions need to be computationally
inexpensive as they are calculated many times during the training of a neural
network. The choice of which activation function to use is influenced by the type
of neural network architecture being used, the position of a given neuron in that
architecture as well as the characteristics of the input data [9]. The result of the
activation function is what the neuron outputs. The output of a single neuron
can be used as input to one or more neurons. If the neuron resides in the output
layer, the output of that neuron is the output of the neural network as a whole.
Figure 2.1 illustrates the working of a basic neural network neuron.

A basic neural network architecture consists of a first layer that is dedicated
to receiving input, this layer has a number of neurons equal to the number of
inputs being received. The first layer is followed by a number of hidden or non-
linear layers. A hidden or non-linear layer need not have the same number of
neurons as the first (input) layer. The last layer in the architecture is a layer that

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6

is dedicated to outputting the result of the computation done by the preceding
layers.

Fig. 2.1. A basic neural network neuron

The values for the neuron weights are iteratively adjusted by means of an op-
timization algorithm (referred to as an optimizer); this process is called training.
The training process consists of multiple epochs; the weight values are updated
at the end of an epoch. At the start of training the neuron weight values are
either initialized randomly or set to weight values from a previous round of train-
ing. The training process completes when weight values are found that results in
the neural network outputting a high accuracy value and low loss value. The ac-
curacy for a neural network is a function of how often the neural network delivers
correct predictions, the loss value is the prediction error for the neural network.
Calculation of the loss value is done by means of a loss function; the loss function
used depends on the task at hand. An example of a loss function is Mean Squared
Error (MSE) which uses the value predicted by the neural network as well as
the correct value and calculates the mean of the squared differences. The MSE
loss function is suited towards neural networks that produce real valued outputs
for regression tasks as opposed to simple binary outputs for classification. In
the case of a neural network that is solving a classification task, if the classes
are binary a loss function such as Binary Crossentropy (BCE) would be used,
if there are multiple classes Categorical Crossentropy (CCE) would be used as
a loss function. The loss function chosen is based on the problem domain and
neural network architecture.

The optimization algorithm uses the loss function to update the weights for
all neurons in the neural network. For example, if gradient descent is used as an
optimizer the first order derivative of the loss function is used to calculate new
values for the weights that minimizes the loss function, if the loss function can-
not be minimized any further training completes. There are many optimization
algorithms to choose from and other popular choices include: Stochastic Gradi-
ent Descent (SGD), Adam [10], AdaGrad [11], AdaDelta [12] and more. SGD is
a very basic optimizer and most other optimizer algorithms at their core make
use of the fundamentals of SGD. SGD trains a neural network by updating the
weights of the neural network by means of gradient descent. Gradient descent
attempts to find a minimum for a function by incrementally updating the func-
tion parameters. In the context of neural network optimization, we are trying

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7

to minimize the loss and incrementally update the weight values. The first step
to gradient descent is calculating the gradient of the loss function value after
getting a prediction from the neural network for a given input. The magnitude
and direction of the error of the neural network prediction is referred to as the
gradient. The gradient is then multiplied by a parameter called the learning rate
which provides us with a step size. The learning rate is a hyper-parameter that is
set at the start of training. The step size given by the learning rate is subtracted
from the current weight value to give us the new weight value. The stochastic
aspect of SGD refers to when gradient descent is performed, a dataset instance is
chosen at random, instead of in a predetermined order. The choice of optimizer
is heavily dependent on both the problem domain that the neural network is
being applied to, as well as the overall architecture of the neural network [13].

The optimizer uses a hyper-parameter called the learning rate which controls
how large a change in weight value the optimizer can make from one epoch to
another. If the learning rate is a large value, the weight values change dramat-
ically between epochs, if the learning rate is a small value, the weight values
change less dramatically between epochs. Having a large learning rate could
result in faster training, but it could also result in optimum weight values be-
ing missed or a local optimum being found instead of a true global optimum.
Conversely a smaller learning rate can slow down the training process, meaning
it can take longer for optimum weight values to be found, but because weight
values are being updated in smaller increments, the chances of missing an opti-
mum set of weight values or finding a local optimum is lower. Techniques that
dynamically adjust the learning rate values throughout the training process are
commonly employed to exploit the positive effects and dampen the negative ef-
fects of both a large and small learning rate value [14]. A momentum parameter
is also commonly used as a means of avoiding local minima during the training
process. The momentum parameter is real valued and forms part of the weight
value update process by adding a fraction (the exact fraction added is deter-
mined by the momentum parameter’s value) of the current weight value to the
next weight value. The momentum parameter has the effect of strengthening the
weight update process in a certain direction i.e. if a certain weight value has
been steadily increasing, the momentum parameter ensures that it continues
to increase. This inertia-like effect of the momentum parameter often results in
larger weight value changes and for that reason the learning rate parameter often
has a smaller value when used in conjunction with a momentum parameter.

2.2 History of Neural Networks

The basic building block of a neural network, the neuron, was first posited in the
1950s [15] as a perceptron. The perceptron was missing the networked aspect of
neural networks, in other words, being connected to other neurons. Work was
eventually done to combine multiple perceptrons in a networked fashion and this
provided a significant increase in computational power over a single perceptron.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8

Networked perceptrons still had the significant problem of only having a single
layer, namely the output layer [16]. The introduction of at first only a single
hidden layer and then later on multiple hidden layers between the input and
output layer resulted in neural network research experiencing a resurgence of
interest from the computational intelligence community.

The last decade in particular has seen a massive rise in neural network research.
The reason for the recent boom in neural network study is often attributed to in-
creased computational power as well as larger and more complex datasets being
available to researchers [17]. The latter reason - large complex datasets - can be
seen as having created a need for a machine learning method that can effectively
and accurately process complex data. Deep neural networks were developed as
a solution to this need.

Neural networks can be classified as being either shallow or deep. The key to
differentiating a shallow neural network from a deep-neural network lies in the
number of hidden layers it contains. While there is no standard threshold, the
general consensus amongst researchers is that any neural network with more than
two hidden layers is considered a deep neural network [18]. Figure 2.2 shows an
example of a shallow neural network that has only a single hidden layer, Figure
2.3 shows an example of a deep neural network that has three hidden layers.

Fig. 2.2. A shallow neural network architecture

It would be incorrect to say that deep neural networks are simply better than
shallow neural networks, as shallow neural networks do have a place in neural
network study [19] [20]. The reason for choosing a shallow neural network over
a deeper neural network for certain problems relates to the additional hidden
layers required by a deep neural network architecture adding considerable com-
plexity. Additional hidden layers means that there are more weights that need
to be adjusted and more parameters to be tuned, which altogether requires more
computing resources and leads to longer training times [9]. The added complex-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9

Fig. 2.3. A deep neural network architecture

ity of a deep neural network does however pay off in that it has been shown that
as hidden layers are added and the complexity of computation increases, neu-
ral networks can be employed to solve more complex problems. Where a shallow
neural network might only be capable of doing rudimentary classification, a deep
neural network can extract features and learn relationships from data such as
videos or high-definition images. Simply put deep neural networks are able to
solve more complex problems far better than shallow neural networks [21]. The
majority of the problem domains to which neural networks are being applied
nowadays do tend to be more complex, for example natural language processing
(NLP) and image processing, and in these instances deep neural networks have
been shown to outperform shallow neural networks [22] [23].

Although the neural networks illustrated by Figure 2.2 and Figure 2.3 differ
in the number of layers they have, they can both be used as an example of a
multi-layer perceptron (MLP) architecture. The MLP architecture is character-
ized by having each neuron in a given layer being fully connected to all neurons
in the preceding and subsequent layer; this is known as being fully connected.
If the layers in a neural network architecture are not fully-connected we refer to
this as a feed forward neural network architecture, an example of a feed-forward
neural network architecture is given in Figure 2.4.

Fig. 2.4. Feed-forward neural network architecture

The difference between the MLP and the feed forward neural network archi-
tecture is that of propagation. Propagation within a neural network can occur in
two directions: forward propagation and backpropagation. Forward propagation
refers to the process where output values are calculated using the input received

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10

by the neural network in combination with its weights. Backward propagation
refers to the process of updating the weight values of the neural network us-
ing the loss values in conjunction with the optimizer. The feed forward neural
network only makes use of forward propagation whereas the MLP makes use
of both forward propagation as well as the backprop algorithm. The absence of
backward propagation in feed forward neural networks implies that the weight
values are kept static, which reduces the complexity of the problems that a feed
forward neural network can be applied to.

Both MLP and feed forward neural networks are basic neural network architec-
tures and the current state of deep neural network research has advanced beyond
only adding hidden layers. A plethora of deep neural network architectures have
been developed that attempt to address the different weaknesses presented by
more basic neural network architectures. These more complex architectures are
further discussed in Section 2.3, Section 2.4, and Section 2.5 respectively.

2.3 Convolution Neural Network

The architecture that led to one of the largest advances in deep neural network
research, is the convolutional neural network (CNN). Many state-of-the-art deep
neural networks incorporate some elements of convolutional neural networks.

CNNs build on the basic deep neural network architecture by adding the fol-
lowing additional layers: a convolutional layer, a rectified linear unit (ReLU)
layer, a pooling layer and a fully connected layer. Figure 2.5 illustrates a deep
convolutional neural network. The convolutional layer and ReLU layer are of-
ten combined into one, but for ease of explanation and illustration they are
separated. The neurons in the convolutional layer are not fully connected to the
preceding layer, rather a neuron in the convolutional layer is connected to neigh-
bouring neurons in the same layer.

The convolutional layer receives input data either directly from the input layer
or from preceding layers; the input data is referred to as a feature map. The
convolutional layer processes only a portion of the feature map at a time, as
determined by the stride size. For example when using an image, if the stride
is 8 by 8 pixels, meaning a stride consists of 8 pixels, a total of 64 pixels are
processed at a time. A dot product is computed using the input and a kernel.
The kernel is composed of parameters that are learned during training. The ap-
plication of the kernel to the input data is done in an overlapping manner, in
other words, the area of the feature map is used as input to the dot product
calculation more than once with different neighbouring areas. An example of the
process performed by the kernel and feature map is given in Figure 2.6.

The type of convolution being performed in Figure 2.6 is full or simple con-
volution. During full convolution the width and height of the kernel are the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

11

same, the kernel passes over the image once and the output of the convolution
process is a single value. The other kind of convolution that can be performed is
separable convolution. Separable convolution can be performed in one of two di-
mensions: space or depth. The first, spatially separable convolution, refers to the
width and height of the kernel and separates the kernel (and subsequently the
image) on one of these two measures. For example, if we spatially separate the
2x2 kernel in Figure 2.6 we would have two kernels, one that is 2x1 and another
that is 1x2. The result of the 2x1 and 1x2 kernel when applied in succession is
identical to the 2x2 kernel.

Fig. 2.5. A CNN with the convolutional layer, ReLU layer and pooling layer repeated
twice.

Fig. 2.6. Convolution using a 2x2 sized kernel on a 5x5 feature map with a stride of 1

The second type of separable convolution is depth-wise separable convolu-
tion, where depth refers to the number of channels. Digital image representation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

12

is further discussed in Chapter 4 which provides more clarity regarding channels
in images. For the sake of this discussion it is enough to know that each indi-
vidual element of the input data consists of a tuple of values, not just a single
value, and each element of the tuple is a different channel. Depthwise separable
convolution uses the same number of kernels as channels in the image. Assum-
ing a color image with three channels and using the same example kernel from
Figure 2.6, depthwise separable convolution performs three iterations - one on
each channel - using a 2x1 shaped kernel. The three iterations each produce a
separate output, in order to recombine these three separate outputs pointwise
convolution is used. The kernel for pointwise convolution is always 1x1 (regard-
less of the number of channels or previous kernel size used) and operates across
the outputs from all channels, to produce a single consolidated output.

The feature map from the convolutional layer is input to the ReLU layer. The
ReLU layer acts as the activation function and increases the non-linearity in
the feature map by outputting any negative values as zero while positive values
are kept constant. The ReLU layer allows the neural network to train faster
and learn more complex relationships within the input data [24]. The reason
why ReLU is preferred over other activation functions such as sigmoid or tanh
is because those activation functions tend to fall victim to behaviour known as
saturation. Saturation means that the activation functions become less sensitive
to small changes and more frequently output values at the end of the scale i.e
1 or 0 for tanh and 0 or -1 for sigmoid. Saturation is undesirable as it makes
training less effective.

The ReLU layer provides input to the pooling layer where the feature map
is downsized. The downsizing is done similarly to the convolutional layer where
a stride is used to consider only a certain portion of the feature map at a time.
In the case of the pooling layer, instead of computing a product, a function is
applied that summarizes that portion. The exact function used can differ, but
taking the average value or taking the maximum value is commonly used.

The output from the last pooling layer is input to the fully connected layer.
The fully connected layer is functionally similar to the last output layer of a
standard neural network. As implied by the name, the neurons in the fully con-
nected layer are fully connected to the output layer [25]. A convolutional neural
network can have multiple convolutional, ReLU and pooling layers. Having dis-
cussed the overall architecture of the CNN, the application of an optimizer to
this architecture can be discussed.

In the introduction of this chapter it was mentioned that there are several differ-
ent optimizers that can be used to train a neural network, for CNN architectures
the Adam optimizer [10] as well as RMSProp [26] have been shown to perform
well across different problem domains [27] [28] [29]. Adam extends the basic
stochastic gradient descent optimization algorithm by having a different learn-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

13

ing rate for each weight and allowing the learning rate to be dynamically adjusted
throughout the learning process. The adjustment of the learning rate is based
on two parameters that are calculated at each epoch. The first parameter is the
exponential moving average of the gradient plus the moving average of the gra-
dient squared. The second parameter is the moving average of the gradient plus
the gradient. These two parameters are controlled by hyper-parameter beta one
and beta two. The beta one and beta two parameters are decreased over time,
which results in the learning rate getting smaller over time, this helps the Adam
optimizer to focus on exploitation of the weight value search space near the end
of the training process. RMSProp like Adam uses a dynamic learning rate that
is set per weight. RMSProp only makes use of the first parameter described for
Adam and excludes the second, meaning that only the beta one needs to have a
value set for it. In RMSProp beta one is referred to as the decay rate.

The choice of loss function used for a CNN is very much dependent on the
problem domain to which the CNN is being applied. Popular choices include
binary cross entropy and categorical cross entropy which can be used for binary
and multiclass classification problems respectively. CNNs are often employed for
more complex image processing tasks such as image segmentation and object
identification in which case multiple loss functions can be combined. For exam-
ple calculating both the binary and sigmoid loss of the prediction. Alternatively
a single loss function can be used but the loss can be calculated on multiple
aspects of the neural network’s prediction. For example if a CNN is identifying
objects in an image as well as classifying them, the loss is calculated with respect
to whether the objects are identified at all as well as the loss with respect to
whether the identified objects have the correct class assigned, the popular CNN
based Mask R-CNN algorithm [30] employs this strategy.

CNNs outperform non-convolutional deep neural networks specifically in the im-
age processing domain. The reason for this is because of the feature map created
by the convolutional layer which represents images far better than other basic
neural networks can. The CNN also offers a measure of scale and translation
invariance which makes it more robust and generalizable [31]. Image processing
was the original intended use for CNNs, but recent application to the domain of
text classification has shown great promise as well [32] [33]. The use of a CNN in
conjunction with an unsupervised feature engineering method was proven in [33]
to improve on the state of the art for several text classification tasks. Although
CNNs have led to massive research advancements in the deep neural network
field, the added complexity presents some difficulties. One of the biggest chal-
lenges with CNNs are that they require a large number of parameters to be
tuned [34] which leads to lengthy training times.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

14

2.4 Recurrent Neural Network

Another variation on the deep neural network architecture is a Recurrent Neu-
ral Network (RNN). The architecture of an RNN allows for information to be
retained, specifically information of a sequential nature. The neurons in an RNN
allow information that is currently being received to be compared with informa-
tion it had previously received, before the weight update takes place. The current
input as well as the past information for a given neuron have separate weight
values, and both weight values are updated through backpropagation [35]. The
acronym RNN can also refer to a Recursive Neural Network, however there are
differences between a recurrent and recursive neural network architecture. For a
Recurrent Neural Network, input is given to the input layer and the weights of
the different hidden layers are applied as it passes through the specified layer. For
a Recursive Neural Network input is processed hierarchically and the architec-
ture of the neural network itself won’t be fixed, it is parsed and adjusted during
the training process, making backpropagation significantly more complex [36].
Recursive neural networks have not been as widely adopted and studied because
of their complexity. Within this work the acronym RNN refers to a Recurrent
Neural Network.

A high level illustration of an RNN and how it incorporates past inputs and
current inputs is given in Figure 2.7. In Figure 2.7 we can see that the first
hidden layer receives its own input as well as input from the second and third
hidden layer and the output layer. A RNN neuron multiplies the current input
and the previous input by their respective weights. The two input values are
then passed to an activation function to be combined, tanh is commonly used,
this is illustrated in Figure 2.8. A hidden layer in an RNN has knowledge of data
that originated from processing that only occurred after it had already provided
output, in other words, at a later point in time. When looking at an RNN from
the perspective of time and being able to access data at different time steps, the
application of RNNs to sequence sensitive data starts to make sense. An RNN is
able to learn the sequences and relationships of data through backpropagation
and weighting of information in a way that a standard neural network such as
that depicted in Figure 2.2 would not be able to.

Similar to the CNN, optimizers that have been applied to the RNN architec-
ture include Adam and RMSProp [37]. The AdaGrad optimizer [12] is also a
popular choice considering that the RNN neural network has significantly more
weights that need to be updated than a typical deep neural network. AdaGrad
is another improvement upon the basic stochastic gradient descent optimizer.
AdaGrad like Adam and RMSProp have a learning rate for each individual pa-
rameter, however an advantage that AdaGrad has over Adam and RMSProp is
that it does not have extra parameters that have to be assigned values in order
to calculate the learning rate, the learning rate is tuned automatically. AdaGrad
simply keeps track of the sum of the gradient squared for a given weight and
then multiplies that by the learning rate for that weight. AdaGrad is generally

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

15

quite lightweight and fast to converge, but can suffer from a problem where the
learning rate becomes too small to effect significant weight changes. An exten-
sion of AdaGrad called AdaDelta attempts to address this problem by setting
an upper limit on the sum of the gradient squared. In terms of the loss function,
the loss function used for an RNN architecture depends on the problem domain.

Fig. 2.7. A high level illustration of the working of an RNN

Fig. 2.8. An illustration of the basic RNN computational unit

The RNN is prone to an issue called the vanishing gradient problem [38]. The
vanishing gradient problem arises from the backpropagation aspect of the RNN.
Backpropagation is multiplicative, meaning that the values are not input to a
prior neuron as is, instead it is multiplied by the weights of each neuron that it
is backpropagated to. In the case of a hidden layer that is twelve layers deep, by
the time that the value of that hidden layer’s neurons is backpropagated to the
first hidden layer, the value would have been multiplied eleven times and gotten
so small, that it would have effectively vanished. The inverse problem, gradient
explosion, where values get unreasonably large, can also affect the performance
of the RNN architecture [39].

RNNs are particularly good at recognizing patterns across time which is quite
different to CNN architectures which are better equipped to learn patterns across
space [40]. Put differently, a CNN performs better when tasked with learning
the local features from words or phrases, while a RNN is better able to learn the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

16

long-term dependencies of texts rather than local features [41]. The combination
of CNNs and RNNs is meant to exploit the positives of both while lessening
the effects of the negatives. Recurrent convolutional neural networks (RCNNs)
have shown competitive results in both the text classification [41] and image
processing domains [42].

2.5 Long Short-Term Memory

As mentioned in the previous section, a basic RNN is prone to backpropaga-
tion becoming ineffective due to gradient vanishing/explosion. Variations on the
basic RNN architecture such as long short-term memory (LSTM) address this
problem. The fundamental difference between an RNN neuron and an LSTM
neuron, is that the RNN has no internal cell state, whereas an LSTM neuron
enforces a cell state by means of gates.

Within an LSTM neuron the current input and previous input are multiplied
by their respective weights and the value pair is then passed to four different
gates: a forget gate, an input gate, an input activation function and output gate.
The forget gate takes the value pair and passes it to a sigmoid function. The
input gate passes the value pair into a sigmoid function and the input activa-
tion function passes the value pair to a tanh function. The result of the input
gate and input activation gate are then multiplied. The output gate takes the
value pair and passes it to a sigmoid function. The all important cell state is
calculated by taking the current value of the cell state and multiplying it by the
output from the forget gate, the result is added to the output from the input gate
and input activation gate multiplication operation. Lastly, the cell state is input
to a tanh function and the result is multiplied by the result from the output gate.

Figure 2.9 illustrates the structure of an LSTM neuron.

Fig. 2.9. An illustration of the basic LSTM computational unit

The structure of the LSTM neuron circumvents the vanishing gradient prob-
lem by way of the cell state which is able to retain state over a long period of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

17

time. The gates through which all input to the neuron must pass allows for more
control over how the cell state gets updated as well as what the neuron outputs,
which ultimately mitigates against the vanishing gradient problem. The Adam
optimizer is a popular choice for LSTM neural network architectures [43] [44]
but traditional SGD has also been used quite successfully [45]. The exact loss
function chosen within an LSTM architecture depends on the type of classifica-
tion problem as well as the problem domain to which the architecture is being
applied. The LSTM has been shown to produce competitive results in the text
classification domain [46] however the added complexity of the additional gates
means that the LSTM can take longer to train than a basic RNN [47].

2.6 Summary

This chapter provides basic theoretical knowledge regarding deep neural net-
works as well as a brief history of deep neural networks from the genesis to
modern day usage. Section 2.1 provided an overview of the structure and func-
tion of neural networks and introduced some important fundamental concepts.
Section 2.2 gave some more insight into where deep neural networks originated as
well as why deep neural networks have become as popular as they are today. Sec-
tion 2.3 discussed the structure of a convolutional neural network architecture,
explaining the reasoning behind the various design choices as well as discussing
some applications of this deep neural network. Section 2.4 discussed the various
components and uses of a recurrent neural network, this was followed by Section
2.5 which presented the LSTM which is a specialization of the RNN. The deep
neural network architectures discussed in this chapter are those that are focused
on in this thesis, which is why it is crucial to have a working understanding of
them.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3

Text processing with deep neural networks

This chapter focuses on the application of deep neural networks to text process-
ing. Basic text processing concepts are discussed and the two relevant problem
domains this study uses, sentiment analysis and spam detection are introduced.
Section 3.1 introduces the deep neural network pipeline for text processing. Sec-
tion 3.2 discusses the first stage of the deep neural network pipeline which is
the preprocessing stage. Section 3.3 moves on to explain the feature engineering
stage of the deep neural network pipeline, which is the second stage. Section 3.4
presents the classification stage by analysing some popular deep neural network
architectures for sentiment analysis and spam detection. Section 3.5 presents
some examples of deep neural network pipelines for text processing from the
literature. The summary in Section 3.6 concludes this chapter.

3.1 Introduction to text processing

Text processing is defined as the task of assigning individual text-based data
instances within a collection of data to a given class (where a single instance can
refer to anything from a single word to an entire document) on the basis of one or
more features extracted from that instance [48]. Text processing is often used as
an umbrella term to refer to several more specialized problems. In this research
two specialized text processing problems are considered: sentiment analysis and
spam detection.

The first problem, sentiment analysis, extracts features within texts with the
aim of determining the opinion that the author holds of a specific entity. An
example of sentiment analysis is knowing which way public opinion regarding a
political candidate sways on a social media network like Twitter. Sentiment anal-
ysis was first described and attempted in 1931 [49] by hand. Sentiment analysis
continued to evolve to make use of statistical methods [50] and machine learn-
ing techniques [51]. Presently machine learning has become one of the dominant
means of doing sentiment analysis [52], this is further discussed in more detail in
Section 3.4 below. The classes that are used in sentiment analysis problems can
be either binary (i.e. a textual data instance is determined to have either positive
or negative sentiment [53]) or multi-class [54] (i.e. positive, neutral or negative
sentiment). Sentiment analysis can also use a continuous range of values between
-1 and 1 where -1.0 represents a very negative opinion and 1.0 represents a very
positive opinion [55]. The term “sentiment analysis” is often used interchange-
ably with the term “opinion mining” and generally the two are understood to
mean the same [52], this thesis uses the term “sentiment analysis” throughout.

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

19

The second task, spam detection, differentiates between genuine benevolent texts
and unsolicited, unwanted or malicious texts. The need for preventing spam first
arose in the 1990s with the widespread adoption and use of emails and short-
messaging service (SMS) communications [56]. The advent of Web 3.0 has meant
that there are many more platforms that serve as potential targets, for example:
Twitter, Facebook and Amazon [56]. Spam detection should take into consid-
eration the platform from which the text originates. A spam email looks very
different to that of a spam comment left on a Youtube video. The former most
likely has more content than the latter, additionally an email comes with very
different metadata to that of a comment. Spam detection can be performed using
a variety of techniques ranging from simple blacklisting of words or senders to
complex machine learning techniques [57] this is discussed further in Section 3.4
below. Spam detection is commonly defined as a binary classification task where
a textual data instance is either classified as spam or ham [58]. Ham is the class
given to benevolent and genuine texts. An example of binary spam detection is
seen in email clients, where genuine emails arrive in the user’s inbox (these are
the “ham” emails) and the spam emails are immediately discarded and put into
a separate folder. Spam detection can also be a multiclass classification prob-
lem [59] where data instances are classified as either “hard spam”, “easy spam”,
“hard ham” or “easy ham”. Where “easy” refers to a textual data instance that
can easily be classified and “hard” refers to data instances that are more difficult
to classify.

Text processing can be abstracted to consist of three high level stages which
is referred to as the deep neural network pipeline. These stages in order are pre-
processing, feature engineering and classification [60]. The preprocessing stage
consists of cleaning and preparing the raw texts for feature engineering. The
feature engineering stage refers to the process of selecting and extracting fea-
tures from the preprocessed texts that can be input to the technique used in
the subsequent step. The last stage is the classification stage where the feature
representation produced by the feature engineering stage is used to classify the
texts by means of a deep neural network. Figure 3.1 provides a visualization of
the deep neural network pipeline for text processing.

Fig. 3.1. The deep neural network pipeline for text processing

Each stage in the deep neural network pipeline can consist of one or more
specific techniques. Section 3.2, 3.3 and 3.4 discusses the different techniques
that have been used for the different stages in the deep neural network pipeline.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

20

3.2 Deep neural network pipeline - preprocessing stage
techniques

The preprocessing stage is the first stage in the deep neural network pipeline.
Preprocessing means getting rid of any superfluous information in the text and
removing any noise that could lessen the efficacy of the stages that follow. Pre-
processing techniques should be applied on the basis of whether the text does
indeed require that preprocessing technique to be applied.

The origin of the texts used for sentiment analysis are places like social me-
dia or review websites meaning these texts can be of low writing quality. The
texts may be repetitive, overly wordy, use slang terms or have spelling errors, all
of which adds noise. For this reason, the primary purpose of the preprocessing
stage in sentiment analysis is to clean the texts and remove noise. For spam
detection the preprocessing stage can serve a slightly different purpose than for
sentiment analysis. In spam detection textual anomalies such as spelling errors
or poor grammar serve as indicators that a text might be spam. Additionally
those creating the spam texts might intentionally misspell words to bypass exist-
ing spam detection methods [61]. For example spelling “credit card” as “(redit
(ard” instead, in this scenario correcting the spelling of all words would be a
poor choice of the preprocessing method. Context-sensitive spelling correction
methods are being researched [61] but given their infancy, fall outside of the
scope of this work.

Preprocessing techniques that have seen frequent use are discussed below:

– Applying spelling correction to the text according to a dictionary that matches
the language of the text [62]. If a word occurs multiple times in a text but
it is spelled differently in a few instances, it can be seen as a different word
entirely. The meaning of a word does not change when the spelling is in-
correct, which means that misspelled words add unnecessary noise. Spelling
correction cannot be applied without consideration for the text’s origin as
misspelled words might be misspelled on purpose because they are a collo-
quialism for example “nah” instead of “no”.

– Stemming is used to transform words to their specific stem by cutting off the
extra characters from the end of the word. For example, the words “games”,
“gamer” and “gamest” are all transformed to the single stem “game”. Stem-
ming is a good preprocessing technique to use for texts that are wordy.
Stemming removes the noise of having many words that mean the same
thing by increasing the frequency of the occurrence of a single word. Stem-
ming is used in both sentiment analysis [63] [64] as well as spam detection
[65].

– Removal of URLs and URI-type objects. URLs link to other places on the
web whereas URIs are a reference to a specific piece of media like an image
or journal article. An example of a URL is ‘http://example.com’ while an
example of a URI is ‘urn:oasis:names:specification:docbook:dtd:xml:4.1.2’.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

21

This preprocessing technique is often used in texts that originate from social
media like Twitter or Facebook. It is important to note that if the URLs or
URIs contain information that is crucial to classification, then they cannot
be removed, if they are not crucial they add noise and should rather be
removed. Both sentiment analysis [64] and spam detection [66] make use
of datasets that include texts with embedded URL and URI strings which
require removal during preprocessing.

– Conversion of hashtags into normal words. Hashtags are a single string of
characters preceded by a hash (‘#’). Hashtags are used to summarize the
content of a text, to identify a text as being related to a specific topic, or to
add additional content to the text [67]. The majority of the time hashtags
contain important and meaningful content. Because of the leading pound
sign, hashtags are seen as unique words. For example the hashtag ‘#coro-
navirus’ and the word ‘coronavirus’ are not seen as equal within the text,
this can add noise which is why the leading hash is removed. It is more com-
mon for sentiment analysis studies to make use of hashtag conversion as a
preprocessing technique [63] [68] [69].

– Removal of punctuation is often done to combine multiple sentences into
a single sentence [70]. The reason for removing punctuation only becomes
apparent at the feature engineering stage, when the frequency of word oc-
currences within sentences is used to encode feature representations. Both
sentiment analysis [63] [64] and spam detection [66] have employed this pre-
processing technique.

– Removal of stop words [70]. Stop words are words that occur often in texts
but are neutral in terms of the meaning they add to a text. Stop words can
include words like: “the”, “a”, “was” and so forth. Stop words are essential for
humans to read texts but do not contribute to the overall meaning. Removing
stop words gets rid of noise and intensifies words that are meaningful. Stop
word removal should be used carefully as it can potentially alter the meaning
of a text. For example if stop words are removed from the sentence: “I am
not a fan of this product” the resulting sentence is “I am fan product” which
is nonsensical. Stop word removal is used for both sentiment analysis [63]
[64] and spam detection [65] [71].

– Lemmatization converts similar words to a single word that encompasses the
same concept. The difference between stemming and lemmatization is that
stemming converts similar words to their stem and lemmatization converts
words to their lemma. The lemma of a word takes the morphological ori-
gin of a word into account [72]. Consider the words “games”, “gamer” and
“gamest” which all have the stem “game”. If we add the word “gamifica-
tion” to the list of words, when stemming is applied to “gamification” it is
transformed to the stem “gamify”. However if lemmatization is applied, all
four words are converted to the lemma “game”. Sentiment analysis [63] [64]
and spam detection [65] make use of this preprocessing technique.

– Conversion of text to lowercase. This preprocessing technique is used to
decrease variance within a dataset. Sentiment analysis [68] [69] as well as
spam detection [66] [71] studies have used this preprocessing technique.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

22

The preprocessing stage carries significant importance as it has been proven
that the techniques used at this stage have an impact on the stages that follow
[73]. The preprocessing stage is generally made up of several techniques which
get applied to the text one after the other. The order in which the techniques
are applied is as important as the techniques themselves [73].

3.3 Deep neural network pipeline - feature engineering
stage techniques

The processed texts from the preprocessing stage are input to the feature engi-
neering stage and feature engineering is then performed. Feature engineering is
the process of encoding a text into a feature representation by selecting, com-
bining, removing and transforming certain features within the text. Feature en-
gineering makes use of two processes: feature selection and feature extraction.
Feature selection selects and discards already present features within the text
whereas feature extraction combines and transforms individual features to cre-
ate entirely new features [74]. A single word can be considered a feature, but a
specific combination of words or even whole sentences may also be considered
features.

Feature engineering produces a feature representation which is input to a clas-
sifier. There are multiple reasons why the feature representation is given to the
classifier instead of the raw texts. Firstly, feature engineering is used to ensure
that the texts are in the format that the classifier expects it to be, for example
when using a convolutional neural network we need to ensure that the input ma-
trix matches the size expected by the input layer and kernel. Feature engineering
can also be used to downsize the text that is being worked with [74], when using
a smaller feature representation, it means that the deep neural network that the
feature representation is input to trains faster than when using a larger feature
representation. The last reason for performing feature engineering is to extract
the most prominent and important features of the text. If the correct features of
a text are transferred to the feature representation, it results in an improvement
over simply using the text as is. When using the incorrect feature engineering
technique, the incorrect features are extracted from the text (or correct features
are missed) leading to poor performance of the classifier [75]. When applying a
well chosen feature engineering technique it has been shown to provide a signifi-
cant boost to deep neural networks that use the produced feature representation
both in the case of sentiment analysis [76] as well as spam detection [77] [78].

The simplest feature engineering method is one hot encoding, used for both
sentiment analysis [79] and spam detection [66]. One hot encoding creates a
vector representation for each word within the text. The vector representation
has elements that are either 0 or 1 and each position in the vector corresponds
to a position within the text. If the word for which we are creating the vector
appears in a specific position in the text, the same position in the vector has a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

23

1. Conversely if the word for which we are creating the vector does not appear
in a specific position within the text, the same position in the vector has a 0.
A vector representation is created for each and every word within the text, in-
cluding punctuation if present. The resulting collection of vectors is the feature
representation. An illustration of the one hot encoding of the sentence: “I like
learning about deep learning” is given in Figure 3.2. In Figure 3.2 the rows rep-
resent the set of all words that occur in the text, the columns each represent a
word in the text as a binary string vector.

Fig. 3.2. Example of a sentence that is one-hot encoded.

One hot encoding performs feature selection and considers each word to be a
feature. The recent trend within feature engineering is to make use of more com-
plex neural network based methods such as Word2Vec [80] and FastText [81].
Word2Vec is discussed first, as FastText is an extension of the Word2Vec tech-
nique. Unlike one hot encoding, Word2Vec does not simply encode the presence
and absence of words within a text. Word2Vec uses cosine similarity to group
similar words together, thus a word vector represents a collection of words that
are most similar to the word for which we are creating the vector. The collection
of similar words is called the context. Each unique word in the text has a word
vector generated for it. Word2Vec extracts a feature representation that models
the relationships between the words within the text. Word2Vec makes use of a
two layer neural network and has two variations in the architecture, the first
being the continuous bag of words (CBOW) architecture and the second the
skipgram architecture. In the CBOW architecture the neural network is given a
context from the text as a whole and predicts the single word that would fit that
context. In the skipgram architecture the neural network is given a single word
and predicts the context within the text as a whole that the single word would
occur in. In both the CBOW and skipgram architectures if the prediction is in-
correct the vector for the single word is adjusted. The choice of whether to use
CBOW or skipgram depends on the text to which the technique is being applied.

FastText extends the Word2Vec model by encoding the individual words into
their n-gram representation before training the neural network. An n-gram is
created by sampling a number of contiguous characters from a word. The num-
ber of characters to be sampled is greater than one and smaller than or equal to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

24

n. The samples are unique, for example if n is set to 3, the n-gram for the word
‘feature’ contains: ’fe’, ‘ea’, ‘fea’, ‘at’, ‘eat’, ‘tu’, ‘atu’, ‘ur’, ‘tur’, ‘re’ and ‘ure’.
The use of n-grams for the representation allows longer words to be broken up
into their prefixes and suffixes and shorter words to be better explicated. Fast-
Text supports CBOW and skipgram.

Neural network based feature engineering methods have resulted in the signifi-
cant advancement of feature engineering research, however they are expensive to
use both in terms of computing resources as well as time. Alternative feature en-
gineering techniques that are less time and resource intensive are term frequency
- inverse document frequency (TF-IDF) [82] and Global Vectors (GLoVe) [83].
TF-IDF calculates how frequently a word occurs in a single textual instance
(term frequency) and then multiplies that value by the inverse of how frequently
that word occurs across multiple texts (inverse document frequency). TF-IDF
is used for both sentiment analysis and spam detection with competitive results
being produced [84]. TF-IDF is simple to compute but it is unable to capture
word context in the way Word2Vec and FastText do. The GloVe feature en-
gineering technique like TF-IDF makes use of word frequency vectors for each
word. The GloVe technique calculates the dot product of two word vectors and
compares it to the log of the amount of times the two words occur near one
another. The concept of how “near” two words are to one another is controlled
by a hyper-parameter. For example if the hyperparameter is set to be three, the
two words for which we are comparing word vectors, have to be within three
words of one another. The two word vectors are adjusted based on how different
the dot product is from the log result.

3.4 Deep neural network pipeline - classification stage
techniques

The feature representation resulting from the feature engineering stage is input
to the classification stage. Many different techniques can be applied at the clas-
sification stage, this work focuses on text processing within the context of deep
neural networks and as such the discussion is limited to the use of different deep
neural network techniques.

In Chapter 2 four distinct deep neural network models were discussed: a basic
deep neural network (DNN), a convolutional neural network (CNN), a recurrent
neural network (RNN) as well as a long short-term memory (LSTM) network.
These four architectures are discussed in turn for both sentiment analysis and
spam detection. The inclusion of these deep neural networks is supported by
comparative studies that list the aforementioned four deep neural network archi-
tectures for sentiment analysis [85] [86] and spam detection [87][88] respectively.
The explicit focus on deep neural networks is further supported by studies done
on different text processing problems showing deep neural network techniques
to be competitive with and in some cases superior to other supervised and un-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

25

supervised techniques [89] [90].

The basic DNN architecture has seen recent use in both sentiment analysis [63]
[91] and spam detection [66] studies. The reason for the inclusion of the basic
DNN despite the existence of more complex deep neural network architectures
is due to the fact that it is faster to train and requires far less hyper-parameter
tuning than the other neural network architectures listed. Some studies have
shown the basic DNN to outperform more complex architectures on text pro-
cessing datasets that have a high level of variance [92].

A more popular architecture for both sentiment analysis [93] and spam detection
[65] is a CNN. The CNN has been shown to exhibit longer training times than a
DNN for sentiment analysis tasks but this is to the benefit of better performance,
in other words the CNN obtains more accurate results than the DNN. The CNN
is the state of the art for certain sentiment analysis [86] and spam detection
[94] datasets over other deep neural network architectures such as RNN. The
CNN is thought to perform well on text based data as a result of the feature
extraction process inherent to the architecture. The process of convolution in
a CNN captures n-grams in the case of text based data and this extra level of
feature engineering allows the CNN to make use of features that might not have
been extracted or apparent in the feature engineering stage. The CNN does have
limitations, one of which is that although it excels at extracting features, it is
unable to accurately model long-term dependencies [95]. In other words, a CNN
cannot identify temporal relationships between texts because it has no way of
recalling data seen in a past epoch at a future training epoch. For datasets that
do not rely on such long term dependencies for classification, the CNN is a good
architecture to use, however if relationship modelling is required, the memory
components of both the RNN and LSTM architectures are better suited.

The application of a basic RNN is popular for both sentiment analysis [64]
and spam detection [96]. The popularity of RNN networks can be owed to the
fact that they are able to model long term dependencies. RNN has outper-
formed both CNN and DNN architectures for certain sentiment analysis [97]
and spam detection [98] datasets. RNN architectures can present the problem of
significantly higher training times than both DNN and CNN architectures. The
LSTM architecture which is an extension of the RNN architecture has also been
widely applied to both sentiment analysis [63] and spam detection [94] tasks.
The LSTM architecture is also able to model relationships between words and
texts that are not in the immediate context of one another. Recent comparative
studies specifically in the sentiment analysis domain have concluded that LSTM
architectures seem to be outperforming other deep neural network architectures
[99]. The LSTM architecture requires significantly longer training times than
both the DNN and CNN architectures.

From the above discussion it is clear that these four deep neural network ar-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

26

chitectures have seen frequent use and different aspects of the four deep neural
network architectures make them well suited to different kinds of tasks and
datasets. Comparative studies have explicitly shown that the different deep neu-
ral network architectures have both strengths and weaknesses when applied to
the classification of sentiment [100] as well as spam detection [87].

3.5 Deep neural network pipelines for text processing in
the literature

Deep neural network pipelines have been applied to text processing for both
sentiment analysis and spam detection in the literature. This section discusses a
few of those instances. The pipelines discussed in this section have been selected
for inclusion since the datasets that they were applied to, are the same datasets
that this thesis makes use of for experimentation later on.

The work in [101] attempted to predict movie ratings by making use of a deep
neural network pipeline. The preprocessing stage consisted of case conversion, to-
kenisation, stop word removal, spelling correction, stemming and lemmatization.
The feature engineering stage using the Word2Vec technique in a skipgram con-
figuration and the resulting feature representation was then input to an LSTM.
The deep neural network pipeline described was applied to the ACL IMDB movie
reviews dataset [102]. The work in [103] focused on increasing the performance
of a LSTM in a deep neural network pipeline for sentiment analysis by trialling
different feature engineering methods. This work showed that a deep neural net-
work pipeline with no preprocessing techniques and a basic word embedding as
the feature engineering technique provided optimal performance for the Ama-
zon product reviews dataset [104]. The work in [105] aimed to develop a deep
neural network pipeline that would be able to predict the sentiment of tweets
pertaining to the 2020 Coronavirus pandemic. The deep neural network pipeline
contained a preprocessing stage with unspecified techniques and a feature engi-
neering stage that used one-hot encoding. The neural network component was
a CNN. The deep neural network pipeline as a whole was applied to the Coron-
avirus tweets dataset [55]. The comparative study in [106] sought to determine
whether an LSTM or CNN would perform most effectively in a deep neural net-
work pipeline for sentiment analysis, specifically for tweets. The preprocessing
stage made use of stop word removal, lemmatization and stemming. The feature
engineering stage was not specified. The best performing deep neural network
was a LSTM as applied to the Sentiment 140 dataset [107]. The study in [108]
constructed a deep neural network pipeline to perform sentiment analysis on a
combination of restaurant, hotel and business reviews. The preprocessing stage
consisted of case conversion, punctuation removal, tokenisation, lemmatisation
and stop word removal. The feature engineering technique chosen was GloVe
and the resulting feature representation was given to a CNN for classification.
The Yelp reviews dataset [109] was used to test the deep neural network pipeline
performance.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

27

The work done in [110] focused on spam detection for emails, specifically for
datasets where the number of emails classified as ham (benevolent) and the num-
ber of emails classified as spam (malevolent) is balanced. A deep neural network
pipeline is constructed where the preprocessing stage consists of case conversion,
tokenization, stop word removal and stemming. The feature engineering stage
made use of the TF-IDF technique and the neural network architecture chosen
was a CNN. The Enron emails dataset [111] was used as it contains a balance of
spam and ham emails. The work done in [112] similarly focused on spam detec-
tion but for shorter texts, in other words SMS messages. A deep neural network
pipeline was again constructed. The author of [112] specifies that a preprocessing
stage was included but does not mention the techniques used, the feature engi-
neering stage used basic word embedding and the chosen deep neural network
architecture was an RNN. The aforementioned deep neural network pipeline was
designed for the SMS Spam dataset [113]. The work in [114] sought to do a gen-
eral study of information filtering which includes spam detection. A deep neural
network pipeline was used as the solution. No techniques were used during the
preprocessing stage, the feature engineering stage used the GloVe technique and
an LSTM was chosen as the deep neural network architecture. The Spam Ass-
sassin dataset [115] was the dataset for which the pipeline in [114] was designed.
The study in [66] constructed a general spam detection system that incorpo-
rates a deep neural network pipeline. The preprocessing stage was quite lengthy
consisting of case conversion, removal of URI like strings, conversion to ASCII,
removal of punctuation, removal of date and time strings, removal of whites-
pace, removal of stop words, stemming, lemmatization, spelling correction and
duplicate word removal. The feature engineering stage used a custom unspecified
word embedding technique, the deep neural network architecture chosen was a
basic DNN. The YouTube comments spam dataset [116] was the dataset used in
the construction of the aforementioned deep neural network pipeline.

The performance of the pipelines discussed above will be compared to the per-
formance of the deep neural pipelines that are created by means of automated
design in Chapter 8.

3.6 Summary

This chapter analysed deep neural networks in the context of text processing,
specifically sentiment analysis and spam detection. In Section 3.1 sentiment anal-
ysis and spam detection were defined and some basic text processing concepts
were discussed. Section 3.1 also introduced the concept of a deep neural network
pipeline for text processing. Section 3.2 focused on the preprocessing stage of
the deep neural network pipeline. Section 3.3 focused on the feature engineer-
ing stage and its respective techniques. Section 3.4 discussed some deep neural
network architectures in the context of sentiment analysis and spam detection

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

28

as part of the classification stage. Finally Section 3.5 presents some instances of
the deep neural network pipeline being used for text processing.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4

Image processing with deep neural networks

This chapter discusses deep neural networks as applied to the image processing
domain. Section 4.1 explicates some fundamental image processing concepts, also
introducing image processing subdomains and the deep neural network pipeline.
Section 4.2, Section 4.3 and Section 4.4 discuss the augmentation, preprocessing
and processing stages of the deep neural network pipeline respectively. Section
4.5 presents some deep neural network pipelines for image processing from the
literature and Section 4.6 summarizes the chapter.

4.1 Introduction to image processing

Digital images are defined as two dimensional matrices, where each individual
element of the matrix represents a single pixel. The format in which the pixel is
represented depends on the type of image. A digital image can be either binary,
grayscale or color. Binary images have either a 1 or 0 as an element of the
matrix, where 0 indicates a white pixel and 1 indicates black. Grayscale images
have an integer value in the range 0 to 255 as an element of the matrix, where
0 represents white and 255 represents black. Color images have a tuple as an
element of the matrix, where the tuple’s format depends on the color space. A
popular color space is RGB where the tuple has three components: the red, green
and blue component (hence RGB). Another popular color space is HSV, where
each tuple has three components: the hue, the saturation and the value. The
matrix representation is what is input to the various techniques used for image
processing. Figure 4.1 illustrates examples of each one of the three image types.

Fig. 4.1. Example of a binary, grayscale and color image.

Image processing refers to the general task of taking raw image data and
giving it to some technique which processes the image to produce some output.
The output that results from image processing is dependent on which specific
problem we are solving. The term “image processing” encompasses image clas-
sification, object detection, semantic segmentation and instance segmentation.

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

30

The aim of image classification is to assign one or more classes to a given image.
The aim of object detection is to detect one or more objects in an image and
draw a bounding box around the detected objects. Semantic segmentation and
instance segmentation similarly to object detection detect one or more objects
in an image, but instead of simply drawing a bounding box, each pixel in the
image is assigned a class, in effect drawing a polygon mask over the detected ob-
jects. The difference between semantic segmentation and instance segmentation
is that semantic segmentation does not differentiate between individual object
instances; it simply labels pixels as one of the predetermined classes, whereas
instance segmentation is instance aware. Instance segmentation assigns a class
label to pixels and additionally indicates which object instance a pixel belongs
to. Figure 4.2 below provides a visual comparison of the above-mentioned four
subdomains.

Fig. 4.2. A visual comparison of image classification, object detection, semantic seg-
mentation and instance segmentation.

Image processing can be modelled as a deep neural network pipeline. The
deep neural network pipeline for image processing consists of three stages: aug-
mentation, preprocessing and processing. The processing stage differs depend-
ing on which subdomain of image processing the deep neural network pipeline
is being applied to. If image classification is being performed it serves as the
classification stage, if instance segmentation is being performed it serves as the
segmentation stage. Figure 4.3 provides a visualization of the deep neural net-
work pipeline for image processing.

Fig. 4.3. The deep neural network pipeline as applied to image processing

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

31

Sections 4.2, 4.3 and 4.4 discuss the different techniques that have been used
for the different stages in the neural network pipeline.

4.2 Deep neural network pipeline - augmentation stage
techniques

The augmentation stage is the first stage in the deep neural network pipeline.
An augmentation technique makes a duplicate of the original image, then makes
small changes to the duplicate, producing an entirely new image we call the aug-
mented image. Labels/annotations that have been given to the original image
can be copied over to the augmented image if the augmented image is semanti-
cally similar to the original image. Augmentation can be performed in a way that
allows for labels and annotations to be adjusted as the augmented image changes.

Augmentation techniques grow the dataset without needing to add more original
images. A dataset of reasonable size is needed to produce adequate results when
using deep neural networks [117]. The generalization ability of a deep neural
network is also known to increase when given more images to learn from [118].
Generalization refers to the ability of an already trained deep neural network to
deliver accurate predictions for data that was not involved in the training pro-
cess. The opposite of generalization is overfitting where a deep neural network
produces great results for the data used during the training process, but very
poor results for other unseen data. Data augmentation attempts to increase the
performance and generalization ability of a deep neural network. For image pro-
cessing specifically, data augmentation has been shown to be very effective for
both classification and segmentation [119]. Image augmentation is also used to
solve the problem of class imbalance. Class imbalance refers to a situation where
the dataset is dominated by instances of a specific class. Image augmentation can
be applied only to the dataset instances of the classes that are under-represented,
resulting in a more balanced dataset overall.

There are several popular data augmentation techniques that have seen frequent
use, they are each listed and discussed below:

1. Vertical and/or horizontal flipping of an image [120]. This augmentation
technique has been shown to be effective on benchmark datasets such as
ImageNet and is computationally inexpensive.

2. Rotation of an image [120]. The number of degrees by which an image is
rotated can vary, but a maximum rotation size might need to be set to pre-
vent the augmentation from destroying essential information. For example,
if we are building a classifier that can classify an image of a thumb as either
being either a thumbs-up or thumbs-down, we cannot allow an image to be
rotated 180 degrees as this changes the meaning of the image. In this case a
maximum rotation limit of 45 degrees can be used.

3. Cropping an image to be smaller than the original image [120]. This tech-
nique requires some careful analysis of the dataset before being used, as the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

32

amount of cropping done cannot be such that it removes valuable informa-
tion from the image.

4. Changing the position of the centre point of the image while preserving image
size i.e., translation [120]. Translation can be performed on either the vertical
or horizontal axis and is useful especially for datasets where the object of
interest is expected to be in the center of the image. For example, if we
are developing an object detector that detects groceries in a self-checkout
area, example images should show groceries that are nicely centered in the
detection square as well as groceries that are on the edges of the detection
square.

5. Changing the color space of an image [120]. Digital images that are full
color commonly make use of either RGB or HSV representations. Creating
an augmentation that either only uses a single color channel, or removes a
color channel produces a new dataset instance that appears as an entirely
“different” instance to the classifier, even though to humans the image looks
the same.

6. Adding noise to an image [121] is a powerful augmentation technique which
addresses one of the well known weaknesses of CNNs, which is that they
tend to deliver bad results for images that are of poor quality. By including
dataset instances that are of poorer quality, the classifier can learn to deal
better with poor quality images during training.

7. Sharpening the image [121] by means of a kernel filter. The size of the kernel
filter being used can be seen as a hyper-parameter that needs to be chosen.
The larger the size of the kernel filter, the higher the degree of augmentation.
Sharpening specifically could serve to enhance important areas of the image
that could be vital for image classification and detection tasks.

4.3 Deep neural network pipeline - preprocessing stage
techniques

The preprocessing stage follows the augmentation stage and applies preprocess-
ing techniques to both the original and augmented images. Image preprocessing
alters images in a way that improves the performance of the deep neural net-
work. During preprocessing information in the image that is not beneficial is
removed and information that is beneficial is enhanced. In other words, image
quality is improved. There are many image preprocessing techniques available,
popular techniques are discussed below:

1. Mean normalization [122] calculates the mean pixel value across the entire
dataset, then preprocesses each image in the dataset by subtracting the mean
pixel value from each pixel in the image. If images have multiple channels (ie
RGB or HSV) the mean pixel value is calculated per channel. Data normal-
ization is beneficial, since when values are scaled to lie in a certain range, it
can result in a more controlled and faster training process. The effectiveness
depends on the variation across the instances in the dataset. If all images

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

33

in the dataset are already quite close to their normalized values, this image
preprocessing technique has a less pronounced effect.

2. The application of a gaussian blur to images [123] is done to remove unwanted
noise. Each pixel in the image is set to the weighted average of the pixels
surrounding it. The number of pixels considered is determined by the kernel
size of the filter and the weighting of pixel values is given by a gaussian
distribution. The resulting image is smoother than the original. When the
gaussian filter is applied it is assumed that only unwanted noise such as small
artifacts and imperfections in the image are removed, however care must be
taken as the gaussian filter if used improperly can destroy features in the
images.

3. Moving an image from the RGB to HSV color space [123] can be done as a
preprocessing step since HSV allows for separation of the color itself from the
intensity of the color, while RGB does not. Additionally, for certain datasets
the RGB representation can be noisier than the HSV representation.

4. Segmenting an image using K-means clustering [123] is one of the more
computationally expensive preprocessing techniques. This technique is used
to isolate important foreground information from background information.
K-means clustering is performed with a cluster size of 2 and once pixels
belonging to the background are identified, they have their pixel value set
to be black.

5. Enhancing the contrast of images can be applied to both grayscale and color
images [124], in both cases the pixel values of the images are changed in order
to enhance image intensity. Many contrast enhancement techniques are avail-
able including histogram equalization, contrast limited adaptive histogram
equalization and more. The techniques differ in the mapping function that
is used to calculate the new pixel values. Contrast enhancement is done to
make features in the image that could be important to the classifier stand
out more. Contrast enhancement can also enhance unwanted noise which
makes it easier to identify and remove the noise.

When performing image processing more than one preprocessing technique
is used. The selection of preprocessing techniques and the order of their appli-
cation is determined by the dataset being used. Often the effectiveness of the
preprocessing stage as a whole can only be determined after the entire deep
neural network pipeline has been run.

4.4 Deep neural network pipeline - processing stage
techniques

The processing stage takes the images from the preprocessing stage and uses
them as input. Image classification, image detection, semantic segmentation and
instance segmentation are discussed in Section 4.4.1, Section 4.4.2, Section 4.4.3
and Section 4.4.4 respectively.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

34

4.4.1 Image Classification

Convolutional neural networks have become the state of the art technique for
image classification. The relevant CNN architectures and their strengths and
weaknesses are discussed.

VGG16 [125] is a popular choice for image classification, VGG refers to the
Visual Geometry Group (the group of researchers who created the network) and
the 16 indicates the number of layers that this architecture has. The VGG neural
network makes use of a small kernel size of 3x3 and has more fully-connected
layers than the majority of other CNN architectures. The use of a smaller filter
size implies more weight values that need to be trained, which allows for greater
precision, but at the cost of a larger architecture with a longer training time.
The depth of VGG16 contributes to this architecture being slow to train.

The ResNet [126] collection of deep neural network architectures was developed
in an attempt to reduce training time as well as architecture size. ResNet makes
use of residual learning. Residual learning adjusts the normal structure of deep
neural network layers to instead of directly mapping layers to one another, make
use of a skip connection. The skip connection allows the feature map output of
a previous layer to be directly fed to layers later in the model, allowing for fine
tuning. Figure 4.4 illustrates how skip connections work. Residual learning com-
bats the vanishing gradient problem and lowers the high training error that can
arise in deep neural network architectures. The ResNet neural network architec-
ture is faster to train as the use of skip connections does not add a substantial
number of extra weight parameters that need to be trained.

Fig. 4.4. Skip connections in a ResNet deep neural network architecture.

Improvements to the ResNet skip connection implementation were proposed
in [127]. The improvements include using batch normalization at the beginning
and directly thereafter the ReLU activation. The improvements were done with

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

35

the intent of preventing overfitting and resulted in a second version of the ResNet
architecture.

The DenseNet [128] architecture also addresses the problem of a large number of
parameters within a neural network causing slow training times. DenseNet adds
direct connections between every layer in the deep neural network architecture.
With DenseNet because every layer has direct access to all other layers, there
is no need to rely on information (the output feature maps) being propagated,
instead they can be accessed directly. The DenseNet deep neural network archi-
tecture concatenates all the output feature maps from connected layers, with the
incoming feature maps; this differs from the ResNet architecture, which sums
incoming feature maps. Concatenation is less computationally expensive than
summation. Figure 4.5 provides an illustration of the DenseNet deep neural net-
work architecture.

Fig. 4.5. The fully connected layers of a DenseNet deep neural network architecture.

Inception [129] is another neural network architecture that lessens training
time, model complexity and size. The Inception deep neural network architecture
consists of 27 layers where 9 of those layers are specialized inception layers. The
inception layer processes the input feature map four times using different kernel
sizes:

1. First, the inception layer feeds the input to a 1x1 convolution component;
the result is recorded as Output 1.

2. Second, the input from the previous layer is fed to a 3x3 max pooling compo-
nent, the output from the 3x3 max pooling component is then subsequently
fed to a 1x1 convolution component and the result thereof is recorded as
Output 2.

3. Third, the inception layer feeds the input to a 1x1 convolution component,
the output from the 1x1 convolution component is then subsequently fed to
a 3x3 convolution component and the result is recorded as Output 3.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

36

4. Lastly, the inception layer feeds the input to a 1x1 convolution component,
the output from the 1x1 convolution component is then subsequently fed to
a 5x5 convolution component and the result is recorded as Output 4.

Output 1, Output 2, Output 3 and Output 4 are combined into a single
output vector via concatenation as the final output from the inception layer.
Figure 4.6 illustrates how the different components of the inception layer work
together.

Fig. 4.6. A visualization of the inception layer and its components

The inception layer uses multiple kernel sizes to solve the problem of select-
ing an appropriate kernel size. The correct kernel size is dependent on the visual
distribution and variance of objects in the images. A large kernel size like 5x5
works well if the objects in the image are large and equally distributed across
the pixels in the image, whereas a smaller kernel size like 1x1 works well if the
objects in the image are small and only cover a small percentage of the total
pixels in the image. The kernel size needs to be chosen prior to starting train-
ing. Inception allows the neural network to select the most appropriate kernel
size by having that output become dominant at training time via weight updates.

The Inception deep neural network architecture is currently in its third version,
referred to as Inception V3 [130]. Inception V3 changes the inception layer to
be more performant in terms of speed by using factorization and separable con-
volution. The convolution components in Inception V1 that made use of larger
kernel sizes (i.e., 3x3 and 5x5) are decomposed into multiple smaller convolu-
tional components to decrease computational complexity and training time. In
Inception V3 the inception layer still serves the same purpose as in Inception V1.
There are three new variations of the inception layer structure that came about
as a result of the Inception V3 improvements, these are listed in Figure 4.7. The
use of an RMSProp optimizer and the addition of a regularization component
also form part of the V3 updates to the Inception architecture.

A combination of the Inception and ResNet architectures named Inception-
ResNet [131] adds a skip connection to the inception layer, which necessitates
some rearranging of the inception layer. A final 1x1 size convolution compo-
nent is added which allows all the incoming feature maps to be equal in size
to the incoming feature map from the skip connection. The InceptionResnet in-
ception layer is illustrated in Figure 4.8 The combination InceptionResNet has

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

37

Fig. 4.7. The three updated inception layer structures as per Inception V3.

been shown to reach higher accuracies at earlier epochs than both ResNet and
Inception respectively.

Fig. 4.8. The inception layer of the Inception ResNet architecture.

In the Inception architecture a depthwise separable convolution is performed
over the feature map as a whole, the neural network known as Xception (“ex-
treme inception”) [132] partitions the feature map into its respective channels
before performing a depthwise separable convolution on the individual channels.
To recombine the channels, a pointwise convolution is used. The process of per-
forming a depthwise separable convolution on different channels is illustrated in
Figure 4.9

ResNet and Inception are more lightweight than architectures like VGG, but
they still fall short in cases where computational resources are constrained such

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

38

Fig. 4.9. Separate processing of image channels by Xception.

as on handheld devices. The MobileNet [133] deep neural network architecture
was developed with resource constrained environments in mind. MobileNet re-
duces computational complexity by not making use of depthwise separable con-
volution similar to Xception. The difference between MobileNet and Xception
lies in the fact that MobileNet is smaller than Xception and makes use of the
ReLU6 activation function, instead of ReLU. ReLU6 is optimized for computa-
tional tasks that do not require extreme precision, but favours low computational
complexity and speed.

The MobileNet deep neural network architecture as a whole favours speed over
accuracy. The first version of the MobileNet has a convolutional block that looks
similar to Xception, with the difference lying in the pointwise convolution (1x1
convolution) happening at the end as opposed to the start. The second version of
MobileNet adds pointwise convolution to the start and end of the convolutional
block as well as a skip connection. A comparison between the first and second
version of the MobileNet deep neural network architecture is given in Figure 4.10

Fig. 4.10. Difference in architecture between the MobileNet version 1 (the first archi-
tecture shown in the diagram above) and MobileNet version 2 (the second architecture
shown in the diagram above).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

39

4.4.2 Image Detection

One of the most well known image detection techniques is Regions with CNN fea-
tures (R-CNN). The basic R-CNN algorithm takes an input image and segments
the given image into several smaller regions. The regions are chosen according to
a region proposal method; the original work by Girshick et al. [134] makes use
of selective search, but other techniques such as an objectness score calculation
and multi-scale combinatorial grouping can also be used. Once regions have been
extracted from the image, they are resized to be 227 x 227 pixels and each region
is given to a CNN consisting of five convolutional layers and two fully connected
layers. The features output by the CNN are given to an SVM to be classified.
If we are trying to detect a human in a photograph, the SVM will have been
trained to be able to detect the presence and absence of a human. Regions that
do not contain a human are classified as “Not human” and regions that contain
a human are classified as “Human”. The position of the human in the original
image can thus be inferred.

Fast R-CNN [135] improves upon the basic R-CNN algorithm. Fast R-CNN
achieved faster runtimes than the R-CNN by removing the SVM component.
Fast R-CNN refactors the CNN to do the feature extraction and deliver class
predictions for the regions it is given by adding two fully connected layers. The
CNN is given the image and ground truth regions as input. The CNN compares
the regions detected to the ground truth regions in order to calculate the loss
both in terms of the class as well as the region location and size. The detected
regions are as per the original R-CNN extracted using an external region pro-
posal method which is the largest bottleneck.

Faster R-CNN [136] follows Fast R-CNN and incorporates the region proposal
step into the CNN by making use of a region proposal network (RPN). The RPN
is a CNN that shares layers with the rest of the Faster R-CNN. When the RPN
is given an input image it produces a number of rectangular region proposals.
The number of proposals produced is a hyper-parameter that can be set. Each
proposal is accompanied by an objectness score.

A different image detection algorithm, You Only Look Once (YOLO), attempts
to match the performance of Faster R-CNN while improving the runtime. Several
versions of the YOLO algorithm exist. The first version of the YOLO algorithm
[137] divides the input image into a grid where the number of quadrants is a
hyper-parameter. Each pixel in the image is assigned a class, where the classes
depend on the objects that are being detected and one of the classes is always
“background”. If a pixel is in the center of a quadrant, the class assigned to
that pixel represents the class of the entire quadrant. A deep neural network
architecture is needed to train YOLO. The deep neural network architecture for
the first version consisted of 26 layers with no normalization layers and two fully
connected layers. The loss function used is composed of four parts: The error in
height and width of the object detection, the error in the coordinates of the ob-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

40

ject detected, whether the correct class was assigned and whether the confidence
of the detection exceeds the minimum confidence score. The second version of
YOLO increased the number of layers in the deep neural network architecture
to 30 and used anchor boxes. Anchor boxes are coordinates that specify a region
wherein some object was contained, but the task of exactly detecting and clas-
sifying the object in that region still had to be done. Both the first and second
versions of YOLO struggles to detect small objects if the number of quadrants
in the grid is incorrect or if objects straddle across two quadrants. This problem
was solved in the third version of YOLO. In YOLO V3 three grids are used
where the size of the quadrants specified is small, medium and large (scaled to
the input image). The deep neural network architecture was also changed to be
106 layers deep.

4.4.3 Semantic Segmentation

A common method for semantic segmentation is a Fully Convolutional Neural
network (FCN) [138]. An FCN removes the fully connected component that
features in most CNN architectures, eliminating the need to specify feature map
input sizes. The fully connected component is replaced by a pointwise (1x1 kernel
size) convolution, making the output of the neural network a feature map. For
semantic segmentation the output feature map is a mask, highlighting the object
of interest in the original image. In order to get the feature map to be the
size of the original image, the image is resized by means of deconvolution, also
referred to as up-sampling. The convolution process in the FCN architecture
is called encoding and the deconvolution process is called decoding. The FCN
deep neural network architecture forms the basis for U-Net [139], so called for
the shape that the deep neural network architecture takes with the addition of
shortcut connections (similar to skip connections) as seen in Figure 4.11

Fig. 4.11. The U-net deep neural network architecture.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

41

U-net encodes the image by means of convolution and produces increasingly
smaller feature maps, once a feature map of size 32x32 is created the decoding
process begins and the feature map is resized to the size of the input image by
means of deconvolution. The feature maps provided by the shortcut connections
are concatenated with the feature map at the respective destination before de-
convolution. The shortcut connections prevent important features from getting
lost during the encoding process. U-net performs semantic segmentation but
when used in conjunction with an appropriate post-processing script for certain
domains this technique can be used for instance segmentation as well.

4.4.4 Instance Segmentation

The Mask R-CNN [140] deep neural network is a popular choice for instance
segmentation. Faster R-CNN is the predecessor to the Mask R-CNN, the largest
difference between these two deep neural network architectures being that Faster
R-CNN uses bounding boxes to detect objects whereas Mask R-CNN uses a
polygon mask that overlays onto the detected object at a pixel level. Figure
4.12 provides an illustration of the difference between Faster R-CNN and Mask
R-CNN.

Fig. 4.12. Output comparison of Faster R-CNN and Mask R-CNN.

Faster R-CNN gets a single output from the RPN section specifying the de-
tected bounding boxes. Mask R-CNN gets two outputs from the RPN, the first
output specifies the bounding box predictions and class predictions, the second
output is input to two additional convolutional layers to produce the mask de-
tections. Mask R-CNN has been found to train quite slowly and as a result of
the rather complex architecture. Mask R-CNN also has a large number of hy-
perparameters that need to be tuned.

Poly-YOLO [141] builds on the existing YOLO object detection algorithm in
order to perform instance segmentation. Poly-YOLO adds an additional output
layer that specifies a set of vertices that encircles an object of interest. Poly-
YOLO outputs a set of coordinates which when traced form a polygon around
the instance that has been segmented.

Annotations for instance segmentation tasks can be incredibly time consuming
to produce. Various tools such as Fiji [142] exist to help ease the burden of an-
notation. Supervised learning techniques such as Mask R-CNN and Poly YOLO

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

42

requires training data that has masks (and the class for each mask) annotated
on the images with a high degree of accuracy.

4.5 Deep neural network pipelines for image processing
in the literature

Deep neural network pipelines have been applied to both the image classification
and image segmentation problems. The pipelines discussed in this section have
been selected for inclusion since the datasets that they were applied to, are the
same datasets that this thesis makes use of during experimentation.

The research conducted in [143] performed image segmentation by means of
a Mask R-CNN which had its hyper-parameters tuned using a genetic algo-
rithm, in other words, by means of automated design. Cropping was used as a
data augmentation technique and CLaHe contrast enhancement was used as a
preprocessing technique. The work in [143] set a new state of the art for com-
mon rust quantification. The research in [144] compared the performance of two
deep neural network pipelines for image classification, namely a ResNet-50 with
rotation as augmentation technique and a VGG16 with rotation as the augmen-
tation technique and no processing techniques. The two pipelines were applied
to the Karnataka Oral Lesion Dataset [145] and UP Oral Images Dataset [146]
and in both cases the ResNet-50 pipeline outperformed the VGG16 pipeline
thereby becoming the state of the art deep neural network technique for oral
lesion detection.

4.6 Summary

This chapter opens with an overview of image processing and some basic ter-
minology in Section 4.1 before looking at the various techniques that comprise
the three stages of the deep neural network pipeline for image processing. Sec-
tion 4.2 presents the augmentation stage, Section 4.3 presents the preprocessing
stage and finally Section 4.4 discusses at length the techniques that can be used
for the processing stage for the four image processing subdomains. Section 4.5
briefly presents some examples of deep neural network pipeline for image pro-
cessing from the literature. At the conclusion of this chapter the importance and
structure of the deep neural network pipeline for image processing should be
clear.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5

Critical analysis and related work

5.1 Introduction

This chapter presents a critical analysis in Section 5.2 that builds on the work
presented in Chapter 2, Chapter 3 and Chapter 4. The critical analysis will high-
light the research recommendations as put forth by the literature and emphasize
the need for research focusing on automated design, hyper-heuristics as well as
transfer learning.

Section 5.3 will present an overview of automated design, first defining the field
generally before discussing related work pertaining to deep neural networks. Sec-
tion 5.4 will give an overview of hyper-heuristics, first defining the general con-
cepts before moving on to discuss hyper-heuristics in the context of automated
design. Section 5.5 will focus on transfer learning, providing general terminology
and discussing related work in the field specifically for automated design as well
as hyper-heuristics. Lastly Section 5.6 summarizes this chapter.

5.2 Critical analysis

Within the text processing domain, both sentiment analysis and spam detection
necessitate continued research effort because new spamming techniques as well
as new communication platforms are continually being created [147]. The fast
changing nature of both spam detection and sentiment analysis means that re-
searchers are continually needing to adjust the techniques that are used. When
doing spam detection researchers are confronted by the problem of spam drift.
Spam drift refers to the phenomenon where the features of spam texts gradually
change over time because the techniques used by spammers evolve, this means
classifiers that previously worked well are unable to correctly classify new data
[147]. Investigation into hyperparameter tuning of classifiers has been suggested
as a potential solution to spam drift as hyperparameter tuning is a largely ig-
nored area of research within spam detection [147]. Spam detection is frequently
done in time-sensitive scenarios where lengthy manual processes cannot be per-
formed, for this reason the creation and execution of the spam detection pipeline
has to be automated as far as possible to allow for faster and more accurate clas-
sification [147].

For the sentiment analysis problem domain, the issue of cross-domain senti-
ment analysis is similar to the issue of spam drift [148]. The subdomains within

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

44

sentiment analysis are determined by the origin of the text, an example of a sen-
timent analysis subdomain is product reviews which can originate from places
like Amazon or Ebay. Other subdomains within sentiment analysis include social
media data, movie reviews and hotel reviews. Moving between domains is not
trivial because words that have positive connotations in one domain, might have
negative connotations in another. For example the sentence “I stayed here for
a long time” could have a positive connotation when reviewing a hotel, but a
negative connotation in a Tweet regarding renewing your driver’s license. Cross
domain sentiment analysis is a non-trivial problem to solve in the sentiment
analysis domain [149] [148]. From the literature it is clear that for both the
spam detection and sentiment analysis the task of creating an effective text pro-
cessing pipeline is non-trivial and automating this task would be beneficial both
to researchers and the text processing field as a whole.

Image processing is a research area that has had significant research effort ex-
pended in the past few years. This research effort has resulted in several new
state of the art deep neural network architectures being developed such as Mask
R-CNN [140], U-Net [139] and YOLO [137]. The choice of a deep neural net-
work architecture is however non-trivial and selecting an optimal architecture
and hyper-parameter values that will be effective for a given task is a time-
consuming problem that researchers currently solve by means of manual trial
and error [150]. The work by Khan et al. [151] emphasizes that hyper-parameter
optimization is a complex problem for deep convolutional neural networks partic-
ularly as they tend to have more hyper-parameters than other machine learning
techniques. Khan et al. [151] recommend research be done into using a directed
search process such as a hyper-heuristic for hyper-parameter optimization of
deep convolutional neural networks in the image processing domain. The other
stages of the deep neural network pipeline for image processing, namely the
augmentation stage and the preprocessing stage, are equally as important as the
chosen deep neural network architecture. The review paper in [152] lists different
configurations of preprocessing and data augmentation techniques used in image
segmentation pipelines and concludes that the preprocessing and augmentation
techniques chosen significantly influence the overall success of the deep neural
network pipeline. Pandey et al. [153] explains that there is no standard image
processing pipeline that can be created because different image sets require dif-
ferent techniques to be applied at different stages, meaning that researchers are
at pains to first analyse and then design a pipeline for each new dataset based
on the features of that dataset.

From the work presented above it is clear that there is a need for automation
to be applied to the process of designing deep neural network pipelines for both
the text processing and image processing domains. The literature shows that
automated design approaches have been applied mainly to image classification,
which is why Talbi [154] suggests that less explored applications in computer
vision such as segmentation as well as natural language processing should be in-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

45

cluded in future studies. The need for automated design is further emphasized by
Hutter et al. [155] and Feurer et al. [156] specifically suggesting that automated
design techniques that design arbitrary-sized pipelines should be investigated
and developed. Arbitrary-sized means that the number of stages, number of
techniques per stage as well as the order of the techniques should not be prede-
termined, but rather optimized. Feurer et al. [156] recognises that the selection
of the preprocessing and feature engineering methods for a deep neural network
pipeline is a non-trivial problem requiring intelligent selection. Feurer et al. [156]
go on to state that limiting the selection to only a single preprocessing or single
feature engineering method might potentially result in a sub-par pipeline. The
survey paper in [157] recommends that designing an easy-to-use and complete
automated design pipeline is a promising research direction, provided that it in-
cludes decoupled functions and full training with hyper-parameter optimization.

A research recommendation that is common within automated design is that
more emphasis should be given to reusability of designs as well as transfer learn-
ing. The comprehensive survey of state-of-the-art on automated design in [157]
does not discuss any transfer learning methods for automated design, indicating
a gap in research. The most recent survey of transfer learning in [158] explicitly
suggests that transfer learning needs to be applied to a wider range of applica-
tions, including those that are more complex. The work done in [155] recognises
that a problem in hyper-parameter optimization specifically is overfitting and
lack of generalization. The work in [157] recommends that automated design
techniques should aim for lifelong learning, in other words, techniques should be
able to efficiently learn new data and remember old knowledge. The design of
partially reusable sub-trees has been shown to be possible and effective in genetic
programming [159]. On the whole however, the literature shows that insufficient
investigation has been done into the analysis of design reusability and transfer
learning in the automated design space [6].

Based on the critical analysis of the literature above, there are three areas that
necessitate further research which this thesis will focus on. The first area is au-
tomated design of the deep neural network pipeline which is both a research
recommendation and need that is presented multiple times across the literature
that has been surveyed. The second area is hyper-heuristics, specifically the use
of hyper-heuristics for automated design. Using a hyper-heuristic to perform au-
tomated design has not seen much research, but from the literature presented
is a promising research focus which deserves further exploration. The third and
last area is transfer learning in the context of automated design. Transfer learn-
ing has been shown to be effective in optimizing search processes in multiple
domains. Transfer learning for automated design of the deep neural network
pipeline by means of a hyper-heuristic has never been done and therefore war-
rants investigation. Section 5.3, Section 5.4 and Section 5.5 presents related work
for the three aforementioned research areas: Automated design, hyper-heuristics
and transfer learning.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

46

5.3 Automated design

Automated design (AutoDes) is defined as the automation of the creation of the
design of a machine learning technique or search algorithm [6]. This definition
highlights the three key components of AutoDes: an algorithm, a design and an
automated design technique.

Deep neural networks cannot be applied in isolation; preprocessing, feature en-
gineering and augmentation techniques are included in a pipeline-like manner,
with each serving a different purpose but all affecting the eventual performance
of the deep neural network. In this thesis, a design will be created by means of
automated design for an end-to-end deep neural network pipeline. Designing a
deep neural network pipeline is non-trivial and when considering the No Free
Lunch theorem [160], the task of designing a deep neural network pipeline will
need to be performed for each new problem domain and potentially datasets.
The task of automating the design of a deep neural network pipeline has received
the least amount of research attention in the AutoDes space [157].

Two AutoDes techniques that produce pipeline designs are Auto-WEKA and
Auto-Sklearn; both of these techniques can be used to build classification and
regression pipelines. Auto-WEKA and Auto-Sklearn are limited in that they offer
no neural network based techniques, only including techniques such as K-nearest
neighbours and support vector machines. The first AutoDes technique that auto-
mates the design of a processing pipeline and includes a neural network technique
is TPOT-NN (Tree-based Pipeline Optimization Tool) [161]. TPOT-NN uses a
GP to design a processing pipeline that includes neural-network estimators that
can be combined to form a basic MLP network, this however falls short of being
a true deep neural network pipeline.

Several design decisions at different levels of granularity are made during the
creation of a deep neural network pipeline. Design decisions are first made per
stage of the pipeline i.e. which preprocessing technique or which feature en-
gineering technique to use. Once the techniques per stage of the deep neural
network pipeline have been finalized, design decisions are made regarding the
hyper-parameter values for the chosen techniques. The process of making these
design decisions is called hyper-parameter optimization (HPO).

A hyper-parameter is a value that dictates some aspect of the neural network
architecture or training schedule. The learning rate is an example of a hyper-
parameter that controls the size of the increments in which the neural network
adjusts its weights. A side effect of increasing neural network complexity, as
seen in deep neural network architectures, is the addition of more and more
hyper-parameters. Hyper-parameters have a direct impact on the quality of the
neural network’s performance and therefore the selection of their values is a non-
trivial process. Hyper-parameter value selection becomes an optimization prob-
lem unto itself and therefore the use of optimization algorithms to adjust neural

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

47

network parameters has seen more research attention in the AutoDes space in
recent years [162]. Popular HPO techniques include random search, construct-
ing a tree of Parzen estimators (TPE), bayesian optimization and grid search
which can be used to find optimal values for real-valued, discrete, and condi-
tional dimension hyper-parameters. Each HPO method has different advantages
and disadvantages.The ideal HPO method would strike a balance between be-
ing computationally inexpensive, providing optimum values and being easy to
implement [163]. The Vega [164] technique is able to design partial pipelines for
image processing and allow for the optimization of the hyper-parameters in the
data augmentation stage, which is applied prior to a neural network technique.

AutoDes produces designs, where a design is a set of values for a set of design
decisions. In the context of this thesis, AutoDes does not perform text process-
ing or image processing, it produces a design for a deep neural network pipeline
which will be able to perform text processing or image processing. However it
is important to note that the quality of the deep neural network pipeline design
is directly correlated to the quality of the text processing or image processing
performed by that deep neural network pipeline.

Designs can be disposable or reusable. Disposable designs are used only once
and created for a specific domain, task or dataset and are not intended to be
used to produce solutions for domains, tasks or datasets outside of which was
seen during the automated design process. Reusable designs are designs that can
be reused on domains, tasks or datasets outside of which was seen during the
automated design process and still produce acceptable results. A reusable de-
sign achieves results that are on par with results achieved by a disposable design.

Evolutionary algorithms [6], genetic algorithms [165], grammatical evolution
[165], bayesian and gradient based approaches [166] have all been used to au-
tomate the design of an algorithm. The introduction of more complex problem
domains, resources intensive algorithms and an increase in non-machine learn-
ing experts making use of machine learning, have all contributed to the need for
automated design [167]. The goal of automated design is to provide designs of
equal or greater quality than what could be designed by a human in less time.

5.4 Hyper-heuristics

A hyper-heuristic can be defined as an algorithm that either generates or searches
for heuristics for a given optimization problem, where the heuristics that the
algorithm finds are used to either create a new solution or improve an exist-
ing solution to a given optimization problem [7]. This definition specifies two
spaces: the heuristic space and the solution space. The hyper-heuristic performs
search in the heuristic space, where the heuristic space consists of a collection of
low-level heuristics. The low-level heuristics will either be operators that make
incremental changes to a candidate solution or the low-level heuristics will rep-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

48

resent components of the candidate solution itself. The low-level heuristics are
mapped to the solution space, indirectly moving the search through the space,
where the solution space consists of a collection of candidate solutions to the
optimization problem that is being solved. Hyper-heuristics perform selection
or generation, where selection hyper-heuristics select low-level heuristics in the
heuristic space and generation hyper-heuristics create new low-level heuristics.
Hyper-heuristics are perturbative or constructive in nature. Perturbative hyper-
heuristics make incremental changes to an existing solution by means of low-
level heuristics and constructive hyper-heuristics create an entirely new solu-
tion by means of low-level heuristics. Hyper-heuristics can thus be classified as
being selection-perturbative, selection-constructive, generation-perturbative or
generation-constructive.

The two classes of hyper-heuristics that are most commonly used for automated
design are selection-perturbative hyper-heuristics and generation-perturbative
hyper-heuristics. When using a hyper-heuristic to perform automated design,
one of two scenarios can arise. The first scenario is where the low-level heuristics
that are being selected are the actual values for the design decisions. The second
scenario is one where a design is created with random values assigned to the
design decisions and the low-level heuristics selected will consist of operators
that are selected to make changes to the design decisions. In the second scenario
another space called the design space is added. The heuristic space still consists
of low-level heuristics, but instead of these low-level heuristics directly affecting
the solution, it affects the design which resides in the design space. The design
produced is evaluated to produce a solution (in the solution space) to the opti-
mization problem that is being solved.

The use of hyper-heuristics for AutoDes has recently been proven to be effective
[7]. The work in [168] made use of a genetic algorithm to design a convolutional
neural network for text classification and the work in [169] made use of genetic
programming to evolve a convolutional neural network for the purpose of im-
age classification. Hyper-parameter optimization has also been done by means of
hyper-heuristics, the work in [170] used a genetic algorithm to search for optimal
CNN parameters. The work in [171] used different hyper-heuristic methods to
search for optimal SVM hyper-parameters, specifically applied to a sentiment
analysis task.

The use of an evolutionary algorithm for automated design must be consid-
ered carefully as evolutionary algorithms can become computationally expen-
sive when applied to complex domains due to the repeated calculation of fitness
values [172]. Using an evolutionary algorithm could ultimately lead to increased
runtimes which undermines the goal of automated design to decrease design time.
Single point hyper-heuristics offer a more lightweight but still effective alterna-
tive to evolutionary algorithms. Using a hyper-heuristic to design a deep neural
network pipeline has at the time of writing not been attempted yet, furthermore

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

49

a selection perturbative hyper-heuristic has not been used for automated design
of such a pipeline.

5.5 Transfer learning

5.5.1 Overview

A formal definition of transfer learning is given in [173] which states that given
a source domain and a source task and a target domain and target task, transfer
learning helps to improve the learning of the target function using the knowledge
in the source domain and source task. The target function is what is used to per-
form the task, for example if we are trying to solve a classification problem the
target function is what will be used to classify dataset instances in the domain.
In transfer learning two crucial concepts to understand is that of the transfer
learning source and a transfer learning target. Knowledge is extracted from the
source and then transferred and applied to the target. Transfer learning works
on the principle that starting the optimization process from an initial solution
that is known to perform well for a different source domain or source dataset,
could result in better performance of the optimization process.

Transfer learning is however non-trivial, it cannot be assumed that transferring
knowledge from any source to any target is beneficial. Sometimes transfer learn-
ing results in what is known as negative transfer, this refers to a case where the
optimization process is slowed or somehow has its performance worsened directly
as a result of the knowledge that was transferred [174]. Some factors that con-
tribute to negative transfer include domain divergence, a badly designed transfer
algorithm and issues with data quality in either the source or target [175].

Negative transfer can be avoided by carefully scrutinizing the transfer learn-
ing to be performed. A framework for transfer learning is given by [174] and
poses three questions in order to produce a transfer learning approach. The first
question “What to transfer?”, refers to the knowledge that is extracted from
the source and transferred to the target. For example, consider a neural network
that has been trained to classify images of dogs into different breeds. If a neural
network is created to do the same classification for cats, transfer learning can be
used to leverage knowledge from the neural network that was trained to classify
dogs. The transferred knowledge can be the architecture of the neural network,
the hyper-parameters, the training schedule and more. The second question is
“When to transfer?”. This question refers to the fact that optimization is a pro-
cess that occurs for a period of time and transfer learning can be implemented at
any point in that time period. Returning to the example of the neural network
that classifies dog breeds, transfer of knowledge to the neural network that is be-
ing trained to classify cat breeds can occur at the very beginning before training
starts or knowledge can be transferred only at later training epochs. The third
and last question “How to transfer?”, refers to the means by which knowledge

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

50

is delivered to the target from the source. This question is easily answered in
certain scenarios, for example if a target neural network simply has its hyper-
parameters set to be the hyper-parameter values of a source neural network.
This question becomes more complex to answer if knowledge is transferred from
a source domain or system that differs from the target domain or system. For
example, if weight values are transferred from a neural network with 5 layers,
to a neural network with only 4 layers, a mapping function needs to be used to
determine which weight values to discard.

Quantifying the success of transfer learning is important, as it allows the transfer
learning process to be adjusted if it is suboptimal. Torrey et al. [176] provide a set
criteria for quantifying the effectiveness of transfer learning. The first criterion
is that when using transfer learning for a given algorithm, the results produced
should not be worse than when using the same algorithm without any transfer
learning. The second criterion specifies that when running the algorithm with
transfer learning, the runtime to achieve comparable results should be less than
when running the algorithm without transfer learning. The last criterion is that
when applying transfer learning, the results produced by the algorithm should
be better than when running the algorithm without any transfer learning.

5.5.2 Transfer learning for automated design

Transfer learning in automated design is a research area that has not garnered
too much exploration at the time of writing this thesis. Applying transfer learn-
ing to a design that has been created automatically by means of some technique
can be complex due to the existence of multiple concurrent search spaces. When
using transfer learning in conjunction with automated design the questions raised
by [174] are more difficult to answer and require more forethought and experi-
mentation.

Transfer learning for automated design has seen some success in neural architec-
ture search, the work in [177] automated the design of the architecture of a deep
neural network using a reinforcement learning based architecture search method.
In this work several neural networks are generated and trained on a specific task,
it is then empirically determined what parts of the architecture generally stays
the same and then once that is known, those learnings are applied to new tasks
and if the accuracy isn’t acceptable some further refinement of the architecture
is done.

The work in [8] was the first to attempt transfer learning for automated de-
sign of genetic programming (GP). In [8] the design of a GP is automated by
means of grammatical evolution (GE), transfer learning is done by transferring
designs of the GP from one run of the GE to another.

Transfer learning for automated hyper parameter optimization has seen some
research in [178] where sequential model-based optimization (SMBO) is used to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

51

optimize the hyper-parameters for different classifiers such as an SVM, percep-
tron, logistic regression as well as an ensemble of classifiers. Surrogate based
ranking was used to transfer knowledge from previous experiments.

At the time of writing automated design of a deep neural network pipeline has
not been attempted, meaning that transfer learning applied to the automated
design of a deep neural network pipeline is also yet to be attempted.

5.5.3 Transfer learning in hyper-heuristics

Transfer learning has been used for hyper-heuristics outside of the context of
automated design, however it is still a novel area of research and the majority of
the work done has focused on GP based methods and evolutionary algorithms
as opposed to single point search.

The work in [179] applied transfer learning to a GP that is used to solve the
uncertain capacitated arc routing problem (UCARP). Subtrees are transferred
in different configurations from a source GP to a new target GP. The source
and target problems share the same UCARP instance but different vehicle num-
bers. Transfer learning for GP does not always use subtrees as the mechanism
of knowledge transfer. The work in [180] made use of a GP to perform construc-
tive induction (CI) for both classification and regression. The goal of CI is to
generate feature representations. The work in [180] uses a novel measure to de-
termine whether source and target datasets are compatible and therefore eligible
for transfer learning. The transfer learning in [180] is done by transferring the
learned feature representations between runs of the GP.

Evolutionary algorithms (EAs) can be employed by a hyper-heuristic to explore
the heuristic space, the work in [181] made use of an EA to match a photo of a
person to a sketch of the same person. The photos and sketches are converted
into 16 regions, where each region has two feature representations. The different
regions are weighted differently to determine their contribution towards classi-
fying the image as a whole. Each chromosome in the EA represents a weighting
mechanism for each region which will result in each region being assigned a
weight value. Transfer learning in [181] is done by transferring the 20 best indi-
viduals from a previous run of the EA (the source) to the next run of the EA
(the target). The work in [182] also applied transfer learning to a hyper-heuristic
making use of an EA by transferring individuals between runs, specifically when
the source problem is low-order and the target problem is higher order.

Hyper-heuristic algorithms can result in a high-level of complexity and sub-
sequently higher runtimes, making transfer learning a very promising research
direction for advancing the field as a whole.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

52

5.6 Summary

This chapter presented a critical analysis in Section 5.2 of the literature pertain-
ing to deep neural networks as applied to text processing and image processing.
From the critical analysis a consistent need for automation of the design of the
deep neural network pipeline can be identified. Upon further investigation the
automated design of the deep neural network pipeline consists of three distinct
research areas, namely automated design, hyper-heuristics and transfer learning.
Section 5.3 presented an overview of automated design and important related
work pertaining specifically to the creation of pipelines and hyper-parameter
tuning. Section 5.4 contained a brief discussion of hyper-heuristics generally
before moving on to discuss and in the context of automated design. Finally
Section 5.5 discussed transfer learning as relating to both automated design and
hyper-heuristics.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6

Research methodology

6.1 Introduction

This chapter describes the research methodology that was followed in order to
achieve the objectives described in Chapter 1. The work makes use of a proof
by demonstration methodology, which is discussed in Section 6.2. Section 6.3
provides a list of the domains and respective datasets that are used during
experimentation. Section 6.4 outlines the experiments that are performed and
Section 6.5 presents the performance measures that are used to evaluate the
results of experimentation. Section 6.6 discusses the way in which statistical
comparison is done for the various experiments. The technical specifications for
the hardware and software that was used as part of the experimentation process
are specified in Section 6.7. The chapter concludes with a summary in Section
6.8.

6.2 Proof by demonstration research methodology

6.2.1 Overview

The proof by demonstration research methodology is defined as building a system
(also referred to as an artefact) and then letting that system (and the results of
its execution) stand as an example for a more general class of solutions [183]. The
proof by demonstration methodology requires that a hypothesis, or reason for
conducting research, be established before constructing the system. There must
be a clear link between the constructed system and the hypothesis, additionally
the system must be iteratively refined until no further improvements can be
achieved.

6.2.2 Application to Objectives

The first objective of this study is to automate the design of the deep neu-
ral network pipeline using a selection perturbative hyper-heuristic for both text
processing and image processing. The second objective of this study is to inves-
tigate the effects of transfer learning on the automated design of a deep neural
network pipeline. In order to achieve both objectives a selection perturbative
hyper-heuristic (SPHH) is created. The goal of the SPHH is to produce a design
for an end-to-end deep neural network pipeline for either a text processing or
image processing dataset. The text processing and image processing domains use
a generic deep neural network pipeline structure, however the exact techniques

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

54

that can be used (and from which the SPHH selects) differ between the two
domains.

In fulfillment of Objective 1, the SPHH designs a deep neural network pipeline
for each dataset and the results are empirically compared to results achieved by
the manually designed deep neural network pipelines. In fulfillment of Objective
2, the SPHH designs a deep neural network pipeline for each dataset, however
in this case the design process incorporates the designs from previous executions
of the SPHH, in other words transfer learning is used. The results obtained from
experimentation performed using transfer learning is then empirically compared
to the results of experimentation performed when not using transfer learning.

6.2.3 Proof by demonstration methodology for selection
perturbative hyper-heuristic (SPHH)

To create an SPHH in accordance with the two aforementioned research objec-
tives, the proof by demonstration research methodology is employed as follows:

1. Design and implement an SPHH that designs a deep neural network pipeline.
2. Test the SPHH using both text and image processing datasets (described in

Section 6.4)
3. Run the pipeline that was designed by the SPHH on the text processing or

image processing dataset for which the pipeline was designed.

(a) The SPHH incorporates stochastic elements in the search process and the
deep neural network pipeline designs themselves also use stochasticity.
To account for this the SPHH is run 30 times for each dataset with a
different random seed being used for each run. The average results over
those 30 runs is used to evaluate the results of the SPHH.

4. Compare the performance of the deep neural network pipeline that was de-
signed by the SPHH to the performance of manually designed deep neural
network pipelines using the measures outlined in Section 6.5.

5. If the results from the deep neural network pipeline that was designed by
the SPHH are determined to be worse than the results from the manually
designed deep neural network pipelines, the SPHHmust be refined by making
one or more of the below changes:

(a) Add or remove techniques from the pool of techniques from which the
SPHH is selecting for one of the stages of the deep neural network
pipeline.

(b) Adjust the value ranges for the hyper-parameters that are being opti-
mized by the SPHH.

(c) Evaluate the deep neural network pipeline design produced by the SPHH
and identify whether there are additional areas that the SPHH can op-
timize. For example if there are any hyper-parameters that are being
kept static those hyper-parameters should be added to the list of design
decisions that the SPHH selects values for.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

55

(d) Add, remove or alter the low level perturbative heuristics that the SPHH
is using.

(e) Alter the hyper-parameters of the SPHH itself, for example the num-
ber of iterations, the way in which the design is initialized, the move
acceptance criteria, the heuristic selection technique, the design repre-
sentation.

6. Test the revised SPHH using both text and image processing datasets, if the
SPHH again does not design a deep neural network pipeline that produces
results that are on par with manually design deep neural network pipelines,
revise the SPHH again until the aforementioned condition is met or until no
further performance improvements occur. If the SPHH again does not design
a deep neural network pipeline that produces results that are on par with
manually design deep neural network pipelines, the reasons for this will be
identified and reported.

Note that the development and implementation of the SPHH is discussed in
detail in Chapter 8.

6.3 Problem domains and datasets

This research makes use of two problem domains, namely text processing and
image processing. The design of the deep neural network pipeline is automated
for both these problem domains. These two problem domains and the datasets
they are represented by are discussed in the sections below.

6.3.1 Text processing

The text processing problem domain consists of datasets that can be divided
into two subdomains: sentiment analysis and spam detection.

The sentiment analysis datasets that are used in this study are as follows:

1. ACL IMDB movie reviews dataset [102]: This dataset is made up of movie
reviews made on the IMDB website. Importantly, only highly polarized re-
views - reviews with less than or equal to 4 stars or reviews with more than
or equal to 7 stars - are included. This dataset comprises 50000 instances,
where 25000 have positive sentiment and 25000 have negative sentiment.

2. Amazon product reviews dataset [104]: This dataset is made up of user
reviews on the Amazon website. The following categories from the ”unpro-
cessed.tar” folder were selected: apparel, automotive, baby, beauty, books,
cameraphoto, cellphonesservice, computervideogames, dvd, electronics, gourmet-
food, grocery, healthpersonalcare, jewelrywatches, kitchenhousewares, mag-
azines, music, musicalinstruments, officeproducts, outdoorliving, software,
sportsoutdoors. toolshardware, toysgames and video. This resulted in a to-
tal of 38548 instances, of those instances 21972 had positive sentiment and
16576 had negative sentiment.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

56

3. Coronavirus Tweets dataset [55]: This dataset is made up of tweets gath-
ered from Twitter from March 2020 onwards and contains tweets relating to
COVID-19. The full dataset is continually growing as the COVID-19 pan-
demic is an ongoing event, for this reason only a subset of the full dataset
was used, namely the dataset file named ”coronavirustweets01.csv”. This
contains a total of 831328 instances where the sentiment score ranges be-
tween -1.0 to 1.0.

4. Sentiment 140 dataset [107]: This dataset is made up of tweets gathered from
Twitter where the emoticons within the tweets decided the sentiment of the
tweet. This dataset contains a total of 1.6 million instances where 800000 of
those instances had a postive sentiment and 800000 of those instances had
a negative sentiment.

5. Yelp reviews dataset [109]: This dataset is made up of user reviews for busi-
nesses as recorded on the website Yelp. A total of 342858 instances were used
from the Yelp academic reviews dataset, where the stars attribute given for
each instance was used to determine sentiment. The stars attribute is an
integer within the range 1 to 5, inclusive.

The spam detection datasets used in this study are as follows:

1. Enron email dataset [111]: This dataset contains a subset of the total Enron
dataset, which is made up of leaked emails from employees that worked
at Enron in 2002. This dataset specifically focuses on six users: farmer-d,
kaminski-v, kitchen-l, williams-w3, beck-s, and lokay-m. The total number
of instances in this dataset is 33716, where 17171 of these emails are spam
and 16545 of these emails are ham.

2. SMS Spam dataset [113]: This dataset consists of a collection of short mes-
saging system (SMS) messages. This dataset has a total of 5575 instances
where 4850 of those instances are ham and 725 of those instances are spam.

3. Spam Assassin dataset [115]: This dataset was created from a selection of
email messages made available publically for the express purpose of testing
spam filtering systems for email clients. This dataset has a total of 6047
instances, where 1897 of those instances are spam and 4150 of those are
ham.

4. YouTube comments spam dataset [116]: This dataset contains comments
from five YouTube videos, the total number of instances in this dataset comes
to 1956. With 951 instances being ham and 1005 instances being spam.

6.3.2 Image processing

The image processing problem domain consists of datasets that can be divided
into two subdomains: image classification and image segmentation.

The image classification datasets used in this study are as follows:.

1. Oral lesion dataset [145]: This dataset consists of 352 color photos of pa-
tient mouths that show some kind of oral lesion, where 165 of the images

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

57

are classified as benign lesions and 187 of the images are classified as malig-
nant lesions. The Oral Lesion Dataset also contains 2622 augmented images,
where 1156 of the augmented images are classified as benign and 1115 of the
augmented images are classified as malignant.

2. University of Pretoria (UP) oral lesion images dataset [146], this dataset
consists of color photos taken of patient mouths that display both benign
and malignant lesions. The photos were provided by the Periodontics and
Oral Medicine department at the University of Pretoria. The dataset consists
of 69 images where 60 of the images were classified as benign and 9 of the
images were classified as malignant.

The image segmentation datasets used in this study are as follows:

1. Iowa State University (ISU) maize disease dataset - first version [143], this
dataset was created from maize plants grown in a greenhouse at Iowa State
University. The maize plants were inoculated by spraying the leaves with
common rust urediniospores. At different stages of infection, maize leaves
were removed and scanned on a flatbed scanner at 1200 DPI. This dataset
consists of 1040 images in total

2. Iowa State University (ISU) maize disease dataset - Rp1D inoculation method,
this dataset was created from maize plants grown in a greenhouse at Iowa
State University. The maize plants were inoculated by means of the Rp1D
method. At different stages of infection, maize leaves were removed and
scanned on a flatbed scanner at 1200 DPI. This dataset consists of 167 im-
ages in total

3. Iowa State University (ISU) maize disease dataset - Tilt inoculation method,
this dataset was created from maize plants grown in a greenhouse at Iowa
State University. The maize plants were inoculated by means of the Tilt
method. At different stages of infection, maize leaves were removed and
scanned on a flatbed scanner at 1200 DPI. This dataset consists of 1114
images in total

6.4 Experiments

Three experiments are conducted as part of this research, these three experi-
ments are each discussed in turn below.

6.4.1 Experiment 1: Automated design

The first experiment runs the SPHH on each of the text processing and im-
age processing datasets specified in Section 6.4. Thirty independent runs of the
SPHH are performed on each dataset and the best and average result is reported
at the end of the 30 independent runs. For each of the runs the deep neural net-
work pipeline that produces the best accuracy is recorded and compared to
results of manually designed pipelines from the literature. This experiment is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

58

done towards fulfilling Objective 1 of this study, which is to determine whether
automated design of a deep neural network pipeline is effective for both the text
processing and image processing domains.

6.4.2 Experiment 2: Transfer learning

Experiment 2 is done in fulfillment of Objective 2 of this study, which is to
investigate the effects of transfer learning on the automated design of a deep
neural network pipeline. For this study the pipeline design is the knowledge that
is transferred in the transfer learning process.

A deep neural network pipeline is designed by the SPHH for each of the datasets
included in this study and each best performing deep neural network pipeline
design will be a transfer learning source. When the SPHH is used without trans-
fer learning (as in Experiment 1) the deep neural network pipeline design is
initialized by randomly choosing the techniques per stage and their associated
hyper-parameter values. When the SPHH has transfer learning applied, the deep
neural network pipeline design is initialized by setting the techniques chosen per
stage and all their associated hyper-parameter values to that of a previously
designed deep neural network pipeline (the transfer learning source). The SPHH
continues to optimize and tune the various components of the pipeline design for
the target dataset after transfer learning is applied, with the hypothesis being
that the search process is now starting in a more ideal location and therefore
ought to produce better or equally good results.

In order for transfer learning to be used, the source domain and the target
domain must be the same. In other words, a text processing deep neural net-
work pipeline design must be used as a transfer learning source when the SPHH
is designing a deep neural network pipeline for a target text processing dataset.
Conversely, only an image processing deep neural network pipeline design can
be used as a transfer learning source when the SPHH is designing a deep neural
network pipeline for a target image processing dataset. The different transfer
learning source and target configurations that are tested in this experiment are
indicated with an ’x’ in Table 6.1 below.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

59

Transfer learning source
Text processing domain

ACL
IMDB
movie
reviews

Amazon
product
reviews

Coronavirus Sentiment 140 Yelp Enron
SMS
Spam

Spam
assassin

YouTube
comments

spam

Transfer
learning
target

Text
processing
domain

ACL
IMDB
movie
reviews

x x x x x

Amazon
product
reviews

x x x x x

Coronavirus x x x x x
Sentiment 140 x x x x x

Yelp x x x x x
Enron x x x x
SMS
Spam

x x x x

Spam
assassin

x x x x

YouTube
comments

spam
x x x x

Transfer learning source
Image processing domain

UP oral
lesion
images

Karnataka
oral lesion

ISU V1 ISU Rp1d ISU Tilt

Transfer
learning
target

Image
processing
domain

UP oral
lesion
images

x x

Karnataka
oral lesion

x x

ISU V1 x x x
ISU Rp1d x x x
ISU Tilt x x x

Table 6.1. The transfer learning configurations for both the text processing and image
processing domains that will be run as part of the test for transfer learning efficacy in
Experiment 2 and reusability in Experiment 3.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

60

6.4.3 Experiment 3: Reusability

The goal of Experiment 3 is to determine whether the designs produced by the
SPHH are disposable or reusable. The test for reusability is done by taking an
existing deep neural network pipeline design that was designed for one dataset
and applying it as-is (without any further optimization by the SPHH) to a
different dataset. As for Experiment 2, in Experiment 3 the source domain and
the target domain must be the same. In other words, a text processing deep
neural network pipeline design is only tested for reusability on text processing
datasets. Conversely, an image processing deep neural network pipeline design is
only tested for reusability on image processing datasets. The different reusability
configurations that are tested in this experiment are indicated with an ’x’ in
Table 6.1.

6.5 Performance measures

The performance of the SPHH is analysed using two performance measures in
order to determine the efficacy of the proposed automated design system, these
two performance measures are discussed in turn below.

6.5.1 Accuracy

The first performance measure is accuracy. When executing any deep neural
network pipeline, the results produced consist of four numbers: The training
accuracy, the training loss, the testing accuracy and the testing loss. The testing
accuracy refers to the accuracy of the deep neural network when applied to
unseen dataset instances and is what is used as the performance measure.

6.5.2 Design time

The second performance measure is design time, this refers to the time it takes
to produce a deep neural network pipeline design. Note that this does not refer
to the time it takes for that deep neural network pipeline design to execute.
The time it takes the SPHH to execute is referred to as the automated design
time and the time it takes a human to design a deep neural network pipeline by
hand is referred to as the manual design time. In order to consider the SPHH
an effective means of automating the design of the deep neural network pipeline,
the automated design time must be less than the manual design time.

6.6 Statistical comparison

The significance of the results obtained are determined by performing a left one-
tailed Mann-Whitney U test at a statistical significance of 0.05. Additional basic
statistical measures such as the minimum value, maximum value, average, mean
and standard deviation is also calculated and reported on.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

61

In Experiment 1 the testing accuracy of manually derived deep neural network
pipelines from the literature is compared to the testing accuracy of the deep
neural network pipelines designed by the SPHH. For Experiment 1 the manual
design time in minutes is compared to the automated design time in minutes.

In Experiment 2 the testing accuracy of pipeline designs produced by the SPHH
without transfer learning is compared to the pipeline designs produced by the
SPHH that is using transfer learning. For Experiment 2 the automated design
time in minutes when using transfer learning is compared to the automated de-
sign time in minutes without using transfer learning.

In Experiment 3 the testing accuracy of pipeline designs when they are ap-
plied to the datasets for which they were designed is compared to the testing
accuracy of pipeline designs when they are applied to the datasets for which they
were not designed. The design time does not affect the reusability of a design,
therefore this performance measure is not considered for Experiment 3.

6.7 Technical specifications

The selection perturbative hyper-heuristic (SPHH) is what performs the auto-
mated design of the deep neural network pipeline. The SPHH itself is developed
using Python 3.9 but incorporates the well known industry standard libraries
Keras and Tensorflow for the neural network aspects of this research. The NLTK
library is used as it compiles many frequently used text processing algorithms
and the Pillow library is used for image processing utilities. The Ray multi-
processing library is used to allow for distributed computation. The SPHH is
discussed in more detail in Chapter 7.

All experiments are performed by means of resources offered by the CHPC (Cen-
tre for High Performance Computing). A cluster of 24 CPUs and a GPU was
used for each independent run. The GPU is a Nvidia V100 and the CPUs are
Intel 5th generation. Experimentation was set up such that the neural network
training would run on a GPU and the remainder of computation on the CPU.

6.8 Summary

This chapter presented the research methodology. The proof-by-demonstration
research methodology that this study employs was discussed at length in Section
6.2. Section 6.3 listed the image processing and text processing datasets this
study makes use of along with the characteristics of the datasets. Section 6.4
listed the three experiments that this study conducts and linked them to the
research objectives. Section 6.5 presents the performance measures that this
study uses and Section 6.6 discusses the way in which statistical comparison is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

62

done. Section 6.7 presents the technical specifications for the high performance
computing architectures used during this study.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7

Single point hyper-heuristic approach

7.1 Introduction

This chapter describes the single point selection-perturbative hyper-heuristic
(SPHH) that automates the design of the deep neural network pipeline by first
creating a random design string (DS) and then optimizing that DS. The DS
specifies what techniques the deep neural network pipeline itself (abbreviated as
DNNP) will comprise of. The DS and technique that can be selected to create
the DNNP are discussed in Section 7.2. The overall SPHH algorithm as well as
the different processes that the algorithm consists of is discussed in Section 7.3.
This chapter concludes with a summary in Section 7.4.

7.2 The design string (DS)

The design string (DS) specifies the design of the deep neural network pipeline,
indicating both the techniques that will be used at each stage as well as the
hyper-parameter values for the selected techniques. The structure of the design
string is discussed in Section 7.2.1 and the different techniques that are available
to be selected from are discussed in Section 7.2.2.

7.2.1 The structure of the DS

The design string (DS) differs slightly depending on whether the design is be-
ing created for text processing or image processing. The DS is composed of n
components, with each component representing a design decision in the DNNP.
In the case of image processing the length of the DS is thirteen, representing
thirteen design decisions and in the case of text processing it is sixteen. Figure
7.1 describes the design decision that each component of the DS represents for
an image processing deep neural network pipeline.

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

64

Fig. 7.1. Definition of the string representing the different design decisions for an image
processing pipeline

The first column represents the position of the gene in the chromosome over-
all. Gene 1 represents the augmentation stage and can have an integer value of
between 1 and 8 (inclusive), the augmentation technique that each value rep-
resents is discussed in Section 7.2.2.1. Gene 2, 3, 4, 5 and 6 each represent
an image preprocessing technique that can either be used in the preprocessing
stage or excluded from the preprocessing stage. Additionally each preprocess-
ing technique must be assigned a position if it is used, where this position will
determine the order in which the preprocessing techniques get applied. If the
preprocessing technique is excluded, then the position is set to be -1. The pre-
processing techniques are discussed further in Section 7.2.2.2. Gene 7 represents
the neural network architecture and gene 8 represents the architecture specific
hyper-parameter values and are discussed in Section 7.2.2.4 and Section 7.2.2.5
respectively. Gene 9, 10, 11, 12 and 13 represent values for general deep neu-
ral network architecture hyper-parameters and are further discussed in Section
7.2.2.5.

Figure 7.2 describes the design decision that each component of the DS rep-
resents for a text processing deep neural network pipeline. Gene 1, 2, 3, 4, 5, 6,
7 and 8 each represent a text preprocessing technique that can either be used in
the preprocessing stage or excluded from the preprocessing stage. Additionally
each preprocessing technique that is used must be assigned a position, where
this position will determine the order in which the preprocessing techniques get
applied. If the preprocessing technique is excluded, then the position is set to be
-1. The preprocessing techniques are discussed further in Section 7.2.2.2. Gene

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

65

9 represents the feature engineering technique that is used and can have an in-
teger value between 1 and 6 (inclusive), the feature engineering technique that
each value represents is discussed in Section 7.2.2.1. Gene 10 represents hyper-
parameters that are specific to the chosen feature engineering technique. Gene
11 represents the neural network architecture chosen, the available architectures
are discussed in Section 7.2.2.4. Gene 12, 13, 14, 15 and 16 represent values
for general deep neural network architecture hyper-parameters and are further
discussed in Section 7.2.2.5.

Fig. 7.2. Definition of the string representing the different design decisions for a text
processing pipeline

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

66

7.2.2 Deep neural network pipeline (DNNP) techniques

The SPPH optimizes the DS, the DS specifies techniques and hyper-parameter
values for the different stages of the DNNP. This section lists the techniques that
are available to be selected at the different stages for both the text processing
and image processing domain.

7.2.2.1 Data augmentation stage The data augmentation stage is specific
to image processing and is not needed for text processing. Research has shown
that data augmentation techniques can result in better performance of subse-
quent classification [184] and segmentation [185] deep neural network techniques.
Techniques that can be used for data augmentation are listed below (these tech-
niques are discussed in detail in Chapter 4 Section 4.2):

1. Vertical flipping of an image [120]
2. Horizontal flipping of an image [120]
3. Rotation of an image [120]
4. Cropping an image to be smaller than the original [120]
5. Changing the position of the centre point of the image while preserving image

size i.e. translation [120]
6. Changing the color space of an image [120]
7. Adding noise to an image [121]
8. Sharpening the image [121]

7.2.2.2 Preprocessing stage For the text processing domain the techniques
that can be used at the preprocessing stage are listed below (these techniques
are discussed in detail in Chapter 3 Section 3.2):

1. Apply spelling correction to the text
2. Lemmatization
3. Stemming
4. Removal of stop words
5. Conversion of hashtags into normal words
6. Removal of URLs and URI-type strings
7. Removal of punctuation
8. Conversion of all text to lowercase

For the image processing domain the techniques that can be used at the
preprocessing stage are listed below (these techniques are discussed in detail in
Chapter 4 Section 4.3):

1. Mean normalization [122]
2. Gaussian blur [123]
3. Moving an image from RGB to HSV color space [123]
4. Segmenting an image using K-means clustering [123]
5. Enhance contrast [124]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

67

7.2.2.3 Feature engineering stage The feature engineering stage is specific
to text processing and is not needed for image processing. Techniques that can
be used for feature engineering are listed below (these techniques are discussed
in detail in Chapter 3 Section 3.3):

1. One hot encoding
2. Term frequency - inverse document frequency (TF-IDF) [82]
3. Word2Vec (CBOW model) [80]
4. Word2Vec (skipgram model) [80]
5. GloVe [83]
6. FastText [81]

7.2.2.4 Neural network architecture selection For both text and image
processing domains a neural network architecture must be selected and hyper-
parameter tuned, this is the final stage of the pipeline. The neural network
architectures that can be selected differ between the text processing and image
processing domains, additionally different neural network architectures are used
for the subdomains of image processing namely, image segmentation and image
classification.

Neural networks that can be selected for text processing are listed below (these
neural network architectures and the reason for their inclusion are discussed in
detail in Chapter 3 Section 3.4):

1. Convolutional neural network (CNN)
2. Deep neural network (DNN)
3. Recurrent neural network (RNN)
4. Long short-term memory (LSTM)

Neural networks that can be selected for image processing, specifically image
segmentation are listed below (these neural network architectures and the reason
for their inclusion are discussed in detail in Chapter 4 Section 4.4):

1. Poly YOLO [141]
2. U-Net [139]
3. Mask R-CNN [140]

Neural networks that can be selected for image processing, specifically image
classification are listed below (these neural network architectures and the reason
for their inclusion are discussed in detail in Chapter 4 Section 4.4):

1. Xception [132]
2. VGG16 and VGG19 [125]
3. ResNet50, ResNet101 and ResNet152 [126]
4. ResNet50V2, ResNet101V2 and ResNet152V2 [127]
5. InceptionV3 [130]
6. InceptionResNetV2 [131]
7. MobileNet [133]
8. MobileNetV2 [186]
9. DenseNet121, DenseNet169 and DenseNet201 [128]

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

68

7.2.2.5 Hyper-parameter tuning For both image processing and text pro-
cessing each of the deep neural network architectures have the following hyper-
parameters that will also be tuned as part of the automated design process:

1. Optimizer algorithm, which can take one of the following values: Stochastic
gradient descent, RMSProp, Adam, Adadelta, Adagrad, Adamax, NAdam
and Ftrl.

2. Loss function, which can take one of the following values: Binary cross en-
tropy, Poisson, Mean squared error, Mean absolute error, Mean absolute
percentage error, Mean squared logarithmic error, Cosine similarity, Squared
hinge, Categorical hinge and hinge.

3. Activation function, which can take one of the following values: ReLU, Sig-
moid, Softmax, Softplus, Tanh, SeLU, eLU, Exponential and softsign.

4. Kernel initializer, which can take one of the following values: Random nor-
mal, Random uniform, Truncated normal, Zeros, Ones, Glorot normal, Glo-
rot uniform and constant

5. Bias initializer, which can take the same values as specified for the above
kernel initializer.

The deep neural network architectures that are listed for image segmen-
tation have additional speciality hyper-parameters (such as the non-maximal
suppression threshold for the Mask R-CNN) that are also tuned. The feature
engineering stage also contains certain techniques such as FastText that have
hyper-parameters that are tuned by the SPPH.

7.3 Single point hyper-heuristic algorithm

The pseudo-code for the SPHH is provided in Algorithm 1 below and describes
how the SPHH will execute, the abbreviations used in Algorithm 1 are as follows:

1. DS - design string
2. DNNP - deep neural network pipeline
3. LLPH - low level perturbative heuristic

As described in Algorithm 1, first a DS is created randomly and greedy ini-
tialization is applied to that DS. The greedy initialization algorithm is discussed
in detail in Section 7.3.1. After greedy initialization completes the SPHH will
execute for 50 iterations. The reason why the SPHH executes for 50 iterations
is because experimentation and parameter-tuning of the SPHH using different
datasets shows that for all datasets the SPHH converges within 50 iterations
and no further exploration occurs beyond 50 iterations.

At each iteration of the SPHH a low level perturbative heuristic (LLPH) is
selected. The different LLPHs that can be applied to the DS are presented in
Section 7.3.2 and the selection method for the LLPH is detailed in Section 7.3.4.
Once a LLPH is selected, it is applied to the DS and a DNNP is created from

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

69

Algorithm 1 Single point selection-perturbative hyper-heuristic

create random DS
apply greedy initialization
iteration limit← 50
current iteration← 0

while current iteration ≤ iteration limit do

select LLPH
apply LLPH to DS
create DNNP from DS
evaluate DNNP
update rank for LLPH

if move is accepted then
keep changes made to DS by LLPH

else
revert changes made to DS by LLPH

end if

current iteration + 1

end while

return DS for the best performing DNNP as solution

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

70

that DS. The DNNP is then evaluated. The way in which the DNNP is con-
structed from the DS and evaluated is described in Section 7.3.3. The rank for
the LLPH is updated using the performance of the DNNP and a move accep-
tance component (described in Section 7.3.4) determines whether the DS will
stay as-is or revert the changes made by the LLPH.

Throughout the 50 iterations the SPHH keeps track of the best performing
DNNP and the DS it was created from and that DS will be returned as the
solution at the end of 50 iterations. The hyper-parameter values that were used
for the SPHH are described in Section 7.3.5

7.3.1 Greedy initialization

To initialize the search, the SPHH will first randomly create a DS and then use
greedy initialization. Greedy initialization applies each LLPH in the heuristic
space to the DS one at a time and the resulting DNNP is evaluated. The LLPH
that results in the best DNNP will have its move accepted. The reason for using
greedy initialization is because a baseline performance can be established for
each of the LLPHs, additionally the DS will have already been improved slightly
at the start of algorithm execution.

Algorithm 2 Greedy initialization for the single point selection-perturbative
hyper-heuristic.

create random DS
best performing DS ← null

for LLPH ∈ the heuristic space do
select LLPH
apply LLPH to DS
create DNNP from DS
evaluate DNNP
update rank for LLPH

if best performing DS is null then
best performing DS ← DS

end if
if DS has better performance than best performing DS then

best performing DS ← DS
end if

end for

return best performing DS

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

71

Note that in the case of transfer learning being used, the DS will not be
created randomly as the DS is set to be the DS from a previous execution of the
SPHH.

7.3.2 Low level perturbative heuristics (LLPH)

The SPHH selects a low-level perturbative heuristic (LLPH) to apply to the DS
in an attempt to improve the DS and subsequent performance of the DNNP.
This section describes the LLPHs used in this study. The LLPHs are grouped
into three categories, domain-independent, image processing and text processing.

The domain-independent LLPHs include:

1. Add new preprocessing technique: This heuristic will add a new preprocess-
ing technique in a random position to the preprocessing stage.

2. Remove preprocessing technique: This heuristic will remove a randomly se-
lected preprocessing technique from the preprocessing stage.

3. Select deep neural network architecture: This heuristics will select a differ-
ent deep neural network architecture for the processing stage. The pool of
available deep neural network architectures is determined by the problem
domain.

4. Select optimizer: This heuristic will select a new optimizer for the deep neural
network architecture being used.

5. Select loss function: This heuristic will select a new loss function for the deep
neural network architecture being used.

6. Select activation function: This heuristic will select a new activation function
for the deep neural network architecture being used.

7. Select kernel initializer: This heuristic will select a new function to initialize
the kernel for a deep neural network architecture with.

8. Select bias initializer: This heuristic will select a new function to initialize
the bias for a deep neural network architecture with.

The LLPHs specific to image processing are:

1. Select augmentation stage technique: This heuristic will select a different
augmentation technique to replace the current augmentation technique.

2. Select new augmentation stage parameter value: Where applicable, this heuris-
tic will select a new value for any parameters that are unique to the aug-
mentation technique being used.

3. Select new CNN parameter value: Certain image segmentation deep neural
network architectures have parameters that are unique to them, but still need
to be tuned, for example the non-maximal suppression threshold parameter
seen in the Mask R-CNN neural network architecture. If applicable, this
low-level perturbative heuristic will be included.

The LLPHs specific to text processing are:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

72

1. Select feature engineering stage technique: This heuristic will select a differ-
ent feature engineering technique to replace the current feature engineering
technique.

2. Select new feature engineering parameter value: Where applicable, this heuris-
tic will select a new value for any parameters that are unique to the feature
engineering technique being used.

7.3.3 Evaluation of the deep neural network pipeline (DNNP)

The DNNP that is constructed from the DS will be executed in its entirety on
the dataset for which the SPHH is creating a design. The DNNP will use 10 fold
cross-validation, making sure to keep the folds consistent between iterations. The
testing accuracy that is returned by the DNNP will determine the fitness of the
DS from which the DNNP was constructed.

7.3.4 Heuristic selection and move acceptance

The hyper-heuristic consists of two components, the heuristic selector and move
acceptor. This section describes the choice function used for heuristic selection.
The choice function is used to rank each perturbative heuristic using the follow-
ing formula [7]:

f(hi) = αf1(hi) + βf2(hi) + δf3(hi)

The low-level perturbative heuristic is represented as hi. f1, represents hi’s
performance over the previous n times that it was applied. In(hi) is the change
in the deep neural network pipeline’s testing accuracy from the last invocation.
Tn(hi) is the time difference in seconds between the last application of hi.

f1(hi) =
∑

n α
n−1 In(hi)

Tn(hi)

The second constituent part of f is f2 which represents a comparison between
hi and all other low level perturbative heuristics in the heuristic space hj, in
the instances where hi and hj were applied in succession. In(hj, hi) is now the
difference in the deep neural network pipeline’s testing accuracy from one suc-
cessive application of hj and hi to the next. Tn(hj, hi) is the time difference in
seconds between the last successive invocation of hj and hi.

f2(hj, hi) =
∑

n β
n−1 In(hj,hi)

Tn(hj,hi)

The last part f3 is the time in CPU seconds since hi was last applied.

f3(hi) = δ(hi)

The equation f has three extra parameters α, β and δ. Both α and β are used
to increase or decrease the influence that hi’s recent performance has. The δ

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

73

parameter is used to increase diversity.

The low-level perturbative heuristic with the highest rank is selected to be ap-
plied to the DS. After the DNNP created from the perturbed DS has been
evaluated, this perturbation/move can be either accepted or not. For this re-
search, Adapted Iteration Limited Threshold Accepting (AILTA) [187] is used
to determine whether to accept the perturbation or not.

AILTA works by accepting moves that result in the design performing either
equally or better than it was prior to the move. AILTA will also accept moves
that result in design performance degrading when certain conditions are met.
AILTA has two hyper-parameters: an iteration limit and a threshold. Moves that
degrade design performance will be accepted if the current iteration is greater
than the iteration limit and if the performance of the solution is less than the
threshold of the best performance obtained thus far.

The iteration limit and threshold values are then adapted as the search progresses
to allow for more exploration of the heuristic space early on and exploitation of
good design towards the end of the SPHH’s execution.

7.3.5 SPHH Parameter Values

The six parameters in Table 7.1 were all tuned in tandem by first doing some
by-hand empirical experimentation to get to a good starting point, then further
tuned by means of a basic grid search. The iteration count value specifically was
validated afterwards to ensure that no further solution improvement will happen
beyond 50 iterations.

Parameter Value
Number of iterations 50
AILTA iteration limit 10
AILTA threshold 0.15
Choice function - alpha value 0.5
Choice function - beta value 0.5
Choice function - delta value 0.25
Table 7.1. The SPHH parameters along with their values are listed in the table above.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

74

7.4 Summary

This chapter describes in detail the various components of the SPHH that will
be used to automate the design of the deep neural network pipeline. The design
string representation is given in Section 7.2.1. The deep neural network pipeline
itself and the techniques that can be selected at each stage is described in Section
7.2.2. The greedy initialization method that is used is discussed in more detail
in Section 7.3.1 and low level perturbative heuristics are listed in Section 7.3.2.
The fitness evaluation for the design string is discussed in Section 7.3.3 and the
selection method and move acceptance criteria is detailed in Section 7.3.4.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8

Results and discussion

8.1 Introduction

This chapter presents the results from the three experiments described in Chap-
ter 6 Section 6.4. Each experiment has the results for the text processing and
image processing datasets presented and discussed. Experiment 1 is presented
in Section 8.2, here the designs from the SPHH are compared to the results of
manually derived pipelines from the literature. Experiment 2 is presented in Sec-
tion 8.3 and the results of using transfer learning with the SPHH are compared
to the results of not using transfer learning with the SPHH. Lastly Experiment
3 is presented in Section 8.4 where the results from reusing pipeline designs are
compared to the results of designing a deep neural network pipeline from scratch
for each dataset. Finally Section 8.5 summarizes the chapter.

8.2 Experiment 1 - Automated design of the deep neural
network pipeline

8.2.1 Text processing

Table 8.1 (sentiment analysis datasets) and Table 8.2 (spam detection datasets)
shows the performance of the SPHH automated design as compared to the re-
sults from the deep neural network pipelines from the literature (see Chapter
3 for more details). The SPHH automated design is compared to the manually
designed pipelines in terms of two performance metrics: testing accuracy (in-
dicated in the table as “Acc.”) and application time (indicated in the table as
“Time.” and given in minutes). The application time refers to the time it takes
in minutes for a deep neural network pipeline to run to completion, in other
words, for all stages to complete. Note that where the application time was not
available, this was indicated with “n/a”.

From Table 8.1 and Table 8.2 we can see that the SPHH exceeds the perfor-
mance of the techniques from the literature survey for the Amazon dataset,
Coronavirus dataset, Enron dataset and YouTube comments spam dataset. For
the remainder of the datasets the SPHH falls just a few percentage points (in
some cases less than an entire percentage) short of the performance from the
techniques in the literature.

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

76

ACL
IMDB
movie
reviews

Amazon
product
reviews

Coronavirus Sentiment 140 Yelp

Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time
SPHH 94.57 162.32 87.92 93.04 92.06 64.42 91.36 209.23 87.92 237.4
[188] 95.68 900 - - - - - - - -
[101] 97.4 n/a - - - - - - - -
[189] 90.3 n/a 82.0 n/a - - - - - -
[190] - - 86.54 n/a - - - - - -
[103] - - 87.86 10 - - - - - -
[191] - - - - 81.4 n/a - - - -
[93] - - - - 90.67 395.27 - - - -
[69] - - - - - - 84.41 1440 - -
[192] - - - - - - 84.9 n/a - -
[106] - - - - - - 92.0 n/a - -
[64] 94.0 n/a - - - - - - 89.0 n/a
[68] - - - - - - - - 88.62 n/a

Table 8.1. Testing accuracy and application time of the SPHH designed deep neural
network pipelines compared with other deep neural network pipeline techniques from
the literature for the sentiment analysis datasets.

Enron SMS Spam
Spam
assassin

YouTube
comments
spam

Acc. Time Acc. Time Acc. Time Acc. Time
SPHH 98.5 94.04 92.96 47.43 91.77 194.42 98.2 43.09
[110] 97.47 170.75 98.1 225.15 - - - -
[94] - - 95.33 n/a - - - -
[112] - - 98.11 n/a - - - -
[71] 95.9 n/a - - 95.9 n/a - -
[114] - - - - 98.67 n/a - -
[66] - - 96.4 n/a - - 94.7 n/a
[193] - - - - - - 96.61 n/a

Table 8.2. Testing accuracy and application time of the SPHH designed deep neural
network pipelines compared with other deep neural network pipeline techniques from
the literature for the spam detection datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

77

When considering the difference between the application time for the pipeline
designs produced by the SPHH and the manually derived designs in the litera-
ture, results show that the SPHH designs pipelines with application times that
are either equal to or lower than the manually derived pipelines from the litera-
ture.

The results prove that the automation of the deep neural network pipeline for
text processing is indeed effective, confirming the first objective of this research.
For some datasets the SPHH designs pipelines that achieve better performance
than the manually designed pipelines while for other datasets the SPHH designs
pipelines that only match the performance of the manually designed pipelines,
the SPHH is seen as effective in both cases as the aim of this study is to create an
automated design technique that can replace the manual design process. Table
8.3 breaks down the best performing pipeline designs produced by the SPHH
for a more holistic view of the experimentation. The most popular techniques
per stage are listed. Table 8.3 illustrates clearly that different datasets require
different techniques per stage. This table also shows that the SPHH avoids tech-
niques that are simpler and from the literature survey are shown to be used less
often. For example one-hot encoding does not appear in the table as a popular
feature engineering technique, which mirrors the choice human data scientists
might make when manually designing a deep neural network pipeline, since one-
hot encoding is quite a basic technique. In other words, the SPHH is in fact
performing informed design and not just simply moving around the search space
randomly.

Table 8.4 compares the time that it takes the SPHH to design a deep neural
network pipeline to the time that it takes to manually design a deep neural net-
work pipeline for all the text processing datasets. The time it takes the SPHH to
design a deep neural network pipeline is the automated design time. The manual
design times in Table 8.4 are estimates that are based on the author’s experi-
ence of working with these datasets. When manually designing a deep neural
network pipeline, multiple different pipeline configurations are trialled by hand.
The runtime of a deep neural network pipeline depends on the size of the dataset
which is why certain datasets in Table 8.4 have longer manual design times (such
as Spam assassin) and other datasets such as SMS Spam have shorter manual
design times. Although the manual design times in Table 8.4 are estimates, they
sufficiently illustrate that the automated design time is well within an acceptable
time frame for all the datasets listed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

78

Best performing design
Dataset

Preprocessing stage Feature engineering stage Classification stage
ACL
IMDB
movie
reviews

Stemming, Lemmatization Word2Vec CBOW RNN

Amazon
product
reviews

Remove punctuation, Remove URI
like objects, Lemmatization,
Stemming, Convert hashtags,
Convert text to lowercase,
Spelling correction, Remove stop words

GloVe LSTM

Coronavirus
Convert hashtags, Lemmatization,
Stemming, Spelling correction

FastText LSTM

Sentiment 140

Convert hashtags, Spelling correction,
Remove punctuation, Remove URI-
like objects, Stemming, Convert text
to lowercase, Remove stop words,
Lemmatization

Word2Vec CBOW DNN

Yelp
Spelling correction, Lemmatization,
Stemming

Word2Vec CBOW LSTM

Enron Stemming Word2Vec CBOW LSTM

SMS Spam
Lemmatization, Remove stop words,
Convert hashtags, Spelling correction,
Stemming

Word2Vec CBOW LSTM

Spam assassin
Convert hashtags, Remove URI-
like objects, Remove stop words,
Spelling correction

FastText LSTM

YouTube
comments
spam

Stemming, Remove stop words,
Spelling correction, Convert hashtags,
Lemmatization

GloVe DNN

Table 8.3. This table illustrates the best performing designs produced by the SPHH
for the text processing domain.

Dataset Manual design time SPHH design time
ACL IMDB movie reviews 72 18.93
Amazon product reviews 72 17.33

Coronavirus 72 12.42
Sentiment-140 96 23.70

Yelp 96 28.94
Enron 72 18.99

SMS Spam 48 11.09
Spam assassin 96 27.45

YouTube comments spam 48 8.23
Table 8.4. This table compares the time that it takes (in hours) to manually design
a deep neural network pipeline to the time it takes the SPHH to design a deep neural
network pipeline (automated design time) for each of the text processing datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

79

8.2.2 Image processing

Table 8.5 shows the performance of the SPHH automated design as compared
to the manually designed deep neural network pipelines from the literature (see
Chapter 4 for more details). For the ISU Rp1d and ISU Tilt datasets there are
no published results available, making this research the current state of the art.
The other datasets in the image processing domain each only have a single deep
neural network pipeline described in the literature, making it their state-of-the-
art (SotA) technique. The SotA technique refers to the technique that provides
the best performance for that dataset currently.

SotA SPHH
Subdomain Dataset

Acc. Time. Acc. Time
Karnataka oral lesion dataset 92.43 [144] 606.25 98.77 628.32

Classification
UP oral lesion images dataset 82.13 [144] n/a 92.01 162.57
ISU V1 68.02 [143] 6845 72.45 711.98
ISU Rp1d - - 69.94 733.32Segmentation
ISU Tilt - - 70.56 841.24

Table 8.5. Testing accuracy and application time of the SPHH designed deep neural
network pipelines compared with other deep neural network pipeline techniques from
the literature for the image processing datasets.

From Table 8.5 we can see that the SPHH exceeds the performance achieved
by previous work for all datasets listed. The results confirm that the automa-
tion of the deep neural network pipeline for image processing is effective. When
considering the difference between the application time for the pipeline designs
produced by the SPHH and the manually derived designs in the literature, we
can see that in the instances where application times are available, the SPHH
designs pipelines with application times that are either equal to or lower than the
manually derived pipelines from the literature. Considering that the SPHH has
an augmentation stage, which results in the total number of dataset instances
increasing, this is an especially encouraging result.

Table 8.6 breaks down the best performing pipeline designs produced by the
SPHH for a more holistic view of the experimentation. The most popular tech-
niques per stage are listed. Table 8.6 shows that for the two image classification
datasets, different techniques are clearly required per stage. For image segmen-
tation we can see that similar design choices are being made across all three
datasets, this is in fact expected behaviour, since the three datasets have the
same provenance and are visually similar. The SPHH making similar design
choices for the three datasets again proves that the design process is informed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

80

Best performing design
Subdomain Dataset

Augmentation stage Preprocessing stage Classification stage
Oral
lesion
dataset

Crop
Contrast
enhancement

XCeption

Classification
UP
oral lesion
images
dataset

Scale
Mean
normalization

Resnet-50

ISU V1 Flip RGB to HSV U-net
ISU Rp1d Translate RGB to HSV U-net

Segmentation
ISU Tilt Flip

Mean
normalization
Gaussian blur

U-net

Table 8.6. Best performing designs produced by the SPHH for the image processing
datasets.

Table 8.7 compares the time that it takes the SPHH to design a deep neural
network pipeline to the time that it takes to manually design a deep neural
network pipeline for all the image processing datasets. Table 8.7 illustrates that
the automated design time improves on the manual design time across all the
image processing datasets.

Dataset Manual design time SPHH design time
Karnataka oral lesion dataset 120 24.5
UP oral lesion images dataset 120 15.83

ISU V1 336 29.92
ISU Rp1d 336 29.33
ISU Tilt 336 30.02

Table 8.7. This table compares the time that it takes (in hours) to manually design
a deep neural network pipeline to the time it takes the SPHH to design a deep neural
network pipeline (automated design time) for each of the image processing datasets.

8.3 Experiment 2 - Transfer learning for automated
design

8.3.1 Text processing

Table 8.8 (sentiment analysis) and Table 8.9 (spam detection) shows the per-
formance of the SPHH when using the best performing design from different
datasets as the initial design, ergo, when using transfer learning. Transfer learn-
ing was incredibly effective on the whole, however the choice of source for transfer
learning does seem to have an effect on the efficacy of the transfer learning. In
certain instances such as when using the Yelp dataset as the source of design for
the Coronavirus dataset, the use of transfer learning resulted in poorer perfor-
mance. However for other datasets, such as when using the SMS Spam dataset

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

81

as source and the Enron dataset as target, transfer learning resulted in better
performance than when no transfer learning was used.

The different transfer learning configurations are checked for statistical signifi-
cance using a left-tailed Mann-Whitney U test at 0.05 significance. The Mann-
Whitney U test compares the results of running the SPHH on the target dataset
with transfer learning and without transfer learning. Table 8.8 (sentiment anal-
ysis) and Table 8.9 lists the p-values for this comparison where a p-value larger
than 0.05 indicates that the SPHH’s performance when not using transfer learn-
ing is assumed to be better than or equal to the SPHH’s performance when using
transfer learning. A p-value smaller than 0.05 indicates that the SPHH’s perfor-
mance when using transfer learning is assumed to be better than the SPHH’s
performance when not using transfer learning.

Table 8.10 shows the average iteration at which the SPHH converges on a design.
From the results we can see that the use of transfer learning in certain instances
does not affect the average iteration at which the SPHH converges (such as when
using the Amazon product reviews dataset as source and Sentiment 140 dataset
as target) and in other instances transfer learning dramatically decreases the
average iteration at which the SPHH converges (such as when using the Coron-
avirus dataset as source and Amazon product reviews dataset as target). When
the use of transfer learning decreases the search effort (in this case time) required
to arrive at a solution, we consider that application of transfer learning to be
successful.

When comparing the performance of the SPHH with transfer learning to the
performance of the SPHH without transfer learning, the results are statistically
significant for the ACL IMDB, Sentiment 140, Yelp, SMS Spam and Spam Assas-
sin datasets. The other datasets do not show a statistically significant difference
between the results of the SPHH when using transfer learning and not using
transfer learning.

The second objective of this research inquired into whether transfer learning
would be effective when doing automated design of the deep neural network
pipeline. The results in Table 8.8, Table 8.9 and Table 8.10 show that transfer
learning improves performance in certain configurations, but it cannot be used
thoughtlessly. The target and source must be carefully considered as there is a
correlation between the source and target datasets and performance.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

82

Transfer learning design source
Transfer learning
target dataset

Metrics
ACL IMDB
movie
reviews

Amazon
product
reviews

Coronavirus Sentiment 140 Yelp

Acc. 96.42 92.75 96.72 96.96 87.13ACL IMDB
movie
reviews

p-value 1.823e-8 1 4.63e-9 0.001751 1
Acc. 85.49 84.59 88.80 88.24 88.07Amazon

product
reviews

p-value 1 0.9998 0.3922 0.5383 0.7587
Acc. 89.82 90.85 90.50 92.58 88.97

Coronavirus
p-value 1 1 1 0.5088 1
Acc. 87.55 92.28 87.78 90.00 92.02

Sentiment 140
p-value 1 3.521e-7 0.9995 0.9782 0.00125
Acc. 88.57 88.48 83.42 86.13 87.15

Yelp
p-value 0.001078 0.4094 1 1 1

Table 8.8. Results of running the SPHH with transfer learning for the sentiment
analysis text processing datasets.

Transfer learning design source
Transfer learning
target dataset

Metrics
Enron SMS Spam Spam assassin

Youtube
comments spam

Acc. 95.78 97.32 93.79 97.67
Enron

p-value 1 0.9996 1 0.9992
Acc. 91.19 94.07 95.35 91.28

SMS Spam
p-value 1 0.000004757 0.00004073 1
Acc. 91.58 93.03 93.04 90.37

Spam assassin
p-value 0.9999 0.0007984 0.00007923 1
Acc. 98.11 96.15 96.48 96.18YouTube

comments spam p-value 0.1855 4.4723 1 0.9993

Table 8.9. Results of running the SPHH with transfer learning for the spam detection
text processing datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

83

T
ra

n
sf
e
r
le
a
rn

in
g
d
e
si
g
n

so
u
rc
e

T
ra

n
sf
e
r
le
a
rn

in
g
ta

rg
e
t
d
a
ta

se
t
N
o
tr
a
n
sf
e
r
le
a
rn

in
g

A
C
L

IM
D
B

m
o
v
ie

re
v
ie
w
s

A
m
a
z
o
n

p
ro

d
u
c
t

re
v
ie
w
s

C
o
ro

n
a
v
ir
u
s
S
e
n
ti
m
e
n
t
1
4
0

Y
e
lp

E
n
ro

n
S
M

S
S
p
a
m

S
p
a
m

a
ss
a
ss
in

Y
o
u
tu

b
e

c
o
m
m
e
n
ts

sp
a
m

A
C
L

IM
D
B

m
o
v
ie

re
v
ie
w
s

4
0

2
6

2
7

2
7

3
7

3
2

A
m
a
z
o
n

p
ro

d
u
c
t

re
v
ie
w
s

4
0

2
8

2
6

2
6

2
7

2
9

C
o
ro

n
a
v
ir
u
s

3
9

2
7

2
8

2
6

3
2

3
0

S
e
n
ti
m
e
n
t
1
4
0

4
4

4
0

4
4

4
3

2
9

4
3

Y
e
lp

4
3

4
2

4
0

4
2

4
1

4
0

E
n
ro

n
4
0

3
0

3
1

3
0

3
0

S
M

S
S
p
a
m

3
9

2
9

2
8

2
8

2
7

S
p
a
m

a
ss
a
ss
in

4
2

3
9

4
0

4
0

3
6

Y
o
u
T
u
b
e

c
o
m
m
e
n
ts

sp
a
m

4
0

2
6

2
6

2
7

2
9

T
a
b
le

8
.1
0
.
T
h
is

ta
b
le

d
is
p
la
y
s
th
e
av
er
a
g
e
it
er
a
ti
o
n
a
t
w
h
ic
h
th
e
se
a
rc
h
p
ro
ce
ss

co
n
v
er
g
ed

fo
r
th
e
d
iff
er
en
t
tr
a
n
sf
er

le
a
rn
in
g
co
n
fi
g
u
-

ra
ti
o
n
s
a
s
w
el
l
a
s
w
h
en

u
si
n
g
th
e
S
P
H
H

w
it
h
o
u
t
a
n
y
tr
a
n
sf
er

le
a
rn
in
g
.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

84

8.3.2 Image processing

Table 8.11 and Table 8.13 shows the performance of the SPHH when using the
best performing design from different image processing datasets as the initial
design, ergo when using transfer learning. The results from Table 8.11 and Ta-
ble 8.13 indicate that the efficacy of transfer learning when used in the image
processing domain is also dependent on the source and target being used.

The different transfer learning configurations are checked for statistical signifi-
cance using a left-tailed Mann-Whitney U test at 0.05 significance. The Mann-
Whitney U test compares the results of running the SPHH on the target dataset
with transfer learning and without transfer learning. Table 8.11 (sentiment anal-
ysis) and Table 8.13 lists the p-values for this comparison where a p-value larger
than 0.05 indicates that the SPHH’s performance when not using transfer learn-
ing is assumed to be better than or equal to the SPHH’s performance when using
transfer learning. A p-value smaller than 0.05 indicates that the SPHH’s perfor-
mance when using transfer learning is assumed to be better than the SPHH’s
performance when not using transfer learning.

When comparing the performance of the SPHH with transfer learning to the
performance of the SPHH without transfer learning, the results are statistically
significant for the UP oral images, ISU Rp1d and ISU Tilt datasets. The other
datasets do not show a statistically significant difference between the results of
the SPHH when using transfer learning and not using transfer learning.

Table 8.12 and Table 8.14 shows the average iteration at which the SPHH con-
verges on a design. From the results we can see that the use of transfer learning
in certain instances does not affect the average iteration at which the SPHH con-
verges (such as when using the ISU Rp1d dataset as source and ISU V1 dataset
as target) and in other instances transfer learning dramatically decreases the av-
erage iteration at which the SPHH converges (such as when using the Karnataka
oral lesion dataset as source and the Karnataka oral lesion dataset as target).

Transfer learning design source
Transfer learning
target dataset

Metrics UP oral lesion
images dataset

Karnataka oral
lesion dataset

Acc. 92.20 91.02
UP oral lesion images dataset

p-value 0.03622 0.9999
Acc. 97.00 98.99

Karnataka oral lesion dataset
p-value 1 0.8942

Table 8.11. Results of running the SPHH with transfer learning for the image classi-
fication datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

85

Transfer learning
design source

Transfer learning
target dataset

No transfer learning UP oral lesion
images dataset

Karnataka oral
lesion dataset

UP oral lesion
images dataset

41 39 38

Karnataka oral
lesion dataset

42 41 32

Table 8.12. This table displays the average iteration at which the search process
converged for the different transfer learning configurations as well as when using the
SPHH without any transfer learning.

Transfer learning
design sourceTransfer learning

target dataset
Metrics

ISU V1 ISU Rp1d ISU Tilt
Acc. 73.02 72.09 70.62

ISU V1
p-value 0.674 0.9999 1
Acc. 70.41 70.62 69.53

ISU Rp1d
p-value 0.07472 0.008477 0.9915
Acc. 71.37 70.99 71.67

ISU Tilt
p-value 7.322e-11 0.00002633 0.00008407

Table 8.13. Results of running the SPHH with transfer learning for the image seg-
mentation datasets.

Transfer learning
design sourceTransfer learning

target dataset
No transfer learning

ISU V1 ISU Rp1d ISU Tilt
ISU V1 40 29 40 30
ISU Rp1d 40 40 36 41
ISU Tilt 41 34 39 33

Table 8.14. This table displays the average iteration at which the search process
converged for the different transfer learning configurations as well as when using the
SPHH without any transfer learning.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

86

8.4 Experiment 3 - Reusability of the deep neural
network pipeline designs

8.4.1 Text processing

Table 8.15 shows the results of using the best performing design from different
datasets as-is for a given dataset, in other words, reusing the design. In order
to consider a design reusable, it must provide results comparable to a design
that is explicitly created for a given dataset. Table 8.15 and Table 8.16 reveals
interesting results in that in certain instances such as when the Coronavirus
dataset is the target and the ACL IMDB movie reviews dataset is the source, the
design does appear to be reusable. Another instance of a design being reusable
is seen when the Enron dataset is the target and the YouTube comments spam
dataset is the source. However for Table 8.15 and Table Table 8.16 it is clear
that there are plenty of instances of design reuse producing exceedingly poor
results, meaning that the design is not reusable. Overall a significant amount of
the designs produced by the SPHH do not appear to be reusable for the text
processing domain.

Transfer learning
design source

Transfer learning
target dataset

ACL IMDB
movie reviews

Amazon
product
reviews

Coronavirus Sentiment 140 Yelp

ACL IMDB
movie reviews

- 80.10 62.16 80.32 51.78

Amazon product
reviews

78.04 - 53.31 54.68 53.60

Coronavirus 92.50 91.12 - 93.99 75.09
Sentiment 140 57.66 53.27 46.35 - 54.39
Yelp 83.09 84.76 66.42 63.83 -

Table 8.15. Results for reusing pipeline designs created for one sentiment analysis
text processing dataset on another.

Transfer learning design source
Transfer learning
target dataset Enron SMS Spam Spam assassin

Youtube
comments
spam

Enron - 87.02 97.80 95.70
SMS Spam 89.09 - 88.11 88.10
Spam assassin 86.72 86.20 - 85.12
YouTube
comments
spam

72.14 61.88 59.91 -

Table 8.16. Results for reusing pipeline designs created for one spam detection text
processing dataset on another.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

87

8.4.2 Image processing

Table 8.17 and Table 8.18 show the results of using the best performing design
from different image processing datasets as-is for a given dataset, in other words,
reusing the design. With the exception of the ISU Tilt design being used for the
ISU V1 dataset, for both the image classification and image segmentation the
designs do not appear to be reusable as the performance is not comparable to
the performance results from a design that was explicitly created for a given
dataset.

Transfer learning
design source

Transfer learning
target dataset

UP oral lesion
images dataset

Karnataka oral
lesion dataset

UP oral lesion
images dataset

- 89.43

Karnataka oral
lesion dataset

93.09 -

Table 8.17. Results for reusing pipeline designs created for one image classification
dataset on another.

Transfer learning
design sourceTransfer learning

target dataset ISU V1 ISU Rp1d ISU Tilt
ISU V1 - 71.57 72.80
ISU Rp1d 67.32 - 67.99
ISU Tilt 68.94 69.43 -

Table 8.18. Results for reusing pipeline designs created for one image segmentation
dataset on another.

8.5 Summary

This chapter presented the results of the experimentation that was performed us-
ing the SPHH defined in Chapter 7. Three experiments were performed, the first
experiment investigates whether automated design of the deep neural network is
effective and the results are presented in Section 8.2. The use of automated de-
sign to create a deep neural network pipeline is found to be effective. The second
experiment investigates the use of transfer learning for automated design of the
deep neural network pipeline and the results of experimentation are presented
in Section 8.3. According to the results discussed in Section 8.3 transfer learning
can be effective when used for the automated design of the deep neural network
pipeline, however the source and target domains used must be chosen correctly.
Future work can automate the process of selecting the source and target do-
mains or perform an analysis to find a correlation between characteristics of the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

88

domains and performance. The third experiment sought to determine whether
the deep neural network pipelines produced by the SPHH are reusable, Section
8.4 presents these results and concludes that the designs are not reusable.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9

Conclusions and future work

9.1 Introduction

This thesis analyses the process of deep neural network pipeline construction and
design, this process is automated by means of a selection perturbative hyper-
heuristic (SPHH). The SPHH is used to perform various experiments to investi-
gate two research objectives. This chapter presents the conclusions that can be
drawn per experiment and addresses the research objectives presented in Chap-
ter 1. This chapter also makes recommendations for future work that will extend
the work that has been put forth by this thesis.

9.2 Conclusions

9.2.1 Experiment 1 - Objective 1

The first objective of this research is to automate the design of the deep neural
network pipeline using a selection perturbative hyper-heuristic for both text
processing and image processing. This research has shown that automated design
of a deep neural network pipeline using a selection perturbative hyper-heuristic
is effective for the image processing and text processing domains. Automating
the design of a deep neural network pipeline by means of a SPHH results in
pipelines that are competitive with manually derived pipeline designs published
in the literature for some of the datasets presented in both the text processing
and image processing domains.

9.2.2 Experiment 2 - Objective 2

The second objective of this research is to investigate the effects of transfer
learning on the automated design of a deep neural network pipeline. Transfer
learning was found to produce results comparable or better than the results
achieved when using the SPHH without transfer learning. Importantly however
transfer learning is only effective when the correct target and source are chosen,
for some target datasets negative transfer occurs when using certain deep neural
network pipeline designs as the transfer learning source. Negative transfer oc-
curs when the accuracy of the designed deep neural network pipeline decreases.
Positive transfer occurs when the accuracy of the design deep neural network
pipeline increases and/or the SPHH converges on a equally well performing de-
sign at an earlier iteration.

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

90

When comparing the performance of the SPHH with transfer learning to the
performance of the SPHH without transfer learning, the results are statisti-
cally significant for the ACL IMDB, Sentiment 140, Yelp, SMS Spam and Spam
Assassin datasets. The other text processing datasets do not show a statisti-
cally significant difference between the results of the SPHH when using transfer
learning and not using transfer learning. A general pattern is observed where
the SMS Spam and Spam assassin datasets can be used interchangeably as a
transfer learning source and a transfer learning target for one another. Another
pattern that emerges from the results is that ACL IMDB movie reviews is gener-
ally a good transfer learning target dataset. The Enron and YouTube comments
datasets do not benefit from transfer learning and they also cannot be used as
sources for transfer learning.

For the image processing datasets when comparing the performance of the SPHH
with transfer learning to the performance of the SPHH without transfer learning,
the results are statistically significant for the UP oral images, ISU Rp1d and ISU
Tilt datasets. The other image processing datasets do not show a statistically sig-
nificant difference between the results of the SPHH when using transfer learning
and not using transfer learning. A general pattern is observed where ISU Rp1d
and ISU V1 are generally good transfer learning sources. Interestingly ISU V1
is generally a poor transfer learning target dataset. The Karnataka oral lesion
dataset is also generally a poor transfer learning target dataset.

9.2.3 Experiment 3 - Test for reusability

This work conducted experiments to determine whether the designs produced by
the SPHH are reusable. The results show that reusing designs does not provide
comparable performance to the results achieved when specifically creating a
design for a dataset. In other words, the designs are not reusable for either the
image processing or text processing domain and deep neural network pipelines
must be designed for each dataset in order to achieve acceptable results.

9.3 Future work

Extension of the research presented in this thesis will involve the following:

– Applying the automated design system to more domains.
This research made use of both the text processing and image processing do-
mains, specifically sentiment analysis, spam detection, image segmentation
and image classification. Future work will include the use of the SPHH for
other domains like audio restoration and chemical engineering.

– Analysing the SPHH to try and make designs more reusable.
This study found the designs produced by the SPHH to not be reusable,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

91

work will be done to alter the SPHH to produce reusable deep neural net-
work pipeline designs.

– Automating the transfer learning process to ensure only positive
transfer occurs.
The transfer learning configurations (the source and target domain pairs)
that this study used were derived manually; future work will automate this
process to ensure that correct transfer learning configurations are chosen
that will only result in positive transfer. In this study all aspects of the de-
sign were transferred, future work will investigate transferring only certain
aspects of the design where the aspects to be transferred are chosen auto-
matically by some optimization algorithm.

– Use automated design to construct a pipeline for unsupervised
deep learning techniques instead of deep neural networks.
The state of the literature indicates a steady increase of interest in unsu-
pervised deep learning techniques. The effect of transfer learning and exam-
ination of the reusability of unsupervised deep learning pipeline designs will
also be conducted.

9.4 Summary

This chapter presented the conclusions that this work has come to based on the
results presented in Chapter 8 with reference to the objectives set in Chapter
1. Recommendations for future work that emanated from the work done in this
thesis are also presented.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,

B. C. V. Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from

alexnet: A comprehensive survey on deep learning approaches,” 2018.

[2] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A

survey of deep neural network architectures and their applications,”

Neurocomputing, vol. 234, pp. 11–26, 2017. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0925231216315533

[3] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:

methods, systems, challenges. Springer Nature, 2019.

[4] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural ar-

chitecture search via parameters sharing,” in International Conference on

Machine Learning. PMLR, 2018, pp. 4095–4104.

[5] J. D. Romano, T. T. Le, W. Fu, and J. H. Moore, “Tpot-nn: Augmenting

tree-based automated machine learning with neural network estimators,”

Genetic Programming and Evolvable Machines, vol. 22, no. 2, pp. 207–227,

2021.

[6] N. Pillay and R. Qu, Automated Design of Machine Learning and Search

Algorithms. Springer, 2021.

[7] ——, Hyper-Heuristics: Theory and Applications. Springer, 2018.

[8] T. Nyathi and N. Pillay, “On the transfer learning of genetic programming

classification algorithms,” in International Conference on the Theory and

Practice of Natural Computing. IEEE, 2021.

[9] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation func-

tions: Comparison of trends in practice and research for deep learning,”

arXiv preprint arXiv:1811.03378, 2018.

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://www.sciencedirect.com/science/article/pii/S0925231216315533
https://www.sciencedirect.com/science/article/pii/S0925231216315533

93

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[11] A. Lydia and S. Francis, “Adagrad—an optimizer for stochastic gradient

descent,” Int. J. Inf. Comput. Sci, vol. 6, no. 5, 2019.

[12] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.

[13] E. Dogo, O. Afolabi, N. Nwulu, B. Twala, and C. Aigbavboa, “A compar-

ative analysis of gradient descent-based optimization algorithms on convo-

lutional neural networks,” in 2018 International Conference on Computa-

tional Techniques, Electronics and Mechanical Systems (CTEMS). IEEE,

2018, pp. 92–99.

[14] M. Moreira and E. Fiesler, “Neural networks with adaptive learning rate

and momentum terms,” Idiap, Tech. Rep., 1995.

[15] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton

Project Para. Cornell Aeronautical Laboratory, 1957.

[16] M. Minsky and S. Papert, “An introduction to computational geometry,”

Cambridge tiass., HIT, 1969.

[17] M. Awad and R. Khanna, Deep Neural Networks. Berkeley, CA:

Apress, 2015, pp. 127–147. [Online]. Available: https://doi.org/10.1007/

978-1-4302-5990-9 7

[18] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

networks, vol. 61, pp. 85–117, 2015.

[19] R. Collobert and S. Bengio, “Links between perceptrons, mlps and svms,”

in Proceedings of the twenty-first international conference on Machine

learning, 2004, p. 23.

[20] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,

1989.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1007/978-1-4302-5990-9_7
https://doi.org/10.1007/978-1-4302-5990-9_7

94

[21] M. Bianchini and F. Scarselli, “On the complexity of neural network classi-

fiers: A comparison between shallow and deep architectures,” IEEE trans-

actions on neural networks and learning systems, vol. 25, no. 8, pp. 1553–

1565, 2014.

[22] G. Ososkov and P. Goncharov, “Shallow and deep learning for image classi-

fication,”Optical Memory and Neural Networks, vol. 26, no. 4, pp. 221–248,

2017.

[23] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep con-

volutional networks for natural language processing,” arXiv preprint

arXiv:1606.01781, vol. 2, p. 1, 2016.

[24] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning (adaptive com-

putation and machine learning series),” 2016.

[25] C. Nebauer, “Evaluation of convolutional neural networks for visual recog-

nition,” IEEE transactions on neural networks, vol. 9, no. 4, pp. 685–696,

1998.

[26] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent,” Cited on,

vol. 14, no. 8, p. 2, 2012.

[27] M. Yaqub, J. Feng, M. S. Zia, K. Arshid, K. Jia, Z. U. Rehman, and

A. Mehmood, “State-of-the-art cnn optimizer for brain tumor segmenta-

tion in magnetic resonance images,” Brain Sciences, vol. 10, no. 7, p. 427,

2020.

[28] P. Verma, V. Tripathi, and B. Pant, “Comparison of different

optimizers implemented on the deep learning architectures for covid-19

classification,” Materials Today: Proceedings, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2214785321013316

[29] T. Gaiceanu and O. Pastravanu, “On cnn applied to speech-to-text – com-

parative analysis of different gradient based optimizers,” in 2021 IEEE

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://www.sciencedirect.com/science/article/pii/S2214785321013316

95

15th International Symposium on Applied Computational Intelligence and

Informatics (SACI), 2021, pp. 000 085–000 090.

[30] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceed-

ings of the IEEE international conference on computer vision, 2017, pp.

2961–2969.

[31] H.-J. Yoo, “Deep convolution neural networks in computer vision: a re-

view,” IEIE Transactions on Smart Processing and Computing, vol. 4,

no. 1, pp. 35–43, 2015.

[32] A. Jacovi, O. S. Shalom, and Y. Goldberg, “Understanding convolutional

neural networks for text classification,” arXiv preprint arXiv:1809.08037,

2018.

[33] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling,” arXiv

preprint arXiv:1803.01271, 2018.

[34] N. Aloysius and M. Geetha, “A review on deep convolutional neural net-

works,” in 2017 International Conference on Communication and Signal

Processing (ICCSP). IEEE, 2017, pp. 0588–0592.

[35] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2,

pp. 179–211, 1990.

[36] C. Goller and A. Kuchler, “Learning task-dependent distributed represen-

tations by backpropagation through structure,” in Proceedings of Interna-

tional Conference on Neural Networks (ICNN’96), vol. 1. IEEE, 1996,

pp. 347–352.

[37] A. Alqushaibi, S. J. Abdulkadir, H. M. Rais, and Q. Al-Tashi, “A review

of weight optimization techniques in recurrent neural networks,” in 2020

International Conference on Computational Intelligence (ICCI), 2020, pp.

196–201.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

96

[38] S. Hochreiter, “The vanishing gradient problem during learning recurrent

neural nets and problem solutions,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[39] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies

with gradient descent is difficult,” IEEE transactions on neural networks,

vol. 5, no. 2, pp. 157–166, 1994.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[41] X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and recur-

rent neural network for sentiment analysis of short texts,” in Proceedings

of COLING 2016, the 26th international conference on computational lin-

guistics: Technical papers, 2016, pp. 2428–2437.

[42] G. Liang, H. Hong, W. Xie, and L. Zheng, “Combining convolutional neural

network with recursive neural network for blood cell image classification,”

IEEE Access, vol. 6, pp. 36 188–36 197, 2018.

[43] K. K. Chandriah and R. V. Naraganahalli, “Rnn/lstm with modified adam

optimizer in deep learning approach for automobile spare parts demand

forecasting,” Multimedia Tools and Applications, pp. 1–15, 2021.

[44] N. Sakinah, M. Tahir, T. Badriyah, and I. Syarif, “Lstm with adam

optimization-powered high accuracy preeclampsia classification,” in 2019

International Electronics Symposium (IES). IEEE, 2019, pp. 314–319.

[45] B. Krause, L. Lu, I. Murray, and S. Renals, “On the efficiency of recur-

rent neural network optimization algorithms,” in NIPS Optimization for

Machine Learning Workshop, 2015.

[46] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-

tations from tree-structured long short-term memory networks,” arXiv

preprint arXiv:1503.00075, 2015.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

97

[47] Y. D. Prabowo, H. L. H. S. Warnars, W. Budiharto, A. I. Kistijantoro,

Y. Heryadi et al., “Lstm and simple rnn comparison in the problem of se-

quence to sequence on conversation data using bahasa indonesia,” in 2018

Indonesian Association for Pattern Recognition International Conference

(INAPR). IEEE, 2018, pp. 51–56.

[48] D. Shen, Text Categorization. Boston, MA: Springer US, 2009, pp. 3041–

3044. [Online]. Available: https://doi.org/10.1007/978-0-387-39940-9 414

[49] D. Droba, “Methods used for measuring public opinion,” American Journal

of Sociology, vol. 37, no. 3, pp. 410–423, 1931.

[50] P. D. Turney and M. L. Littman, “Measuring praise and criticism: In-

ference of semantic orientation from association,” acm Transactions on

Information Systems (tois), vol. 21, no. 4, pp. 315–346, 2003.

[51] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? sentiment classi-

fication using machine learning techniques,” arXiv preprint cs/0205070,

2002.

[52] M. V. Mäntylä, D. Graziotin, and M. Kuutila, “The evolution of senti-

ment analysis—a review of research topics, venues, and top cited papers,”

Computer Science Review, vol. 27, pp. 16–32, 2018.

[53] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using

distant supervision,” CS224N project report, Stanford, vol. 1, no. 12, p.

2009, 2009.

[54] Y. Inc, “Yelp reviews dataset,” https://www.yelp.com/academic dataset,

2014.

[55] R. Lamsal, “Design and analysis of a large-scale covid-19 tweets dataset,”

Applied Intelligence, pp. 1–15, 2020.

[56] E. Ferrara, “The history of digital spam,” Communications of the ACM,

vol. 62, no. 8, pp. 82–91, 2019.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1007/978-0-387-39940-9_414

98

[57] E. G. Dada, J. S. Bassi, H. Chiroma, A. O. Adetunmbi, O. E. Ajibuwa

et al., “Machine learning for email spam filtering: review, approaches and

open research problems,” Heliyon, vol. 5, no. 6, p. e01802, 2019.

[58] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam filtering with

naive bayes-which naive bayes?” in CEAS, vol. 17. Mountain View, CA,

2006, pp. 28–69.

[59] S. A. Project, “Spam assassin public corpus,”

https://spamassassin.apache.org/publiccorpus/, 2015.

[60] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,

and D. Brown, “Text classification algorithms: A survey,” Information,

vol. 10, no. 4, p. 150, 2019.

[61] H. Gong, Y. Li, S. Bhat, and P. Viswanath, “Context-sensitive malicious

spelling error correction,” in The World Wide Web Conference, 2019, pp.

2771–2777.

[62] A. P. Pimpalkar and R. J. R. Raj, “Influence of pre-processing strategies

on the performance of ml classifiers exploiting tf-idf and bow features,”

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence

Journal, vol. 9, no. 2, pp. 49–68, 2020.

[63] A. C. M. V. Srinivas, C. Satyanarayana, C. Divakar, and K. P. Sirisha,

“Sentiment analysis using neural network and lstm,” in IOP Conference

Series: Materials Science and Engineering, vol. 1074, no. 1. IOP Pub-

lishing, 2021, p. 012007.

[64] M. S. Başarslan and F. Kayaalp, “Sentiment analysis on social media re-

views datasets with deep learning approach,” Sakarya University Journal

of Computer and Information Sciences, vol. 4, no. 1, pp. 35–49, 2021.

[65] A. Barushka and P. Hajek, “Spam filtering using integrated distribution-

based balancing approach and regularized deep neural networks,” Applied

Intelligence, vol. 48, no. 10, pp. 3538–3556, 2018.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

99

[66] G. Chetty, H. Bui, and M. White, “Deep learning based spam detection

system,” in 2019 International Conference on Machine Learning and Data

Engineering (iCMLDE). IEEE, 2019, pp. 91–96.

[67] A. Laucuka et al., “Communicative functions of hashtags,” Economics and

culture, vol. 15, no. 1, pp. 56–62, 2018.

[68] E. S. Alamoudi and N. S. Alghamdi, “Sentiment classification and aspect-

based sentiment analysis on yelp reviews using deep learning and word

embeddings,” Journal of Decision Systems, pp. 1–23, 2021.

[69] D. Hankamer and D. Liedtka, “Twitter sentiment analysis with emojis.”

[70] W. Etaiwi and G. Naymat, “The impact of applying different preprocessing

steps on review spam detection,” Procedia computer science, vol. 113, pp.

273–279, 2017.

[71] S. Srinivasan, V. Ravi, M. Alazab, S. Ketha, A.-Z. Ala’M, and S. K. Padan-

nayil, “Spam emails detection based on distributed word embedding with

deep learning,” in Machine Intelligence and Big Data Analytics for Cyber-

security Applications. Springer, 2021, pp. 161–189.

[72] D. M. Christopher, R. Prabhakar, and S. Hinrich, “Introduction to infor-

mation retrieval,” pp. 32–31, 2008.

[73] A. K. Uysal and S. Gunal, “The impact of preprocessing on text classifica-

tion,” Information processing & management, vol. 50, no. 1, pp. 104–112,

2014.

[74] P. Cunningham, “Dimension reduction,” in Machine learning techniques

for multimedia. Springer, 2008, pp. 91–112.

[75] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The impact of

features extraction on the sentiment analysis,” Procedia Computer Science,

vol. 152, pp. 341–348, 2019.

[76] A. Madasu and S. Elango, “Efficient feature selection techniques for sen-

timent analysis,” Multimedia Tools and Applications, vol. 79, no. 9, pp.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

100

6313–6335, 2020.

[77] T.-I. F. Abidemi and T. N. Toyin, “Feature extraction for sms spam de-

tection.”

[78] M. A. Hassan and N. Mtetwa, “Feature extraction and classification of

spam emails,” in 2018 5th International Conference on Soft Computing &

Machine Intelligence (ISCMI). IEEE, 2018, pp. 93–98.

[79] A. Bhoi and S. Joshi, “Various approaches to aspect-based sentiment anal-

ysis,” arXiv preprint arXiv:1805.01984, 2018.

[80] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” arXiv preprint arXiv:1301.3781,

2013.

[81] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word

vectors with subword information,” Transactions of the Association for

Computational Linguistics, vol. 5, pp. 135–146, 2017.

[82] C. Sammut and G. I. Webb, Eds., TF–IDF. Boston, MA: Springer

US, 2010, pp. 986–987. [Online]. Available: https://doi.org/10.1007/

978-0-387-30164-8 832

[83] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for

word representation,” in Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[84] A. I. Kadhim, “Term weighting for feature extraction on twitter: A com-

parison between bm25 and tf-idf,” in 2019 international conference on

advanced science and engineering (ICOASE). IEEE, 2019, pp. 124–128.

[85] H. H. Do, P. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-

based sentiment analysis: a comparative review,” Expert Systems with Ap-

plications, vol. 118, pp. 272–299, 2019.

[86] N. C. Dang, M. N. Moreno-Garćıa, and F. De la Prieta, “Sentiment analysis

based on deep learning: A comparative study,” Electronics, vol. 9, no. 3,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832

101

p. 483, 2020.

[87] P. Hajek, A. Barushka, and M. Munk, “Fake consumer review detection

using deep neural networks integrating word embeddings and emotion

mining,” Neural Computing and Applications, vol. 32, no. 23, pp. 17 259–

17 274, 2020.

[88] A. Barushka and P. Hajek, “Review spam detection using word embeddings

and deep neural networks,” in IFIP International Conference on Artificial

Intelligence Applications and Innovations. Springer, 2019, pp. 340–350.

[89] M. Gupta and B. Gupta, “A comparative study of breast cancer diagno-

sis using supervised machine learning techniques,” in 2018 second inter-

national conference on computing methodologies and communication (IC-

CMC). IEEE, 2018, pp. 997–1002.

[90] C. N. Kamath, S. S. Bukhari, and A. Dengel, “Comparative study between

traditional machine learning and deep learning approaches for text classifi-

cation,” in Proceedings of the ACM Symposium on Document Engineering

2018, 2018, pp. 1–11.

[91] A. M. Ramadhani and H. S. Goo, “Twitter sentiment analysis using deep

learning methods,” in 2017 7th International annual engineering seminar

(InAES). IEEE, 2017, pp. 1–4.

[92] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, “Deep un-

ordered composition rivals syntactic methods for text classification,” in

Proceedings of the 53rd annual meeting of the association for computational

linguistics and the 7th international joint conference on natural language

processing (volume 1: Long papers), 2015, pp. 1681–1691.

[93] S. Das and A. K. Kolya, “Predicting the pandemic: sentiment evaluation

and predictive analysis from large-scale tweets on covid-19 by deep convo-

lutional neural network,” Evolutionary Intelligence, pp. 1–22, 2021.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

102

[94] P. K. Roy, J. P. Singh, and S. Banerjee, “Deep learning to filter sms spam,”

Future Generation Computer Systems, vol. 102, pp. 524–533, 2020.

[95] A. U. Rehman, A. K. Malik, B. Raza, and W. Ali, “A hybrid cnn-lstm

model for improving accuracy of movie reviews sentiment analysis,” Mul-

timedia Tools and Applications, vol. 78, no. 18, pp. 26 597–26 613, 2019.

[96] R. Taheri and R. Javidan, “Spam filtering in sms using recurrent neural

networks,” in 2017 Artificial Intelligence and Signal Processing Conference

(AISP). IEEE, 2017, pp. 331–336.

[97] L. Kurniasari and A. Setyanto, “Sentiment analysis using recurrent neural

network,” in Journal of Physics: Conference Series, vol. 1471, no. 1. IOP

Publishing, 2020, p. 012018.

[98] A. Siji, N. Sheena, and N. Suresh Kumar, “A state of art: Machine learning

approaches in email spam filters.”

[99] A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning

architectures: a review,” Artificial Intelligence Review, vol. 53, no. 6, pp.

4335–4385, 2020.

[100] D. Tang, B. Qin, and T. Liu, “Deep learning for sentiment analysis: suc-

cessful approaches and future challenges,”Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, vol. 5, no. 6, pp. 292–303, 2015.

[101] S. Gogineni and A. Pimpalshende, “Predicting imdb movie rating using

deep learning,” in 2020 5th International Conference on Communication

and Electronics Systems (ICCES), 2020, pp. 1139–1144.

[102] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,

“Learning word vectors for sentiment analysis,” in Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies. Portland, Oregon, USA: Association for

Computational Linguistics, June 2011, pp. 142–150. [Online]. Available:

http://www.aclweb.org/anthology/P11-1015

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.aclweb.org/anthology/P11-1015

103

[103] W. Widayat, T. B. Adji, and Widyawan, “The effect of embedding dimen-

sion reduction on increasing lstm performance for sentiment analysis,” in

2018 International Seminar on Research of Information Technology and

Intelligent Systems (ISRITI), 2018, pp. 287–292.

[104] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, bollywood, boom-

boxes and blenders: Domain adaptation for sentiment classification,” in

Proceedings of the 45th annual meeting of the association of computational

linguistics, 2007, pp. 440–447.

[105] S. Das and A. K. Kolya, “Predicting the pandemic: sentiment evaluation

and predictive analysis from large-scale tweets on covid-19 by deep convo-

lutional neural network,” Evolutionary Intelligence, pp. 1–22, 2021.

[106] A. C. M. V. Srinivas, C. Satyanarayana, C. Divakar, and K. P. Sirisha,

“Sentiment analysis using neural network and lstm,” in IOP Conference

Series: Materials Science and Engineering, vol. 1074, no. 1. IOP Pub-

lishing, 2021, p. 012007.

[107] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using

distant supervision,” CS224N project report, Stanford, vol. 1, no. 12, p.

2009, 2009.

[108] E. S. Alamoudi and N. S. Alghamdi, “Sentiment classification and aspect-

based sentiment analysis on yelp reviews using deep learning and word

embeddings,” Journal of Decision Systems, pp. 1–23, 2021.

[109] Y. Inc, “Yelp reviews dataset,” https://www.yelp.com/academic dataset,

2014.

[110] A. Barushka and P. Hajek, “Spam filtering using integrated distribution-

based balancing approach and regularized deep neural networks,” Applied

Intelligence, vol. 48, no. 10, pp. 3538–3556, 2018.

[111] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam filtering with

naive bayes-which naive bayes?” in CEAS, vol. 17. Mountain View, CA,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

104

2006, pp. 28–69.

[112] R. Taheri and R. Javidan, “Spam filtering in sms using recurrent neural

networks,” in 2017 Artificial Intelligence and Signal Processing Conference

(AISP). IEEE, 2017, pp. 331–336.

[113] A. T. A. and J. M. G. Hidalgo., “Sms spam collection,”

http://www.dt.fee.unicamp.br/ tiago/smsspamcollection/., 2018.

[114] M. H. Lee et al., “A study of efficiency information filtering system us-

ing one-hot long short-term memory,” International Journal of Advanced

Culture Technology, vol. 5, no. 1, pp. 83–89, 2017.

[115] S. A. Project, “Spam assassin public corpus,”

https://spamassassin.apache.org/publiccorpus/, 2015.

[116] T. C. Alberto, J. V. Lochter, and T. A. Almeida, “Tubespam: Comment

spam filtering on youtube,” in 2015 IEEE 14th international conference on

machine learning and applications (ICMLA). IEEE, 2015, pp. 138–143.

[117] V. Nasir and F. Sassani, “A review on deep learning in machining and tool

monitoring: methods, opportunities, and challenges,” The International

Journal of Advanced Manufacturing Technology, pp. 1–27, 2021.

[118] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable

effectiveness of data in deep learning era,” in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 843–852.

[119] Á. Casado-Garćıa, C. Domı́nguez, M. Garćıa-Domı́nguez, J. Heras, A. Inés,

E. Mata, and V. Pascual, “Clodsa: a tool for augmentation in classification,

localization, detection, semantic segmentation and instance segmentation

tasks,” BMC bioinformatics, vol. 20, no. 1, pp. 1–14, 2019.

[120] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-

tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48,

2019.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

105

[121] C. Zhang, P. Zhou, C. Li, and L. Liu, “A convolutional neural network for

leaves recognition using data augmentation,” in 2015 IEEE International

Conference on Computer and Information Technology; Ubiquitous Com-

puting and Communications; Dependable, Autonomic and Secure Comput-

ing; Pervasive Intelligence and Computing. IEEE, 2015, pp. 2143–2150.

[122] K. K. Pal and K. S. Sudeep, “Preprocessing for image classification by

convolutional neural networks,” in 2016 IEEE International Conference

on Recent Trends in Electronics, Information Communication Technology

(RTEICT), 2016, pp. 1778–1781.

[123] P. Sharma, P. Hans, and S. C. Gupta, “Classification of plant leaf diseases

using machine learning and image preprocessing techniques,” in 2020 10th

International Conference on Cloud Computing, Data Science Engineering

(Confluence), 2020, pp. 480–484.

[124] A. Rodŕıguez-Cristerna, C. P. Guerrero-Cedillo, G. A. Donati-Olvera,

W. Gómez-Flores, and W. C. A. Pereira, “Study of the impact of image

preprocessing approaches on the segmentation and classification of breast

lesions on ultrasound,” in 2017 14th International Conference on Electri-

cal Engineering, Computing Science and Automatic Control (CCE), 2017,

pp. 1–4.

[125] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[126] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[127] ——, “Identity mappings in deep residual networks,” in European confer-

ence on computer vision. Springer, 2016, pp. 630–645.

[128] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” in Proceedings of the IEEE conference

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

106

on computer vision and pattern recognition, 2017, pp. 4700–4708.

[129] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2015, pp. 1–9.

[130] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 2818–

2826.

[131] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,

inception-resnet and the impact of residual connections on learning,” in

Thirty-first AAAI conference on artificial intelligence, 2017.

[132] F. Chollet, “Xception: Deep learning with depthwise separable convolu-

tions,” in Proceedings of the IEEE conference on computer vision and pat-

tern recognition, 2017, pp. 1251–1258.

[133] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural

networks for mobile vision applications,” arXiv preprint arXiv:1704.04861,

2017.

[134] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2014,

pp. 580–587.

[135] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international con-

ference on computer vision, 2015, pp. 1440–1448.

[136] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” Advances in neural in-

formation processing systems, vol. 28, pp. 91–99, 2015.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

107

[137] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 779–788.

[138] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2015, pp. 3431–3440.

[139] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on Med-

ical image computing and computer-assisted intervention. Springer, 2015,

pp. 234–241.

[140] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceed-

ings of the IEEE international conference on computer vision, 2017, pp.

2961–2969.

[141] P. Hurtik, V. Molek, J. Hula, M. Vajgl, P. Vlasanek, and T. Nejezchleba,

“Poly-yolo: higher speed, more precise detection and instance segmentation

for yolov3,” arXiv preprint arXiv:2005.13243, 2020.

[142] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair,

T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid et al., “Fiji:

an open-source platform for biological-image analysis,” Nature methods,

vol. 9, no. 7, pp. 676–682, 2012.

[143] M. Gerber and N. Pillay, “Quantifying common rust severity in maize

using mask r-cnn and genetic algorithms for hyper-parameter tuning.” in

The 2021 International Joint Conference on Neural Networks, 2021.

[144] A. A and A. B, “A comparative study of supervised and unsupervised

neural networks for oral lesion detection,” in The 2021 IEEE Symposium

Series on Computational Intelligence, 2021, p. Under review.

[145] H. S. Chandrashekar, A. Geetha Kiran, M. S, M. Di-

nesh, and B. Nanditha, “Oral images dataset,”

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

108

https://data.mendeley.com/datasets/mhjyrn35p4/2, 2021.

[146] R. Khamissa, “University of pretoria - oral images dataset,”

https://example.com, 2021.

[147] T. Wu, S. Wen, Y. Xiang, and W. Zhou, “Twitter spam detection: Survey

of new approaches and comparative study,” Computers & Security, vol. 76,

pp. 265–284, 2018.

[148] R. Liu, Y. Shi, C. Ji, and M. Jia, “A survey of sentiment analysis based

on transfer learning,” IEEE Access, vol. 7, pp. 85 401–85 412, 2019.

[149] M. M. Mirończuk and J. Protasiewicz, “A recent overview of the state-of-

the-art elements of text classification,” Expert Systems with Applications,

vol. 106, pp. 36–54, 2018.

[150] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep

learning for computer vision: A brief review,” Computational intelligence

and neuroscience, vol. 2018, 2018.

[151] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent

architectures of deep convolutional neural networks,” Artificial Intelligence

Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[152] F. Sultana, A. Sufian, and P. Dutta, “Evolution of image segmentation

using deep convolutional neural network: a survey,” Knowledge-Based Sys-

tems, vol. 201, p. 106062, 2020.

[153] B. Pandey, D. K. Pandey, B. P. Mishra, and W. Rhmann, “A comprehen-

sive survey of deep learning in the field of medical imaging and medical

natural language processing: Challenges and research directions,” Journal

of King Saud University-Computer and Information Sciences, 2021.

[154] E.-G. Talbi, “Automated design of deep neural networks: A survey and

unified taxonomy,” ACM Computing Surveys (CSUR), vol. 54, no. 2, pp.

1–37, 2021.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

109

[155] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:

methods, systems, challenges. Springer Nature, 2019.

[156] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated

Machine Learning. Springer, Cham, 2019, pp. 3–33.

[157] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”

Knowledge-Based Systems, vol. 212, p. 106622, 2021.

[158] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,

“A comprehensive survey on transfer learning,” Proceedings of the IEEE,

vol. 109, no. 1, pp. 43–76, 2020.

[159] T. T. H. Dinh, T. H. Chu, and Q. U. Nguyen, “Transfer learning in ge-

netic programming,” in 2015 IEEE Congress on Evolutionary Computa-

tion (CEC). IEEE, 2015, pp. 1145–1151.

[160] D. Whitley and J. P. Watson, “Complexity theory and the no free lunch

theorem,” Search methodologies, pp. 317–339, 2005.

[161] J. D. Romano, T. T. Le, W. Fu, and J. H. Moore, “Tpot-nn: Augmenting

tree-based automated machine learning with neural network estimators,”

Genetic Programming and Evolvable Machines, vol. 22, no. 2, pp. 207–227,

2021.

[162] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A

survey of deep neural network architectures and their applications,”

Neurocomputing, vol. 234, pp. 11–26, 2017. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0925231216315533

[163] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algorithms

and applications,” arXiv preprint arXiv:2003.05689, 2020.

[164] B. Wang, H. Xu, J. Zhang, C. Chen, X. Fang, Y. Xu, N. Kang, L. Hong,

C. Jiang, X. Cai et al., “Vega: towards an end-to-end configurable automl

pipeline,” arXiv preprint arXiv:2011.01507, 2020.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://www.sciencedirect.com/science/article/pii/S0925231216315533
https://www.sciencedirect.com/science/article/pii/S0925231216315533

110

[165] N. Pillay and T. Nyathi, “Automated design of classification algo-

rithms,” in Automated Design of Machine Learning and Search Algorithms.

Springer, 2021, pp. 171–184.

[166] Y.-W. Chen, Q. Song, and X. Hu, “Techniques for automated machine

learning,” ACM SIGKDD Explorations Newsletter, vol. 22, no. 2, pp. 35–

50, 2021.

[167] N. Pillay, R. Qu, D. Srinivasan, B. Hammer, and K. Sorensen, “Automated

design of machine learning and search algorithms [guest editorial],” IEEE

Computational intelligence magazine, vol. 13, no. 2, pp. 16–17, 2018.

[168] H. Andersen, S. Stevenson, T. Ha, X. Gao, and B. Xue, “Evolving neural

networks for text classification using genetic algorithm-based approaches,”

in 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE,

2021, pp. 1241–1248.

[169] M. van Knippenberg, V. Menkovski, and S. Consoli, “Evolutionary con-

struction of convolutional neural networks,” in International Conference

on Machine Learning, Optimization, and Data Science. Springer, 2018,

pp. 293–304.

[170] B. Guo, J. Hu, W. Wu, Q. Peng, and F. Wu, “The tabu genetic algorithm:

a novel method for hyper-parameter optimization of learning algorithms,”

Electronics, vol. 8, no. 5, p. 579, 2019.

[171] L. K. Ramasamy, S. Kadry, and S. Lim, “Selection of optimal hyper-

parameter values of support vector machine for sentiment analysis tasks

using nature-inspired optimization methods,” Bulletin of Electrical Engi-

neering and Informatics, vol. 10, no. 1, pp. 290–298, 2021.

[172] P. M. Chanal, M. S. Kakkasageri, and S. K. S. Manvi, “Security and pri-

vacy in the internet of things: computational intelligent techniques-based

approaches,” in Recent Trends in Computational Intelligence Enabled Re-

search. Elsevier, 2021, pp. 111–127.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

111

[173] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learn-

ing,” Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016.

[174] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions

on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[175] W. Zhang, L. Deng, L. Zhang, and D. Wu, “Overcoming negative transfer:

A survey,” arXiv preprint arXiv:2009.00909, 2020.

[176] L. Torrey and J. Shavlik, Handbook of research on machine learning ap-

plications and trends: Algorithms, methods, and techniques: Algorithms,

methods, and techniques. IGI Global, 2010.

[177] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo, “Transfer learning with

neural automl,” arXiv preprint arXiv:1803.02780, 2018.

[178] D. Yogatama and G. Mann, “Efficient transfer learning method for au-

tomatic hyperparameter tuning,” in Artificial intelligence and statistics.

PMLR, 2014, pp. 1077–1085.

[179] M. A. Ardeh, Y. Mei, and M. Zhang, “Transfer learning in genetic pro-

gramming hyper-heuristic for solving uncertain capacitated arc routing

problem,” in 2019 IEEE Congress on Evolutionary Computation (CEC).

IEEE, 2019, pp. 49–56.

[180] L. Muñoz, L. Trujillo, and S. Silva, “Transfer learning in constructive in-

duction with genetic programming,” Genetic Programming and Evolvable

Machines, vol. 21, no. 4, pp. 529–569, 2020.

[181] T. Chugh, M. Singh, S. Nagpal, R. Singh, and M. Vatsa, “Transfer learn-

ing based evolutionary algorithm for composite face sketch recognition,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, 2017, pp. 117–125.

[182] G.-S. Hao, G.-G. Wang, Z.-J. Zhang, and D.-X. Zou, “Optimisation of the

high-order problems in evolutionary algorithms: an application of trans-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

112

fer learning,” International Journal of Wireless and Mobile Computing,

vol. 14, no. 1, pp. 56–63, 2018.

[183] C. Johnson, “What is research in computing science,” Computer Science

Dept., Glasgow University. Electronic resource: http://www. dcs. gla. ac.

uk/johnson/teaching/research skills/research. ht ml, 2006.

[184] Z. Hussain, F. Gimenez, D. Yi, and D. Rubin, “Differential data aug-

mentation techniques for medical imaging classification tasks,” in AMIA

annual symposium proceedings, vol. 2017. American Medical Informatics

Association, 2017, p. 979.

[185] S. O’Gara and K. McGuinness, “Comparing data augmentation strategies

for deep image classification,” in Irish Machine Vision and Image Process-

ing Conference (IMVIP), 2019.

[186] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2018, pp.

4510–4520.

[187] M. Misir, K. Verbeeck, P. De Causmaecker, and G. V. Berghe, “Hyper-

heuristics with a dynamic heuristic set for the home care scheduling prob-

lem,” in IEEE Congress on Evolutionary Computation. IEEE, 2010, pp.

1–8.

[188] D. S. Sachan, M. Zaheer, and R. Salakhutdinov, “Revisiting lstm networks

for semi-supervised text classification via mixed objective function,”

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, p.

6940–6948, Jul 2019. [Online]. Available: http://dx.doi.org/10.1609/aaai.

v33i01.33016940

[189] L. Xiao, H. Zhang, W. Chen, Y. Wang, and Y. Jin, “Transformable convo-

lutional neural network for text classification.” in IJCAI, 2018, pp. 4496–

4502.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://dx.doi.org/10.1609/aaai.v33i01.33016940
http://dx.doi.org/10.1609/aaai.v33i01.33016940

113

[190] K.-P. Lai, W. Lam, and J. C. Ho, “Domain-aware recurrent neural network

for cross-domain sentiment classification,” in Proceedings of the 3rd Inter-

national Conference on Data Science and Information Technology, 2020,

pp. 181–185.

[191] K. Chakraborty, S. Bhatia, S. Bhattacharyya, J. Platos, R. Bag, and A. E.

Hassanien, “Sentiment analysis of covid-19 tweets by deep learning classi-

fiers—a study to show how popularity is affecting accuracy in social me-

dia,” Applied Soft Computing, vol. 97, p. 106754, 2020.

[192] E. Hamdi, S. Rady, and M. Aref, “A deep learning architecture with word

embeddings to classify sentiment in twitter,” in International Conference

on Advanced Intelligent Systems and Informatics. Springer, 2020, pp.

115–125.

[193] A. K. Uysal, “Feature selection for comment spam filtering on youtube,”

Data Science and Applications, vol. 1, no. 1, pp. 4–8, 2018.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

114

Add appendix content here

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Introduction
	Purpose of study
	Objectives of study
	Contributions
	Layout of thesis

	Deep neural networks
	Introduction to Neural Networks
	History of Neural Networks
	Convolution Neural Network
	Recurrent Neural Network
	Long Short-Term Memory
	Summary

	Text processing with deep neural networks
	Introduction to text processing
	Deep neural network pipeline - preprocessing stage techniques
	Deep neural network pipeline - feature engineering stage techniques
	Deep neural network pipeline - classification stage techniques
	Deep neural network pipelines for text processing in the literature
	Summary

	Image processing with deep neural networks
	Introduction to image processing
	Deep neural network pipeline - augmentation stage techniques
	Deep neural network pipeline - preprocessing stage techniques
	Deep neural network pipeline - processing stage techniques
	Deep neural network pipelines for image processing in the literature
	Summary

	Critical analysis and related work
	Introduction
	Critical analysis
	Automated design
	Hyper-heuristics
	Transfer learning
	Summary

	Research methodology
	Introduction
	Proof by demonstration research methodology
	Problem domains and datasets
	Experiments
	Performance measures
	Statistical comparison
	Technical specifications
	Summary

	Single point hyper-heuristic approach
	Introduction
	The design string (DS)
	Single point hyper-heuristic algorithm
	Summary

	Results and discussion
	Introduction
	Experiment 1 - Automated design of the deep neural network pipeline
	Experiment 2 - Transfer learning for automated design
	Experiment 3 - Reusability of the deep neural network pipeline designs
	Summary

	Conclusions and future work
	Introduction
	Conclusions
	Future work
	Summary

