

An International Journal of Laboratory Medicine

Guidelines for Resident Training in Veterinary Clinical Pathology. IV: Laboratory Quality Management – Teaching Domains, Competencies, and Suggested Learning Outcomes

Journal:	Veterinary Clinical Pathology
Manuscript ID	Draft
Manuscript Type:	ASVCP Special Report
Date Submitted by the Author:	n/a
Complete List of Authors:	Flatland, Bente; University of Tennessee, Biomedical and Diagnostic Sciences Dehghanpir, Shannon; Louisiana State University School of Veterinary Medicine, Pathobiological Sciences Freeman, Kathleen ; Veterinary Information Network Grimes, Carolyn; Zoetis Reference Laboratories Hancock, Tamara; University of Missouri System, Department of Veterinary Pathobiology Hollinger, Charlotte; Charles River Laboratories Inc Mattawan Hooijberg, Emma; University of Pretoria, Department of Companion Animal Clinical Studies Korchia, Jeremie; Colorado State University System, Department of Microbiology, Immunology and Pathology Lawson, Cheryl; Iowa State University, Veterinary Pathology Matlow, Jennifer; IDEX Corp Sample, Saundra; Zoetis Reference Laboratories Viall, Austin; University of California Davis, Department of Veterinary Pathology, Microbiology, and Immunology
Key Words:	competency-based, entrustable professional activity, EPA, QA, QC, quality assessment, quality assurance, quality control

1	Guidelines for Resident Training in Veterinary Clinical Pathology. IV: Laboratory Quality Management
2	- Teaching Domains, Competencies, and Suggested Learning Outcomes
3	
4	Bente Flatland ¹ , Shannon D. Dehghanpir ² , Samantha J. M. Evans ³ , Kathleen P. Freeman ⁴ , Carolyn
5	Grimes ⁵ , Tamara Hancock ⁶ , Charlotte Hollinger ⁷ , Emma Hooijberg ⁸ , Jeremie Korchia ⁹ , Cheryl Lawson ¹⁰ ,
6	Jennifer R. Matlow ¹¹ , Saundra Sample ¹² , Austin Viall ¹³
7	
8	¹ Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of
9	Tennessee, Knoxville, TN, USA.
10	² Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University,
11	Baton Rouge, LA, USA.
12	³ Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University,
13	Columbus, OH, USA.
14	⁴ Veterinary Information Network, United Kingdom
15	⁵ Zoetis Reference Laboratories, Zoetis, Inc., Parsipanny, NJ, USA.
16	⁶ Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri,
17	Columbia, MO, USA.
18	⁷ Charles River Laboratories, Mattawan, MI, USA.
19	⁸ Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
20	Pretoria, South Africa.
21	⁹ Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and
22	Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
23	¹⁰ Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA,
24	USA.

- 25 ¹¹ Idexx, Inc., Bloomfield, MI, USA.
- 26 ¹² Zoetis Reference Laboratories, Zoetis, Inc., Parsipanny, NJ, USA.
- ¹³ Department of Veterinary Pathology, Microbiology, and Immunology, School of Veterinary Medicine,
- 28 University of California Davis, Davis, CA.
- 29
- 30 Short Running Header Title
- 31 Laboratory Quality Management Training Guidelines
- 32
- 33 Correspondence
- 34 Bente Flatland
- 35 University of Tennessee
- 36 College of Veterinary Medicine
- 37 bflatlan@utk.edu
- 38

39 Disclosures

- 40 Bente Flatland and Kathy Freeman serve on the advisory committee for Vetbiologicalvariation.org, a
- 41 not-for-profit veterinary biological variation database. Dr. Freeman is also a Director of CustomClinPath,
- 42 a partnership involved with developing applications and calculators intended to make biological
- 43 variation-based tools available to clinicians and clinical pathologists. Dr. Freeman and Dr. Korchia are co-
- 44 editing a planned textbook about laboratory quality management, to which Drs. Flatland, Hooijberg, and
- 45 Matlow will contribute. No other authors have potential conflicts of interest.

46	Abstract
47	
48	Background: The 2019 ASVCP Education Committee Forum for Discussion, presented at the annual
49	ASVCP/ACVP meeting, identified a need to develop recommendations for teaching laboratory quality
50	management principles in veterinary clinical pathology residency training programs.
51	Objectives: To present a competency-based framework for teaching laboratory quality management
52	principles in veterinary clinical pathology residency training programs, including entrustable professional
53	activities (EPA), domains of competence, individual competencies, and learning outcomes.
54	Methods: A joint subcommittee of the ASVCP Quality Assurance and Laboratory Standards (QALS) and
55	Education Committees executed this project. A draft guideline version was reviewed by ASVCP
56	membership and shared with selected ACVP committees in early 2022, and a final version was voted
57	upon by the full QALS and Education Committees in late 2022.
58	Results: Eleven domains of competence with relevant individual competencies were identified. In
59	addition, suggested learning outcomes and resource lists were developed. Domains and individual
60	competencies were mapped to six EPA.
61	Conclusions: This guideline presents a framework for teaching principles of laboratory quality
62	management in veterinary clinical pathology residency training programs and was designed to be
63	comprehensive yet practical. Guidance on pedagogical terms and possible routes of implementation are
64	included. Recommendations herein aim to improve and support resident training but may require
65	gradual implementation, as programs phase in necessary expertise and resources. Future directions
66	include development of learning milestones and assessments and consideration of how
67	recommendations intersect with American College of Veterinary Pathologists training program
68	accreditation and certifying examination.
69	

69

70 Keywords

Competency-based, entrustable professional activity, EPA, QA, QC, quality assessment, quality
 assurance, quality control

73

74 Introduction

Guidelines for resident training in veterinary clinical pathology were developed by the ASVCP Education Committee in 2003 (clinical chemistry)¹, 2006 (hematology)², and 2009 (cytopathology and surgical pathology).³ These documents presented learning outcomes organized into knowledge, abilities, and skills. Learning outcomes related to quality assessment/assurance (QA) and quality control (QC) were woven into all three documents, appearing most frequently in the clinical chemistry document¹,

80 but laboratory quality management was not approached as a stand-alone entity.

81 At the 2019 American College of Veterinary Pathologists and American Society for Veterinary 82 Clinical Pathology (ACVP/ASVCP) annual meeting in San Antonio, TX, the ASVCP Education Committee's 83 Forum for Discussion addressed teaching practical QA/QC to clinical pathology residents. The need to 84 revisit existing residency training guidelines and address laboratory quality management as an 85 independent topic was identified. Subsequent to that meeting, the Education Committee, in 86 cooperation with the Quality Assurance and Laboratory Standards (QALS) committee, formed a joint 87 subcommittee to propose residency training guidelines focused on laboratory quality-related topics for the ASVCP. 88

The 2011 Roadmap for Veterinary Medical Education in the 21st Century⁴ introduced formalized competency-based education in veterinary medicine in the USA. A competency-based framework for teaching veterinary clinical pathology in US veterinary student curricula has been published.⁵ The Royal College of Pathologists also utilizes a competency-based framework to present its curriculum for veterinary clinical pathology specialty training in the United Kingdom.⁶ In order to align with current

94	veterinary pedagogical documents, a competency-based framework was also chosen for ASVCP
95	laboratory quality management residency training recommendations herein.
96	Veterinary laboratory quality management is a multifaceted topic that has historically not
97	received as much emphasis in North American clinical pathology residency programs as patient data
98	interpretation or diagnostic cytology – yet knowledge of QA/QC helps makes clinical pathology unique
99	among veterinary specialties. Furthermore, laboratory testing is steadily increasing in complexity, with
100	more distributed sites, advanced and varied instrumentation, a growing point-of-care sector, and more
101	diverse operating personnel, among other changes. Laboratory quality consulting is also an emerging
102	service area for veterinary clinical pathologists who advise practicing veterinarians, researchers, and
103	industry. Within this expanding landscape of laboratory sophistication, the overall need for quality
104	management expertise and experience is expected to grow.
105	Importantly, the scope of these guidelines is focused on laboratory quality. For broader clinical
106	pathology resident competency recommendations, readers should refer to existing ASVCP training
107	guideline documents. ¹⁻³ The intended audiences for this document are clinical pathology residents,
108	clinical pathology faculty, clinical pathology training program coordinators, and laboratory managers.
109	This document also has potential to inform work done by the American Board of Veterinary Specialists,
110	the ACVP Certifying Examination Board, and any person(s) or committee(s) vetting or accrediting clinical
111	
	pathology residency training programs in the future.
112	pathology residency training programs in the future.
112 113	pathology residency training programs in the future. Methods

subcommittee additionally recruited Dr. Tamara Hancock to serve as an advisor regarding use of

117 pedagogical concepts and terms, given her qualifications in both pedagogy and clinical pathology.

118	Potential guideline formats were discussed, and a competency-based framework utilizing domains,
119	competencies, outcomes, and entrustable professional activities (EPA) was decided upon.
120	The American Association of Veterinary Medical College (AAVMC) Competency-Based Veterinary
121	Education (CBVE) framework defines "domain" as a broad, distinguishable area of competence –
122	multiple domains, in aggregate, provide a descriptive framework for a profession. ⁷ In the context of this
123	guideline, listed domains denote broad topics reflecting the work of laboratory quality management.
124	"Competency" is defined by CBVE as an observable ability related to a specific, measurable, and
125	assessable activity that integrates knowledge, skills, values, and attitudes. "Learning outcome" is defined
126	as an observable and assessable achievement that a learner can perform at the end of a learning session
127	or program. ^{7,8} In the context of this guideline, listed competencies and learning outcomes represent
128	granular quality management skills and abilities that comprise each domain. "EPA" are defined by CBVE
129	as essential tasks of a discipline that a learner can be trusted to perform with limited supervision in a
130	given context, once sufficient competence has been demonstrated. ⁷ In the context of this guideline,
131	listed EPA are complex tasks that clinical pathologists execute when performing their work. Identified
132	EPA are not limited to laboratory quality management, but laboratory quality management is a
133	component of all identified EPA (thereby allowing mapping of domains and competencies to these EPA).
134	Members first developed a list of domain topics within the larger domain of laboratory quality
135	management. The committee was next subdivided into teams of 2 to 4 individuals per domain, and each
136	team developed competencies and learning outcomes for each domain. All subcommittee members
137	reviewed and discussed competencies and learning outcomes for all domains. Once domains,
138	competencies, and learning outcomes were developed, EPA were identified, and competencies were
139	mapped to these EPA. Resources (books, articles, and web-based resources) were included to support
140	each domain.

141	Given the complexity of laboratory quality management as a topic area, the subcommittee
142	focused on developing competencies and learning outcomes that, in the authors' opinions, could
143	reasonably be addressed within a three-year training program. Optional learning outcomes for
144	"advanced" learners (third-year residents, residents with a strong QA/QC interest, or learners post-
145	residency) were included for selected competencies.

Draft domains, competencies, learning outcomes, and EPA were approved by the ASVCP Education and QALS committees, and the draft document was approved for ASVCP member review by the ASVCP Executive Board. An electronic version of the draft document was posted on-line at the ASVCP website for eight weeks in early 2022 for member review. Concurrently, feedback was sought via email from the ACVP Training Program Committee, ACVP Training Program Accreditation Task Force,

and ACVP Exam Committee.

152 All feedback was considered by the authors, and revisions were made accordingly. The most 153 substantive change post-review was re-categorization of learning outcomes as "Core Level 1", "Core 154 Level 2", and "Advanced" based on author consensus, in acknowledgement of risk of that 155 recommendations as a whole could be perceived as overwhelming, and with the hope that this change 156 could better help residency program instructors incorporate recommendations into existing programs. 157 Each competency does not necessarily contain learning outcomes from all three categories, and "Core 158 Level" numerical designations (1 or 2) are not intended to correspond with particular program years, but 159 to give a sense of expected learning sequence.

160 Core Level 1 learning outcomes are intended as suggested introductory core material suitable 161 for residents earlier in their program (starting in the first year), reflecting a bare minimum of QA/QC 162 knowledge that positions residents to master outcomes designated "Core Level 2" and, optionally, 163 "Advanced". Core Level 2 learning outcomes are intended as suggested core material suitable for 164 residents who have mastered relevant Core Level 1 outcomes, later in their residency program

165	(presumably predominantly in the second- and third-year). These guidelines recommend that clinical
166	pathology residents attain proficiency in Core Level 1 and Core Level 2 learning outcomes by the
167	completion of a residency program. Advanced learning outcomes are intended as suitable for residents
168	with a strong QA/QC interest or clinical pathologists post-residency. Inclusion of Advanced
169	competencies and learning outcomes into three-year residency training programs is encouraged, but
170	these are considered beyond expectations of core training and may require time and resources that
171	individual programs or supporting organizations (e.g., ASVCP and ACVP) independently or in
172	collaboration will need to retool and/or develop. These guidelines represent cumulative current best
173	recommendations but are expected to evolve over time and undergo future revisions addressing shifts
174	in emphasis and approach.

- 176 Abbreviated List of Domains and Competencies
- 177
- 178 Domain 1: General Quality Management Principles
- 179 Competency 1.1: Develops a laboratory quality plan
- 180 Competency 1.2: Promotes laboratory occupational health and safety
- 181 Competency 1.3: Promotes continuous laboratory improvement
- 182 Competency 1.4: Describes laboratory test cost accounting
- 183
- 184 **Domain 2: Basic Laboratory Statistics**
- 185 Competency 2.1: Describes basic principles of classical statistics
- 186 Competency 2.2: Applies statistics in the medical laboratory
- 187 Competency 2.3: Applies significant figures
- 188
- 189 Domain 3: Instrument Selection and Analytical Assessment
- 190 Competency 3.1: Selects instrument or assay
- 191 Competency 3.2: Assesses analytical performance of instrument or assay
- 192
- 193 Domain 4: Quality Goals, Assay Development, and Analytical Validation
- 194 Competency 4.1: Describes and explains quality goals for pre-analytical, analytical, and post-analytical
- 195 processes
- 196 Competency 4.2: Uses quality goals and performs assay validation
- 197
- 198

- 199 Domain 5: Statistical Quality Control (SQC), External Quality Assessment (EQA), and Proficiency
- 200 Testing (PT)
- 201 Competency 5.1: Describes SQC principles
- 202 Competency 5.2: Interprets control data
- 203 Competency 5.3: Performs SQC validation
- 204 Competency 5.4: Describes structure and function of EQA/PT programs and interprets EQA/PT data
- 205 Optional Competency 5.5: Performs Repeat Patient Testing Quality Control (RPT-QC)
- 206 Optional Competency 5.6: Describes instrument or method harmonization
- 207

208 Domain 6: Non-statistical QC

- 209 Competency 6.1: Describes impact of sample and reagent handling on test results
- 210 Competency 6.2: Confirms quantitative data, whether expected or aberrant, with qualitative assessment
- and/or repeat results.
- 212 Competency 6.3: Maintains quality assurance in laboratory reports
- 213

214 Domain 7: Tests Yielding Ordinal and Nominal Data (Qualitative Tests)

- 215 Competency 7.1: Evaluates analytical and diagnostic performance of qualitative tests
- 216 Competency 7.2: Describes approaches to quality management of qualitative testing
- 217

218 Domain 8: Patient Data Interpretation Tools

- 219 Competency 8.1: Explains general principles of biological variation (BV)
- 220 Competency 8.2: Explains, generates, and evaluates population-based reference intervals (pRI)
- 221 Competency 8.3: Applies BV-based patient data interpretation tools appropriately
- 222 Competency 8.4: Explains clinical decision thresholds

223	
224	Domain 9: Clinical Validation of Tests, Diagnostic Performance Evaluation
225	Competency 9.1: Describes considerations for and design of diagnostic accuracy studies
226	
227	Domain 10: Microscopic Evaluation
228	Competency 10.1: Demonstrates use and proper care of light microscopic equipment and stains
229	Competency 10.2: Recognizes and controls pre-analytical error during microscopic examination
230	Competency 10.3: Recognizes and controls analytical error during microscopic examination
231	Competency 10.4: Recognizes and controls post-analytical error during microscopic examination
232	Competency 10.5: Describes procedures for archiving samples, documents, and reports
233	
234	Domain 11: Point-of-Care Testing (POCT)
235	Competency 11.1: Identifies and uses POCT resources
236	Competency 11.2: Describes statistical and non-statistical QA/QC for POCT
237	Competency 11.3: Documents POCT QA/QC activities
238	Optional Competency 11.4: Designs a quality management program for owners/users of POCT
239	

241	Detailed List of Domains and Competencies with Learning Outcomes
242	
243	Domain 1: General Quality Management Principles
244	
245	Competency 1.1: Develops a laboratory quality plan
246	
247	Core Level 1
248	• Lists and explains components of laboratory quality culture and management: laboratory
249	environment, health and safety, personnel, instrumentation, documents and documentation,
250	and laboratory information management systems (LIMS).
251	• Describes and explains a global approach to quality planning, implementation, and improvement
252	(e.g. Total Quality Management).
253	• Describes the purpose, importance, and components of a laboratory quality plan.
254	• Lists and explains the importance of maintaining manufacturer-supplied laboratory instrument
255	operational documents, including:
256	 Instrument purchase agreements
257	 Instrument service agreements and other service documents
258	 Instrument user manuals and quick-start guides
259	• Lists and explains components of other commonly used laboratory operational and QA/QC
260	documents, including (listed alphabetically):
261	• External quality assessment (EQA), proficiency testing (PT), or other comparison testing
262	event documents
263	• Error or adverse event logs or forms ("improvement opportunity" documentation), if
264	not inherent to the laboratory information management system (LIMS)

265	 Instrument logs for QC and maintenance
266	• Patient result logs (e.g., if not archived in instrument software)
267	 Personnel training records
268	 Reagent logs (date of opening, expiration dates, lot numbers)
269	 Sample condition logs (e.g., whether hemolyzed or lipemic)
270	 Standard operating procedures (SOP)
271	• Temperature logs (e.g., for refrigerators and freezers), or other equipment maintenance
272	logs (e.g., maintenance of centrifuges, pipettes, refractometers, etc.)
273	0
274	• Describes the importance of documenting occurrence and resolution of laboratory errors.
275	• Recognizes features of an effective document control system in the clinical laboratory.
276	
277	Core Level 2
278	Assists laboratory personnel in review and/or maintenance of laboratory quality plan
279	documents
280	Generates laboratory SOPs and assists laboratory personnel in review and/or maintenance of
281	laboratory SOPs.
282	Assists laboratory personnel in review and/or maintenance of laboratory personnel training
283	records.
284	• Assists laboratory personnel in review and/or keeping of instrument maintenance logs or other
285	laboratory operational logs.
286	
287	Advanced

288	• Describes and explains considerations for choosing, maintaining and continuously improving the
289	LIMS and information technology within a veterinary laboratory, including patient information
290	confidentiality and data security.
291	• Recognizes elements common to various laboratory quality standards, as well as differences in
292	structure and emphasis of various approaches (e.g., lean vs. six sigma vs. total quality
293	management).
294	
295	Competency 1.2: Promotes laboratory occupational health and safety
296	Core Level 1
297	• Describes and explains applicable biological, chemical, and physical safety risks and regulations
298	associated with the various laboratory procedures and circumstances.
299	• Describes and explains example approaches to laboratory work environment risk reduction
300	regarding zoonotic and reverse zoonotic diseases.
301	
302	

303	Core Level 2
304	Generates a risk assessment for at least one laboratory process, procedure, or method within
305	the veterinary laboratory and makes recommendations to reduce biological, chemical, and
306	physical safety risks to acceptable levels.
307	
308	Competency 1.3: Promotes continuous laboratory improvement
309	
310	Core Level 1
311	• Lists and explains the categories of laboratory error (pre-analytical, analytical, and post-
312	analytical).
313	• Aware of, able to describe, and able to give examples of laboratory quality assurance processes
314	and procedures in all phases of testing (pre-analytical, analytical, and post-analytical).
315	
316	Core Level 2
317	Under supervision of laboratory personnel, participates in measurement of control material and
318	interpretation of control data, including troubleshooting of a QC failure ("out-of-control" QC
319	data) and monitoring of analytical error resolution or mitigation. Also see Domain 5.
320	Under supervision of laboratory personnel, participates in identification, troubleshooting, and
321	documentation of laboratory error (non-conforming event), including implementation,
322	documentation, and monitoring of error resolution or mitigation (improvement opportunity) in
323	pre- and/or post-analytical phases of testing.
324	
225	Advanced

325 Advanced

326	• Assists an experienced manager/auditor in designing and conducting a quality audit in a
327	particular area of the laboratory
328	• Describes and explains the use of key quality indicators (a.k.a., key performance indicators)
329	based on expert recommendations, identified problems, or known tests of high importance in
330	the laboratory.
331	• Assists an experienced manager/auditor in the development of a summary quality audit report;
332	implements recommendations based on audit findings.
333	• Assists a laboratory manager in creating a plan or reviewing an existing plan for both initial
334	quality management training of new personnel and continuing education for all laboratory
335	personnel.
336	
337	Competency 1.4: Describes laboratory test cost accounting
338	
339	Core Level 1
340	• Lists elements contributing to laboratory test costs. Explains direct (e.g., consumable supplies,
341	technologist, and pathologist time) and indirect (e.g., utilities, administrative) cost elements.
342	
343	Core Level 2
344	• Given cost analysis data, explains the contributions of each component to total test cost and
345	calculates cost-per-test for a laboratory test.
346	
347	Domain 2: Basic Laboratory Statistics
348	
349	Competency 2.1: Describes basic principles of classical statistics

350	
351	Core Level 1
352	• Recognizes data types (quantitative, ordinal, nominal) and data distributions (Gaussian,
353	lognormal, skewed).
354	• For quantitative data, recognizes the difference between normal and non-normal distribution;
355	knows the mathematical properties of normal distribution.
356	• Discusses the principle of a normality test and can interpret the resulting p-value.
357	• Explains the concept of the null hypothesis (H0) and alternative hypothesis (H1) of a statistical
358	test.
359	• Correctly interprets the result of a statistical test by correctly accepting or rejecting H0.
360	• Defines type I and type II statistical error, and explains the relationship between these errors,
361	statistical power, and significance level.
362	• Explains the relationship between effect size, sample size, variation, and statistical power.
363	• Explains the principle of confidence intervals.
364	• Describes the relationship between statistical tests, a resulting test statistic, and a p-value.
365	• Discusses differences between parametric and non-parametric statistical tests and between
366	paired and non-paired statistical tests.
367	
368	Competency 2.2: Applies statistics in the medical laboratory
369	The application of statistics in the medical laboratory overlaps statistical quality control. Also see
370	Domain 5.
371	
372	Core Level 1

373	• Describes a dataset using statistical graphical tools (e.g., histogram, scatterplot) and metrics of
374	central tendency and dispersion (e.g., mean, median, mode, variance, standard deviation,
375	standard error, coefficient of variation).
376	• Explains the role, benefits, and limitations of the t-test and f-test in method comparison data
377	analysis.
378	• Defines the term <i>bias</i> in the context of diagnostic laboratory method comparison and explains
379	how presence of bias affects use of diagnostic laboratory data.
380	
381	Core Level 2
382	• Given analytical performance data, calculates the CV, bias, and total error (TE) associated with a
383	laboratory measurand.
384	• Given method comparison data, identifies and characterizes bias.
385	o Given method comparison data, carries out and interprets Bland-Altman data analysis,
386	including mean difference, limits of agreement, and graphical representation of bias.
387	• Given method comparison data, carries out and interprets regression analysis.
388	• Calculates predicted results for a given method using results of regression analysis.
389	• Interprets whether bias for a specific laboratory test is clinically important, taking critical values
390	and clinical decision limits into account.
391	• Given method comparison data, calculates and interprets correlation coefficients.
392	• Given analytical performance data and a quality goal, calculates the sigma metric for a particular
393	test or process within the laboratory.
394	
395	Competency 2.3: Applies significant figures
396	

397	Core Level 1
398	• Defines <i>significant figure</i> . Given a numeric value, identifies the number of significant figures
399	represented.
400	• Explains implications of significant figures for laboratory data interpretation (patient and
401	control).
402	
403	Core Level 2
404	• Given relevant instrument performance data, determines optimal number of significant figures
405	for patient data reporting (determines best "reporting interval").
406	
407	Domain 3: Instrument Selection and Analytical Assessment
408	
409	Competency 3.1: Selects an instrument or assay
410	
411	Core Level 1
412	• Lists and explains conditions under which instrument or assay analytical assessment studies
413	(verification; more abbreviated than validation) can be performed.
414	• Lists and explains analytical (e.g., sample type, volume, and throughput; precision) and non-
415	analytical (e.g., instrument size and cost, terms of service contract, reagent costs) considerations
416	for selecting a diagnostic laboratory instrument or method.
417	• Lists and explains analytical (verification experiments, establishment of reference intervals) and
418	non-analytical (e.g., establishing test costs) steps for implementing a new instrument or
419	analytical method at a given testing site.
420	

421	Competency 3.2: Assesses analytical performance of an instrument or assay
422	
423	Core Level 1
424	• Outlines the basic design and explains the purpose and goals of the following analytical
425	assessment experiments:
426	• Short-term replication (repeatability or within-in run imprecision)
427	 Long-term replication (reproducibility or between-run imprecision)
428	 Linearity/ reportable range
429	o Interference
430	o Recovery
431	• Detection limits
432	 Method comparison
433	o Carryover
434	• Prozone effect
435	 Assessment of patient sample stability and storage conditions
436	
437	Core Level 2
438	• Given manufacturer-supplied analytical performance claims and performance data from an
439	instrument or assay, interprets whether manufacturer's claims are achieved, particularly at
440	measurand concentrations at or near clinical decision limits.
441	• Lists steps to be taken if performance claims are not achieved.
442	• Explains implications of identifying bias between a new instrument or assay and a comparative
443	method.
444	

445	Domain 4: Quality Goals, Assay Development, and Analytical Validation
446	
447	Competency 4.1: Describes and explains quality goals for pre-analytical, analytical, and post-analytical
448	processes
449	
450	Core Level 1
451	• Defines the term "quality goal" (performance goal) and explains how quality goals are used in
452	laboratory management, including instrument analytical performance assessment and statistical
453	quality control.
454	• Describes and cites examples of quality goals and metrics for pre- and post-analytical testing
455	phases.
456	• Lists sources of potential quality goals for the analytical phase of testing (e.g. allowable total
457	error, biologic variation) and describes advantages and limitations of each.
458	
459	Core Level 2
460	• Describes different types of quality goals, e.g., according to the hierarchy of analytical
461	performance goals as defined by the European Federation of Clinical Chemistry and Laboratory
462	Medicine consensus statement (cited in resources).
463	• Explains how ASVCP allowable total error goals were generated and identifies their position in
464	the analytical goal hierarchy.
465	Able to evaluate data from biological variation studies and calculate quality goals for
466	imprecision, bias and total analytical error.
467	• Lists further steps to be taken if measured analytical error determined during method validation
468	exceeds analytical performance goals.

469	• Lists further steps to be taken if observed pre-analytical or post-analytical performance falls
470	short of quality goals or metrics.
471	
472	Competency 4.2: Uses quality goals and performs assay validation
473	Core Level 1
474	• Lists and explains conditions under which comprehensive instrument or assay validation studies
475	should be performed.
476	
477	Core Level 2
478	• Given an assay or method and its proposed application in a given laboratory, chooses
479	appropriate analytical assessment experiments from the list in Competency 3.2 that would
480	provide a comprehensive analytical validation.
481	• Given a pre-determined quality goal, correctly assesses testing or other process performance in
482	light of that goal. If performance does not meet goal, suggests appropriate corrective actions
483	and method and timeline for reevaluation.
484	• Given instrument or assay validation data, performs calculations, data analysis, and
485	interpretation for each of the analytical assessment experiments listed in Competency 3.2.
486	
487	Domain 5: Statistical Quality Control (SQC), External Quality Assessment (EQA), and Proficiency
488	Testing (PT)
489	
490	Competency 5.1: Describes SQC principles
491	
492	Core Level 1

t.
ble
or.
les
•

517	Describes circumstances under which a multi-rule procedure may be used, preferred, or needed
518	instead of simple QC rules.
519	Interprets control data using multi-rule procedures.
520	
521	Competency 5.3: Performs SQC validation
522	Core Level 1
523	• Defines and explains the terms QC validation, analytical quality goal, probability of error
524	detection, probability of false rejection, and N.
525	
526	Core Level 2
527	Lists inputs needed for performing QC validation.
528	 Justifies selected analytical quality goal(s). Explains how to obtain estimates of assay
529	bias and imprecision.
530	• Given the needed inputs and a QC validation tool (e.g., an operating specifications [OpSpecs]
531	chart), selects suitable control rule(s) and N.
532	• Explains options for monitoring assay analytical performance if no SQC solution is possible.
533	• Recognizes when non-statistical quality control is preferred or complements SQC.
534	• Calculates sigma metric and explains the role of sigma metric in SQC.
535	
536	Advanced
537	• If asked to evaluate QC validation for a laboratory serving multiple species, selects and justifies
538	QC validation inputs.
539	Calculates, explains, and applies quality goal index.
540	

541	Competency 5.4: Describes structure and function of EQA/PT programs and interprets EQA/PT data
542	
543	Core Level 1
544	• Explains purpose, structure, and frequency of EQA/PT programs.
545	• Integrates EQA/PT program costs into cost-accounting of laboratory tests. Also see Competency
546	1.5.
547	• Explains various criteria used to judge acceptability of EQA/PT testing results.
548	• Explains, calculates, and applies standard deviation index.
549	Calculates bias from EQA/PT data.
550	• Describes the rationale for documenting errors and corrective actions.
551	
552	Core Level 2
553	• Given EQA/PT data, judges acceptability of laboratory performance.
554	• Given unacceptable laboratory performance for a given instrument or method, formulates
555	appropriate troubleshooting questions to help evaluate the testing process and test system.
556	• Given results of test system troubleshooting for a given instrument or method, determines
557	appropriate corrective action(s) for that instrument or method.
558	
559	Advanced
560	• If a commercial EQA/PT program is not available for monitoring the instrument or assay in
561	question (e.g., point-of-care [POCT], or in-clinic, instrument), designs a local or in-house
562	proficiency testing program using central laboratory equipment to monitor analytical
563	performance.
564	

-

565	Optional Competency 5.5: Performs Repeat Patient Testing Quality Control (RPT-QC)
566	
567	Advanced
568	• Describes appropriate patient sample storage conditions for RPT-QC for hematology and
569	chemistry and/or other types of testing (endocrinology, etc.).
570	• Given a dataset of differences, able to compute RPT-QC control limits.
571	Given a dataset of differences and RPT-QC limits, able to judge test system analytical
572	performance.
573	
574	Optional Competency 5.6: Describes instrument or method harmonization
575	
576	Advanced
577	• Defines harmonization and explains challenges to achieving laboratory data harmonization
578	across instruments and laboratories.
579	• Able to discuss different methods of determining bias (e.g., assayed quality control materials,
580	well-characterized field method, true reference method) and advantages and limitations of each
581	for purposes of QC validation and patient results interpretation.
582	• Outlines a protocol for harmonizing instruments of the same type within a single laboratory or
583	laboratory network.
584	
585	Domain 6: Non-statistical QC
586	SOPs, logs, improvement opportunity forms, and other laboratory process documents are important
587	components of non-statistical QC. Also see Competency 1.1.
588	

589	Competency 6.1: Describes impact of sample and reagent handling on test results
590	
591	Core Level 1
592	• Describes the flow of specimens through the laboratory.
593	• Understands the rationale for, and can explain steps involved in, appropriate sample collection
594	(e.g., anticoagulant selection) and handling (i.e., processing, storage, or shipping).
595	• Explains rationale for using two unique patient identifiers for labeling/sample identification and
596	lists example identifiers.
597	• Describes appropriate storage and handling of patient samples and deleterious effects of delays
598	sample handling.
599	Describes appropriate storage and handling of reagents, quality control materials, and
600	calibration materials.
601	
602	Advanced
603	Given example laboratory layouts and workflows, proposes improvements to streamline
604	laboratory layout and workflow to minimize time between sample receipt and analysis.
605	
606	Competency 6.2: Confirms quantitative data, whether expected or aberrant, with qualitative
607	assessment and/or repeat results
608	
609	Core Level 1
610	• Assesses blood smear or direct fluid smear to correlate with automated results.
611	• Evaluate leukocyte morphology for toxicity, dysplastic, and leukemic changes.

612	Interprets hematologic scattergrams or graphs and correlates with automated results and
613	microscopic findings.
614	
615	Core Level 2
616	• Explains when alternative methods are needed for reporting hematology measurands (e.g., PCV
617	vs. HCT, MCHC vs. CHCM) and under what circumstances, and for which measurands,
618	automated hematology data should not be reported (e.g., erythrocyte agglutination, platelet
619	clumping, camelid samples).
620	Identifies plasma discolorations and potential interferences and can describe how interferents
621	may affect individual measurands; explains and interprets "serum index" (or "plasma index")
622	values of H, L, and I generated by automated chemistry instruments.
623	• Defines "critical values" (a.k.a. "panic values") and gives examples.
624	• Defines "repeat criteria" and "review criteria" and gives examples of each.
625	• Evaluates trends in individual patient data and can interpret patient data in light of total case
626	information.
627	
628	Advanced
629	• Under supervision of laboratory staff or an attending pathologist, monitors the number of
630	corrected and amended patient reports to survey for potential sources of error.
631	
632	Competency 6.3: Maintains quality assurance in laboratory reports
633	
634	Core Level 1

635	• Explains the need for consultations for complicated microscopy cases (hematology, cytology,
636	urine, etc).
637	• Reviews case follow up (e.g., histopathologic diagnosis, clinical follow-up).
638	• Describes the importance of double checking the accuracy of results entered from other areas
639	of testing (whether through manual entry, scanning/electronic reporting or other means) or
640	from other laboratories to which specimens are sent ("send outs").
641	
642	Core Level 2
643	• Appropriately amends reports as necessary and alerts clients of amended change(s).
644	
645	Domain 7: Tests Yielding Ordinal and Nominal Data (Qualitative Tests)
646	
647	Competency 7.1: Evaluates analytical and diagnostic performance of qualitative tests
648	
649	Core Level 2
650	• Determines an analytical quality goal for a test yielding ordinal or nominal data
651	Describes how verification/validation of tests yielding ordinal and nominal data differs from
652	verification/validation of tests yielding quantitative data.
653	Describes how assessing agreement of tests yielding ordinal and nominal data differs from
654	assessing agreement of tests yielding quantitative data.
655	
656	Advanced
657	• Under supervision from an experienced laboratory manager or clinical pathologist, evaluates

659	• Under supervision from an experienced laboratory manager or clinical pathologist, creates
660	quality plan for managing tests yielding ordinal and nominal data, for example:
661	 SNAP[™] or other immunologic assay kits
662	 Urinalysis testing (biochemical and cytologic)
663	 Fecal testing
664	 Blood typing and cross-matching tests
665	 Serum and urine protein electrophoresis
666	 Nucleic acid amplification tests
667	
668	Optional Competency 7.2: Describes approaches to quality management of qualitative testing
669	
670	Advanced
671	• Describes and discusses approaches for determining limit of the blank, limit of detection, and
672	clinical cut-off value (medical decision limit).
673	Describes and discusses analytical and diagnostic test performance concepts in light of
674	qualitative testing, e.g.,
675	• Precision as the uncertainty interval around a cut-off value (medical decision limit).
676	 Accuracy as agreement with clinical classification
677	 Percent positive agreement (PPA) as a reflection of diagnostic sensitivity
678	• Percent negative agreement (PNA) as a reflection of diagnostic specificity
679	• Predictive values for positive and negative results as a reflection of clinical usefulness of
680	a qualitative test and the importance of prevalence in this consideration
681	• Describes and discusses strategies to confirm positive results for qualitative tests

682	Describes and discusses considerations for selecting control patients or specimens when
683	validating a qualitative test (e.g., the need for control data close to the cut-off value).
684	
685	Domain 8: Patient Data Interpretation Tools
686	
687	Competency 8.1: Explains general biological variation (BV)
688	
689	Core Level 1
690	• Defines and explains biological variation (BV), intraindividual variation (CVI), interindividual
691	variation (CVG), and analytical variation (CVA).
692	
693	Core Level 2
694	• Able to interpret and apply index of individuality (II).
695	• Describes basic design of a BV study.
696	• Lists considerations for reporting results of a BV study.
697	
698	Competency 8.2: Explains, generates, and evaluates population-based reference intervals (pRI)
699	
700	Core Level 1
701	• Explains the statistical principles underlying pRI and describes benefits and limitations of pRI.
702	• Lists considerations for reporting results of a pRI study.
703	• Lists considerations for defining a reference sample population.
704	• Defines reference interval partitioning and explains indications for partitioning pRI.
705	

706	Core Level 2
707	• For a given measurand, explains impact of II on utility of pRI.
708	• Given a pRI, transfers and validates the pRI for use in another laboratory.
709	• Determines whether pRI transference is appropriate.
710	• Given pRI verification data, determines if a pRI is validated/verified.
711	 Explains next steps if pRI validation/verification fails.
712	
713	Advanced
714	• Given data from a reference sample population and an appropriate software program,
715	generates de novo pRI.
716	 Defines outlier and states considerations for handling of outliers.
717	 Identifies reference sample data distribution.
718	 Given data and a distribution, identifies appropriate statistical methods to use for
719	reference limit estimation.
720	• Generates and interprets confidence intervals for upper and lower reference limits.
721	 Justifies reference limit selection, based on statistical and clinical information.
722	• Given reference interval data, determines whether partitioning is required and valid. If required
723	and valid, generates partitioned pRI.
724	
725	Competency 8.3: Applies BV-based patient data interpretation tools appropriately
726	
727	Core Level 2
728	Given patient data and biological variation data, defines, calculates, and applies the following quantities
729	and concepts:

730	Homeostatic set-point
731	Critical number of samples
732	Reference change value
733	Critical difference
734	Individualized reference interval (iRI), a.k.a. subject-based reference values
735	Dispersion
736	
737	Competency 8.4: Explains clinical decision thresholds
738	
739	Core Level 2
740	• Explains difference between expert-based clinical decision thresholds and population-based
741	reference intervals.
742	Explains limitations of expert-based clinical decision thresholds.
743	
744	Domain 9: Clinical Validation of Tests, Diagnostic Performance Evaluation
745	
746	Competency 9.1: Describes considerations for and design of diagnostic accuracy studies
747	
748	Core Level 1
749	• Recognizes and discusses factors affecting calculated diagnostic sensitivity, diagnostic specificity,
750	and predictive values:
751	\circ Impact of the selected control population characteristics (as healthy or suspect) on
752	calculated test performance metrics and overall test diagnostic performance.

753	\circ Impact of the selected interpretation threshold (cut-off value, medical decision
754	threshold) on the sensitivity and the specificity, and on the use of the test as a test of
755	exclusion, confirmation, or both.
756	 Impact of prevalence and pre-test probability on predictive values.
757	• Explains inverse relationship of diagnostic sensitivity and specificity.
758	• Explains diagnostic test characteristics most suitable for screening tests vs. confirmatory tests.
759	Describes the pros and cons of using tests with better sensitivity vs better specificity in various
760	clinical scenarios.
761	
762	Core Level 2
763	• Explains how to choose a reference test ("gold standard") for a diagnostic test performance
764	study and describes potential limitations of using a selected gold standard test.
765	• Given paired results of an index test and a reference test, or given test results from two
766	populations, calculates diagnostic test performance metrics: diagnostic sensitivity, diagnostic
767	specificity, predictive values, and likelihood ratio.
768	• Describes Standards for Reporting of Diagnostic Accuracy (STARD) criteria for designing and
769	reporting diagnostic accuracy studies.
770	Integrates diagnostic performance metrics, clinical decision thresholds, population-based
771	reference intervals, and biological variation data to advise clinicians on appropriate test
772	selection, interpretation of patient results, and sensible timelines for repeat testing.
773	
774	Advanced
775	Given study data and appropriate software tools, prepares and interprets a receiver operating
776	characteristic (ROC) curve using appropriate calculations and statistics.

777	
778	Domain 10: Microscopic Evaluation
779	
780	Competency 10.1: Demonstrates use and proper care of light microscopic equipment and stains
781	
782	Core Level 1
783	• Performs routine cleaning and maintenance of a light microscope, including ocular adjustment
784	and Kohler illumination.
785	• Explains the importance of periodic professional servicing of laboratory microscopes.
786	• Describes and explains correct usage of common stains, including benefits and limitations
787	• Describes and can identify common artifacts associated with routine stains and other sources of
788	potential stain-related error
789	• Describes and can identify common artifacts associated with various types of cytological
790	preparation techniques.
791	
792	Core Level 2
793	Lists components of SOPs for proper stain/stainer usage
794	• Performs routine cleaning and maintenance of automated stainers under supervision or guided
795	by SOP or user manual.
796	Troubleshoots problems with stain quality
797	• Lists components of an SOP for proper cytocentrifuge usage.
798	• Describes routine cleaning and maintenance of a cytocentrifuge under supervision or guided by
799	SOP or user manual.
800	 Explains advantages and limitations of digital microscopy, including

801	 Static digital microscopy (photomicrographs)
802	 Whole slide imaging (WSI)
803	 Region of interest imaging (ROI)
804	 Telecytology (live video imaging)
805	
806	Advanced
807	Lists the SOPs that are needed to operate and maintain digital microscopy systems
808	Describes how to validate digital imaging systems
809	• Explains the common problems associated with static and scanned microscopy images;
810	troubleshoots problems of static images and scanned slide quality
811	
812	Competency 10.2: Recognizes and controls pre-analytical error during microscopic examination
813	
813 814	Core Level 1
	 Core Level 1 Determines whether microscopy slides are of good quality/adequate for interpretation.
814	
814 815	• Determines whether microscopy slides are of good quality/adequate for interpretation.
814 815 816	 Determines whether microscopy slides are of good quality/adequate for interpretation. Describes and explains proper specimen handling and shipping requirements (including
814 815 816 817	 Determines whether microscopy slides are of good quality/adequate for interpretation. Describes and explains proper specimen handling and shipping requirements (including adequate labeling, temperature, humidity, separation from formalin, packaging, shipping, etc.)
814 815 816 817 818	 Determines whether microscopy slides are of good quality/adequate for interpretation. Describes and explains proper specimen handling and shipping requirements (including adequate labeling, temperature, humidity, separation from formalin, packaging, shipping, etc.)
814 815 816 817 818 819	 Determines whether microscopy slides are of good quality/adequate for interpretation. Describes and explains proper specimen handling and shipping requirements (including adequate labeling, temperature, humidity, separation from formalin, packaging, shipping, etc.) and describes the deleterious effects of improper handling or delayed processing.
814 815 816 817 818 819 820	 Determines whether microscopy slides are of good quality/adequate for interpretation. Describes and explains proper specimen handling and shipping requirements (including adequate labeling, temperature, humidity, separation from formalin, packaging, shipping, etc.) and describes the deleterious effects of improper handling or delayed processing.
814 815 816 817 818 819 820 821	 Determines whether microscopy slides are of good quality/adequate for interpretation. Describes and explains proper specimen handling and shipping requirements (including adequate labeling, temperature, humidity, separation from formalin, packaging, shipping, etc.) and describes the deleterious effects of improper handling or delayed processing. Core Level 2 Able to troubleshoot poor quality cytology specimens and advise clinical personnel and

825	• Lists and explains sample handling and preparation factors that may affect microscopic
826	interpretation.
827	• Lists and justifies the elements of a cytology submission form and microscope slide or sample
828	container label.
829	
830	Competency 10.3: Recognizes and controls analytical error during microscopic examination
831	
832	Core Level 1
833	• Explains the steps of a standardized approach to microscopic slide examination when evaluating
834	blood smears and cytology samples.
835	
836	Core Level 2
837	• Lists and explains components of a quality assurance program for cytologic services, including, but
838	not limited to, the use of patient safety checklists, case rounds, cytology/histology correlates, formal
839	or informal second reviews, participation in an external quality assurance program, and
840	maintenance of certification/continuing education.
841	• Lists and explains quality metrics for cytology services and, where relevant, interprets metrics
842	against pre-determined quality goals, e.g., turn-around time (TAT) or cytology-histology correlation
843	rate, and correlation with clinical feedback or other types of testing (e.g., PARR, flow cytometry,
844	biochemistry, hematology, etc.).
845	
846	Competency 10.4: Recognizes and controls post-analytical error during microscopic examination
847	
848	Core Level 2

849	• Provides standardized written reports for interpretation of blood smears and cytology samples that
850	clearly communicate both sample description and interpretation; uses correct terminology,
851	grammar, and syntax.
852	• Describes and can use the laboratory's mechanism(s) for verifying release of initial, amended, and
853	addendum reports. Corrects and documents any detected reporting errors.
854	• Describes and can use the laboratory's mechanism(s) for notifying clinical personnel about urgent,
855	amended, or addendum reports.
856	Documents communications with laboratory clients.
857	
858	Advanced
859	Uses voice dictation systems for reporting:
860	 Lists and explains potential limitations of voice dictation software.
861	 Describes how to validate dictation software program function.
862	• Able to preview and correct any dictation errors prior to report release.
863	Uses image capture (photomicrographs):
864	• Obtains high quality images using a microscope camera that accurately reflect the specimen.
865	• Obtains and advises how to obtain photomicrographs using "smart" devices (e.g.,
866	smartphone or tablet camera).
867	• Troubleshoots problems with microscopy image generation and transmission.
868	
869	Competency 10.5: Describes procedures for archiving samples, documents, and reports
870	
871	Core Level 1

872 Describes and explains the laboratory's policy and biosafety regulations regarding storage and ٠ 873 disposal of perishable blood, tissue, and fluid specimens. Describes the laboratory's policies and procedures for archiving non-perishable blood smear and 874 • 875 cytology specimens. 876 877 Core Level 2 Describes and explains the laboratory's policies and procedures for archiving microscopy images, 878 879 patient reports, and SOPs. 880 Describes and uses the laboratory's document control systems and procedures 0 881 Able to use the laboratory's specimen and report filing systems for documents (paper 0 and/or electronic) and digital images. 882 Describes and explains the laboratory's policies and procedures regarding back-up of and 883 0 884 access to digital data, including patient data privacy, as applicable. Describes and explains the laboratory's policies and procedures for samples "lost to lab" (e.g. digital 885 ٠ 886 images taken of slides sent out for PCR, tracking system for samples leaving the laboratory for 887 subcontracted testing). 888 Domain 11: Point-of-Care Testing (POCT) 889 890 891 **Competency 11.1: Identifies and uses POCT resources** 892 Core Level 2 893 Given a POCT problem or issue, identifies appropriate published literature and/or manufacturer 894 895 or supplier resources that can help troubleshoot POCT.

896	• Given a particular POCT problem or issue, under the supervision of laboratory personnel, applies
897	information about the specific POCT methods, limitations/interferences, and analytical
898	performance to troubleshoot a problem or issue.
899	• Refers POCT users to appropriate publications, checklists, templates, or other resources
900	regarding POCT selection, operation, and QA/QC.
901	
902	Competency 11.2: Describes statistical and non-statistical QA/QC for POCT
903	
904	Core Level 2
905	• Discusses QA/QC challenges unique to POCT, including training of POCT operators and limited
906	ability of POCT operators to manipulate instrument functionality.
907	• Discusses and gives examples of basic non-statistical and statistical QC procedures appropriate
908	for use by clinical personnel operating POCT (veterinarians, technicians, students, etc.).
909	Compares and contrasts QA/QC procedures needed for POCT intended for in-clinic use with
910	QA/QC procedures of analogous central laboratory instruments, for example
911	 Hematology analyzers
912	 Biochemistry analyzers (including glucometers, lactate meters, and blood gas
913	instruments)
914	 Urinalysis analyzers
915	 Coagulation analyzers
916	 SNAP[™] test kits and other colorimetric or immunologic rapid tests
917	
918	Competency 11.3: Documents POCT QA/QC activities

920	Core Level 2
921	Compares and contrasts how operational considerations for POCT maintenance and QA/QC
922	differ from maintenance and QA/QC of centralized laboratory instruments.
923	• Using the list of forms and documents provided in Competency 1.1, discusses basic
924	documentation and records required for management of POCT and in-clinic laboratories.
925	
926	Optional Competency 11.4: Designs a quality management program for owners/users of POCT
927	
928	Advanced
929	• In consultation with an experienced laboratory manager or clinical pathologist, identifies key
930	components & subcomponents of a quality management program for owners/users of POCT,
931	including (listed alphabetically):
932	 Document management procedures
933	 Immediate clinician notification criteria ("panic" values)
934	 Inventory of consumable supplies
935	• Key Performance Indicators (e.g., turn-around time [TAT], financial), if applicable
936	 Logs (see list in Competency 1.1)
937	 Plausibility review of patient results
938	 Process and operator competency audits
939	 Repeat and review criteria
940	• Reagent and consumable supply storage conditions (including monitoring temperatures
941	of fridges, etc.)
942	 SOPs, including procedures for maintenance requirements and periodic analytical
943	performance re-evaluation

944	 Sources of pre-analytical, analytical, and post-analytical errors
945	 Training needed for POCT operators
946	 Waste disposal considerations
947	 Written quality policy/plan
948	
949	Discussion
950	Quality management of the veterinary laboratory is a broad knowledge area incorporating many
951	different types of testing in various laboratory settings. Mastery of laboratory quality management
952	topics, including knowledge of BV and how BV impacts test performance and patient data
953	interpretation, makes clinical pathologists unique among veterinary specialists and enables them to
954	contribute positively and materially to patient care and research activities in a variety of settings.
955	Mastery of laboratory quality management principles also has potential to enhance career prospects for
956	newly minted clinical pathologists entering a variety of career paths. Both points are justification for
957	developing training recommendations specifically aimed at the discipline of laboratory quality
958	management.
959	Embracing competency-based education requires a large investment on the part of participating
960	programs. If adopted, this investment would optimally be supported by leading organizations in the field
961	(i.e., ASVCP and ACVP) through development of training and assessment resources. The competency-
962	based approach has potential to precipitate fundamental changes not just in how residents are taught
963	and assessed, but also in the role they play within veterinary teaching hospitals (e.g., as the backbone of
964	diagnostic cytology services). Adoption of competency-based training means that competencies,
965	learning outcomes, milestones, and assessments will assume increasing importance in the structure and
966	execution of residency training programs. Competency-based training may require increased formative
967	and summative assessments, with documentation of competence at varying timepoints, as residents

progress through programs and milestones are met. Further discussion of implications and challenges of
competency-based training, with identification of needed resources, is encouraged at national (ASVCP,
ACVP) and individual program levels.

971 Not all clinical pathology training programs currently have faculty with expertise in QA/QC or 972 well-developed resources for teaching laboratory quality management. Provided resource lists and the 973 appendix are intended to help both instructors and trainees gain knowledge and master suggested 974 learning outcomes. It is expected that implementation of recommendations presented here will need to 975 be phased in over time and will require development of additional teaching resources (e.g., training data 976 sets, etc.) for both instructors and trainees by individual programs, as well as by ASVCP and ACVP. These 977 formal laboratory quality management domains and competencies also have potential to inform and 978 guide future ACVP certifying examinations and residency training program accreditations. With these 979 ramifications in mind, the committees focused on suggesting practical learning outcomes that advance 980 the specialty of clinical pathology but are also aimed at being realistic for gradual incorporation into 981 existing training programs.

982 A prior published veterinary competency-based guideline for teaching clinical pathology in 983 veterinary student curricula presented competencies and illustrative subcompetencies.⁵ Per CBVE, 984 subcompetencies are more granular than competencies, used to more clearly define a competency, and 985 appropriate for use in developing course or rotation objectives and assessments.⁸ Learning outcomes 986 are defined as individual achievements that learners are able "to do" at the end of a lesson or program.⁸ 987 In practice, there may be overlap between illustrative subcompetencies and learning outcomes. These 988 guidelines present learning outcomes for each individual domain and competency, and authors credit 989 the Royal College of Pathologist's Curriculum for Specialty Training in Veterinary Clinical Pathology, 990 which provides a similar level of detail, for inspiration.⁶ If EPA's, domains, and individual competencies 991 are relatively prescriptive and represent a trainee's "learning destination", then learning outcomes,

992 milestones, and assessments are generally considered to be less prescriptive and represent a trainee's 993 "learning journey" and the documentation thereof. Various journeys can lead to the same destination! 994 Given that laboratory quality management has historically not received as much emphasis in North 995 American clinical pathology residency programs as patient data interpretation or diagnostic cytology, 996 and given that not all clinical pathologists practicing today feel comfortable teaching this topic, the 997 committees hope that provision of suggested learning outcomes, together with suggested resources and 998 the appendix, can help programs implement the domains and individual competencies recommended by 999 this guideline.

1000 These guidelines deliberately did not address milestones or assessments. Development of 1001 appropriate milestones and assessments to monitor and document mastery of the presented domains 1002 and competencies is very important, but ultimately beyond the scope of this project and at discretion of 1003 individual training programs. An area for future discussion is whether, and how much, standardization of 1004 milestones for laboratory quality management training is needed, e.g., particularly in light of 1005 forthcoming residency program accreditation. Individual programs will likely benefit from examples of, 1006 and guidance regarding, development of milestones and assessments, but should retain flexibility to 1007 develop milestones and assessments that make sense for their program structure and resources. 1008 Consideration is also needed regarding how any future milestones and assessments intersect with the 1009 certification process – and, for selected topic areas deemed less easily "testable" in a standard certifying 1010 examination format, whether these have potential to be prerequisites for, or alternatives to, certifying 1011 examination. 1012 EPAs 1 and 6 in Table 1 are borrowed from the human pathology literature⁹, but the remaining

1012 EPAS I and o in Table I are borrowed from the numan pathology interature, but the remaining 1013 EPAs were developed based on author consensus. As acknowledged in the Introduction, EPA are not 1014 limited to laboratory quality management, but laboratory quality management is a component of all 1015 identified EPA (thereby allowing mapping of domains and competencies to these EPA).

1016 Although EPA 2 (Provides consultations regarding selection and interpretation of diagnostic 1017 laboratory tests) implies recognition that appropriate laboratory test selection by clinicians is a critical 1018 first step in laboratory quality assurance¹⁰⁻¹², any broader role clinical pathologists have in advising 1019 clinicians about appropriate test selection, and explicit suggestions for how to reduce the proportion of 1020 inappropriate test orders in a given laboratory setting, are not addressed by this guideline. Given that 1021 appropriate test selection by clinical personnel impacts laboratory resources management, test 1022 interpretation, and patient management and outcomes, incorporating discussion of this issue within 1023 residency training programs is encouraged. Furthermore, development and incorporation of EPAs across 1024 guidelines for resident training in veterinary clinical pathology is recommended – some professional 1025 activities, such as advising clinical personnel on appropriate test selection or test interpretation, 1026 incorporate more than one knowledge domain.

1027 Much discussion occurred during all phases of guideline development concerning domain 1028 organization. Although knowledge of basic statistics may be assumed upon entry into a residency 1029 training program, basic statistics (Domain 2) was included, since the basic principles of classical statistics 1030 are foundational for understanding analytical performance assessment and statistical quality control. 1031 Selection and implementation of a new laboratory instrument or method (Domain 3) was presented 1032 separately from assay development and method validation (Domain 4), given that instrument selection 1033 and implementation has both analytical and non-analytical aspects, and assay development and method 1034 validation predominantly focus on analytical performance. This resulted in some information overlap, 1035 because the scientific studies used for validation of a newly developed or modified assay (e.g., precision, 1036 linearity) can also be used during an instrument purchase evaluation and the verification of 1037 manufacturer analytical performance claims. In Domain 3, authors were purposefully careful using the 1038 term "verification", given its potential varied connotations. JO Westgard describes method verification 1039 using the questions: "did you get what you paid for? does it live up to the label? does performance

1040	match the claim?" ¹³ Practicing clinical pathologists may use this term broadly to denote the various less
1041	intensive (compared to validation) assessments of analytical performance that accompany new method
1042	selection and implementation (e.g., as when purchasing a commercial instrument). In Domain 3, use of
1043	this term is consist with these two connotations. In contrast, CLSI uses the term "verification"
1044	specifically to denote <i>statistical confirmation</i> of whether instrument performance claims are met. ¹⁴
1045	Statistical QC (Domain 5) and non-statistical QC (Domain 6) were presented separately in order
1046	to emphasize that these are two very different approaches to QC. Whereas SQC focuses on the
1047	analytical phase of testing and is most directly relevant for methods yielding quantitative data, non-
1048	statistical QC includes broader quality assessment/assurance processes relevant to all testing phases
1049	and that are also potentially applicable to methods yielding nominal and ordinal data. Finally, although
1050	doing so resulted in some information overlap across domains, considerations for nominal and ordinal
1051	tests ("qualitative testing", Domain 7) and POCT (Domain 11) were presented as independent domains
1052	in order to emphasize the unique approaches that these types of testing require, and in order to make
1053	this guideline as user-friendly as possible (e.g., allow readers specifically interested in POCT training to
1054	easily find relevant competencies).
1055	In conclusion, this guideline presents a list of recommended domains of competence and
1056	individual competencies, as well as suggested learning outcomes and resources, for teaching laboratory
1057	quality management in veterinary clinical pathology training programs. The importance of laboratory
1058	quality management in veterinary medicine can only be expected to grow, given increasing complexity
1059	of diagnostic testing, rising expectations of laboratory diagnostic performance, and application of
1060	artificial intelligence and machine learning algorithms to medical information. As the specialty of
1061	veterinary clinical pathology gains experience with application of these domains and competencies, and
1062	as training approaches are refined, this guideline is also expected to evolve and change over time.
1063	Future directions include development of learning milestones and assessments that monitor and

- 1064 document mastery of the domains and competencies presented here, and consideration of how
- 1065 recommended domains and competencies intersect with training program accreditation and certifying
- 1066 examination. Recommendations in this guideline are a first step towards ensuring that all veterinary
- 1067 clinical pathology trainees receive comprehensive instruction in this important and unique aspect of our
- 1068 specialty.

1069 **References**

- 1070 1. Christopher MM, Stokol T, Sharkey L. Guidelines for resident training in veterinary clinical pathology.
- 1071 I. Clinical chemistry. Vet Clin Pathol. 2003;32:202-208.
- 1072 2. Sharkey L, Wellman M, Christopher MM. Guidelines for resident training in veterinary clinical
- 1073 pathology. II. Hematology. Vet Clin Pathol. 2006;35:382-387.
- 1074 3. Kidney BA, Dial SM, Christopher MM. Guidelines for resident training in veterinary clinical pathology.
- 1075 III. Cytopathology and surgical pathology. Vet Clin Pathol. 2009;38:281-287.
- 1076 4. North American Veterinary medical Education Consortium. Roadmap for Veterinary Medical
- 1077 Education in the 21st Century: Responsive, Collaborative, Flexible. NAVMEC report and
- 1078 recommendation. Washington, DC: NAVMEC; 2011.
- 1079 5. Newman AW, Moller CA, Evans SJM, Viall A, Baker K, Schaefer DMW. American Society for
- 1080 Veterinary Clinical Pathology recommended clinical pathology competencies for graduating

1081 veterinarians. J Vet Med Ed. 2021; DOI: 10.3138/jvme-2021-0004.

1082 6. The Royal College of Pathologists. Curriculum for specialty training in veterinary clinical pathology.

1083 London, England: RCP; 2018.

- Competency Based Veterinary Education: CBVE framework. Washington, DC; American Association
 of Veterinary Medical Colleges: 2018.
- 1086 8. Competency Based Veterinary Education (CBVE). CBVE Terminology A Common Language for
- Developing the CBVE Shared Mental Model. Available at https://cbve.org/terminology. Accessed
 January 24, 2022.
- 1089 9. McCloskey CB, et al. Entrustable professional activities for pathology: recommendations from the
- 1090 College of American Pathologists Graduate Medical Education Committee. Academic Pathology,
- 1091 2017; 4:1-9. DOI: 10.1177/23742895177142.

- 1092 10. Laposata M, Dighe A. "Pre-pre" and "post-post" analytical error: high incidence patient safety
- hazards involving the clinical laboratory. Clin Chem Lab Med. 2007;45:712-719. DOI:
- 1094 10.1515/CCLM.2007.173.
- 1095 11. Plebani M, Laposata M, Lundberg GD. The brain-to-brain loop concept for laboratory testing 40
- 1096 years after its introduction. Am J Clin Pathol. 2011;136:829-833. DOI:
- 1097 10.1309/AJCPR28HWHSSDNON.
- 1098 12. Plebani M. Toward a new paradigm in laboratory medicine: the five rights. Clin Chem Lab Med.
- 1099 2016;54:1881-1891. DOI: 10.1515/cclm-2016-0848.
- 1100 13. Westgard JO. Basic Method Validation and Verification Training in Analytical Quality Management
- 1101 *for Healthcare Laboratories*. 4th ed. Madison, WI: Westgard QC; 2020:33.
- 1102 14. Clinical and Laboratory Standards Institute (CLSI). EP15-A2 User Verification of Performance for
- 1103 Precision and Trueness; Approved Guideline. 2nd ed. Wayne, PA: Clinical and Laboratory Standards
- 1104 Institute; 2005.
- 1105

1107 **Table 1**

1108 Individual competencies mapped to EPA

		EPA 1 ⁹					
Don	nain	Composes a patient report for a laboratory test requiring pathologist interpretation	EPA 2 Provides consultations regarding selection and interpretation of diagnostic laboratory tests	EPA 3 Provides consultations regarding management of in- clinic laboratory testing	EPA 4 Creates, implements, and maintains a laboratory quality plan	EPA 5 Identifies and resolves laboratory errors in each phase of testing	EPA 6 ⁹ Evaluates, selects, and implements a new instrument, method, or assay
1.	General Quality Management Principles		1.3	1.1, 1.2, 1.3,1.4	1.1, 1.2, 1.4	1.3	1.3
2.	Basic laboratory statistics	2.3	2.2	2.2			2.1 to 2.3
3.	Instrument selection and analytical verification			3.1, 3.2			3.1, 3.2
4.	Assay development and analytical validation			4.1, 4.2	4.1, 4.2		4.1, 4.2
5.	Statistical quality control and EQA/PT			5.1 to 5.6	5.1 to 5.6	5.2, 5.3, 5.4	5.1 to 5.6
6.	Non-statistical QA/QC	6.3	6.2	6.1, 6.2	6.1	6.1 to 6.3	6.1
7.	Ordinal and nominal (qualitative) tests		7.1	7.2	7.1, 7.2	7.1	7.1, 7.2
8.	Patient data interpretation	8.1 to 8.4	8.1 to 8.4	8.1 to 8.4		8.2, 8.4	8.2, 8.4
9.	Clinical validation of tests, diagnostic performance evaluation		9.1				9.1
10.	Microscopy	10.4,10.5	10.4		10.1 to 10.5	10.2 to 10.4	10.1, 10.5
11.	Point-of-care testing		11.1	11.1 to 11.4	11.4	11.1-11.4	