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Abstract  

Purpose: This study investigated the artifacts arising from different types of head motion in brain MR 

images and how well these artifacts can be compensated using retrospective correction based on two 

different motion-tracking techniques.  

Methods: MPRAGE images were acquired using a 3T MR scanner on a cohort of 9 healthy participants. 

Subjects moved their head to generate circular motion (4 or 6 cycles/min), stepwise motion (small and 

large) and “simulated realistic” motion (nodding and slow diagonal motion), based on visual 

instructions. One MPRAGE scan without deliberate motion was always acquired as a “no motion” 
reference. 3D FatNavs and a TCL markerless device (TracInnovations) were used to obtain motion 

estimates and images were separately reconstructed retrospectively from the raw data based on these 

different motion estimates. 

Results: Image quality was recovered from both motion tracking techniques in our stepwise and slow 

diagonal motion scenarios in almost all cases, with the apparent visual image quality comparable to the 

no-motion case. FatNav-based motion correction was further improved in the case of stepwise motion 

using a skull masking procedure to exclude non-rigid motion of the neck from the co-registration step. 

In the case of circular motion, both methods struggled to correct for all motion artifacts.  

Conclusion: High image quality could be recovered in cases of stepwise and slow diagonal motion using 

both motion estimation techniques. The circular motion scenario led to more severe image artifacts 

that could not be fully compensated by the retrospective motion correction techniques used. 

 

Key words: brain MRI, MRI motion artifact correction, markerless head motion tracking, fat navigator, 

retrospective motion correction. 
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1. Introduction 

Motion artifacts are a well-known issue in MR images (1), which might impede the interpretation of a 

patient’s condition and obscure pathologies and regions of interest. To address these problems, MRI 

acquisitions can be repeated, but this leads to discomfort for the patient and increased costs for clinical 

or research centres (2, 3). Moreover, clinical facilities often need to use anaesthesia or sedation on 

children to reduce motion corruption of images, leading to an increased risk of acute adverse events 

(4, 5) and higher financial costs (3, 6). 

Methods have been developed in MRI to estimate the motion that occurred and restore sharpness and 

resolution to reduce the need for reacquisition, which can be divided into two main categories (7):  

1. retrospective motion correction – where the data collected during the scan is corrected for 

motion in post-processing. 

2. prospective motion correction – consisting of real-time correction by updating gradients and RF 

pulses during the acquisition. 

Retrospective motion correction can often be simpler to implement from a practical perspective as it 

avoids the technical complications of real-time feedback and has the additional advantage that the 

uncorrected image is also preserved, avoiding the potential for loss of image quality in the case of 

inaccuracies in motion-tracking. By contrast, prospective techniques can be applied to a wider variety 

of pulse sequences and are generally more robust against motion artifacts, especially as they also 

enable the possibility of the immediate reacquisition of the most corrupted regions of k-space (8). 

Both approaches can rely on different strategies to estimate the motion parameters such as MR 

navigators (9-13) or head trackers (14-18). In this work, we focused on two motion correction 

techniques based on a rapid 3D fat-navigator (3D FatNavs (19)) and on the Tracoline (TCL) markerless 

motion tracking system developed by TracInnovations (Ballerup, Denmark). 

3D FatNavs have been demonstrated to enable the detection and correction of non-deliberate motion 

for high resolution imaging in compliant subjects, both when implemented as a retrospective technique  

(19) and for use with real-time correction (20). The natural sparsity of fat images makes it possible to 

apply the GRAPPA parallel imaging technique (21) at exceptionally high acceleration factors, allowing a 

very rapid acquisition of a high-resolution navigator that can detect and correct for even very small 

motion. 

The TCL (v3.01) is a 3D structured-light based stereo vision system that enables head motion tracking 

for PET, MRI and simultaneous PET/MRI (22) without using markers.  

In this study, we compared FatNav-based and TCL-based motion correction: our aim is to understand 

which motion leads to the worst artifacts and how well image quality can be restored with the two 

different motion-tracking estimates. In the next sections we will give a short introduction on how 

retrospective motion correction works and on the FatNav and TCL tracking techniques.  

1.1 Retrospective motion correction 

Retrospective motion correction techniques use Fourier properties to correct the MR k-space when 

affected by motion. If bulk motion occurs during the acquisition, the MR signal is affected by a change 

in phase and magnitude. According to the Fourier shift theorem, translations can be compensated by a 

phase correction for each point in k-space along x, y, and z directions (7, 23). On the other hand, 

rotations, following the Fourier rotation theorem, have the same effect in k-space and in the image 

domain. This will lead to effective k-space sampling that does not fall into a regularly spaced Cartesian 
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grid - also creating regions with lower and higher density points (pie-slice effect) which can lead to 

artifacts due to localised Nyquist violations. The non-uniform Fast Fourier Transform (NUFFT) can be 

used to reconstruct this non-Cartesian sampling and to partially compensate for the artifacts that arise. 

In our work, we used the NUFFT implementation from Jeffrey Fessler’s reconstruction toolbox 

(https://web.eecs.umich.edu/~fessler/code/), where Min-Max interpolation is used to optimally 

estimate the sampling points, which has been demonstrated to provide lower approximation errors 

compared to conventional interpolation methods (24).  

1.2 3D FatNavs 

The 3D FatNavs consist of applying a 3D Gradient Echo (GRE) sequence combined with a fat-selective 

excitation as a navigator. The acquisition of 3D accelerated FatNav volumes can be incorporated as part 

of a T1-weighted imaging protocol such as MPRAGE (Magnetization Prepared RApid Gradient Echo) (25) 

with only minimal extra scanning time needed (~2 s for additional GRAPPA calibration for navigators). 

The 3D FatNav volumes acquired are co-registered during the post-processing pipeline using the realign 

tool in SPM (Statistical Parametric Mapping - https://www.fil.ion.ucl.ac.uk/spm/). 

The use of navigator-based methods such as 3D FatNavs has the advantage that no extra hardware is 

required, which makes it more convenient to use than marker-based tracking methods such as the 

Moiré Phase Tracking (MPT, Metria Innovation, Milwaukee, WI), with which it showed comparable 

results in cases of deliberate and non-deliberate motion (26).  

1.3 Tracoline (TCL) 

The TCL tracking device uses structured-light directed towards the subject’s face via an infrared-

camera. This produces a series of 3D point-clouds (~30 Hz) of the upper right side of the face (typically 

including one eye, the nose and part of the forehead). The camera operates through an optical fibre 

bundle attached to an MR compatible mount overlooking the RF head coil acquiring approximately 30-

point clouds per second, which are aligned to a reference point cloud created at the beginning of the 

scan to estimate the motion parameters. The operator fixes the probe to maximise visibility of the 

subject’s face once the participant is positioned on the scanner table and the head coil attached. 

Data from the TCL can be used for both prospective and retrospective motion correction, depending 

on the interface of the system with the scanner and the image reconstruction method.  

Frost et al. (27) successfully tested the device with prospective motion correction between echo-trains 

(ETs, once-per-TR) and within ETs in case of stepwise and continuous motion. The system has been 

recently used for prospective correction of diffusion weighted EPI images (15), producing high quality 

MR images in cases of fast and continuous motion within a 10° range. 

1.4 Purpose of the study 

The aim of this study is to understand how to achieve the best image quality in different motion 

scenarios, which is clinically relevant to reduce the need for rescans. To allow a direct comparison, the 

motion correction based on motion estimates from the two tracking techniques was applied 

retrospectively to the same data. 

https://web.eecs.umich.edu/~fessler/code/
https://www.fil.ion.ucl.ac.uk/spm/


5 

 

2. Methods 

2.1 Image acquisition 

Data were collected from a group of 9 healthy subjects on a 3T Prisma scanner (Siemens Healthineers, 

Erlangen, Germany) using a 64 channel RF Coil array for signal reception. All subjects were scanned with 

an MPRAGE sequence at 1 mm isotropic resolution with TI/TE/TR = 1100/3.03/2410 ms and FA = 8° 

(orientation sagittal, phase encoding anterior–posterior). Following each readout train of the MPRAGE, 

a 3D FatNav navigator was acquired at 4 mm isotropic resolution (TE/TR 1.43/3.4 ms, TA = 0.37 s), for 

a total scanning time of 5:38 min. Autocalibration lines (ACS) for the FatNavs were acquired once at the 

beginning of the scan to perform GRAPPA reconstruction.  

Calibration of the TCL data was performed at the end of the acquisition via the TracSuite software 

(v3.0.74), which involves aligning the reference point cloud from the TCL system to the surface of a 

structural MR volume of the whole head. The first MPRAGE scan from each session, without deliberate 

motion, was used for this calibration procedure. 

2.2 Ethics board consent 

Ethical approval for this study was obtained from Cardiff University School of Psychology Ethics 

Committee board. Written informed consent was obtained from all subjects before the study. 

2.3 Motion experiments 

Subjects were asked to follow the instructions given on an MR compatible screen positioned inside the 

scanner and visible via a mirror attached to the head coil. The mirror was positioned so that the 

participant could clearly see the screen and the TCL camera field of view was not affected. Instructions 

were coded using PsychoPy v. 30 (28) and consisted of a dot moving in different directions on screen: 

participants were asked to follow the dot with their nose so that movements could be carried out in a 

controlled way. 

Different types of motion were conducted, here referred to as “stepwise”, “circular” and “simulated 

realistic” motion, which are shown in Fig. 1. During stepwise motion (Figs. 1A and 1B), the dot moved 

in a “cross” shape: up, down, right, left, and along two diagonals (up-right, down-left; up-left, down-

right), changing position every 35 s. The projected dot movement was 2.5 cm and 7.5 cm for small and 

large stepwise motion respectively, with an expected head motion of 1.9°and 5.7° based on the eye-

screen distance of 76 cm.   

Circular motion (Fig. 1C) was performed similarly to Frost et al. (27), with the participant’s head 

following a dot moving in circle (radius of 2.5 cm) for 1 min at different speeds: 6 cycles/min and 4 

cycles/min. The motion was performed three times during a single MPRAGE acquisition: at the 

beginning, half-way through and towards the end of the scan, for a total of 3 min of motion over 

5:38 min of scan time. For the dimensions used, the expected maximum head deflection was ~1.9°.  

Finally, simulated realistic motion patterns were generated, based heuristically on an example of 

existing motion traces in a non-compliant subject during an fMRI experiment, acquired without 

deliberate motion, where the subject seemed to move predominantly along the x-axis performing 

abrupt pitch rotations or slowly moving their head throughout the acquisition. Therefore, we derived 

two other types of motion: “slow diagonal” motion (Figs. 1D and 1E) and “pitch-wise” motion (Fig. 1F). 
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The aim was to test the correction methods with what we considered more “realistic” motion. In our 

pitch-wise (or nodding) motion scenario, the dot moved quickly down in 2 s, moved up to resting 

position in 15 s and stayed still for 35 s, for a total motion time of 17 s/min. The projected dot moved 

vertically on the screen for 2.5 cm, 5 cm, or 7.5 cm, corresponding to small, medium, and large levels 

of motion, for an expected pitch rotation of 1.9°, 3.8° and 5.7°. In our slow diagonal motion case, the 

subject was moving the head slowly for 1:30 min, starting from the centre along the up-right diagonal 

or the down-right diagonal (projected motion of dot: 3.5 cm; expected head deflection: 2.6°).  

One MPRAGE without deliberate motion was also acquired as a motion-free reference image for each 

session. 

We obtained a total of 11 datasets, with subjects 3 and 4 being scanned twice on different days. We 

will refer to different acquisitions of the same experiment as runs. Table 1 details the experiments 

performed by each subject, summarised here as:  

- Large and small stepwise, with head motion every 35 s. 

- Circular motion at 6 cycles/min and 4 cycles/min, with 3 min of motion per 5:38 min of total 

scan time. 

- Small, medium and large pitch-wise, with a total motion time of 17 s/min. 

- Slow diagonal-up and slow diagonal-down, with 1:30 min of motion per 5:38 min of total scan 

time. 

2.4 Motion quantification 

The motion score is a single value motion metric used by Tisdall et al. (10) to estimate the motion 

occurring during each TR. It is defined in Eq. 1 as:  score = ∆𝑅 + (∆𝑥2 + ∆𝑦2 + ∆𝑧2) [1] 

with ∆𝑥2 , ∆𝑦2 , ∆𝑧2, being the estimated translations along x, y and z. 

∆R (Eq. 2) is the largest displacement experienced by any point on a sphere of 64 mm radius rotated by 

an angle θ (Eq. 3).  ∆𝑅 = 64√(1 − 𝑐𝑜𝑠(𝜃))2  + 𝑠𝑖𝑛(𝜃)2 [2] 

|𝜃| = |𝑎𝑟𝑐𝑐𝑜𝑠 12 [−1 + 𝑐𝑜𝑠(𝜃𝑥)𝑐𝑜𝑠(𝜃𝑦) + 𝑐𝑜𝑠(𝜃𝑥)𝑐𝑜𝑠(𝜃𝑧) + 𝑐𝑜𝑠(𝜃𝑦)𝑐𝑜𝑠(𝜃𝑧) + 𝑠𝑖𝑛(𝜃𝑥)𝑠𝑖𝑛(𝜃𝑦)𝑠𝑖𝑛(𝜃𝑧)]| [3] 

We calculated the mean motion score from each motion estimate and used it as a single value to 

represent rotational and translational motion over the whole scan. We also estimated the expected 

motion score based on each type of prescribed motion, with the corresponding expected head motion 

calculated from the projected dot movement. 

2.5 Image reconstruction 

The image reconstruction was performed MATLAB (MathWorks, Natick, MA)  using the retroMoCoBox 

toolbox (29). Because the TCL data displayed high frequency noise in the original motion parameters, a 

low-pass filter (lowpass MATLAB function) was used to smooth the motion estimates prior to the 

reconstruction using a cut-off frequency of 1 Hz (chosen heuristically based on visual appearance of 
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motion curves). The details regarding the choice of the filter can be found in the supplementary 

material (Figs. S1-S6). All the results reported in this publication were generated after applying this low-

pass filter. 

2.6 Image quality assessment 

The image quality after the motion correction was assessed visually and using two different 

mathematical metrics: the Feature Similarity Index (FSIM) (30) as a reference-based metric and the 

Normalized Gradient Squared (NGS) (31) as a non-reference-based metric. We considered it important 

to include both, as a non-reference-based metric might be expected to be particularly useful in clinical 

practice where a good reference image is not always available.  

The FSIM was chosen as it has been shown to achieve higher consistency with radiologist evaluations 

of image quality than other metrics (32), including the commonly used Structural Similarity Index 

(SSIM)(33). The primary feature used to calculate the FSIM is the phase congruency, which is a robust 

spatial frequency-based system able to identify similarities at the edges: Fourier components (here 

calculated from a magnitude-image) with high phase congruency values identify features with sharp 

changes between light and dark areas, which are what we visually perceive as edges. Because phase 

congruency is contrast invariant, the gradient magnitude was added as the second factor of this metric. 

FSIM requires a reference image for comparison and its value varies between 0-1, where 1 is obtained 

when the two images being compared are identical.  

The quality of the acquired images was also assessed with the Normalized Gradient Squared (NGS), 

which has been found by McGee et al. as the second-best quality metric for autofocusing, that 

correlated most closely with observer judgments on MRI images of the shoulder, after the Gradient 

Entropy (31). NGS allows the evaluation of the image quality without comparing it with a reference and 

postulating that ideal images should have areas of uniform brightness separated by sharp edges. It has 

been used by Lin et al. (34) because of its lower computational cost compared with the Gradient 

Entropy, and Bazin et al. (35) chose it as a metric as expected to be more sensitive than the entropy of 

gradients to limited motion. The NGS has also been successfully used by Gretsch et al. (26) to compare 

the quality of images after FatNav and MPT motion correction. NGS values are expected to increase as 

the image becomes sharper. A mathematical description of the two metrics can be found in the 

supplementary materials. 

Before all metrics were calculated, each 2D slice was independently normalized to values from 0 to 1. 

To estimate the FSIM metric, an extra rescale step between 0-255 was required. Final values were 

estimated averaging them over the 30 central axial slices (consistent with method used by Frost et al 

(27)).   

To test the improvement quantified by the image quality metrics after the motion correction, a 

Wilcoxon signed rank test (signrank MATLAB function) was performed on motion scenarios with sample 

size greater than or equal to 6. 

2.7 Improving FatNavs motion estimation  

When FatNav volumes are acquired, a strong signal can be detected in the neck region as well as around 

the scalp. The scalp can be expected to move reasonably rigidly with the head (and brain), whereas the 

neck movement is non-rigid. The standard processing for 3D FatNavs in the retroMoCoBox software is 

to use SPM (36) to perform 6-dof rigid-body alignment between FatNav volumes in order to generate 
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motion estimates. If more signal is acquired in the non-rigid neck region this will affect the quality of 

the motion estimates, an effect which is particularly noticeable using the Siemens 64-channel RF coil, 

because it is a “head and neck” coil with receive channels extending into the neck region. We therefore 

tested whether masking the non-rigid part of the head would improve the motion parameter 

estimation and image quality in all our motion scenarios: we expected the mask to be particularly 

beneficial in the case of strong pitch-motion, as this direction of motion is likely to have the largest 

discrepancy between head movement and apparent motion in the neck. 

To generate the mask corresponding to the parts of the scalp expected to move rigidly (and therefore 

allowing exclusion of non-rigid regions), we first selected the T1-weighted (T1w) image of one dataset 

acquired without deliberate motion and the corresponding first FatNav volume. We registered the T1w 

and the FatNav volume using the FSL FLIRT function (37, 38), to have a 3D FatNav and T1w image in the 

same space. After applying BET (Brain Extraction Tool) (39, 40), we registered the T1w volume to the 1 

mm MNI152 standard space brain (41, 42). By following the same process, a 3D FatNav for each subject 

could be brought into a standard space, and then averaged using fslmaths from the FSLutils (43) to 

obtain a standardised FatNav volume. ITK-SNAP (44) was used to manually define a mask in this 

standard space that would exclude the neck region. When estimating the motion parameters for each 

subject from the FatNavs, the first FatNav from the subject was co-registered to the standardised 

FatNav volume, allowing the mask to be brought into subject-space and incorporated as a weighting 

image to SPM’s spm_realign function. Statistical difference between the image quality obtained by 

using FatNav-based motion correction with and without the neck mask was assessed using the 

Wilcoxon signed rank test (signrank MATLAB function).  

3. Results  

3.1 Comparison between FatNavs and TCL motion correction 

Fig. 2 summarises all the FSIM values (measured against the “still” image) for all motion scenarios and 

the 3 different motion correction methods. The FSIM score is shown to improve by applying all motion 

correction methods in our small and large stepwise motion scenarios (W=0, p<0.001), as well as in 

presence of slow diagonal (up and down) motion (n=2, no statistical test performed). In our small and 

large stepwise motion scenarios, a substantial improvement in the sharpness was obtained by masking 

the non-rigid part of the head for the FatNav co-registration step (W=91.5, p<0.001), with only small 

residual artifacts still visible: the use of the neck-mask for FatNavs improved the image quality in runs 

1, 2, 4, 5 and 6 for large stepwise motion and 1, 2 and 4 of small stepwise motion shown in Fig. 2 ("FN 

wMask"), compared to when no mask is used ("FN woMask").  

Fig. 3 compares the motion parameters and MPRAGE images from the FatNav-based tracking for run 2 

of small stepwise motion reported in Fig. 2: removing the neck-region during the FatNavs registration 

resulted in a noticeably higher FSIM value (Fig. 2) and clear improvements in the image quality, as 

judged by visual observation (Fig. 3). The masked-FatNav and the TCL corrections for the same 

experimental run are compared in Fig. 4: here the top parts of the image (front regions of the brain) 

were clearly made sharper by the TCL correction. However, the overall best motion correction was 

obtained using masked-FatNav estimates: although some artifacts are still visible towards the front of 

the brain, this correction noticeably reduced the ringing artifacts in the posterior of the brain compared 

to the TCL method.   
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For circular motion at 6 cycles/min and circular motion at 4 cycles/min the outcome is more nuanced, 

with no clear improvement in image quality metrics following correction (W=13.5, p=0.32 for FatNav 

and W=41, p=0.18 for TCL). There are also some examples of cases where the motion-correction even 

appears to lead to an apparent loss of image quality (i.e. a reduction in FSIM following the application 

of the motion-correction). Fig. 5 illustrates an example of circular motion with the participant 

performing head rotations at 4 cycles/min (run 1 in Fig. 2). The ringing artifacts visible on the 

uncorrected image were successfully reduced (although not fully eliminated) by correcting using FatNav 

and TCL motion-estimation techniques, leading to a better image quality. 

For pitch-wise motion (n=3, no statistical test performed), subjects moved at three different 

magnitudes for each run, following a projected dot movement of 2.5 cm (1.9°) for run 1, 7.5 cm (5.7°) 

for run 2 and 5 cm (3.8°) for run 3, corresponding to small, large and medium pitch-wise motion (images 

not shown). The artifacts were almost undetectable in run 1 (2.5 cm), as the subject movement had 

such low magnitude. In run 2 (7.5 cm), TCL-based correction led to an apparent degradation of the 

image quality measured by the FSIM: despite some small improvements visible towards the front of the 

brain, the posterior of the brain displayed strong artifacts, probably caused by the abrupt nod motion 

or facial movements that reduced the tracking accuracy. During run 3 (5 cm), ringing artifacts were 

reduced by both FatNavs (with and without mask) and TCL, especially towards the front of the brain, 

improving the image quality compared to the uncorrected image (medium pitch-wise motion case in 

Fig. 2E).  

Both FatNavs and TCL performed well when applied to retrospectively correct the images affected by 

slow motion across the two diagonals. One example is illustrated in Fig. 6 where the motion-corrected 

images from both FatNavs and TCL motion estimates are sharp and clear, with no visible residual 

artifacts. 

When comparing between motion-estimation methods, no clearly better correction was found for any 

of the motion scenarios. However, the FSIM values after FatNav motion correction are shown to be 

very close to 1 in all runs of our acquisition without deliberate motion (Fig. 2G), meaning close-to-

perfect matching with each corresponding reference image. The good sharpness displayed by the 

reference images shown in Fig. S6 corroborated that FatNav motion correction did not introduce any 

degradation when no deliberate motion was performed. On the other hand, TCL is shown to have a 

FSIM score comparable with ‘FatNavs with Mask’ in only two runs of the still scenario (namely runs 9 
and 10 in Fig. 2), suggesting that the image quality decreased due to artifacts originating from noise in 

the TCL motion estimation, especially in runs 2, 3 and 11. 

3.2 Motion quantification 

The mean motion score was chosen as a single valued metric to evaluate the amount of motion 

performed by each subject in each of our motion scenarios. A summary of all the mean motion scores 

using motion estimates from TCL and FatNav (with and without mask) is reported in Fig. 7. One clear 

observation from this figure is that the magnitude of the TCL-based motion parameters is larger than 

the FatNav-based estimate in most of our experiments. It also demonstrates how differently the motion 

parameters are estimated by FatNavs with and without the mask, especially in the case of stepwise 

motion. The large variation in motion scores between runs obtained for all our motion scenarios 

demonstrates how different participants varied in the magnitude of motion when performing the same 

motion type (in the top four graphs in Fig. 7, the motion shown on the MR projection screen was the 

same for all subjects for the same motion type). The motion estimates obtained from FatNavs with and 
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without the mask for all motion types are compared using scatter plots in Fig. 8. Most of the dots lie 

close to the identity line (y=x), apart from for the rotations around the x-axis. This fits our expectation 

that the nodding motion of the head leads to the strongest deviations from purely rigid motion within 

the field-of-view of the FatNav. 

3.3 Image quality assessment  

Both FatNavs and TCL motion correction are shown to improve the image quality in the presence of 

small stepwise, circular and slow diagonal motion, reported in Figs. 4, 5 and 6 respectively, with the 

corresponding FSIM quality metric values, which are reported for each correction method, concurring 

with this observation by increasing after the motion correction. Conversely, the NGS values found for 

the same motion cases were found to be smaller for the corrected images compared to the uncorrected 

cases: this implies a reduction in image quality, which is not what appears to have occurred, based on 

simple visual inspection of the images in Figs. 4, 5 and 6. More examples of this behaviour are found in 

Fig. S7 for the small stepwise motion scenario.  

4. Discussion 

In this study, two tracking techniques were used to retrospectively compensate for different types of 

motion: small and large stepwise motion, circular motion at 4 cycles/min and 6 cycles/min, small, 

medium, and large pitch-wise motion and slow diagonal motion. Motion estimates from both tracking 

methods could successfully restore image quality in the case of slow diagonal motion and small and 

large stepwise motion.  

Both tracking methods struggled to allow the restoration of good image quality in the case of circular 

motion: the FSIM-based image quality metric even decreased after TCL motion correction in some cases 

despite the high sampling rate (~30 Hz) compared to FatNavs (~0.4 Hz). This might be caused by 

extensive violations of the Nyquist criterion due to the head rotations involved, which could not be 

compensated by the single-step NUFFT-based retrospective reconstruction. It is possible that iterative 

methods for applying the motion correction, such as autofocusing algorithms, could complement the 

motion tracking system and may help to reduce some of these residual artifacts, as suggested by 

Atkinson et al. (45). Moreover, prospective motion correction using the estimates from the TCL tracking 

device has been recently demonstrated to be more robust to motion artifacts compared to 

retrospective motion correction (8): because of the reduced local effect of Nyquist violation, 

prospective motion correction could be beneficial in the case of strong head rotations, which were not 

fully compensated by both FatNavs and TCL retrospective motion correction. Future studies will 

investigate the sampling rate required to accurately estimate head position changes for different 

motion scenarios, as our results suggested that none of the investigated motion scenarios fully 

exploited the fast-sampling rate allowed by the TCL device. 

4.1 Improving FatNavs motion estimation 

In this study, we also demonstrated that FatNavs estimation accuracy can be improved by masking the 

non-rigid part of the neck especially when large pitch-wise motion is involved (our stepwise motion 

scenarios): Fig. 3 shows how the mask improved the quality of the MPRAGE image especially in anterior 

regions of the brain.  
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Looking at Fig. 2, we can see that the FSIM measure of image quality obtained after masking was slightly 

lower than the original FatNavs’ correction and the uncorrected image in only two experiments 

involving circular motion. However, a visual inspection of the two volumes did not detect any visually 

perceived difference in the image quality: the dissimilarities in the FSIM metric values are attributed to 

being due to the strong background noise arising after the motion correction (see section “Background 

ghosting artifacts”). In all other cases, the masked FatNavs provided motion estimates that gave a 

corrected image at least as good as using the original FatNavs. In the supplementary material Video S1, 

we show an example of 15 co-registered FatNav volumes with and without the neck mask, comparing 

the respective non-rigid and rigid behaviour. The video allows visual confirmation of the expected 

improvement provided by the mask – with noticeably less apparent residual motion in the aligned 

volumes. 

4.2 Motion quantification 

The retrospective motion-correction pipeline needs to make an arbitrary choice of which time-point 

during the acquisition should be considered ‘zero-motion’, and to move all other data to fit this 
coordinate frame. We followed the default behaviour of the ‘retroMoCoBox’ in that this is chosen to 
correspond to the time at which the centre of k-space is acquired as this is expected to correspond 

approximately to the lowest global offset between the images with and without motion correction (of 

the same data). Discrepancies in the motion estimates around that time-point will generate a visual 

shift of the motion traces. This effect is noticeable in Figure 5, where TCL estimates look shifted 

compared to FatNavs. However, this effect is not expected to influence the motion-correction 

procedure nor the motion-score estimation, as the latter is based on frame-to-frame motion. The image 

quality metrics estimated for TCL and FatNavs were found overall to be quite similar, indicating that we 

cannot easily determine from our data which estimates are a better representation of the “true” 
motion.  

4.3 Background ghosting artifacts 

In some cases, it was found that the motion-correction led to visibly more ghosting in the image 

background than the uncorrected image, as shown in Fig. S8: as the motion correction applied is based 

on estimated motion parameters which might not fully reflect the real motion occurred, discrepancies 

can arise in the k-space, potentially leading to ghosting artifacts. We believe this ghosting may also be 

affecting the interpretation of the FSIM metric: the TCL correction shown in Fig. S8 seemed to lead to 

a reduction in the image quality based on the FSIM value, despite visible improvements in the image 

sharpness.  

To determine the effect of background ghosting to our image quality metric, we compared the FSIM 

values of all our images with and without applying a 2D background mask. This mask was based on the 

convex hull of the mask of a simple threshold value. The convex hull was slightly dilated to be sure to 

retain the CSF/brain boundary. The mask was then applied to the 30 central slices of each volume over 

which the FSIM was estimated.  

The results obtained from a Wilcoxon signed rank test (Matlab function signrank) did not provide 

significant evidence of the FSIM values being different when applying a mask to the image background, 

as shown in Fig. S9 (W=183.5, p=0.71 for FatNav and W=135, p=0.34 for TCL), concluding that the 

ghosting in the background did not influence the quality metric chosen.  
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As extremely strong background noise was limited only to a few cases of circular motion, it is possible 

that no significant result would emerge from a statistical test. We therefore analysed whether the mask 

could potentially make a difference in only those cases where the background ghosting was extremely 

strong. This was performed by firstly estimating the signal power of the background region, which 

would be cut off by the head mask, as the ratio between the sum of squares of the background and the 

overall signal. The estimated background power and the difference between the FSIM values with and 

without mask were shown to correlate significantly (Matlab function corrcoef, r(18)=0.55, p=0.0066), 

demonstrating that the stronger the background noise, the more the FSIM metric would increase if a 

background mask was applied. Fig. S10 compares the FSIM values after applying the background mask 

to the same images previously showed in Fig. S8: both FatNavs and TCL correction resulted in an 

improved image quality based on the FSIM, which was not detected when the mask was not applied.   

4.4 Image quality assessment 

In this study, we found that the FSIM reference-based metric could give a good indication of the true 

image quality – generally also agreeing with subjective visual assessment. In our data, the NGS quality 

metric showed an unclear behaviour in our experiments, with changes in its scores not seeming to 

correlate with what visually seemed like a good improvement from the uncorrected to the corrected 

image, as shown for small stepwise, circular and slow diagonal motion cases reported on Figs. 4, 5 and 

6 respectively. 

Fig. 9 compares the values from FSIM and NGS for FatNavs with mask and TCL in the case of small 

stepwise motion. In all our runs, both FatNavs and TCL improved the image quality, as indicated by the 

FSIM values being higher than for the uncorrected images for all tracking techniques. This was further 

corroborated by a visual check of all images, which displayed a qualitatively higher level of sharpness 

compared to when no motion correction was applied (Fig. S7). On the other hand, the NGS value altered 

in the opposite way to what would be expected in all but one run. Further studies will need to be 

performed to assess the correlation between metrics used to estimate brain MR images quality and 

radiologist evaluations, which is still to be considered the standard reference.  Moreover, additional 

research is needed to evaluate how these metrics are affected by different artifacts: our results suggest 

that metrics such as the NGS may not be optimal metrics for driving automated motion-correction 

techniques, as we have several examples of a visually “better” image that scores “worse” when judged 

by NGS. 

5. Conclusions 

In conclusion, both FatNav-based and TCL-based motion-correction can achieve good image quality in 

the case of stepwise motion and of slow changes in the head position (our ‘slow diagonal motion’ 
experiment). When using FatNavs it is beneficial to also incorporate a mask to exclude non-rigid parts 

of the neck to improve the image registration step – this is especially noticeable when larger motion 

occurs in the pitch-wise direction as this emphasises the non-rigid movement.  In the more extreme 

motion scenarios, the retrospectively corrected images often contained noticeable residual artifacts 

which we attribute to violations of the assumptions required for the retrospective correction used. 

Future work may investigate theoretical limits that will lead to an artifact-free image after motion 

correction, elucidating to what extent residual artifacts can be alleviated by more advanced 
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reconstruction techniques or whether real-time correction may be required when problematic motion 

scenarios are expected.  

In this study we showed that the use of a reference-based metric, such as the FSIM, gives a more reliable 

assessment of the image quality before and after motion correction compared to the non-reference-

based metrics used. Future studies will focus on testing if this is caused by their different sensitivity to 

the different manifestations of motion-related artifacts and how these image quality metrics correlates 

with neuroradiologists scores. 
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 Table 
Experiments performed for each participant 

Subject 1 Still, small pitch-wise, slow diagonal up, slow diagonal down 

Subject 2 Still, large pitch-wise, medium pitch-wise, circular-6 cycles/min 

Subject 3 Still, large stepwise, small stepwise, large stepwise, small stepwise 

Subject 4 Still, large stepwise, small stepwise, large stepwise, small stepwise,  

circular-4 cycles/min 

Subject 5 Still, large stepwise, small stepwise, circular-4 cycles/min 

Subject 6 Still, large stepwise, small stepwise, circular-6 cycles/min 

Subject 7 Still, circular-4 cycles/min, circular-6 cycles/min  

Subject 8 Still, circular-4 cycles/min, circular-6 cycles/min  

Subject 9 Still, circular-4 cycles/min, circular-6 cycles/min  

Table 1. Summary of the experiments performed for each subject. 

Figures captions 
 

Figure 1. Projected dot motion directions for (A) small stepwise motion (head position changing every 

35 s), (B) large stepwise motion (head position changing every 35 s), (C) circular motion at 4 or 

6 cycles/min (total head motion of 3 min over 5:38 min of total scan time), (D) slow diagonal motion 

along the up-right diagonal (total head motion 1:30/5:38 min), (E) slow diagonal motion along the 

down-right diagonal (total head motion 1:30/5:38 min) and (F) pitch-wise motion (head motion 

17 s/min). The dot projected movement is reported (in cm) for each motion scenario. The predicted 

head motion was estimated based on the eye-to-screen distance (76 cm) as: (A) 1.9°, (B) 5.7°, (C) 1.9°, 

(D,E) 2.6° and (F) 1.9°, 3.8° and 5.7° for small, medium and large pitch-wise motion respectively.  

Figure 2. Comparison of FSIM values (against the reference image) of TCL-based corrected (red), FatNav 

without (“FN woMask” in green) and with mask (“FN wMask” in purple) corrected images obtained 

from the runs performed for each motion scenario. The FSIM value of the initial uncorrected image is 

reported as a straight black line.  

Figure 3. (A) Comparison between reference (REF), uncorrected (MoCo OFF), and the corrected images 

(FN woMask, FN wMask) for small stepwise motion: the NGS and FSIM values are reported for each 

image. (B) Motion parameters estimated by the FN woMask (left column) and the FN wMask (right 

column) tracking methods, with the RMS value reported on top of each motion trace for translations 

(in mm) and rotations (in degrees). The motion was timed to start 20 s after the beginning of the scan, 

with the head position changing every 35 s after that. The total scan duration was 5:38 min. The red 

arrows indicate areas where the FN wMask motion correction improved the image sharpness compared 

to the uncorrected image and FN woMask.   

Figure 4. (A) Comparison between reference (REF), uncorrected (MoCo OFF), and the corrected images 

(TCL, FN wMask) for small stepwise motion: the NGS and FSIM values are reported for each image. (B) 

Motion parameters estimated by the TCL (left column) and the FN wMask (right column) tracking 

methods, with the RMS value reported on top of each motion trace for translations (in mm) and 

rotations (in degrees). The motion was timed to start 20 s after the beginning of the scan, with the head 
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position changing every 35 s after that. The total scan duration was 5:38 min. The red arrows indicate 

where the motion correction improved the image quality compared to the uncorrected image. 

Moreover, FN wMask helped reducing the ringing artifacts in the posterior region of the brain further 

compared to the TCL correction. 

Figure 5. (A) Comparison between reference (REF), uncorrected (MoCo OFF), and the corrected images 

(TCL, FN wMask) for circular motion at 4 cycles/min: the NGS and FSIM values are reported for each 

image. (B) Motion parameters estimated by the TCL (left column) and the FN wMask (right column) 

tracking methods, with the RMS value reported on top of each motion trace for translations (in mm) 

and rotations (in degrees). The motion was timed to start 10 s after the beginning of the scan, continue 

for 1 min followed by 1 min without voluntary motion and repeated other two times, for a total head 

motion time 3/5:38 min. The red arrows indicate areas where the two motion correction methods 

reduced the ringing artifacts affecting the uncorrected image. 

Figure 6. (A) Comparison between reference (REF), uncorrected (MoCo OFF), and the corrected images 

(TCL, FN wMask) for slow diagonal-down motion: the NGS and FSIM values are reported for each image. 

(B) Motion parameters estimated by the TCL (left column) and the FN wMask (right column) tracking 

methods, with the RMS value reported on top of each motion trace for translations (in mm) and 

rotations (in degrees).  The motion started 2 min after the beginning of the scan and continued for 

1:30 min, for a total head motion of 1:30/5:38 min. The image artifacts visible on the uncorrected image 

were well-corrected using both motion correction methods as evidenced by the red arrows. 

Figure 7. Quantifying the magnitude of the estimated motion: comparison of the motion scores 

estimated for each run of our motion scenarios. Each motion score was calculated from the motion 

parameters measured by our three motion tracking modalities: TCL (red), FN woMask (green) and FN 

wMask (purple). The expected motion score (based on the eye-to-screen distance and the projected 

dot motion) is reported as a black horizontal line. The y-axis for the still and slow diagonal motion cases 

(F, G) was ranged differently (from 0 to 0.5 instead of from 0 to 2mm) to easily see the difference in the 

motion score values between tracking techniques. 

Figure 8. Comparing motion estimates from FN wMask and FN woMask. Each colour represents one 

experiment performed for that type of motion across all subjects: circular motion at 6 cycles/min, 

circular motion at 4 cycles/min, large stepwise motion, small stepwise motion, pitch-wise motion 

(comprehensive of small, medium and large), slow diagonal-down, slow diagonal-up. The rotation 

around the x-axis (“X rot”) is the only parameter where FN wMask and FN woMask noticeably deviate 
in their motion estimates, as made clear by the divergence of the plots from the line of identity.    

Figure 9. Comparison of FSIM and NGS image quality metrics values of for each run of small stepwise 

motion estimates from TCL tracking device. Both metrics were first normalized between 0-1 and the 

mean value across runs of the experiment subtracted for each metric for display purposes. The circle 

markers represent the image quality metric value (FSIM in green and NGS in purple) before motion 

correction; the square markers indicate the metrics’ values after the TCL-based motion correction. Both 

FSIM and NGS are expected to increase (arrow pointing up) if the image quality improves.  The red circle 

indicates the only experiment in which the FSIM and NGS metrics are in agreement, indicating an 

improvement in the image quality after motion correction.    
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Supporting Figures captions 
Figure S1. Comparison between the original and filtered data using a low-pass filter 5 Hz cut-off 

frequency and a 1 Hz cut-off frequency (30 Hz sampling rate) on 15 s of motion parameters acquired 

using the TCL device while no voluntary motion was performed (run 11 in Figure 2G in the main 

document). The motion parameters are here displayed in the TCL coordinate system and not in the 

scanner frame of reference. 

Figure S2. Comparison between the original and filtered data using a low-pass filter at 5Hz and 1 Hz cut-

off frequencies (30 Hz sampling rate) on 15 s of motion parameters acquired using the TCL device while 

no voluntary motion was performed (run 3 in Figure 2G in the main document). The motion parameters 

are here displayed in the TCL coordinate system and not in the scanner frame of reference. 

Figure S3. Comparison between the original and filtered data using a low-pass filter at 1 Hz cut-off 

frequency. The original data were taken from Slipsager at al. 2019 and available here: 

https://figshare.com/articles/dataset/Tracking_data_Patient_b_/6989336. The figure shows only 1 

minute of motion parameters for display purposes. The motion parameters are here displayed in the 

TCL coordinate system and not in the scanner frame of reference. 

Figure S4. Comparison of the FSIM quality score, calculated against the reference images, in all our 

motion scenarios with and without using a smoothing function (pink and green respectively) on the TCL 

motion parameters prior to motion-correction. Based on the FSIM, the smoothing function did not 

cause any degradation compared to the non-smooth case, improving or keeping invariant the image 

quality in our motion scenarios. However, the FSIM score still resulted below the target value of 1 in 

our non-deliberate motion case (still scenario), which was attributed to small tracking biases rather 

than the noise on the motion traces, because even the smoothed TCL estimates demonstrate a much 

higher motion score compared to FatNavs for 8 out of the 11 ‘still’ runs (all runs except 1,7, and 10  - 

see Figure 7G in the main document). 

Figure S5. The effect of smoothing on the TCL-based motion estimation. Comparison between TCL-

based motion estimation before and after applying the smoothing function: (A) TCL after smoothing 

(TCL smooth) shows slightly less ringing artifact compared to the unsmoothed version (TCL), which is 

corroborated by the improvement in the FSIM value. (B) The unfiltered parameters (on the left) are 

affected by noise, which is partially removed after filtering (right side). The motion parameters are here 

displayed in the scanner frame of reference. 

Figure S6. Comparison of all reference volumes acquired without deliberate motion at the beginning of 

each scan session. No motion correction was applied. All subjects were instructed to stay as still as 

possible during the scan, which resulted in no visible motion artifacts in the volumes acquired.  

Figure S7. Uncorrected (MoCo OFF) and corrected images using TCL or FN wMask against the reference 

image (REF) for all runs of our small stepwise motion scenario. Image quality metrics are reported on 

each image for comparison between our reference-based metric (FSIM) and our non-reference-based 

metric (NGS): NGS values imply a reduction in image quality following motion-correction, despite 

improvements that are clearly visible compared to the uncorrected image.  

Figure S8. (A) Comparison between reference (REF), uncorrected (MoCo OFF), and the corrected 

images (TCL and FN wMask) for circular motion at 4 cycles/min: the corrected images are affected by 

strong background ghosting which is not present in the uncorrected image. Images in this figure have 

https://figshare.com/articles/dataset/Tracking_data_Patient_b_/6989336
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been windowed to allow easier visualisation of the ghosting rather than optimal viewing of grey/white 

contrast across the brain. (B) Motion parameters are reported for TCL and FN wMask, with the RMS 

value reported on top of each motion trace for translations (in mm) and rotations (in degrees). 

Figure S9. Comparison between the FSIM values of the images without masking the background 

(“Without mask”) and masking the image background (“With mask”) for FN woMask, FN wMask and 

TCL.  

Figure S10. Comparison between the FSIM values of images affected by circular motion at 4 cycles/min 

(Figure S8) without (“w/o background mask”) and with masking the image background (“with 
background mask”) in case of TCL, FN woMask and FN wMask motion correction and without motion 

correction (MoCo OFF). 

Supporting Video caption 
Video S1. Co-registered sequence of FatNav volumes acquired while the subject was performing 

circular motion showing the different behaviour in the neck area when (A) no mask is applied during 

the registration process, against (B) when the mask is applied. (B) The created mask is represented in 

light grey: the neck area is excluded so that only the rigid part of the head is considered during the 

SPM registration process. The mask is automatically applied to each subject by co-registering the first 

FatNav volume to a reference FatNav image in standard space using SPM. 

 

 

 

 


