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Summary

In the �eld of spatial statistics, window selection for point pattern data is a complex process. In some

cases, the point pattern window is given a priori when a local phenomena is studied. In other cases, a

researcher may choose this region using some objective means that re�ects their view that the window

may be represenatative of a larger region, or based on a probability sampling method. The common

approaches used are the smallest rectangular bounding window and convex windows due to the obvious

use of the Euclidean distance. The chosen window must however cover the true domain of the sampled

point pattern data. Choosing a window too large results in estimation and inference in areas which are

empty of observed data, but for which it has not been con�rmed that observations could have occurred

there. These holes in the domain could be regions where for some geographic (or other) reason the

phenomena of interest does not occur.

In this mini-dissertation a review of methods for spatial convex and nonconvex window estimation is

provided, and an algorithm is proposed for selecting the point pattern domain without the restriction of

convexity, allowing for a better �t to the true domain, and based on spatial covariate information. The

e�ect of the window choice on spatial intensity estimates is illustrated by giving particular attention to

the technique of smoothed kernel intensity estimation. The proposed algorithm is applied in the setting

of rural villages in Tanzania's Mara province. As a spatial covariate, remotely sensed data based on the

elevation of a point pattern is used in the form of a Digital Elevation Model (DEM) GTOPO30, speci�c

to village house locations in this setting. Mathematical morphological operators are also used to extract

physiographic features from the DEM and are included here as a preprocessing step in the spatial window

domain modelling. Analysis was conducted using the R software [76].

This research, entitled Covariate construction of nonconvex windows for spatial point patterns, was

approved by the Faculty of Natural and Agricultural Science Research Ethics committee at the University

of Pretoria under the reference NAS339/2019.
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Chapter 1

Introduction

Spatial point pattern analysis reached prominence in geographical sciences during the 20th century [36].

It involves methods for explaining patterns that may be expressed with location. The aim of an analysis

may be to expand basic understanding of spatial processes or to extrapolate results to regions where

observations have not been made [5]. Data comprising of the location of features are termed geospatial or

spatial data. Instances of spatial data occur frequently in a vast �eld of scienti�c disciplines, which include

ecology [105, 111], seismology [71, 112], geography [31] and spatial epidemiology [87, 106], to name a few.

In the sphere of seismology, a researcher may be interested in collecting data on the regional distribution

of earthquakes to investigate whether there are predictable patterns over this space [5]. An example of

the use of spatial analysis in spatial epidemiology was by an English physician named Dr. John Snow

who studied London's cholera outbreak in 1854 [106].

A spatial point pattern is the mapped locations of objects or events over a region of interest [25, 45].

Point locations may correspond to all possible events (mapped) or a subset of these events (sampled

point pattern) [4, 45]. Stated more formally, a spatial point pattern can be de�ned as a realization of a

�nite random subset of a given bounded region S ⊂ R2 for a spatial point process [65, 36]. One way of

representing the spatial point process mathematically is by a set of random variables, N(A) contained

in the area A ∈ R2, where N(A) denotes the number of points or events in sub-regions A contained in

the entire study region [36]. Points in a spatial point pattern are observed over a region W , termed the

window, which conventionally represents the study area. The window is strictly contained in the region S

where the point process is de�ned [65]. The window W may assume any 2-dimensional geometric shape,

such as a rectangular window or a complex polygonal region [36]. Additional information on the points

may be recorded and are termed marks [4]. A mark is a variable corresponding to the point locations in

a spatial point pattern that represents a qualitative or quantitative attribute of the point [4]. Figure 1.1

[4] depicts an example of a marked point pattern denoting the locations of forest �res in the Castilla-La

13



CHAPTER 1. INTRODUCTION 14

Mancha region of Spain between 1998 and 2007. The cause of �re denotes a qualitative mark and contains

the factor levels lightning, accident (for accidents or negligence), intentional (for �res started intentionally)

and other (for unknown and other causes).

Figure 1.1: Marked point pattern of the locations of forest �res in the Castilla-La Mancha region of Spain

between 1998 and 2007 with the cause of �re as marks [4].

Observations on other spatial variables, termed covariates, may be de�ned over the window domain and

may aid in the improvement of modelling and interpretation. For example, a point pattern denoting the

locations of trees in a forest could have basal area measurements corresponding to each point record as

a mark and terrain elevation, de�ned on the entire study window, as a spatial covariate. When covariate

information is available, an investigation into the dependence of a point pattern on covariate data should

be conducted and this dependence quanti�ed. Formal statistical tests have been developed to achieve

this. The tests we considered in this mini-dissertation are outlined in Section 3.1 and include Berman's

test for dependence of a point process on a spatial covariate and the cumulative distribution function test

[4]. Testing for global and local dependence of point patterns on covariates in parametric models can also

be done using the method proposed in [68]. Mapped point pattern data [45] may thus comprise of,

• an observation window W ,

• the point record of the points in the observation window are each in the form {xi, mi1, mi2, ..., mip},

where xi denotes the coordinates of the point location and mi1, mi2, ..., mip are marks collected at

xi, and



CHAPTER 1. INTRODUCTION 15

• covariate information as a spatial measurement Z(uj), uj ∈W , for j = 1, ..., l, where the points uj

form a lattice extracted from continuous data over W and do not coincide with the points of the

point pattern. It is customary for Z(uj) to describe a continuous regionalised variable, de�ned at

every point in W , whereas the marks are only given and de�ned for the points in the point pattern.

Information regarding the window W and the point locations {xi} in this window, are required for an

appropriate analysis of the point pattern.

For a sampled point pattern, a consequence of constructing a boundary around the study region is that edge

e�ects are occasionally erroneously de�ned, resulting in so-called "edge-e�ects". Edge e�ects arise when

there is unknown interdependence between points outside the boundary and those inside the boundary

[25]. Points in the study region that are close to the boundary may have neighbours situated outside the

boundary. As a result, distance measures and summary statistics involving these points are not observed.

If the in�uence of this interdependence is not considered a spatial point pattern analysis may produce

erroneous results and bias statistical estimations. There exist several general methods for the correction of

edge e�ects and for corrections speci�c to spatial point pattern statistical measures (i.e. the K-function).

Among these are the guard method and the toroidal edge correction [54, 86, 99, 115], the border method

[24] and the weighting method [54]. The guard method involves de�ning the window W within a speci�ed

distance from the boundary of a larger domain W ∗ to allow for a guard area. In the toroidal method

for edge correction, the region W , is considered a torus so that points on opposite edges of the window

are regarded as close to one another. This method is only applicable to rectangular study regions and is

implemented by replicating the study region eight times and surrounding the original study region with

the eight replicates. The border method proposed by Diggle [24] corrects for edge e�ects by removing

all sample points that are closer to the boundary than to their nearest neighbor. Gatrell et al [36], have

also considered edge correction methods for kernel estimates one of which involves dividing the kernel

estimate with an edge correction term. The techniques proposed in this mini-dissertation give focus only

to complete point pattern sets, thus edge correction methods are beyond the scope of what is considered.

A more comprehensive discussion of these methods and others not discussed here can be reviewed in

[24, 36, 37, 43, 54, 74, 99, 115]. Most edge correction methods are mainly considered for rectangular and

circular study regions and become more complex and computationally involved for complex polygons.

Attributes of a spatial point process can be characterized by their �rst-order and second-order properties

[36]. First order properties describe how the average of the process varies over di�erent locations in space.

Second-order properties describe how the process values are correlated in space [36]. A measure used to

describe the �rst-order properties of a point process is the intensity function λ(x) [36], de�ned as the

average number of points per unit area and is denoted by,

λ(x) = lim
dx→0

{
E(N(dx))

dx

}
,
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where dx is a small region around the point x ∈ R2, E(·) is the expected value operator, dx is the area for

this region, and N(dx) refers to the number of events in the region dx. The intensity can be estimated

using kernel density estimation with the general form.

λ̂(x) =

n∑
i=1

1

h2
K

(
x− xi
h

)
,

where K(·) denotes a unimodal weighting function that intergrates to one over its entire domain, h

represents the bandwidth, λ̂(x) is the estimate for the kernel density of the spatial point pattern at point

x, and xi is the observed location of the i-th event.

1.1 Representative spatial window domains

In some standard applications of spatial point pattern data analysis, the selection of the study window

W is a nontrivial task. The study window is important as it gives information about where observations

were made and not made as well as where observations should be predicted [4]. In some cases, there is

knowledge aboutW when a local phenomenon is studied, such as pores of a metallic foam in a pipe, fungal

spots on leaves, �sh in a lake, and cell centers in a small biological organ [45]. In other cases, depending on

the purpose of an analysis, a researcher may choose this region using some objective means that re�ects

their view that W may be representative of a larger region, or W is based on a probability sampling

method [25]. Techniques discussed in published literature typically consider analysis on a rectangular or

circular domain. In real world applications however, sampled points may be de�ned over an unknown

irregular window that has a disconnected or a nonconvex domain. These more general windows result

from factors that may make it impossible to observe points in certain regions. Consider the following

examples.

Figure 1.2 depicts the distribution of buzzard nests in two upland regions, Snowdonia and Migneint-

Hiraethog, in North Wales, UK [20]. Open and closed dots are indicative of nesting sites outside and

inside the study region respectively. The two upland regions are separated by a dashed line and horizontal

hatching is used to indicate terrain unsuitable for nesting. In areas unsuitable for nesting, points may not

be observed. A similar example can be found in a paper by Newton et al [69], based on a study of spacing

of territories of Accipiter ninus, the sparrowhawk, in twelve areas of Britain. Figure 1.3 illustrates the

locations of the nesting territories for these regions. The locations of the nesting territories were found

by systematically searching all of the woods in the study area over a period of 3-8 years. The spacing

of the territories were examined by plotting them on a map. Woodlands suitable for nesting were often

separated by large areas of unsuitable woodland, farmland or other open country. The position of the

border of the study areas presented a problem as some areas in the woodland were mainly adjacent to

rivers and streams, so estimates of density and habitat proportions were in�uenced by the amount of open
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land included on either side. The boundaries of the study regions were marked arbitrarily by making

a line around the outermost nesting territories at a distance from their centers equal to half the mean

inter-territory distance in continuous nesting habitat.

Figure 1.2: Distribution of buzzard nesting territories in two upland regions, Snowdonia and Migneint-

Hiraethog, in North Wales, UK [20]. Open and closed dots indicate nesting sites outside and inside the

study region marked by dashed boundaries respectively. Horizontal hatching is used to indicate terrain

unsuitable for nesting.

Figure 1.3: Distribution of sparrowhawk nesting territories in two areas, Upper Speyside and Eksdale,

Britain [69]. Closed dots indicate the nesting sites.
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Selection of the window W must be made carefully; choosing a window too large results in estimation in

areas which are empty of observed data, but for which it has not been con�rmed that observations could

have occurred there. The empty areas could be regions where for some geographical (or other) reason

the phenomenon does not occur. How W is chosen may also a�ect statistical measurements based on a

spatial analysis, such as the intensity function [100]. Since the intensity function is a point measure of

the locations in W , if W is misspeci�ed we get intensity estimation in areas of the domain for which a

point occurrence is non-observable. We illustrate this with the example in Figure 1.4. The �gure depicts

the kernel smoothed intensity estimate of a generic point pattern where point locations (red dots) denote

�sh in a lake. The point pattern was created by simulating points in a polygon of the Great Bear Lake in

Northwest Territories, Cananda1. The simulation and analysis was done using the spatstat package in

R [4, 76]. The bold irregular boundary represents the separation between lake water and dry land. The

estimation is done over a rectangular window domain and �tted with a Gaussian kernel. As seen in the

�gure, for such a point pattern, estimation of intensity in this window domain will result in the incorrect

allocation of positive intensity of �sh over areas of dry land.

Figure 1.4: Kernel smoothed intensity estimates of a generic point pattern of the locations of �sh in a

lake (red dots), estimated on a rectangular window domain and �tted with a Gaussian kernel. The point

pattern is created by simulating points on a polygon of Canada's Great Bear Lake in Northwest Territories

marked by a solid boundary.

1.2 Spatial measures and Euclidean distance

In statistical analysis of spatial point patterns, Euclidean metrics are commonly used as a measure of

distance between two points. The distance is calculated as the length of the line segment connecting two

points. The expression for the Euclidean distance between two points, x = (x1, x2) and y = (y1, y2), in

R2 is given as

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2. (1.1)

1https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-lakes/
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This distance measure makes two implicit assumptions, (1) the distance is calculated along the shortest

physical path formed by the line segment connecting two points; (2) the space has no variation in direction

and is completely uniform [55]. These assumptions make it possible to use expressions that only require

knowledge of the coordinates of the end point locations, thus the actual path between two points is avoided

[55]. In instances as discussed above, this would mean the Euclidean does not represent the �true� distances

between points on the physical surface represented by the window. Figure 1.52 shows Google Earth plots

of the geographical locations, latitude and longitude, of households in the Magatini village in the Mara

province of Tanzania3. In Figures 1.5(b) and (c), we see that mountainous regions make it non-viable for

villagers to travel along the black coloured line segment, indicative of the Euclidean distance, and that a

more representative path would follow along the yellow line given over a chosen nonconvex window. In

addition to this, mountainous areas make it impracticable to build households, thus for the given point

pattern, intensities should not be registered over these regions.

Di�erent techniques have been proposed in order to determine distance measures between points [55].

One common method is the adjustment of the standard expression of the Euclidean distance formula in

Equation (1.1) by replacing the powers 2 and 1
2 with the values p and 1

p . This distance is termed the

Minkowski distance [55] and is de�ned as

d(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

. (1.2)

For p = 1 and 2, the distance is the Manhattan and Euclidean distances respectively. If p tends to in�nity,

the distance is known as the Chebyshev distance given by the expression d(x, y) = max{|xi − yi|} for

all i. Figure 1.6 is a visual depiction of the Minkowski distance measures, namely that of the Euclidean,

Manhattan and Chebyshev distances. Adjusting the expression for the Euclidean distance may aid in

distance measures between points that are more representative of the physical path between them on the

surface represented by the window.

2Google earth V 7.3.2.5776. (July 21, 2017). Mara province, Tanzania. 1◦37'52.38”S, 34◦17'16.81”E. Eye alt

7.19km. Maxar Technologies 2020, CNES/Airbus 2020. http://www.earth.google.com[January 22, 2020], Google earth

V 7.3.2.5776. (July 21, 2017). Mara province, Tanzania. 1◦37'51.25”S, 34◦17'17.33”E. Eye alt 7.19km. Maxar

Technologies 2020, CNES/Airbus 2020. http://www.earth.google.com[January 22, 2020], Google earth V 7.3.2.5776.

(July 21, 2017). Mara province, Tanzania. 1◦37'16.36”S, 34◦17'27.04”E. Eye alt 2.85km. CNES/Airbus 2020.

http://www.earth.google.com[January 22, 2020]
3http://www.gla.ac.uk/researchinstitutes/bahcm/sta�/katiehampson/, http://www.katiehampson.com/#intro
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(a)

(b)

(c)

Figure 1.5: Google Earth plot of the geographical locations of households in Magatini village in Mara

province, Tanzania. Green markers are used to denote household locations. The black line shows the

Euclidean distance between two selected points and the yellow line shows the distance along the base on

the mountain between the same points.

Figure 1.6: Minkowski distance measures

Literature detailing the selection of spatial window domains typically rely on an assumption of convexity

of the domain. Ripley and Rasson [84] proposed a method for window selection via the reconstruction of
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a compact convex set D from a realization of a homogeneous planar Poisson process observed over this

unknown set D. Given a set of observations from a realization of a homogeneous planar Poisson point

process within a compact convex set D, of unknown intensity, they present a technique to determine the

compact convex set. Their proposed solution is the dilation of the convex hull about its centroid. This

proposed method has possible applications in �nding the edge of a natural forest given the locations of

trees. Moore in [67] presents a method for solving a similar problem; that is, estimate D, a compact

convex set in Rp, given independent observations x1, ..., xn sampled uniformly from unknown D. Rasson

et al [78, 79, 82] consider how to extend these methods to estimate convex sets with observations that

are inside and outside the convex set. There is other literature that address determining a convex hull

or convex set from a random set of points; these include and are not limited to [29], [21], and [73]. The

common approaches for window selection are (1) the smallest rectangular bounding box, illustrated in

Figure 1.4, and (2) the convex hull. We propose here an approach to obtain a nonconvex window using

additional geographical information.

1.3 Outline

The objectives of this mini-dissertaion are as follows:

• To model irregular nonconvex spatial window domains for spatial point patterns using spatial co-

variate information.

• Evaluate how the proposed noncovex window aids in improving intensity estimation and prediction.

To this end, we have organized this document as follows:

Chapter 2 is dedicated to a discussion of window selection techniques that involve the estimation of an

unknown set when points realized from the unknown set (and points outside the set) are observed. The

chapter begins with an overview of the de�nitions and concepts based on set theory, measure theory, and

point processes, that are mentioned in the discussion of these methods.

Chapter 3 details statistical tests for investigating the dependence of the distribution of a point pattern

on spatial covariates. We then propose an algorithm that uses the known e�ects of a covariate on the

point occurrence of points in a spatial point pattern to construct a nonconvex spatial window domain.

Chapter 4 includes a discussion on nonparametric intensity estimation methods, with particular focus

given to the method of kernel smoothed intensity estimation. We discuss how the kernel method for

intensity estimation can be extended to allow for spatial covariate e�ects and discuss the e�ects of using

the standard kernel smoothed intensity estimate as an estimate of intensity on irregular nonconvex window



CHAPTER 1. INTRODUCTION 22

domains and how these can be adapted.

In Chapter 5 the nonconvex window construction algorithm proposed in Chapter 3 is applied to households

in a rural setting in Tanzania's Mara province, and use elevation data from a Digital Elevation Model as

spatial covariates. A discussion on mathematical morphological operators used in the processing of the

Digital Elevation Model is also detailed.

Chapter 6 is devoted to consolidating the results, concluding remarks, and discussing prospects for future

research.



Chapter 2

Window selection methods

Selecting a spatial window S using points in a point pattern is analogous to set estimation. Set estimation

tackles the statistical problem of estimating an unknown, often compact, set S ⊂ Rd from the observed

values x1, x2, . . . , xn of a randomly selected sample of points X1, X2, . . . , Xn drawn from this set [6].

The upper case letters denote a random variable, and the lower case letters the observed value of the

random variable. Literature on the subject typically consider the case where S is assumed to be convex

[29, 67, 82, 90]. The convex hull of the sample is the estimate of S under this assumption and is unique

(see Section 2.1.2 for discussion). In the case where S is not assumed to be convex, there is no unique

estimator [6]. An example proposed by Devroye and Wise [22] is

Ŝn =

n⋃
i=1

B(Xi, εn),

where B(x, r) denotes the closed ball centered at x with radius r > 0, given by

B(x, r) = {y : y ∈ Rd and ||x− y|| ≤ r}

and εn is a sequence of smoothing parameters which must slowly tend to zero in order to get a consistent

estimation1 as n → ∞. Figure 2.1 [19] shows the convex hull and the Devroye-Wise estimator for the

same random sample of 40 points. In the case of the Devroye-Wise estimator in panel (b), we observe

that the estimated domain has holes and some areas of partial disconnection in contrast to the convex

hull estimator in panel (a) which is connected.

In this chapter we review methods for spatial window set estimation. Sections 2.1 and 2.2 give an

overview of some de�nitions and concepts based on set theory, measure theory and point processes that

1A consistent estimate in statistics is an estimate which converges to the true value of the parameter being estimated as

the sample size increases inde�nitely [7].

23
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are referenced in Section 2.3. Methods for convex and nonconvex set estimation are covered in Sections

2.3 and 2.4 respectively.

a) Convex hull estimate b) Devroye-Wise estimate

Figure 2.1: Spatial set estimates for a random sample of 40 points.

2.1 Set theory

This section introduces on terminology and concepts used for convex set estimation that will be considered

in Section 2.2.

2.1.1 Convex sets

A set C ⊆ Rp is convex if for all points x1, x2 ∈ C, the line segment joining x1 and x2 is entirely in the

set C. In other words, C is said to be convex if it contains the line segment,

αx1 + (1− α)x2, (2.1)

where α ∈ [0, 1] [21, 58, 88]. The linear sum in Equation (2.1) is termed a convex combination of x1 and

x2. When α is either 0 or 1, the points are x2 and x1 respectively. For intermediate values of α, the points

lie on the connecting line segment. A convex set is thus a connected set [58], meaning mathematically

that there exists a path contained in the set between any two points. Figure 2.2 shows examples of convex

and nonconvex sets. The empty set is trivially convex. The intersection of a number of convex sets is also

convex [58, 88].
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(a) Convex

(b) Nonconvex

Figure 2.2: Convex and nonconvex planar sets

2.1.2 Convex hull

For a set A ∈ Rp, whose elements comprise of points, the convex hull is de�ned as the intersection of all

convex sets which contain the set A. That is, the convex hull of A is the smallest convex set that contains

the set A, where smallest here means that there is no other convex set contained in the convex hull that

also contains A [21, 34, 88]. This implies that the convex hull is also unique. For a point pattern, this

would be the smallest convex window that envelops all the points. For n points x1, ..., xn in Rd the convex

hull is given by

H{x1, x2, . . . , xn} =

{
y ∈ Rd : y =

n∑
i=1

αixi, αi ≥ 0 ∀i ,
n∑
i=1

αi = 1

}
,

where the restrictions on the αi's, αi ≥ 0 and
∑n
i=1 αi = 1, ensure that the set is the smallest. Figure 2.3

depicts the convex hull of a set of points in R2.

Figure 2.3: Convex hull of a set of points in R2.



CHAPTER 2. WINDOW SELECTION METHODS 26

2.1.3 Open and closed sets

An open set is a set that does not contain limiting points (i.e. boundary points). Mathematically, a set

A is open if for every point, a ∈ A, there exists an ε > 0 such that the ball

B(a, ε) = {y ∈ Rd : ||a− y|| < ε}

is contained in A [58, 104]. A closed set is de�ned as the complement of an open set [58]. An example of

an open set is the unit circle in R2 centered at the origin without its boundary points,

A = {y = (y1, y2) ∈ R2 : y1
2 + y2

2 < 1}.

The union of set A and the set of its boundary points B = {y = (y1, y2) ∈ R2 : y1
2 + y2

2 = 1} is a closed

set.

2.1.4 Compact set

A set A is compact [58] if for any collection of open subsets, B, of A such that

A ⊆
⋃
b∈B

b,

there is a �nite subset B∗ such that

A ⊆
⋃
b∈B∗

b,

Compactness queries whether the set A can be formed with a �nite number of open subsets of B. A

compact set is closed and bounded.

2.1.5 σ-algebra

The σ-algebra of a set X [91], σ(X), is nonempty collection of subsets of X such that

1. ∅ ∈ σ(X),

2. if X ∈ σ(X), then the complement Xc ∈ σ(X), and

3. if A1, A2, A3, ... is a sequence of elements in σ(X), then A1 ∪A2 ∪A3 ∪ ... ∈ σ(X)

The collection of Borel sets B is the smallest σ-algebra that contains all open sets [91].
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2.1.6 Lebesgue measure

The formulation of the Lebesgue measure [75] is as follows. An open box [75] B ⊆ Rd is a set of the form

B =

d∏
k=1

Ik,

where Ik = (ak, bk), k = 1, ..., d are open intervals and the product symbol represents the Cartesian

product. Its d-dimensional volume [75], denoted by |B|, is the product of the lengths of the open intervals

Ik, expressed as

|B| =
d∏
k=1

(bk − ak).

The d-dimensional outer measure [75] of a set A ⊂ Rd is expressed as

m∗(A) = inf

{∑
k

|Bk| : {Bk} covers A
}
.

A set B∗ is a cover for A if

A ⊆
⋃
b∈B∗

b.

The set {Bk}, a collection of sets whose union contains A, forms a cover for A. A set A is Lebesgue

measurable [75] if for each S ⊂ Rd,

m∗(S) = m∗(S ∩A) +m∗(S ∩Ac).

If A is Lebesgue measurable its Lebesgue measure, denoted by m(A), is m∗(A).

The Lebesgue measure extends on the notion of length and area to more abstract sets [75, 91]. Intuitively,

this measure can be interpreted as the size of the set. If X is a set in Rd, for d = 1, 2 and 3, the Lebesgue

measure corresponds with common measures of length, area, and volume respectively.

2.2 Homogeneous Poisson Process

The set estimates described in Section 2.3 are derived under the assumption that observed points are

realisations of a homogeneous Poisson process. As a precursor to the discussion in this section we give

the de�nition of a homogeneous Poisson process.

A homogeneous Poisson process [51] is the simplest stochastic model used for planar point patterns. The

point process X is a homogeneous Poisson process if it satis�es the following properties.

1. There exists a constant λ > 0 such that the number of points in set B for process X, X(B), for each

bounded Borel set B, is a Poisson distributed random variable with parameter Λ = λm(B), where
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m denotes the Lebesgue measure in R2. The parameter Λ denotes the expected number of points

in the region B.

2. The random variables X(B1), ..., X(Bn) are independent events for disjoint bounded Borel sets

B1, ..., Bn.

The parameter λ is the intensity of X, the expected number of points per unit area. The process, X,

is inhomogeneous when the intensity is a nonconstant positive function λ(A) of the unit area A. Figure

2.4 depicts a realization from a homogeneous Poisson process with intensity 3. The simulation was done

using the spatstat in R [4, 76].

Figure 2.4: Realization of a homogeneous planar Poisson process on a square window with λ = 3.

In the next section we review methods for convex set estimation constructed from a set of observed points

realized inside (and/or outside) this unknown set.

2.3 Convex set estimation

In this section we review methods for convex set estimation.

2.3.1 Dilation of the convex hull about its centroid

Ripley and Rasson in [84] construct a compact convex set D from a realization of a homogeneous planar

Poisson process observed over this unknown set D. Given a set of observations from a realization of a
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homogeneous planar Poisson point process within a compact convex set D, of unknown intensity λ, they

present a technique to determine the compact convex set.

Let x1, x2, . . . , xN denote a realization of points observed in D ∈ D, where D is the class of compact

convex subsets of Rd of positive measure. Given N and under the assumption of a homogeneous Poisson

process, it follows that the xi's are independent uniformly distributed random vectors in D. That is, we

observe

X1, X2, . . . , XN
i.i.d∼ U(D), N ∼ Poisson(λm(D))

where m(.) is the Lebesgue measure on the Borel subsets of Rd and X1, X2, . . . , XN , N are all indepen-

dent. Consequently the joint density of X1, X2, . . . , XN is given by

pD(x1, x2, . . . , xN ) =

N∏
i=1

pD(xi) =

N∏
i=1

ID(xi)

m(D)
=

∏N
i=1 ID(xi)

m(D)N
=

ID(x1, x2, . . . , xN )

m(D)N

for D ∈ D, where ID(.) is an indicator function taking on the value of 1 if the set of points are in D and

0 otherwise. The point set {x1, x2, . . . , xN} is in D if and only if the convex hull of the points denoted

by H{x1, x2, . . . , xN} is contained in D. It thus follows that

pD(x1, x2, . . . , xN ) =
ID(H{x1, x2, . . . , xN})

m(D)N
.

H{x1, x2, . . . , xN} is therefore a su�cient statistic and the maximum likelihood estimate of D.

The estimation of D involves �rst considering the set s(H{x}) = H{x}−g(H{x}), where g(H{x}) is the

centroid of the convex hull H{x} where x = {x1, x2, . . . , xN}. In the case when the Lebesgue measure

m(D) of D is known, the maximum likelihood estimator of D is expressed as a translation of(
m(D)

m(H{x})

) 1
2

s(H{x}).

For unknown m(D), a constant c is found such that E[m(cs(H{x})] = m(D),

c = ((n+ 1)/[n+ 1− E[Vn+1]])
1/2

,

where Vn+1 is the number of vertices in the convex hull of {x1, x2, . . . , xn+1}, that is, the number of

vertices if one more point were drawn from D. Di�culty in the computation of E[Vn+1] warrants the use

of an estimator such as the observed value vn of Vn, that is to use c =
(

n
n−vn

) 1
2

. The �nal estimator is a

dilation2 of the convex hull about its centroid

D̂ = g(H{x}) + cs(H{x}).
2A dilation (also termed a homothety) [44, 56, 61] is de�ned here as a transformation that enlarges or reduces the size

of a geometric �gure by a given scaling factor k around a center point O. It is a function that sends every point X on

the plane to a point X′ such that
−−→
OX′ = k

−−→
OX. In this case, the center point is the centroid of the convex hull g(H{x}),

the enlargement/reduction scale factor is c and the geometric �gure is s(H{x}). This should not be confused with the

mathematical morphological dilation operator given in Section 5.3.2.
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Figure 2.5: Ripley-Rasson estimate of 200 simulated points on an elliptical domain.

Figure 2.5 obtained from [84] depicts the result of this method for 200 points simulated on an elliptical

domain. The result is derived assuming that the area of the true set is unknown. The smooth line depicts

the boundary of the true elliptical domain D, and the kinked line the boundary of the Ripley-Rasson

estimate D̂ of D.

2.3.2 Convex domain estimation using inside and outside observations

Remon [82, 81] proposes a method to estimate an unknown convex domain using observations inside and

outside the domain. An application in which inside and outside observations are available is pattern

recognition [41, 103]. In this context, the aim may be to delineate the boundary of convex bodies on an

image that has pixels of di�ering texture [103]. In [82], Remon presents this method as a generalization

of the Ripley-Rasson solution discussed in Section 2.3.1.

The problem being solved is formulated as follows. A realization of n+m points from a Poisson process

X is observed within a �xed window F ∈ Rd. Contained in F is a compact convex domain D. From the

n+m observations, n are inside D and m are outside D. Dc denotes the complement of D. It is assumed

that the Poisson process is homogeneous on F with density λ. The aim is then to estimate the unknown

convex domain D. Suppose (x1, y1, ..., xn+m, yn+m) is a realization of X, a homogeneous Poisson process,

and Y , a labelling variable that takes on the value of 1 if xi ∈ D and 2 otherwise. Let yi = 1 for i = 1, ..., n

and yi = 2 for i = n+ 1, ..., n+m without loss of generality.

Given the observed values n and m, it follows that the likelihood function for (x, y) is
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L(x; y) =

{
1

[m(D)]n[m(Dc)]m

n∏
i=1

ID(xi)

n+m∏
i=n+1

IDc(xi)

}
=

{
1

[m(D)]n[m(Dc)]m
ID(H{x1, ..., xn})IDc(J{xn+1, ..., xn+m|x1, ..., xn})

}
where H{A} is de�ned again as the convex hull of A, and

J{xn+1, ..., xn+m|x1, ..., xn} =
⋃

i:yi=2

{xi + λ(xi − b) ∈ Rd|λ ≥ 0, b ∈ H(x1, ..., xn)}

(H{.}, J{.|.}) is a minimal su�cient statistic for the estimation of D. J{xn+1, ..., xn+m|x1, ..., xn} is a

consistent estimate of Dc. The boundary between D and Dc is the set of points,

{x0 : such that likelihood of x0 belonging to either D or Dc is equal}.

That is,

S1(x0) = S2(x0)

where

S1(x0) = m(H{x1, ..., xn, x0}) +m(J{xn+1, ..., xn+m|x1, ..., xn})

and

S2(x0) = m(H{x1, ..., xn}) +m(J{xn+1, ..., xn+m, x0|x1, ..., xn}).

Figure 2.6 obtained from [81] depicts the results for a square (a) and an ellipsodial (b) domain. The

observation sizes are 250 with n = 59 from D in the case of the quadratic domain, and 300 with n = 68

in the case of the ellipsoidal domain. The intensity in D and Dc is assumed constant and equal, thus the

points inside and outside the domains are generated from a Poisson process with the same intensity. The

true areas are given by m(D) = 0.25 and m(D) = 0.2 respectively. The respective areas for the symmetric

di�erence D∆D̂ = D ∪ D̂ \D ∩ D̂ is noted as 0.018 and 0.011 and gives an indication of the size of the

area in D̂ that is misclassi�ed as belonging to D.

(a) Square domain (b) Ellipsoidal domain

Figure 2.6: The estimates of D when inside and outside observations are observed for two domains.
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2.4 Nonconvex Voronoi set estimate

The problem outlined in this section involves the estimation of a nonconvex set D using points observed

inside and outside this unknown set. The formulation of the problem is given as in Section 2.3.2, the

di�erence being that the unknown set D need not be convex. The Voronoi estimate [83] D̂ is the set of

all points x0 that satisfy the criterion

min
1≤i≤n

d(x0, xi) ≤ min
n+1≤i≤n+m

d(x0, xi)

where d denotes the Euclidean distance in R2. The Voronoi cell Vi related to the point xi is given by

Vi = {x0 ∈ R : d(x0, xi) ≤ min
j 6=i

d(x0, xi)}

then

D̂ =
⋃

1≤i≤n

Vi.

The solution is non-smooth and this irregularity cannot be reduced by increasing the size of observed

points. Figure 2.7 obtained from [83] illustrates the result of the Voronoi estimate.

Figure 2.7: Voronoi estimate of nonconvex D. The nonconvex set D is outlined with a solid black line,

and the estimate of the set D̂ is shaded in grey.

2.5 Concluding remarks

In this chapter, we gave attention to set estimation techniques that involved the estimation of a set when

a realization of points from this set (and points outside the set) are observed, which has an analogue, in
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R2, to the task of constructing a window domainW from an observed point pattern. In instances detailed

in Section 2.2, estimates were derived under assumptions of a homogeneous Poisson process and a convex

domain. In Section 2.4 we considered a Voronoi solution to nonconvex set estimation that did not rely on

a convexity assumption of the set domain. To our knowledge, these are the only approaches for spatial

window estimation detailed in literature. The assumptions used to derive the results may not necessarily

hold in some spatial applications (i.e. as discussed in Chapter 1). The solutions presented also do not

incoporate the e�ect of covariates that may in�uence where points on the domain can be observed. In the

next chapter we present an algorithm for choosing the window domain using additional spatial covariate

information.



Chapter 3

Covariate construction of nonconvex

sets

In Chapter 2, we considered window selection methods that involved the estimation of a set when a

realization of points from this set (and points outside the set) are observed. However, in Chapter 1 it was

noted that these sets may not be suitable for applications in the real world where points may be observed

over window domains that have a complex polygon structure that could contain holes, be disconnected,

or nonconvex. Generalization of these sets to such window domains may cause spurious estimation and

prediction for regions where point occurrences were not observed, but for which it has not been con�rmed

that observations could have occurred there. The regions empty of observed data could be areas where

for some geographical (or other) reason, expressed as the function of a spatial covariate of an underlying

process, the phenomenon does not occur.

The main objective of point pattern analysis is to investigate small-scale spatial interactions between

objects [4]. There are a large number of cases, however, in which the locations and marks of objects are

impacted by extrinsic factors. In the case where these factors are spatially correlated, the resulting point

pattern may show spatial correlation in the locations or marks even without intrinsic spatial interactions

among the objects. It is thus important to investigate the e�ects of spatial covariates on the point pattern.

The covariates based on some phenomena may make the point occurrence in regions of the domain very

small or close to zero. In this chapter, we present an algorithm for choosing the window domain using

spatial covariates.

We begin �rst by stating the de�nition of a spatial covariate. A spatial covariate is a spatial measurement

de�ned at each point location in the window domain. It customarily describes a continuous regionalised

variable de�ned at every point in the window. This may be denoted by Z(uj), uj ∈ W , for j = 1, ..., l,

34
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where the points uj form a lattice and do not coincide with the points of the point pattern. A few examples

of spatial covariates include temperature, wind speed, soil pH level and elevation. Figure 3.1 depicts a

plot of the spatial distribution of average wind speed (i.e. the spatial covariate) over tbe East China Sea

for spring, summer, autumn and winter1. The colours indicate wind speed and the arrows wind direction.

Figure 3.1: Seasonal spatial distribution of the wind vector data in 2003-2013 over the East China Sea.

Each point of the wind vector data 10m over the sea surface are averaged according to the latitude and

longitude in the same month from 2003 to 2013. The colours indicate the average wind speed and the

arrows indicate wind direction.

1http://article.sciencepublishinggroup.com/html/10.11648.j.ijema.20160403.15.html. Date Accessed: 03 March 2017
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3.1 Testing dependence of a point pattern from spatial covariates

When covariate information is available, an investigation into the dependence of a point pattern on covari-

ate data should be conducted and this dependence quanti�ed. In this section we consider some methods

and formal statistical tests for investigating the dependence of a point pattern on spatial covariates.

3.1.1 Quadrat de�ned by a covariate

One method of getting a rough understanding of how a covariate relates to a point pattern is to use

quadrat methods [4]. The window W is divided into irregular quadrats of equal area de�ned by the bin

ranges determined from the covariate quantiles. The number of points in each quadrat is then counted. If

the point pattern process is uniform, that is, a homogeneous Poisson process, the expectation is that the

number of points in each quadrat should be nearly equal to each other. Consider the tropical rainforest

dataset shown in Figure 3.2. The dataset has the point record of the tree locations and is accompanied

by the terrain elevation over arbitrary points in the study window. The study region is split into irregular

subregions according to the quartiles of the elevation values. Figure 3.2 depicts the result of this tessellation

created in R using the spatstat package [4, 76]. Since the regions have equal area, the number of points in

each quadrat should be approximately equal if there is uniform density in the trees. The counts however

indicate a strong preference for higher elevation suggesting that the elevation covariate in�uences the

underlying pattern. This method gives a visual idea of how a covariate relates to a point pattern, but is

not a formal test.

(a) Point pattern (b) Quadrat counts

Figure 3.2: Point pattern plot, in (a), denoting the locations of 3605 trees in a tropical rain forest in a

1000 by 500 meter study area in Barro Colorado Island, and equal area tessellation of the study area, in

(b), to the quartiles of terrain elevation [4].
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3.1.2 Berman's test

Berman's test for the dependence of a point process on a spatial covariate [4] is a test that evaluates the

hypothesis that the pattern was generated by a homogeneous Poisson process independent of the covariate

against the alternative that the pattern is an inhomogeneous Poisson distribution with an intensity that

depends on the covariate. The test statistic given by

Z1 =
S − µ
σ

is used to perform the test and is based on S =
∑
i Z(xi) the sum of the covariate values at the observed

locations xi, where µ is the predicted mean value of S under n realizations of the null model and σ2

the associated variance. Under the null hypothesis the test statistic is approximately standard normal

distributed. Signi�cant deviation of the test statistic Z1 from the null distribution can be assessed by

comparing the value observed for Z1 to the standard normal percentiles.

3.1.3 Cumulative Distribution Function test (CDF)

The CDF test [4] is an adapted goodness-of-�t test for spatial point patterns. The test compares the

distribution of the covariate at the observed data points with that of the values of the covariate at all

the other spatial locations in the observation window. The idea here is that if the point process is

completely random, then the observed points are a random sample of spatial locations in the window, so

the values of the covariates at the data points should be a random sample of the values of the covariate

at all spatial locations in the window. The cumulative distibution functions F̂ (z) and F0(z) are compiled

from the covariate values evaluated at the observed data points and every spatial location in the window

respectively. F̂ (z) denotes the empirical cumulative distribution function of the covariate values at the

observed data points and is expressed as

F̂ (z) =
1

n

n∑
i=1

1(zi ≤ z),

where 1(·) is an indicator function. F0(z) is the cumulative distribution function of the covariate values

at every location u in the spatial window W . In practice, the covariate values are evaluated at the center

of every pixel in a grid. Thus,

F0(z) =
|{u ∈W : Z(u) ≤ z}|

|W |
≈ #{pixels u : Z(u) ≤ z}

#pixels
.

The Kolmogorov-Smirnov statistic

D = max|F̂ (z)− F0(z)|
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is then used to measure the discrepancy between F̂ (z) and F0(z). The null distribution of the test statistic

depends only on the number of data points under the assumptions that F0 is continuous and that the

point process is a homogeneous Poisson process.

3.2 Window construction via covariates

The methods for set estimation detailed in Chapter 2 typically give estimators that only depend on point

observations from the unknown set. Estimators derived may condition on some additional assumption

about the homogeneity of the underlying point process or a convexity restriction on the point process

domain. The algorithm we now propose considers the construction of a nonconvex window domain that

is built by incorporating the e�ect of the covariate on the occurrence of a point. The aim is to select a

window domain �ltered of all the areas for which the chance of a point occurrence is known to be equal

to or close to zero, and to determine this based on covariate information. To this end, suppose x1, . . . , xN

denote the set of unique points observed from the unknown, not necessarily convex, domain W ⊂ R2. Let

Mj denote a moving window centered at a location uj contained in W ∗, where W ∗ is a large convex area

that extends over the true domain W . Without loss of generality we suppose here that W ∗ is the smallest

bounding rectangular window that contains all the observed points and that the moving window Mj is a

square region given by

Mj = {u| ||uj − u||1 ≤
1

g
d, g ∈ {1, ..., m}},

that is, Mj is a square area centered at uj . The size of Mj is chosen as a function of the minimum

distance d = mini 6=k{||xi − xk||} of the point observations; chosen such that the number of points in Mi

(i.e. the area centered at the i-th observed point) is one. If uj is chosen so that they are regularly spaced,

then using the moving window corresponds to superimposing a grid over W ∗ with a grid cell size of 1
gd.

The moving window will visit each cell and compute a measure based on the covariates in the cell. Let

Z(u) denote a spatial covariate evaluated at u ∈W ∗ ⊂ R2 and f be a function that computes a localised

measure for subsets ofW ∗ based on the spatial covariate Z(u). The investigation of the dependence of the

point pattern on the spatial covariate should precede the implementation of this algorithm. Obviously, it

is desirable to use covariates believed to impact the distribution and abundance of the object of interest,

or that is correlated to them. The tests in Section 3.1 should be used to con�rm this. Let F = {f |τ(f)}

be the set that satis�es some predicate τ(.) based on f . The true domain W is then obtained as,

W =
⋃

∀j,fj∈F

Mj

where fj is the function value evaluated using the covariates at locations in Mj .
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The steps are presented in Algorithm 1. The idea here is to use the moving window to search over

overlapping grid cells in the larger domain W ∗ and based on some decision rule that conditions on the

covariates in the neighborhood of the observed data points, �lter out the regions that do not meet the

speci�ed criterion.

Algorithm 1 Covariate construction of nonconvex window

1. Calculate d = mini 6=k{||xi − xk||}

2. Create M i = {u| ||xi − u||1 ≤ 1
gd, g ∈ {1, ..., m}}

3. Select points u in Mi and corresponding Z(u)

4. Calculate f using selected covariates Z(u) in Mi and let these computed values be denoted by fi

5. Let F = {f | τ(f)} statisfy a chosen predicate τ(.) such that all fi ∈ F

6. Create Mj = {u| ||uj − u||1 ≤ 1
gd, g ∈ {1, ..., m}}

7. Select points u in Mj and corresponding Z(u)

8. Calculate f using selected covariates Z(u) in Mj and let these computed values be denoted by fj

9. True domain: W =
⋃
∀j,fj∈F Mj

10. Iterate through the regions at the edges and reduce their size each time to reduce roughness of window

Algorithm 1 is illustrated with the toy example shown in Figure 3.3. The �gures are created using R [76].

The point pattern could denote for example the locations of households in a rural settlement and the

terrain elevation used as a spatial covariate. The spatial covariate surface is generated using Gaussian

mixtures in this �gure. In this setting, the point occurence of a household would only be observed in

regions that have viable building land.

(a) Point pattern (b) Surface plot of spatial covariate

Figure 3.3: A toy example of a point pattern plot in (a) and spatial covariate surface in (b).
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A feasible region for building could be characterized by the average change in elevation over areas where

the points in the pattern were observed. In regions not suitable for building (i.e. areas for which the point

occurrence of a household would not be observed), we expect that the average change in elevation will be

more variable and thus outside the range of values observed over the points in the pattern.

In implementing the �rst step of Algorithm 1, we calculate the minimum Euclidean distance between the

points in the observed pattern. In the next step, a square moving window is created that is centered over

the points in the pattern and has a side length proportional to the minimum distance between two points.

The only requirement in choosing the size of the moving window is that it should only contain a single

point (its center) when centered on each observed point in the pattern. Choosing any value less than the

minimum distance between two points observed in the pattern and greater than zero will achieve this. For

our purposes, we arbitrarily choose half the minimum distance as the side length for the square window.

Thus the window is given by

Mi = {u| ||xi − u||1 ≤
1

2
d}.

Figure 3.4 depicts an illustration of this step.

Figure 3.4: Illustration portraying Mi regions on toy example point pattern.

In the next step, points u shown in Figure 3.5 are selected in each Mi as
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u = xi ±
d

4
(s1, s2)

where s1, s2 = 1, 3. The points are selected such that they cover the area spanned by the moving

window. The spatial covariate values Z(u) corresponding to the locations u and at the point xi are then

determined.

Figure 3.5: Illustration portraying the selected points u (represented by closed dots), xi (represented by

an open dot) and Mi enclosed in the square boundary.

The successive step entails evaluating a function of these spatial covariate values which is selected here as

the sample variance and is given by

fi(z1, ..., zJ) =
1

J − 1

J∑
j=1

(zj − z̄)2

where z1, ..., zJ denotes the observed values of the covariates corresponding to the J selected points u in

Mi and z̄ is the average of these values. We then specify a selection criterion that determines whether

regions that do not coincide with the observed pattern should be included or excluded from the true

domain. In the setting of our toy example these are the areas for which the variablity in the covariate is

outside the range given by the variability in covariate values for the Mi regions. Thus a region is included

if the value of the function of the covariates in that area is an element of

F = {f | mini{fi} ≤ f ≤ maxi{fi}}.

Steps 6-8 entail repeating the process of steps 2-4 for the areas that do not coincide with the points

observed in the pattern. The true domain is then constructed as the union of these areas for which the
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value of the f is contained in the set F . The result of this process in shown in Figure 3.6. The roughness

of this window can be improved by iterating through the regions at the edges and reducing their size each

time.

Figure 3.6: Point pattern plot over covariate constructed nonconvex window.

3.3 Concluding remarks

In this chapter, we presented an algorithm for selecting a nonconvex window for a point pattern when

additional covariate information is available. The algorithm works by using a moving window to search

over a larger domain than that of the true window and, using a function or feature of the spatial covariate

in regions over points observed in the pattern, construct a nonconvex window. Test for the dependence

of the point pattern on the spatial covariate should be evaluated and con�rmed using the methods in

Section 3.1. Covariates that impact the distribution and abundance of the points of interest are desired.

The investigation of the dependence of the point pattern on the spatial covariate should precede the

implementation of this algorithm. Testing for global and local dependence of point patterns on covariates

in parametric models can also be done using the method proposed in [68]. The e�ect of how the proposed

nonconvex window may improve the accuracy of spatial measures is the subject of the next chapter.

Particular attention is given to kernel smoothed intensity estimates, a descriptive measure that captures

the �rst order properties of a point pattern. The de�nition of �rst-order properties in the context of point

pattern analysis was introducted in Chapter 1, we visit this de�niton again in the next chapter.



Chapter 4

Intensity estimation

In Chapter 1, we introduced and brie�y discussed �rst-order properties for a spatial point pattern and

how these can be expressed using the intensity function. In this chapter we expand on this discussion.

All analysis, simulations and �gures in this chapter are created using the spatstat package in R [4, 76].

4.1 Intensity function

The intensity of a point pattern is a descriptive measure analogous to the average of a population of

numbers [4]. A query into the properties of the intensity of a process is often the aim of a scienti�c

investigation and is a crucial part of point pattern analysis [51, 66]. For example, in forestry surveys the

stand density, the number of trees growing per unit area, is an important quantity to be estimated [38].

A standard scienti�c question is whether the intensity varies spatially; is inhomogeneous or homogeneous.

The spatial variation in intensity could indicate an inclination for point objects to cluster in certain regions

of the study area. In an ecological setting for example, the intensity could demonstrate a preference of a

species of animal for a certain habitat [109, 110, 111]. In other settings it may indicate the productivity

of crops [89, 107], or areas of high crime prevalence [59, 39].

The intensity characterizes the �rst-order properties [36] of a spatial point process. First-order properties

describe how the average of the process varies over di�erent locations in space [36]. The intensity function

λ(x) [36] at position x ∈ W , where W is the spatial domain of the observed point pattern, is de�ned as

the average number of points per unit area and is denoted by the expression,

λ(x) = lim
dx→0

{
E(N(dx))

dx

}
(4.1)

where dx is a small region around x, E(·) is the expected value operator, dx is the area for this region,

43
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and N(dx) refers to the number of events in the region dx. A point pattern that has constant intensity

λ(x) = λ over varying locations is termed �rst-order homogeneous whereas inhomogeneous point patterns

have non-constant intensity functions varying with x. In the case of a homogeneous point process, the

intensity has an unbiased empirical estimator [4],

λ̂ =
number of points

area of W
,

whereW denotes the spatial domain of the observed point pattern. The intensity λ(x) is a point de�nition

quantity, that in practice, can only be estimated by the available data. Values of the intensity at certain

locations in W , are directly estimated from neighbouring data and the resultant estimates presented.

The intensity function may be estimated using parametric or nonparametric methods. In the case of a

parametric approach, an underlying parametric model is proposed and the parameter estimates for the

model determined via optimal criteria such as maximum likelihood [16, 65]. The optimisation is done in

the global scale over the whole region W being considered. As an example, the likelihood function for a

inhomogeneous Poisson point process [16] can be expressed as

l(θ) =

{
n∏
i=1

λθ(xi)

}
exp

(
−
∫
W

λθ(u)v(du)

)

where x1, ...,xn are the data locations, n is the number of observed data points in the spatial domain W ,

λθ(·) is the intensity function and θ a vector of parameters. The parameter estimates θ̂ will be the set of

values that then maximise the given likelihood function.

Nonparametric estimation is data-driven and the estimation is only concerned with local scale variations.

A nonparametric approach of estimation may be preferred over a parametric approach of estimation since

it requires few modelling assumptions that may not necessarily hold in practice. Two main techniques for

nonparametric intensity estimation are based on quadrat density and kernel density. We give a discussion

below of intensity estimation via quadrat densities and dedicate the remainder of Chapter 4 to smooth

estimates for the intensity function based on kernel functions. The reader is referred to [16, 65] for a more

extensive discussion of parametric methods.

4.2 Quadrat counts

Quadrat intensity estimates [4] give a simple estimate of the intensity function. The spatial domain

or study area W is divided into L subregions {sl : l = 1, ..., L}, termed quadrats. The quadrats may

have equal area, but this is not necessarily required. Partial quadrats may also arise at the boundary of

the observation window resulting from a non-rectangular or irregular shaped study window. The point

intensity is computed for each quadrat by dividing the number of points in the quadrat by the quadrat's



CHAPTER 4. INTENSITY ESTIMATION 45

area, that is,

λ̂(sl) =
number of points in sl

area of sl
.

Quadrats can take the form of any shape, for example, rectangles, hexagons, triangles, etc, but at each

application are all the same shape usually. The quadrat size has an impact on the estimated intensity and

should be chosen carefully. Small quadrats may yield spiked intensity maps with many empty quadrats,

the results of which may be uninformative. Large quadrats produce smoother intensity maps but may

mask subtle changes in the distribution of spatial intensity. Consider Figures 4.1 and 4.2. Figure 4.1

shows a point pattern simulated from a homogeneous Poisson process with λ = 2 and Figure 4.2 a point

pattern simulated from an inhomogeneous point pattern with intensity of the form,

λ(x) = 30 exp

(
−1

4
(x1 − x2)

)
. (4.2)

Both are simulated over a square window domain with a side length of 10.

Figure 4.1: Point pattern simulated from a homogeneous Poisson process with λ = 2 over a square window

with a side length of 10.

The quadrat intensity estimates with varying quadrat sizes for the homogeneous and the inhomogeneous

point patterns are shown in Figures 4.3 and 4.4 respectively. Figures 4.5 and 4.6 depict the respective

quadrat intensity estimates with varying options for the quadrat shapes.
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Figure 4.2: Point pattern simulated from an inhomogeneous Poisson process with λ(x) taking the form

of Equation 4.2, over a square window with a side length of 10.

(a) Quadrat counts for 3× 3, 7× 7 and 10× 10 grids

(b) Intensity estimates for 3× 3, 7× 7 and 10× 10 grids

Figure 4.3: Quadrat counts and corresponding intensity plots with square quadrats of various sizes for

simulated pattern depicted in Figure 4.1.
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(a) Quadrat counts for 3× 3, 7× 7 and 10× 10 grids

(b) Intensity estimates for 3× 3, 7× 7 and 10× 10 grids

Figure 4.4: Quadrat counts and corresponding intensity plots with square quadrats of various sizes for

simulated pattern depicted in Figure 4.2.

(a) Quadrat counts for square, hexagonal and triangular quadrats

(b) Intensity estimates for square, hexagonal and triangular quadrats

Figure 4.5: Quadrat counts and corresponding intensity plots with quadrats of various shapes with equal

area for simulated pattern depicted in Figure 4.1.
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(a) Quadrat counts for square, hexagonal and triangular quadrats with equal area

(b) Intensity estimates for square, hexagonal and triangular quadrats with equal area

Figure 4.6: Quadrat counts and corresponding intensity plots with quadrats of various shapes for simulated

pattern depicted in Figure 4.2.

4.3 Kernel smoothed intensity estimation

The kernel estimate λ̂(x) for the intensity at the point x, calculated from observed locations x1, ...,xn

has the standard form given by [4, 16, 23],

λ̂(x) =

n∑
i=1

1

h2
K

(
x− xi
h

)
. (4.3)

Here K(·) denotes the kernel function, de�ned for 2-dimensional x such that K(x) ≥ 0 and∫
R2

K(x)dx = 1.

In Equation 4.3 the distances between x and each point xi that lies within a region controlled by the

bandwidth, h, is measured and the contribution to the intensity determined by how close the point is to

x. An edge corrected kernel estimator [23] for the intensity is given by

λ̂(x) =
1

ph(x)

n∑
i=1

1

h2
K

(
x− xi
h

)
. (4.4)

where ph(x) =
∫
W

1
h2K(x−uh )du is an edge correction term for edge e�ects (discussed in Chapter 1).
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The kernel function K(·) will usually be a radially symmetric unimodal probability density function

centered at the origin. Consequently, the kernel is any non-negative function that is integrable over its

whole domain with a value equal to one, centered at zero, symmetric about its center, and has �rst and

second moments that exist. Examples include the standard bivariate normal density function

K(x) = (2π)−1exp(−xTx),

and the bivariate Epanechnikov kernel

K(x) =
2

π
(1− xTx)1(xTx < 1)

where 1() is an indicator function [97]. Figure 4.7 depicts examples of bivariate kernel functions with the

stated properties.

(a) Gaussian (b) Epanechnikov

(c) Disc (d) Quartic

Figure 4.7: Examples of bivariate kernel functions

K(·) could also be of the form of a product kernel K(u) = K(u1) ·K(u2). Table 4.1 gives several examples

of univariate kernel functions [48, 97] with the properties described above.



CHAPTER 4. INTENSITY ESTIMATION 50

Kernel K(t) for t ∈ R

Epanechnikov 3
4
√
5
(1− 1

5 t
2) for |t| <

√
5, 0 otherwise

Gaussian 1√
2π
e−

1
2 t

2

for all t

Uniform 1
2a for −a ≤ t ≤ a, 0 otherwise

Triangular 1− |t| for |t| < 1, 0 otherwise

Logistic 1
et+2+e−t

Silverman kernel 1
2e
− |t|√

2 sin( 4|t|+
√
2π√

36
)

Table 4.1: Examples of univariate kernel functions [48, 97] commonly utilized

The estimation of the intensity of a spatial point process slightly di�ers from that of a probability density

in that the intensity function is not required to integrate to unity, so is not normalised. In the context of

a spatial analysis it may be inappropriate to assume a Poisson point process, corresponding to assuming

independent and identically distributed random variables in density estimation. This assumption is often

used in the derivation of error and standard error results for the density estimate [97].

The bandwidth is denoted by h and controls the level of smoothing. Utility of a single value of the

bandwidth implies that the kernel function placed on each observed point is scaled equally in all directions.

Some applications, beyond the scope of this mini-dissertation may require the use of a matrix of smoothing

parameters allowing for non-constant directional variation [42, 64, 77].

The selected bandwidth is directly responsible for the approximation accuracy [97]. Silverman [97] derived

expressions for the approximations of the bias and variance under certain assumptions for the multivariate

kernel density estimate,

f̂h(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
,

of the density function f(x), where h and K(·) are the bandwidth and kernel function respectively, K(·)

is now de�ned for Rd, and n is the number of observed data points xi contained in Rd. The derived

expression for the approximation of bias is

bias(f̂h(x)) ≈ 1

2
h2f ′′(x)

∫
tT tK(t)dt,
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and for the variance,

var(f̂h(x)) ≈ 1

nh
f(x)

∫
{K(t)}2dt.

Here f ′′(x) denotes the second order derivative of f(x). The choice of bandwidth involves a trade-o�

between bias and variance. As the size of the bandwidth increases the bias increases and the variance

decreases.

The choice of h, the bandwidth, is crucial in estimating the kernel smoothed intensity function [17, 23,

27, 97]. A large choice for h will mask the structure of the data and over-smooth the density estimate,

reduce precision and decrease variance, whereas, a small h will under-smooth the density estimate, increase

precision and increase variance. The e�ects of the choice of bandwidth are illustrated in Figures 4.8 and

4.9 for the simulated homogeneous point pattern in Figure 4.1, and the simulated inhomogeneous point

pattern in Figure 4.2 respectively. As seen in the �gures, when the choice of bandwidth is relatively small

(i.e. h = 0.25), the kernel smoothed intensity estimate will �t the data well, but the intensity estimate

function will be jagged and spiked. If we choose a larger bandwidth, say h = 1, we get a smooth function

for the intensity estimate. A good choice for h would be a value that gives a smooth estimate for the

intensity function and that captures the distribution of the data.

(a) Kernel smoothed intensity estimate for bandwidth size 0.25, 0.5 and 1

(b) 3D perspective kernel smoothed intensity estimate plots for bandwidth size 0.25, 0.5 and 1

Figure 4.8: Kernel smoothed intensity estimates and corresponding 3D perspective plots are shown in

panel (a) and (b) respectively with bandwidths of various sizes for the simulated homogeneous pattern

depicted in Figure 4.1.
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(a) Kernel smoothed intensity estimate for bandwidth size 0.25, 0.5 and 1

(b) 3D perspective kernel smoothed intensity estimate plots for bandwidth size 0.25, 0.5 and 1

Figure 4.9: Kernel smoothed intensity estimates and corresponding 3D perspective plots are shown in

panel (a) and (b) respectively with bandwidths of various sizes for the simulated inhomogeneous pattern

depicted in Figure 4.2.

The form of the d-dimensional multivariate kernel density estimator [26, 27] for a random sample x1,x2, ...,xn

is

f̂H(x) = n−1
n∑
i=1

KH

(
x− xi

)
, (4.5)

where

• KH(x) = |H|−1/2K(H−1/2x), and K : Rd → R, is a kernel function that takes the argument x ∈ Rd.

• n is the number of d-dimensional vectors observed.

• H is a d×d bandwidth matrix, which is �xed, symmetric and positive de�nite1. As in the univariate

case, the level of smoothing of the kernel density function is mostly determined by the bandwidth

matrix.

Depending on the choice of bandwidth matrix, the kernel density function can either be too smooth and

inaccurately represent the data, under-smoothed and representative of the data, or smooth and a good

1The determinant of a positive de�nite matrix is always positive, so a positive de�nite matrix is always nonsingular and

invertible [9]
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�t for the data set. There are two main cases of the forms that the bandwidth matrix can assume: The

bandwidth matrix is symmetric and positive de�nite with the form

H =


h21 h12 · · · h1d

h12 h22 · · · h2d

· · · · · ·
. . . · · ·

h1d h2d · · · h2d

 . (4.6)

The bandwidth matrix is diagonal, and positive de�nite with the form

diag(H) =


h21 0 · · · 0

0 h22 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · h2d

 . (4.7)

If we let h1 = h2 = . . . = hd, the bandwidth matrix reduces to

H = h2Id =


h2 0 · · · 0

0 h2 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · h2

 , (4.8)

where Id denotes a d× d identity matrix. For this case of the bandwidth matrix, Equation 4.5 reduces to

f̂H(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
=

1

nhd

n∑
i=1

K

(
x1 − xi1

h
,
x2 − xi2

h
, ...,

xd − xid
h

)
.

In the case of a symmetric and positive de�nite bandwidth matrix of the form given in Equation 4.6, the

e�ect of the kernel function placed on each observed point has non-constant directional variation. This

indicates that the points in the pattern have directional dependence. In the case of the diagonal matrix

of the form given in Equation 4.7, there is no directional dependence, and the kernel function placed on

each observed point is scaled equally or unequally (i.e hj = h for all j = 1, ..., k or at least one hj 6= hi

when i 6= j). Figure 4.10 shows bivariate Gaussian kernel functions where the bandwidth matrix has the

three forms discussed and are chosen as

H1 =

 0.75 0.1875

0.1875 0.25

 ,
H2 =

 0.75 0

0 0.25,

 ,
and

H3 =

 0.1875 0

0 0.1875

 .
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(a) H1 (b) H2 (c) H3

Figure 4.10: Contours of bivariate Gaussian kernel function for varying choices of the bandwidth matrix.

The following example is based on a point pattern created by combining translated realizations of a

homogeneous Poisson point process, with λ = 2, simulated over an elliptical domain rotated by 45 degrees

in an anticlockwise direction. The point pattern is given over a rectangular window shown in Figure

4.11(a). The kernel smoothed intensity estimate for the point pattern is �tted using a bivariate Gaussian

kernel with the bandwidth matrix H1 that was used in the preceding example. Figure 4.11(b) shows the

result.

(a) Point pattern (b) Kernel smoothed intensity estimate

Figure 4.11: Point pattern (points in pattern shown with black dots) and bivariate Gaussian kernel

smoothed intensity plot are shown in panel (a) and (b) respectively. Points in pattern are shown with red

dots in panel (b). Contour lines are also indicated in the kernel smoothed intensity plot in panel (b).

4.4 Intensity as a function of a covariate

In Chapter 3 a spatial covariate Z(u) was de�ned as a spatial measurement or continuous regionalised

variable de�ned at every point location u in the window domainW . Intensity estimation can be extended
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to allow for the e�ect of spatial covariates on the distribution of the point pattern. In this section we give

consideration to parametric and nonparametric strategies for modelling the intensity dependent on some

underlying covariate. In each case, it is assumed that the intensity is a function of spatial covariates.

That is, it is assumed that

λ(u) = ρ(Z(u)),

where ρ is a function expressing how the intensity of points relate to the covariate values Z(u). A typical

parametric model for the relationship between the covariate Z(u) and the intensity λ(u) is the loglinear

model [2]

λ(u) = exp(βTZ(u)),

where β is a vector of parameters. This model e�ectively �ts a Poisson point process with intensity

of a loglinear form. This is a form of the logistic regression model popular in the �eld of statistics.

The expression implies that the intensity varies exponentially as a function of the covariate. Parameter

estimates of this model are derived via maximum likelihood.

The probability of occurrence P (u) [2] is de�ned as the probability that at least one point falls inside a

�ne cell contained in the study area and is related to the intensity through the expression λ(u) = P (u)
1−P (u)

[2]. It can be shown via simple algebraic manipulations [2] that the probability of occurrence is expressed

by

P (u) =
exp(βTZ(u))

1 + exp(βTZ(u))

in some applications [2, 3, 4], and may be used to predict and identify areas of high or low point occurence

rates.

Nonparametric models do not assume a functional form and estimation involves �nding ρ. Baddeley et

al [3, 4] proposes an estimation for ρ that closely resembles probability density estimation from biased

sample data and estimation of relative densities. Under regularity conditions ρ is proportional to the

ratio of the density of covariate values at the points in the process and the density of covariate values at

random locations. They de�ne a spatial cumulative distribution function of a single, real-valued covariate

Z(u) on W given by

G(z) =
1

|W |

∫
W

1{Z(u) ≤ z}du

where |W | denotes the d-dimensional volume of the windowW and 1 is an indicator function that evaluates

to 1 if Z(u) ≤ z and 0 otherwise. G is assumed to have a derivative g. The non-normalised counterparts

G∗(z) = |W |G(z) and g∗(z) = |W |g(z) are used for convenience. In practical applications, G(z) is

estimated by getting the value of the covariate evaluated at a �ne grid of pixel locations and forming the

cumulative distribution function

G(z) =
#{pixels u : Z(u) ≤ z}

#pixels
.
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The form of the kernel estimators of ρ for the ratio, reweighted and transformed case are

ρ̂R(z) =
1

g∗(z)

∑
i

K(Z(xi)− z)

ρ̂W (z) =
∑
i

1

g∗(Z(xi))
K(Z(xi)− z)

and

ρ̂T (z) =
1

|W |
∑
i

K(G(Z(xi))−G(z))

respectively, where K(·) is a one-dimensional smoothing kernel, x1, ..., xn are the observed data points,

Z(xi) the value of the covariate at the observed data point, |W | is the area of the observation window W

and again G is the spatial cumulative distribution function (cdf) and g∗(z) = |W |g(z) (i.e. G′(z) = g(z)).

The derivative G′(z) is obtained via an approximation of a di�erentiated smoothed estimate of G.

The next section is dedicated to a discussion of the e�ects of intensity estimation over empty areas and the

consequence of using the Euclidean metric as a measure of proximity in calculating the kernel smoothed

intensity estimate.

4.5 Intensity estimation on nonconvex domains

4.5.1 Estimation in empty space

In Section 3.2, we considered the selection of a nonconvex window domain by incorporating the known

e�ects of a spatial covariate on the distribution of the pattern, particularly, the point occurrence. By

�ltering out these areas, we e�ectively assign zero intensity to points in these regions. In the case where a

typical rectangular window is naively speci�ed for an analysis, spurious estimation would occur in regions

where points are non-observable. This may undermine the integrity of the results derived and inference

that can be drawn from them. For example, a point pattern realized from a homogeneous Poisson process

bounded in an irregular nonconvex domain and analysed in a rectangular or convex window, may lead to an

incorrect conclusion of inhomogeneity when formal statistical testing [4] is done and the kernel smoothed

intensity estimate is inspected. This would result from the fact that erroneous estimates of intensity in

areas where no point occurrence can be observed would on average di�er with intensity estimates in areas

where points can be observed.

A useful diagnostic tool used to validate the �t of an intensity estimate is the relative intensity function.

The relative intensity function r(u) [4] measures agreement between the true intensity of a point process
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X and a �tted intensity. The relative intensity is expressed by

r(u) =
λ(u)

λ0(u)
.

where λ(u) and λ0(u) denote the true intensity and the �tted intensity respectively. Values of r(u)

close to 1 are indicative of the compliance of the �tted intensity to the true intensity value while values

greater(less) than 1 indicate that the intensity model underestimates (overestimates) the true intensity.

An estimate for the relative intensity in [4] is calculated via kernel smoothing by the expression

r̂(u) =
1

e(u)

∑
i

1

λ0(xi)
K(u− xi)

where K is the smoothing kernel function and e(u) is an edge correction factor for edge e�ects.

The following illustration makes use of the relative intensity function. The aim is to illustrate the e�ect of

estimating intensity outside the true window domain. For this task we consider four irregular nonconvex

planar domains, with varying areas shown in Figure 4.12, and four Poisson intensity functions. We

consider both homogeneous and inhomogeneous cases for the intensity function. The intensity functions

are only de�ned for their respective domains and points outside the domain attain an intensity value of

0. In the case of homogeneous intensity, λ = 0.2 and λ = 30 are used to simulate over the domains in

Figure 4.12(a) and Figure 4.12(b) respectively. For the case of inhomogeneous intensity,

λ(x) = −2

5
exp

(
−1

2
((x1 − 3)2 + (x2 − 2)2)

)
+ 30 (4.9)

is used to simulate over the domain in Figure 4.12(c) and

λ(x) = 90 exp
(
−(x1 − 5)2 − (x2 − 5)2

)
+ 3 (4.10)

for the domain in Figure 4.12(d). The kernel smoothed intensity is estimated in each case over a rectangu-

lar window domain. Figure 4.13 depicts the point pattern plot of the simulated points in these rectangular

windows. The corresponding kernel smoothed intensity estimates are shown in Figure 4.14. A Gaussian

kernel function is used for the smoothing. In Figure 4.14 it can be observed that intensity estimates

have been calculated for all the points in the rectangular domain including those extending beyond the

original domains from which the points were simulated from. Plots of the relative intensity functions for

each simulated pattern are shown in Figure 4.15. In Figure 4.15 we see large departures from the true

intensity in the kernel estimates in the areas outside the domain. In all instances, the kernel smoothed

intensity estimate overestimates the true intensity in these areas (i.e. the relative intensity is less than

one and relatively close to zero). For regions inside the domain, the �tted kernel intensity models the true

intensity fairly well.
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(a) (b)

(c) (d)

Figure 4.12: Irregular nonconvex window domains with varying areas, where (a), (b), (c), and (d) have

areas of 508.6584, 3.697251, 2.15776, and 56.80648 square units respectively.
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(a) (b)

(c) (d)

Figure 4.13: Point pattern plots of simulated points in a rectangular window, overlayed with the true

window domain.
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(a) (b)

(c) (d)

Figure 4.14: Kernel smoothed intensity plots of simulated point patterns.

(a) (b)

(c) (d)

Figure 4.15: Relative intensity plots of simulated point patterns.
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4.5.2 Euclidean measure of proximity

The kernel smoothed intensity estimate in Equation 4.3 apportions weights based on the Euclidean dis-

tance of a point to the point events observed in the point pattern. Utility of the Euclidean metric assumes

that the point pattern is realized from a point process occurring in Euclidean space and that the smallest

distance between points is formed along a path formed by the straight line segment representing this

distance [55, 62]. The result is a kernel estimate that does not regard the irregular boundaries or holes in

areas of the study domain. We illustrate this with the point pattern shown in Figure 4.16. The points are

a realization of a homogeneous Poisson process with λ = 25 in an irregular, nonconvex, window domain

shown in Figure 4.12(c). Consider a single point event observed on this window domain shown in Figure

4.17. If the Euclidean distance is used as a metric to characterize the distance between two points, the

in�uence of the point event decays linearly as the distance from it increases. Consequently, the in�uence

of the point event to other points is di�used radially from its center regulated by the linear distance.

This means that the contribution to the kernel smoothed intensity estimate is higher even when the path

between points are constrained by the boundary of the window domain. This can be observed in Figure

4.17.

Figure 4.16: Point pattern simulated from a Poissoin process with λ = 25 over an irregular, nonconvex

window,
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Figure 4.17: Illustration of the e�ect of using the Euclidean distance, over nonconvex domains, in estimat-

ing the kernel smoothed intensity function shown for a single point event from Figure 4.16. A Gaussian

kernel is used.

Since traditional kernel density estimation applies kernel weights to Euclidean spaces, a modi�ed kernel

smoothed intensity estimator is required that allows for the distances between points to be represented

by the true path between them. Several authors such as [10], [70], [114] and [117] have made use of

an adapted version of the traditional kernel density estimator to allow for intensity estimation on linear

networks, expressed as

λ̂(x) =

n∑
i=1

1

h
K

(
di
h

)
,

where di is the shortest path distance from the point x to the point xi on the linear network, h is the

bandwidth, and K(·) is a kernel function. In this context, smoothing along the shortest path distances

on the network is used as an alternative to the Euclidean distance. This variant of the kernel density

estimate will be used for the kernel smoothed intensity estimate on nonconvex domains. Here the Euclidean

distance is changed out for the shortest path on the nonconvex domain. Figure 4.18 illustrates the e�ect

of swapping out the Euclidean distance for the shortest path distance in the nonconvex window domain

of the point pattern in Figure 4.16. Here we see that the weight of in�uence of the given point di�uses

along a connected physical path.
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Figure 4.18: Illustration of the e�ect of using the shortest path distance, over nonconvex domains, in

estimating the kernel smoothed intensity function shown for a single point event from Figure 4.16. A

Gaussian kernel is used.

4.6 Concluding remarks

In this chapter we considered nonparametric methods for intensity estimation of point pattern data.

Quadrat and kernel smoothing methods were reviewed in Sections 4.1 and 4.2 respectively. Particular

focus was given to the kernel smoothed technique for intensity estimation. The kernel method for intensity

estimation can also be extended to allow for covariate e�ects, a topic covered in Section 4.3.

For kernel intensity estimates, the bandwidth needs to be chosen carefully since it is directly responsible

for the approximation accuracy. Large bandwidths mask the structure of the data and over-smooth the

kernel estimate whilst a small bandwidth will under-smooth the data and produce estimates with large

spikes.

It is important to select a representative window domain because this will directly a�ect the intensity

estimate. If a window is chosen too large we have estimation occurring over areas for which data has

not been observed and it has not been con�rmed that a point can occur there. The result is spurious

estimation of intensity in void areas where the point occurrence of an object or event can not happen.

The kernel smoothed intensity function apportions weights based on the Euclidean metric of distance.
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This assumes that the point pattern is realized from a point process occurring in Euclidean space and

that the smallest distance between points is formed along a path represented by this straight line segment.

In this instance the kernel smoothed intensity function does not respect the boundaries or void areas in

the domain. The solution here is to switch out the Euclidean metric for the distance in the intensity

estimation, with that of the shortest path distance on the nonconvex domain, a concept which has been

used for density estimation on linear networks.



Chapter 5

Application

In this chapter we apply the algorithm proposed in Section 3.2 to a point pattern where the points denote

the locations of households in a rural setting. The chapter is organised as follows. Section 5.1 describes the

data that will be utilised in applying the algorithm, namely the point pattern and spatial covariate data.

The spatial covariate data is extracted from a Digital Elevation Model, the subject of which is detailed

in Section 5.2. Section 5.3 is devoted to a discussion on mathemetical morphology and morphological

operators that will be used in the processing of the Digital Elevation Model. Section 5.4 presents the

results of applying the proposed algorithm discussed in Section 3.2. Analysis in this chapter is done using

R [76].

5.1 Data description

The data that will be used was collected in a census in the Serengeti District, Mara province, situated in

Northern Tanzania1,2. The census comprises of georeferenced data for 35947 households spread across 88

villages. The locations of the households are given as latitude and longitude in decimal degree coordinates.

For the purposes of this mini-dissertation 5 villages, namely Iseresere, Nyamakobiti, Magatini, Majimoto

and Hekwe with households that number 295, 412, 100, 336 and 235 respectively, will be utilized. The

set of locations of each household in the villages will form the point pattern. The left pane of Figures 5.2

and 5.1 depict point pattern plots of the villages over a rectangular window.

As a spatial covariate, elevation data of Tanzania from a Digital Elevation Model (DEM) will be used (See

Section 5.2 for de�nition of a DEM). The data was collected in the Shuttle Radar Topographic Mission

1https://www.gla.ac.uk/researchinstitutes/bahcm/sta�/katiehampson/,http://www.katiehampson.com/
2Ethics Reference number: NAS339/2019

65
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(SRTM)2,3, an international e�ort to generate a digital elevation model database of the Earth's topology.

The SRTM data was sampled over a grid of 1 arc-second by 1 arc-second (approximately 30m by 30m),

with linear vertical absolute height error of less than 16m.

Elevation is a property of the terrain of an area that in�uences the distribution of environmental phenom-

ena and the nature of environmental processes [80]. Owing to this, it is useful as a covariate in describing

terrain viable for (new) house locations. Terrain properties such as elevation at any point, slope and

aspect are attributes of surface form that can be characterized using a DEM. Plots of the terrain elevation

for the selected villages are depicted in the right pane of Figures 5.1 and 5.2.

(a) Iseresere

(b) Nyamakobiti

Figure 5.1: Point pattern plots (left) and terrain elevation (right) for villages Iseresere and Nyamakobiti

in Tanzania's Mara province on a rectangular window.

3https://www2.jpl.nasa.gov/srtm/
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(a) Magathini

(b) Majimoto

(c) Hekwe

Figure 5.2: Point pattern plots (left) and terrain elevation (right) for villages Magatini, Majimoto and

Hekwe in Tanzania's Mara province on a rectangular window.
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5.2 Digital Elevation Model

DEMs are utilized in a wide �eld of applications [1, 46, 47, 94, 101] that include hydrologic and geologic

analyses, hazard monitoring, natural resources exploration and agricultural management. In hydrologic

applications [40, 49, 57, 72, 102], the DEM gives insights about the relief of ground surface that aids the

modelling of water, glaciers and ice movement, determining landslide probability, �ood prone area mapping

and estimating the volume of proposed reservoirs and wells. Applications in the �eld of geoscience [33, 63]

involve the classi�cation of the earth's surface at a global scale for large-scale modelling of geo-processes

such as soil erosion, migration, and deserti�cation.

A DEM represented as a raster grid, is a matrix of cells, with each cell containing a numeric value

representing the elevation of the earth's surface above sea level in meters. The grid cells represent a

square unit of area and each hold a measurement at sampled points, or estimates at unsampled points,

of the elevation value referenced horizontally to a geographic coordinate system. A common method for

generating a DEM is through the use of elevation data collected via remote sensing techniques. Methods

for obtaining elevation data for DEM surfaces include,

• satelilite interferometry [8], a method that involves using two or more synthetic aperture radar

(SAR) images to create maps of digital elevation,

• photogrammetry [113], making use of aerial photographs from di�erent vantage points,

• LiDAR (Light Detection and Ranging) [30], measuring light re�ected from the ground to obtain

elevation of the Earths surface, and

• land survey methods [60].

When a DEM is viewed on a map it appears as a surface layer symbolized by a colour ramp as shown

in Figure 5.3(b). Elevation data may also be digitally represented on a triangular irregular network, and

contours [11, 50, 53, 116]. Figure 5.3 depicts the raster grid representation and surface plot of elevation

data from a DEM for Bokore village in Tanzania's Mara Province.

When considering DEMs as models for a surface form, a few things should be noted. A DEM is a set of

discrete elevation measurements, used to model a usually undi�erentiable continuous surface form. The

accuracy with which the DEM models the true surface will depend on several factors [35, 52]. These are

the surface roughness, the DEM resolution (i.e. the size of the raster cells), the elevation data collection

method, and the interpolation algorithm used to obtain elevation values for unsampled points.
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(a) Raster grid representation

(b) Surface plot

Figure 5.3: DEM elevation data plots for Bokore village in Tanzania's Mara Province.

A global measure commonly used to assess the DEM accuracy is the Root Mean Squared Error (RMSE)

statistic [35, 52, 108]. The RMSE is an indicator of vertical accuracy in a DEM. The RMSE is calculated

by comparing the DEM with the most probable elevation points obtained at locations from �eld surveys,

aerotriangulated test points, or contours from existing source maps. It quanti�es the average deviation

between more precise �eld based observations and the DEM value at the set of control locations. The
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RMSE is given by the expression

RMSE =

√∑N
i=1(yi − yj)2
N − 1

where yi is an elevation from the DEM, yj is the `true' measured elevation of a test point and N is the

number of sampled points. The treatment of DEM error is beyond the scope of this mini-dissertation and

models used are assumed to give a fairly accurate representation of landform.

The DEM is a topographic surface with the grey level of a pixel being the elevation. Consequently,

mathematical morphology is well suited for the processing of elevation data. Mathematical morphology

is a branch of image analysis that deals with the extraction of image components [92, 96]. In the next

section, we give a brief discussion on mathematical morphologly and the mathematical morphological

operators that are used to analyse a DEM in our application. The section will also detail an algorithm

from [93], based on mathematical morphologly, used to characterize physiographic features, the physical

geography (i.e. mountains, basins, etc), of the earths's terrain represented by the DEM.

5.3 Morphological segmentation of physiographic features from a

DEM

5.3.1 Mathematical morphology

Mathematical morphology deals with the theory for analysing and processing geometric structures based

on set theory, lattice theory, topology and random functions. It involves the mathematical theory of

describing shapes using sets [95, 96, 98]. In mathematical morphology an image is de�ned by a set of

coordinate vectors in Euclidean space. A greyscale image f is a mapping

f : Df → T,

where Df , the de�nition domain, is the domain of f contained in a subspace Z2 of 2-dimensional Euclidean

space, and T is the set of possible pixel values [95, 98]. In a greyscale image pixels with high values

appear more white or bright and pixels with low values are black or dark. In the next section we de�ne

morphological operators that will be used in the algorithm [93] discussed in Section 5.3.3.

5.3.2 Mathematical morphological operators

In image analysis, morphological operators are used to extract desired structures from an image [95, 98].

This is done by probing the image with a set of known shapes termed structuring elements. Structuring

elements have a de�ned origin, the centre pixel of the structuring element, that identi�es the pixel in the
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image being processed and de�nes the neighbourhood used in the processing of each pixel [98]. The shape

of the structuring element is typically chosen based on prior knowledge about the geometry of the desired

structure of the object to be extracted from the image [98]. Figure 5.4 shows an example of a 3×3 square

structuring element around a target pixel and the neighbourhood de�ned by the structuring element.

Figure 5.4: Illustration of an example of a 3× 3 square structuring element around a target pixel and the

neighbourhood de�ned by the structuring element

Erosion

The erosion of a set X by a structuring element B is given by

X 	B = {x|Bx ⊆ X},

where 	 is the erosion operator and Bx is the structuring element when its origin coincides with x [98].

The eroded value of a greyscale image f(x) at a given pixel x is the minimum value of the image in the

window de�ned by the structuring element B when its origin is at x [98],

min
b∈B
{f(x+ b)}.

Erosion sets the pixel values within the structuring element to the minimum value of the image. The

result of applying erosion to a greyscale image is illustrated in Figure 5.5. The erosion is performed using

a diamond structuring element. The �gure shows the processing of a particular pixel in the input image.

The structuring element de�nes the neighbourhood of pixels to be used. The pixel being processed attains

the lowest value in this neighbourhood.
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Figure 5.5: Illustration of an erosion of a greyscale image by a 3× 3 square structuring element

Dilation

The dilation of a set X by a structuring element B is given by

X ⊕B = {x|Bx ∩X 6= ∅},

where ⊕ is the dilation operator and Bx is the structuring element when its origin is at x [98]. The dilated

value of a greyscale image at a pixel x is the maximum value of the image in the window de�ned by the

structuring element B when its origin is at x [98],

max
b∈B
{f(x+ b)}.
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Erosion and dilation are dual operators4. Erosion shrinks objects in an image whilst dilation expands them.

Figure 5.6 shows the resultant image when a dilation is performed with a diamond structuring element.

The pixel being processed attains the highest value in the neighbourhood de�ned by the structuring

element.

Figure 5.6: Illustration of a dilation of a greyscale image by a 3× 3 square structuring element

4Erosion of an image is equivalent to the complement of the dilation of the complemented image with the same structuring

element and vice versa. i.e. X 	B = (XC ⊕B)C [98]. This characterizes the operators duality property.
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Geodesic dilation

Geodesic dilation [98] involves the use of two images. One image is termed a marker and the other is

termed as mask. Let f and g denote the marker and mask image respectively. Both images must have the

same de�nition domain (i.e. Df = Dg ∈ Z2) and its also required that f ≤ g, that is, the pixel values in

the marker image should be less than or equal to the mask image pixel counterpart. The marker image f

is �rst dilated by a basic structuring element B. The resultant image is then forced to remain below the

mask image. The geodesic dilation, of size 1, of a marker f by a mask g, denoted by δ
(1)
g (f), is expressed

as

δ(1)g (f) = (f ⊕B) ∧ g

where the symbol ∧ denotes a pointwise minimum [98]. A geodesic dilation of size n, δ
(n)
g (f), of a marker

image f by a mask image g is obtained by successively applying a geodesic dilation of size 1 n times [98].

Geodesic dilation on a greyscale image is illustrated in Figure 5.7. A 3× 3 square structuring element is

used in the dilation step.

5.3.3 Peak extraction in DEM using mathematical morphological operators

In the context of terrain features, a peak is the pointed top of a mountain or ridge and relates to the

highest points of a mountain. In a DEM, the peaks are connected components that are enclosed in pixels

of lower elevation. These areas are visually discernible as bright regions in the greyscale image. We now

detail an algorithm presented in [93] for peak extraction from a DEM. This is based on mathematical

morphological operators namely, ultimate erosion and geodesic dilation. In the algorithm, ultimate erosion

involves the application of the erosion operator successively on an input image until components within the

image disappear and reconstructing each eroded image using geodesic dilation on an erosion of smaller

size. The reconstructed images are then subtracted from the corresponding eroded image to form the

eroded sets; the components that appear in the eroded image, but not in the reconstructed image. When

a component in the image disappears after an erosion, it is not reconstructed and will thus appear in

the eroded set. The union of all eroded sets is termed the ultimate eroded set and contains all the peak

pixels. The process of ultimate erosion in the algorithm is illustrated in Figure 5.8. In the �gure, the

images in the left panel are the result of applying succesive erosions. The middle panel contains images

reconstructed via the process of geodesic dilation where the eroded image is used as the mask, and an

erosion of smaller size as the marker. The right-hand panel contains the eroded sets formed by subtracting

the reconstructed image and corresponding eroded images and taking the unions of the eroded sets with

the preceding iterations.
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Figure 5.7: Illustration of a geodesic dilation of size 1 using a marker f and mask g, and a 3 × 3 square

structuring element in the dilation step.
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Figure 5.8: Illustration of ultimate erosion operation performed by the successive erosion (left) on the

image until objects vanish and reconstructing each eroded image (middle) using an erosion of smaller

size. The eroded sets (right) are formed by subtracting the reconstructed images with the corresponding

eroded images.



CHAPTER 5. APPLICATION 77

5.3.4 Gaussian blurring

Gaussian blurring [32] is a smoothing operator that uses an isotropic Gaussian function as a kernel (or

�lter) to remove the extremities of an image. The Gaussian kernel [32] G(x, y) used to smooth (i.e. blur)

the image is of the form

G(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
,

where σ is the standard deviation of the Gaussian function and (x, y) is the pixel coordinate. Figure 5.9

depicts an example of the Gaussian kernel centered at zero and a standard deviation of one. The Gaussian

blurring process involves moving over each pixel of the image and recalculating the pixel value based on a

weighted average of the pixels that surround it. The pixel neighbourhood and values are regulated by the

Gaussian kernel. Each new pixel value is determined by calculating a weighted average of the surrounding

pixel values using the values from the Gaussian function as weights. Pixels close to the center pixel have

higher weights than those further away. A discrete approximation of the Gaussian function is required

before smoothing can be performed, since the image is stored as a collection of discrete pixels and not as

a continuous function. The theoretical Gaussian distribution is non-zero everywhere which would require

an in�nitely large �lter. When used practically however, it is e�ectively zero more than three standard

deviations from the mean and thus can be truncated at this point. Figure 5.10 shows the result of applying

Gaussian blurring, with σ = 6, to an image of two parrots5. The input image and blurred image are shown

in Figures 5.10(a) and 5.10(b) respectively.

Figure 5.9: Gaussian kernel with mean (0, 0) and σ = 1

5https://www.bioconductor.org/packages/devel/bioc/vignettes/EBImage/inst/doc/EBImage-introduction.html. Date

accessed: 20 January 2020
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(a) Input image (b) Blurred image

Figure 5.10: Illustration of Gaussian blurring; (a) shows the input image of two parrots and (b) shows

the resultant image after Gaussian blurring is applied to the input image with σ = 6.

5.4 Nonconvex covariate constructed domain for locations of house-

holds

We now apply the proposed algorithm in Section 3.2 to construct a window for the locations of households.

As a preprossesing step, we extract and eliminate all mountain peak pixels in the DEM using the algorithm

discussed in Section 5.3.3. A 3 × 3 structuring square kernel is used for this process. Gaussian blurring

is used on the image before extracting peaks to reduce the detection of noisy peaks (i.e. connected pixels

that are enclosed in pixels of lower elevation but that are not necessarily mountain peaks or ridges).

During the application phase of this mini-dissertation we discovered that using Gaussian blurring on the

gradient surface of the DEM, instead of the DEM, allowed the algorithm to detect all mountain pixels

including mountain peaks. As a result, the step involving peak extraction through the algorithm detailed

in Section 5.3.3 was circumvented. It should however be noted that this only works if the mountain peak

pixels do not form large wide ridges.

The point occurrence of a household can only be observed in areas that have terrain that is viable for

building. A viable area for building could be characterized by terrain features observed in the neighbour-

hood of the points in the pattern expressed as the average slope, and/or elevation. In places not suitable

for building, we expect steeper slopes outside the range of values considered viable for house settlements.

In implementing the algorithm to the selected villages using the covariate data we do the following.

1. The minimum Euclidean distance6 between the points is calculated .

6The algorithm makes use of the Euclidean distance in de�ning of the moving window. The use of the shortest path

distance may result in a larger sized moving window that violates the requirement of having a single point contained in the

area spanned by the moving window when centered over observed point locations.
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2. A square moving window with side length equal to a multiple of the minimum Euclidean distance

between the observed points is de�ned.

3. The moving window scans the neighbourhood of each point in the pattern and calculates the average

slope.

4. A range for these values is used as the selection criterion to determine which quadrats should be

included for the window W : a quadrat should be deleted from the window if the average slope is

larger than the average slope of values considered viable as given by the range derived from the

observed points.

The result for the �ve villages and the corresponding terrain plots are depicted in Figures 5.11 and 5.12.

(a) Iseresere

(b) Nyamakobiti

Figure 5.11: Point pattern plots (left) and corresponding terrain slope (right) for villages Iseresere and

Nyamakobiti in Tanzania's Mara province, on nonconvex window constructed using covariate data
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(a) Magathini

(b) Majimoto

(c) Hekwe

Figure 5.12: Point pattern plot (left) and corresponding terrain slope (right) for villages Magatini, Maji-

moto and Hekwe in Tanzania's Mara province, on nonconvex window constructed using covariate data
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5.4.1 Landscape and terrain features

For the selection of sites for human settlement, in a rural setting, the location for shelter is typically guided

by some attractive and restrictive trait of the natural landscape. These may include features such as the

proximity to water and food, population density and usable land for agriculture and building. Figure 5.137

depicts a Google Earth satellite image of Iseresere village in Mara province, Tanzania. The geographical

locations, latitude and longitude, of the households are indicated on the image with red circles.

Figure 5.13: Google Earth satellite image of Iseresere village in Tanzania's Mara province, with household

locations indicated with red circles.

7Google earth V 7.3.2.5776. (July 13, 2018). Mara province, Tanzania. 1◦34'53.62”S, 34◦23'58.54”E. Eye alt 12.01km.

Maxar Technologies 2020, CNES/Airbus 2020. http://www.earth.google.com[March 20, 2020]
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Figures 5.148, 5.159 and 5.1610 show enlarged images of di�erent sites in the village. In the �gures,

terrain features such as hills (areas of high ground), ridges (sloping line of high ground) and �at plains

(even landmass of relatively uniform elevation) are identi�able. Households are distributed at the edge

of terrains with high relief. The occurrence of a household is only seen on �at plain areas and at the

base of the mountainous regions. The households cluster on plains adjacent to scarps (i.e. steep slopes).

On further inspection of the �gures, we observe that the patterns of settlements are arranged based on

the con�guration of the site, the shape of agricultural �elds and hills, streets and roads. The plan of the

village is mostly adjusted to the relief features of the region, some along the edges of the hill slopes. It is

also observed that homesteads are surrounded with patchy agricultural land.

5.5 Discussion

Notwithstanding the discussion on the appropriateness of the Euclidean metric as a measure of distance

on nonconvex domains, the scope of this mini-dissertation is to illustrate the implementation of the

proposed nonconvex window construction algorithm and thus the Euclidean distance is used as a measure

of proximity for ease of implementation. The Euclidean metric is used in the algorithm in the de�nition

of the moving window. If the shortest path distance was used to specify the size of the moving window, a

window larger in size would be de�ned that may violate the requirement of having a single point contained

in the area spanned by the window centered over observed point locations. Future research will implement

non-Euclidean metrics in the proposed algorithm.

The relative intensity estimate, introduced in Section 4.5.1, is used as a diagnostic tool to evaluate the

spatial domain constructed through the application of the proposed algorithm. The estimation is done

on rectangular windows that extend beyond the constructed nonconvex spatial domains shown in Figures

8Google earth V 7.3.2.5776. (July 13, 2018). Mara province, Tanzania. 1◦31'49.52”S, 34◦21'41.08”E. Eye alt

1.83km. Maxar Technologies 2020. http://www.earth.google.com[January 20, 2020], Google earth V 7.3.2.5776. (July

13, 2018). Mara province, Tanzania. 1◦32'36.14”S, 34◦22'12.67”E. Eye alt 2.98km. Maxar Technologies 2020.

http://www.earth.google.com[January 20, 2020], Google earth V 7.3.2.5776. (July 13, 2018). Mara province, Tanzania.

1◦36'48.25”S, 34◦21'42.04”E. Eye alt 2.00km. CNES/Airbus 2020. http://www.earth.google.com[January 20, 2020]
9Google earth V 7.3.2.5776. (July 13, 2018). Mara province, Tanzania. 1◦35'57.22”S, 34◦22'24.69”E. Eye alt

3.39km. Maxar Technologies 2020. http://www.earth.google.com[January 20, 2020], Google earth V 7.3.2.5776. (July

13, 2018). Mara province, Tanzania. 1◦35'10.67”S, 34◦22'39.62”E. Eye alt 2.94km. Maxar Technologies 2020.

http://www.earth.google.com[January 20, 2020], Google earth V 7.3.2.5776. (July 13, 2018). Mara province, Tanzania.

1◦34'31.19”S, 34◦22'12.20”E. Eye alt 4.43km. Maxar Technologies 2020. http://www.earth.google.com[January 20, 2020]
10Google earth V 7.3.2.5776. (July 13, 2018). Mara province, Tanzania. 1◦35'24.53”S, 34◦21'40.57”E. Eye alt

5.49km. Maxar Technologies 2020. http://www.earth.google.com[January 20, 2020], Google earth V 7.3.2.5776. (July

13, 2018). Mara province, Tanzania. 1◦33'30.73”S, 34◦22'03.92”E. Eye alt 2.93km. Maxar Technologies 2020.

http://www.earth.google.com[January 20, 2020], Google earth V 7.3.2.5776. (July 13, 2018). Mara province, Tanzania.

1◦35'35.08”S, 34◦21'59.23”E. Eye alt 3.46km. Maxar Tecnhonogies 2020. http://www.earth.google.com[January 20, 2020]
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5.11 and 5.12. A Gaussian kernel function is used for the smoothing. The result is overlayed with the

nonconvex spatial domains. The relative intensity plots for the villages are depicted in Figures 5.17 and

5.18. In the �gures we observe large departures from the true intensity in the kernel estimates in the

areas empty of data. In these areas, the relative intensity is less than one and relatively close to zero.

Consequently, there is a tendency for the true intensity to be overestimated in these regions. This is

observed for regions inside and regions outside the constructed nonconvex spatial domain and for all the

villages. The �tted kernel intensity models the true intensity fairly well in regions where the observed

occurrence of households are recorded as seen by the values close to one.
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(a)

(b)

(c)

Figure 5.14: Google Earth satellite image (left) and enlarged image (right) of di�erent sites in Iseresere

village in Tanzania's Mara province.
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(a)

(b)

(c)

Figure 5.15: Google Earth satellite image (left) and enlarged image (right) of di�erent sites in Iseresere

village in Tanzania's Mara province (continued).
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(a)

(b)

(c)

Figure 5.16: Google Earth satellite image (left) and enlarged image (right) of di�erent sites in Iseresere

village in Tanzania's Mara province (continued).
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(a) Iseresere

(b) Nyamakobiti

Figure 5.17: Relative intensity plots for villages Iseresere and Nyamakobiti estimated on a rectangular

window and overlayed with the nonconvex constructed window.



CHAPTER 5. APPLICATION 88

(a) Magatini

(b) Majimoto

(c) Hekwe

Figure 5.18: Relative intensity plots for villages Magatini, Majimoto and Hekwe estimated on a rectangular

window and overlayed with the nonconvex constructed window.
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Conclusion

In this mini-dissertation we considered spatial window selection techniques for point pattern data. The

selection of a spatial window precedes analysis of a point pattern data set and is important since it is

where estimation and prediction are done. A review of methods that involved the estimation of convex

and nonconvex sets when points realized from the unknown set, and points outside the set, are observed

was given. Some methods typically rely on the assumption of a homogeneous Poisson process and the

assumption of a convex domain, which may not necessarily be true in practice. In real world applications,

the distribution of points may be in�uenced by some underlying process, expressed as a covariate, resulting

in more complex spatial windows.

We presented a new algorithm for selecting the spatial point pattern domain without the restriction of

convexity. The algorithm works by using a moving window to search over a larger domain than that of

the true window and, using a function or feature of the spatial covariate in regions at observed points in

the pattern, construct a noncovex window. Test for the dependence of the point pattern on the spatial

covariate were discussed and should precede the application of this algorithm. Covariates that impact

the distribution and abundance of the points of interest are desired and should be con�rmed using these

methods. Testing for global and local dependence of point patterns on covariates in parametric models can

also be done using the method proposed in [68]. We applied the algorithm in the setting of rural villages

in Tanzania's Mara province and used remote sensed data from a DEM as a covariate. The extraction

of peaks through the use of mathematical morphological operators was included as a preprossessing step.

The algorithm did well in detecting and �ltering out areas of high relief and steep slopes, observed

characteristics that were seen to make the occurrence of a household improbable.

We discussed the importance of selecting representative spatial window domains and the e�ect that this has

on the kernel smoothed intensity estimate, a spatial measure used to investigate the �rst-order properties

89
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of a point pattern. The selected spatial window directly a�ects the intensity estimate. If a window is

chosen too large we have estimation occurring over areas for which data has not been observed and it has

not been con�rmed that a point can occur there. The result is spurious estimation of intensity in void

areas where the point occurrence of an object or event can not happen. The kernel smoothed intensity

estimate can also be extended to allow for covariate e�ects.

The kernel smoothed intensity function weights the in�uence of a point based on Euclidean distance. This

assumes that the point pattern is realized from a point process occurring in Euclidean space and that

the smallest distance between points is formed along a path represented by this straight line segment.

Consequently this would mean that the kernel smoothed intensity function does not respect the boundaries

or void areas in the domain. The solution here is to switch out the Euclidean metric for the distance

in the intensity estimation, with that of the shortest path distance on the nonconvex domain, a concept

which has been used for density estimation on linear networks.

In future work the algorithm could be extended to allow for an ensemble of spatial covariate e�ects. The

possibility of weighting covariates based on their in�uence on points in the pattern could also be explored.

One could also investigate ways to re�ne the selection criterion (function of the covariate), used as a

�lter to remove regions, and make the identi�cation of this feature more automatic. The de�nition of the

moving window using a non-Euclidean metric also warrants further implementation.

In this research we have contributed the following:

• reviewed methods for convex and nonconvex spatial window estimation,

• presented a new algorithm for nonconvex window construction of a point pattern using spatial

covariates,

• illustrated the e�ects of the choice of window on the kernel smoothed intensity estimate, and

• illustrated the e�ects of using the Euclidean metric as a measure of distance when computing the

kernel smoothed intensity estimate.
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