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ABSTRACT
This study uses remote sensing and GIS techniques to examine
the intensity and dynamics of land use/cover change and environ-
mental indices across a four-decade period in the Chingola district
of Zambia, from 1972 to 2020 using five classification stages
(1972, 1992, 2001, 2013, and 2020). A total of 10 key climate
change detection monitoring indices were generated using
RClimDex to examine the implications of land degradation on the
bioclimatic factors from 1983 to 2020. The findings revealed a sig-
nificant expansion in Built-ups (7.3%/year), farmlands (3.18%/year),
and mining areas (0.82%/year) at the expense of natural resour-
ces. The highest human pressure was exerted on Savannah wood-
lands (�0.78), through agriculture (0.76) and infrastructure
development (0.44) between 1992 and 2001.The analysis of the
bioclimatic indices revealed a significant decline in rainfall quan-
tity and intensity, and a rising in temperature (warmer days and
nights). The Annual rainfall has decreased by �3.25%, while the
potential evapotranspiration has increased by 0.04% from 1983 to
2020, resulting in an Aridity Index of 0.60 and a moisture deficit
index of �0.42. To offset agriculture’s propensity to spatially
expand and further encroach into savannah woodlands and for-
ests, urban containment policies and programs that stimulate
agricultural intensification are needed to reduce urban sprawl and
protect the city’s remaining forestlands.

HIGHLIGHTS

� The most significant changes in LULC in Chingola occurred
between 2001 and 2013 with a CLUDI of (623).

� It was observed that the days and nights are becoming warmer
given the trend TX90p and TN90p.

� The PET analysis showed the years 1999, 2000, 2005, and 2017
with the greatest rainfall deficits.
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� A declining trend was observed in NDVI, NDWI, NDMI, and
NDSI over the study period (1972–2020).

� The highest human pressure was exerted on Savannah wood-
lands with an urban sprawl index of (�0.78).

� The year 1998 was identified as the hottest and driest of
1983–2020 timeseries.

1. Introduction

In regions with extensive mining activities, several anthropogenic disturbances alter
directly and indirectly the landscape (Leal et al. 2012; Liu and Wang 2014; Li et al.
2015), destroying the natural forest and habitats of many species and modifying the
ecosystem functions (Lambin et al. 2003; Meyfroidt et al. 2013), polluting the air, soil,
and water (Skalos and Kasparova 2012; DeWitt et al. 2017; Kourouma et al. 2019).
Biomes such as forests, savannah woodlands, and wetlands are mainly subject to frag-
mentation (Batar et al. 2017), exacerbated by population growth, increased demands
for biofuels and food crops.

Zambia in general and Chingola district have had their landscape dominated by min-
ing activities since 1928 (Nakayama et al. 2011; Ncube et al. 2012; Kribek et al. 2014;
Lindahl 2014) characterized by large open pits, deep shafts, large volume waste disposal,
tailing dams, and pyrometallurgical processing facilities, posing significant impacts on the
environment in terms of air pollution, siltation of rivers, land contamination with heavy
metals and habitat destruction (Limptlaw 2003). The spatial extent, temporal dynamics
and cumulative effects of land use and land cover change on the climate and environ-
ment are not well understood in Africa in general and Zambia in particular.

Land use and land cover change are one of the main contributors to global warm-
ing (Linda and Oluwatola 2015), through deforestation that contribute to greenhouse
gases. The rise in temperature in Africa is projected to range between 4 and 6 �C in
the subtropics and between 3 to 5 �C in the tropics by the end of the century
(Engelbrecht et al. 2015; Nangombe et al. 2018). This is expected to exacerbate the
number of extreme weather events, such as drought, floods and heatwaves (Polioptro
and Bandala 2018), which are already occurring more frequently, intensely, and are
lasting longer than before (Perkins et al. 2012).

Moreover a city hosting a mining industry such as Chingola, is subject to a consistent rise
in air and land surface temperature and Urban Heat Islands (UHI) phenomena that trap the
local air pollution and humidity, decreasing labor productivity and making it difficult for
those with respiratory illness to breathe properly and possibly die of heat stroke (Filleul et al.
2006; Kjellstrom et al. 2009, 2014, Kjellstrom 2016; Hollowell 2010; Tomlinson et al. 2011;
Lucas et al. 2014; Gun 2019; Vaidyanathan et al. 2020). However, very few research has been
done on industrial air pollution and its impact on the environment and human health in
Zambia. Ncube et al. (2012) on the Copperbelt province, reported that copper smelting activ-
ities result in atmospheric emissions between 300,000 and 700,000 tons/year, far above the
WHO limit of 125,000 tons/year. Having a clear grasp of how the local environment and
microclimate are changing and the linkages between the changing environmental and biocli-
matic factors in the context of global warming is very important to adopt adequate and

GEOMATICS, NATURAL HAZARDS AND RISK 1899



efficient sectoral adaptation strategies. To fully grasp the effects of urbanization on local envir-
onment, human comfort and health which are linked to the magnitude of urban heat and
cold islands, as well as changes in the bioclimatic and environmental factors, fine-scale data is
required, which is typically not available in most developing countries, including Zambia
(WHO 2017; Wichmann 2017; Nana et al. 2019; WMO 2021).

Moreover, the lack of reliable data has coincided with a period of rapid urbanization
around the world, and policymakers and urban planners have been advocating for solu-
tions to bridge this information gap. Monitoring LULC changes in the mining areas are
crucial to providing valuable information for the management of the landscape and how
to prioritize the interventions (Weiers et al. 2004; Curatola et al. 2015; Jorgenson and
Fraumeni 2020). The use of remotely sensed satellite imagery has been found helpful in
resolving limitations associated with traditional surveying methods for tracking long-term
changes in LULC. They have the advantage of being cost-effective, freely available, and
provide the possibility to track change in land use and land cover over a long temporal
scale (Lambin 2003; Patel et al. 2017; Phiri and Morgenroth 2017; Huang et al. 2019;
Hoque et al. 2020), with special attention to mining areas (Schmidt 2010; Phiri 2020). In
the Chingola district, land use planning processes are greatly inhibited by insufficient data
availability, which is a common issue in developing countries (Potts 2012; Schug et al.
2018). Therefore, studies of land use and land cover change and related changes of envir-
onmental and bioclimatic factors such as temperature, rainfall and evapotranspiration, are
relevant in countries such as Zambia where there are inadequate preventive and control
measures. This study aims specifically, to (1) Analyze the magnitude, intensity, and
dynamics of change among land cover categories (2) Analyze how population growth
affects each land use category (3) Analyze how LULC and subsequent changes in the local
climate has affected the environmental and bioclimatics factors; (4) to propose preventive
and mitigation measures to avoid future undesirable impacts of land use and land cover
change and Climate change.

This study used both spatial and non-spatial methods to provide insight on the
current trend of environmental and bioclimatic factors in the mining district of
Chingola in the context of climate change, and population growth. It has, therefore,
the potential to have an important scientific contribution through the exposition of
patterns, characteristics of change in land use and land cover, and the implications of
the changes in bioclimatic and environmental factors in mining areas which have
never been addressed by previous studies. One of the practical contributions is to
alert and inform government and local community abreast with current trends and
status on the climate and environmental indicators and advise on the future direction
to be taken by policymakers and decision-makers toward achieving the United
Nation’s Sustainable Development Goals 3, 11, and 13 for improved health and well-
being, sustainable cities, and climate actions respectively.

2. Materials and methods

2.1. Description of the study area

Chingola district is in the Copperbelt Province of Zambia (Figure 1) and lies between
12�200 South and 27�500 East and has an elevation of 1300m above sea level. The
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Copperbelt mining area is about 120 km long and 50 km wide, stretching from
Konkola in the Northwest to Luanshya in the southeast (Limpitlaw 2001). Since 1928,
Copper mining in Zambia has contributed to the economic transformation and has
been a major component of the Gross Domestic Product (GDP), with more than 80%
of the country’s foreign exchange earnings, over 50% of government revenue, and at
least 20% of total employment (Simutanyi 2008; Kabemba 2014). Chingola landscape
has been significantly impaired by mining activities, with large areas occupied by
overburdened materials, large volumes of waste rocks, and huge open pits, one of the
deepest in the world. The climatic condition in Copperbelt Province is characterized
by three distinct seasons namely (i) warm a dry season (August to November), (ii)
Warm wet season (November to April), and (iii) cold dry season (May to August).
The district lies in Region III of the agro-ecological zone, and the average rainfall
ranges from 1000mm to 1200mm, while the mean temperatures range from 10 �C to
37 �C (DPU 2019). The prevailing winds are mostly south-easterly in the dry season
and north-westerly during the rainy season. Soils of Copperbelt province, according
to the FAO classification belong to the group of ferrasols (acric, orthic or rhodic fer-
rasols) (FAO-UNESCO 1997). The principal soil-forming process in the area is rock
weathering; hence, climatic factors influence the rate and depth of weathering and
soil formation. Chingola mineral ores are hosted by arenites and argillites of the
Lower Roan Subgroup with a geological formation belonging to the Phanerozoic
Lufilian Fold Belt (LFB). The LFB forms part of a series of linked Pan-African oro-
genic belts fringing the Congo and Kaapvaal-Zimbabwe craton of Southern Africa

Figure 1. Location map of Chingola district in the Copperbelt province of Zambia.
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(Selley 2005; McGowan 2006). The major vegetation type is miombo woodlands. The
dominant species include Brachystegia spp., Isoberlinia angolensis, and
Julbernardia paniculata.

The total population of Chingola is estimated at 182,231 inhabitants, with females
accounting for 49.9% and males 50.01% (Central Statistics Office [CSO] 2020). The
average annual population growth rate stands at 2.3% (DPU 2019). The peri-urban
areas of the district are sparsely populated, with mining and agriculture as the main
economic activities (DPU 2019).

2.2. Remotely sensed data

Data collection involved image acquisition, image pre/processing, classification, accur-
acy assessment, and change detection. Figure 2 presents the summary of the steps fol-
lowed in data collection.

Landsat 1 Multispectral Scanner (MSS) of 1972, Landsat 5 Thematic Mapper (TM) of
1992, Landsat 7 Enhanced Thematic Mapper Plus (ETMþ) of 2001, and Landsat 8
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) (OLI/TRIS)
datasets of 2013 and 2020 with their respective paths and rows [(185, 069); (172, 068);
(172, 069)] (Table 1) were used in the study. This dataset was acquired from the United
States Geological Survey (USGS) website (https://earthexplorer.usgs.gov) and used to
evaluate LULC changes in Chingola. Images from August and September, during the dry
season when clouds are minimal, were selected for this study (Table 1).

2.2.1. Data processing and analysis
Image pre-processing and post-classification. The satellite images were imported and
pre-processed using ENVI 5.3 software. The images were first converted to

Figure 2. Flowchart of the methodology used in the study.
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radiance values, all stacked except for the thermal infrared band (i.e. Band 6), and
then, atmospheric image calibration was applied for the USGS guide. The Landsat
image of 1992 was used as a base for empirical line normalization (ENVI User’s
Guide 2008). Geometric rectification, image co-registration in the common spatial
frame reference (in this case to WGS ellipsoid projection) as suggested by
(Schmidt and Glaesser 1998), thereafter radiometric calibration, and topographic
correction were applied to all images to minimize the errors. These techniques
have been widely applied and are considered the most suitable algorithms for mini-
mizing errors when pre-processing satellite images (USGS 2016; Ranagalage et al.
2017; Singh et al. 2017; Chaudhuri et al. 2018). Landsat images were projected to a
common coordinated system, World Geodetic System (WGS) 84, Zone 35 North.
Before classification, we used spectral signatures to ascertain the separability of
digital numbers (DN) of different LULC categories. The DN conversion using the
Gain and Bias method to convert the DN value to radiance using the formula
below:

Lk ¼ gain �DN þ bias

where Lk is the cell value as radiance; DN is the cell value digital number; gain is the
gain value for a specific band; bias is the bias value for a specific band.

Thereafter the radiance values obtained were converted to a ToA reflectance value
using the formula below:

qk ¼ p � Lk � d2

ESUNk
� cos hs

qk ¼ Unitless planetary reflectance; Lk ¼ spectral radiance from earliest stepð Þ;
d ¼ Earth� Sun distance in astronmoical units; ESUNk ¼ mean solar
exoatmospheric irradiances; hs ¼ solar zenith angle:

Eighty training sites, ranging from 350 to 900 pixels, were used to train the images.
Training samples included 20–40 subclasses for each class. After image pre-processing
(normalization, histogram equalization, noise filtering, and image segmentation) in
ENVI v.5.3, a supervised classification using class hierarchy and accuracy assessment
was done in eCognition. All maps of land use and land cover change and environ-
mental indices were done in ArcGIS v.10.8. These methods and techniques have used
and recommended by many scholars (Yang et al. 1999; Feyisa et al. 2016; Patel et al.
2017; Hoque et al. 2020). The patterns, magnitude, and dynamics of seven land

Table 1. List of Landsat images used in the study.
Sensor Date of acquisition Spatial resolution (m) Path/Row Producer

Landsat MSS 1972/09/13 60 185/069 USGS
Landsat 5 ETM 1992/08/29 30 172/068, 172/069 USGS
Landsat 7 ETMþ 2001/08/14 30 172/068, 172/069 USGS
Landsat 8 OLI/TIRS 2013/09/08 30 172/068, 172/069 USGS
Landsat 8 OLI/TIRS 2018/09/12 30 172/068, 172/069 USGS

OLI: Operation Land Imager; USGS: United States Geological Survey; MSS: Multispectral Scanner System; TM:
Thematic Mapper.
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cover/land cover classes including Forest, Built-ups areas, Mining areas, Savannah
woodlands, Farmlands, Water bodies, and Bare lands (Table 2) were analyzed. Post-
classification refinement was used to improve the accuracy of the classification, as it
is a simple and effective method for correcting misclassification (Harris and
Ventura 1995).

2.2.2. Accuracy assessment
A confusion matrix was used to calculate the overall accuracy, user’s accuracy, and
producer’s accuracy for each land use and land cover class, as well as the related
Kappa statistics. The accuracy assessment was performed separately for each year
(1972, 1992, 2001, 2013, and 2020). The number of ground truth points used to valid-
ate the classified images were 307, 350, 310, 343, and 407 for respective years; 1972,
1992, 2001, 2013, and 2020, in Ecognition for result validation, which was in turn
compared with the same features from Google Earth along with some selected points
of each land-use class obtained on the field. The overall accuracy was obtained by
dividing the total number of correctly classified classes of pixels by the number of ref-
erence pixels (see Lillesand et al. 2008; Eq. (1)). The overall accuracy quantifies the
proportion of correctly classified pixels in the error matrix (Lung and Schaab 2010).
The Producer’s accuracy was calculated by dividing the number of correctly classified
pixels in each reference class by the number of training set pixels used for that class
(column). The user’s accuracy is calculated by dividing the total number of correct
classifications for a given class by the total number of rows. The user’s accuracy also
shows the percentage of correctly classified pixels per land cover class, while the pro-
ducer’s accuracy provides the percentage of correctly classified pixels per reference
class (Lung and Schaab 2010).

Overall Accuracy ¼
Total Numb of correctly classified pixels ðdiagonalÞ=Total numb: of reference pixels � 100

(1)

The Kappa coefficient or statistics nominal scale agreement in Table 3, measures
how well the classified images agree with the reference data (Naemi et al. 2011).
Kappa coefficient is calculated using the mathematical expression given by Eq. (2):

Table 2. Land use and land cover classification scheme considered in this study.
Land cover classes Description

Forest Deciduous forest, evergreen forest, mixed forest lands, orchards, commercial
plantation, protected areas, and nurseries

Built-ups areas Urban/rural settlements or residential areas, commercial zones with
transportation and communication facilities, industry, Airport terminal,
Civic Centre.

Mining areas Mined lands, open pits, quarries, tailing dams, mine processing plants
Savannah woodlands/Grasslands Stunted height degraded forest, shrubs, or grasses
Water River, lakes, ponds, reservoirs/dams, streams
Farmlands Pasture, orchards, home garden, areas cover with perennial and annual crops

but may be fallow
Bare lands Barren areas devoid of vegetation cover and consisting of exposed soils and

rock outcrops or sandy surfaces
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Kappa Coefficient
�
TÞ ¼ TS �TCSð Þ�

X
ðColumn Total �Row TotalÞ=TS2

�
X

ðColumn Total � Row TotalÞ
(2)

where TS �TCS¼Total number of samples in the matrix.

2.3. LULC change magnitude, intensity, and dynamics of change between land
use and land cover categories from 1972 to 2020

2.3.1. LULC annual change rate
In this study, the metrics adopted in the analysis of LULC were the land use develop-
ment index, land uses dynamic index, and the comprehensive land use index (Liu
and Shu-Jin 2002). The annual change rate (r) stands for the annual growth or
decline rate of a given LULC class. It is calculated using Eq. (3), as recommended by
Puyravaud (2003) and Gilani et al. (2015):

r ¼ 1
�
t2�t1

� lnA2
�
A1

(3)

2.3.2. Land development intensity (LDI)
LDI is the degree to which land has been used, ranging from no use to ongoing, con-
tinual, and concentrated use. Therefore, this index quantifies how intensively a land
has been exploited below or above its capacity. It also reflects the scale and frequency
of the impact of human activities on LULC (Liu et al. 2013). The mathematical
expression used to calculate the Land development intensity is given by Eq. (4):

LDI¼ Sbi�Sai
�
B (4)

where i ¼ (1, 2… 7) ¼ the number of LULC classes, LDI 5 Land development
intensity index for ith land-use type, Sai ¼ i,th LULC area at the beginning of the
study period, Sbi ¼ i,th LULC area at the end of the study period; B¼ total study
area extent.

2.3.3. Land use change dynamic degree
The land use dynamic degree (LUDD) is an important factor for quantitatively evalu-
ating the change rate of LULC types in a certain region. In this study, the LUDD was
used to quantify variation in LULC types. The LUDD includes the single land use

Table 3. Cohen’s Kappa statistic nominal scale agreement (Landis and Koch 1977).
Kappa value Interpretation

Below 0.00 Poor agreement
0.00–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–1.00 Almost perfect agreement
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dynamic degree (SLUDI) and the comprehensive land use dynamic Index (CLUDI)
(Wang and Bao 1999).

2.3.4. Single land-use dynamic index (SLUDI)
The single land use type dynamic index (SLUDI) is defined as the rate of change of
the total land area that has been converted into other types of land use during a
given period (Ma, 2010; Liu et al. 2010; Sanju�an 2016; Zhang et al. 2016). It involves
two concepts, namely a single and a comprehensive dynamic degree. The former
reflects a single land-use type change, whereas the latter can reflect the variation of
different land use and land, cover changes (Hu et al. 2019). In this study, we selected
both a clear picture of land use dynamic within one single land-use type and a com-
prehensive idea of the overall land use dynamic for a given period (in this study,
1972–2020). Equation (7) below, gives the mathematical expression of SLUDI (Ma
et al. 2010; Liu et al. 2010; Sanju�an 2016; Hu et al. 2019):

SLUDI ¼ Sbi�Sai=Sai � 1
�
T

� �
�100% (5)

where i (1,2, … … 7); K stands for the dynamic degree of land use and cover in a
certain study time; Sai ¼ ith LULC area at the beginning of the study period; Sbi ¼ ith

LULC area at the end of the study period; T¼ length of the study period in years¼ in
this case, 2020–1972¼ 46 years; SLUDI is the changing annual rate of land use and
cover in the study area when T is set as a year. A value of SLUDI <0 means that the
land cover type is shrinking, while a positive means expansion of the specific land-
use type. However, the larger the absolute value of SLUDI, the more significant and
intense the change (SLUDI � 0) (Sanju�an 2016; Sun et al. 2016; Akinyemi
et al. 2017).

2.3.5. Comprehensive land use dynamic index (CLUDI)
The comprehensive land-use dynamic index expresses the dynamic change in land
use for a given region (He et al. 2002; Lai et al. 2006; Huang 2020). This change can
be expressed as LUi which stands as the land-use area at the start of the monitoring
time i; DLUi¼j is the area absolute value of the ith kind of land use type to non-i
kind of land use type during the monitoring period; Ti s the monitoring period
length. A Comprehensive Land Use Dynamic Index (CLUDI) estimates the overall
land-use change rate for a given region (Murakami et al. 2005; Chen 2021).

CLUDI ¼
Pn

i¼1DLUi¼j

2
Pn

i¼1LUi

2
4

3
5 � 1

�
T � 100% (6)

Or CLUDI ¼ 100 �
Xn

i¼1
Ai � SLUDI CLUDI � 100, 700½ � (7)

CLUDI stands for a comprehensive land-use dynamic index in a study area; Ai is
the ith level of land use type in a study area; SLUDI is the percentage of the area of
the ith land-use type, n stands for the number of land use classification (Fang et al.
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2012). The land use grading system used in this paper assigned grades based on the
importance of land-use type. The grading system used in this study adopted the four
levels of an integrated land use type commonly found in the literature. Level 1 stands
for bare lands; level 2 for the forest, Savannah woodlands, and water bodies; level 3
for farmlands; level 4 for mining areas and Built-ups areas.

2.3.6. Urban sprawl index (USI)
This study analyzed human-induced urban sprawl given its implications on the envir-
onment, economy, and social components of a country (increase in greenhouse gas
emissions, increasing distances between residences, decreasing trend in housing
affordability, increasing cost of key public services such as water supply, sanitation,
public transport, waste management, electricity, etc.). A sprawled built environment
also implies greater human intervention in a series of key environmental processes,
which is likely to affect water quality and increase flood risk. Greater urban sprawl
implies either decline in key public services or increases in subsidies in inclusive cities
or wards. Urban Sprawl Index (U.S.I.) formula has been applied by many scholars
across the world (Zubair 2008; Bhatta et al. 2010; Amin and Fazal 2012; Oloukoi
et al. 2014). USI is a measure of the built environment in a city calculated following
equation (8):

USI ¼ Sbi�Sai=P2 � P1 (8)

Sai ¼ ith LULC area at the beginning of the study period (in hectares); Sbi ¼ ith
LULC area at the end of the study period (in hectares); P2 and P1 are the population
for the early and later years respectively (Sharma et al. 2012). The population data
were obtained for the years 1972, 1992, 2001, 2013, and 2013 from www.Zhujiworld.
com and the local Statistical Office of Chingola. The population of Chingola was,
44,270 habts, 83,773 habts, 105,986 habts, 143,385 habts, and 182,231 habts, respect-
ively in 1972, 1992, 2001, 2013, and 2020.

2.4. Analyze the environmental and bioclimatic factors of land cover
change intensity

2.4.1. Bioclimatic factors analysis
The temporal climate dataset was provided using the meteorological station observa-
tions. The rainfall and temperature data (Maxi and Mini) from 1983 to 2020 were
obtained at Ndola Meteorological station located at (<100 km of Chingola) and
within the same agro-ecological zone as the study area. Data were processed and put
into the format recognized by DrinC software before the analysis. A total of 10 core
climate change detection monitoring indices of the CCl/CLIVAR Expert Team for
Climate Change Detection Monitoring and Indices (ETCCDMI) were generated using
RClimdex (Table 4).

Each climate indicator was chosen for its clarity, applicability to a wide range of
audiences, and capacity to be calculated on a regular basis using internationally
acknowledged and published methods as well as readily available and verifiable data.
Thirteen of the seventeen Sustainable Development Goals (SDGs) deal with

GEOMATICS, NATURAL HAZARDS AND RISK 1907

http://www.Zhujiworld.com
http://www.Zhujiworld.com


interconnectivity. The goal of visually mapping how these risks will affect the fulfil-
ment of certain SDGs is to help policymakers understand how climate change affects
sustainable development and hence drive broader and more immediate cli-
mate action.

The potential evapotranspiration increases when the rainfall decreases as well as
the soil moisture budget based on Thornthwaite Moisture Index (TMI)
(Thornthwaite 1948, 1955), was estimated along with the United Nations
Environmental Programme (UNEP) aridity index (De Martonne 1925; Baltas 2007)
(Table 5). The PET is a vital part of the hydrological cycle, and it has been used in
dry and wet condition analysis of climates such as drought and aridity. PET is the
rate at which evapotranspiration would occur from a large area completely and uni-
formly covered with growing vegetation that has access to an unlimited supply of soil
water, and without advection or heat storage effects (Sahin 2012). Aridity is defined
as the ratio of precipitation to mean temperature index (De Martonne 1925; Sahin
2012) and was characterized using the United Nations Environmental Programme
(UNEP) classification scheme. The Thornthwaite Moisture Index (TMI) was calcu-
lated using by Karunarathne (2016) using Eq. (9):

TMI ¼ 100 � P� PEð Þ
PE

� �
(9)

where P is the precipitation and PE is the potential evapotranspiration. The climate
classification based on TMI is given in Table A3 in the Appendix.

Table 4. ETCCDMI core climate indices.
Indices Description Units

TN90p Warm nights Percentage of days when TN > 90th percentile Days
TX90p Warm days Percentage of days when TX > 90th percentile Days
WSDI Warm spell duration Annual count of days with at least 6 consecutive days

when TX >90th percentile
Days

CSDI Cold spell duration indicator Annual count of days with at least 6 consecutive days
TN< 10th percentile

Days

Rx5days Max 5 days precipitation
amount

Monthly maximum consecutive 5-days precipitation mm

R10 Number of heavy
precipitation days

Annual count of days when PRCP>¼10mm Days

R20 Number of very heavy
precipitation days

Annual count of days when PRCP>¼20mm Days

CDD Consecutive dry days Maximum number of consecutive days with RR< 1mm Days
CWD Consecutive wet days Maximum number of consecutive days with RR > 1mm Days
PRCPTOT Annual total wet-day

precipitation
Annual total PRCP in wet days (RR>¼1mm) mm

Table 5. Climate types corresponding to the Aridity index defined by (UNEP 1993).
Aridity index (AI) Climate classification

0.05� P/PE < 0.20 Arid
0.20� P/PE < 0.50 Semi-arid
0.50� P/PE < 0.65 Dry Sub-humid
0.65� P/PE < 0.80 Semi-humid
0.80�AI < 1.0 Humid
1.0�AI< 2.0 Very humid
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2.4.2. Environmental factors analysis
First, environmental indices were derived from RS, including the normalized differ-
ence vegetation index (NDVI) developed by (Tucker 1979), and the normalized dif-
ference water index (NDWI) developed by Xu (2006) to delineate land from open
water due to its sensitivity to soil moisture levels. NDWI has also been found effect-
ive in identifying waterlogged areas (Chowdary et al. 2008) while the normalized dif-
ference moisture index (NDMI) is more sensitive to moisture levels in vegetation and
suitable to monitor drought and fuel levels in fire-prone areas (Wilson and Sader
2002). The NDVI, NDWI, and normalized difference soil salinity (NDSI) (Goosens
et al. 1993; Verma et al. 1994; Ahmed and Andrianasolo 1997; Metternicht and Zinck
1997) were calculated using the following equations:

NDVI ¼ ðNear infrared�RedÞ
ðNear infrared þ RedÞ (10)

NDWI ¼ Green�Near Infrared
ðGreenþ Infrared

(11)

NDSI ¼ ðMIR�NIRÞ
ðMIRþ NIRÞ (12)

NDMI ¼ ðRED�NIRÞ
ðREDþ NIRÞ (13)

3. Results

3.1. Magnitude, intensity, and dynamics of change between land use and land
cover categories from 1972 to 2020

3.1.1. LULC change magnitude between 1972 and 2020
The study shows that most of the spatial changes occurred in the district’s central,
southern, and eastern parts, where small-scale and large-scale mining activities, com-
mercial services, and Built-ups areas have been concentrated for several decades. Less
development has been observed during the past four decades in the western and
northern-western parts of the districts (see Figure 3). The analysis also showed a
decrease in forest cover from 19,626.8 ha (12%) in 1972 to 3050 ha (2%) in 2020 with
an annual rate of deforestation of (�9.9%). However, a very low rate of forest recov-
ery (3 to 5%) was observed between 1992 and 2013. A steady decrease in Savannah
woodlands has been observed from 84,095 ha (50%) to 44,283 (26%).

3.1.2. Accuracy assessment
Considering the Cohen Kappa statistic classification scale given by (Landis and Koch
1977), the after post-classification performed in this study lies within the very good
range of agreement. The LULC classification’s overall accuracy ranged from 88 to 93
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percent, with the lowest accuracy observed from the LULC 1972 classification map
and the highest from the 2020 LULC map (see details of Accuracy assessment results
in the Appendix (Tables A5–A9)).

The LULC changed significantly during the study period (1972–2020), with a sig-
nificant increase in built-up areas and mining areas, and farmlands. Most forested
areas have been degraded and converted into savannahs. The increase in farmlands,
mining, and built-up occurred at the expense of natural resources, for instance,
between 1972 and 1992, forest cover declines from 19,626 ha to 13,465 ha while
Savannah woodlands decline from 84,095 ha to 64, 268 ha. During the same period,
water bodies declined from 8929.6 ha to 6675 ha while mining areas increased from
5782.5 ha to 18,515 ha along with Built-ups areas that increases from 10,707 ha to
14,987 ha. The observed changes over 48 years, a significant loss of forest cover, from
11.7% in 1972 to 1.8% in 2020. Savannah woodland was found to be the most domin-
ant biome natural resource category, accounting for 50% (84,095 ha) of the total study
area in 1972. Its total coverage declined to 22% (36,956 ha) of the total study area in
2020. Water bodies have shrunken steadily from 5.3% (8929.6 ha) in 1972 to 2.1%
(3560 ha) of the total study area coverage in 2020, a shrinkage of about 5369.6 ha
(Table 6). Savannah woodlands despite being the most dominant biome experienced
the greatest loss in area cover of about (�47,139 ha) between 1972 and 2020 (Figures
A1 and A2 in the Appendix).

3.1.3. Land development intensity and annual growth rate
Table 7 contains the annual growth rate and the land development index per land
use category. The result showed that built-ups areas have the highest growth rate per
annum (7.3%/year), followed by farmlands (3.18%/year). More details about the land
use and land cover conversion between 1972 and 2020 is given in Table A4 in
the Appendix.

Figure 3. Land-use and land cover map of Chingola district from 1972 to 2020.
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3.1.4. Urban sprawl analysis
The Results of human-induced urban sprawl are found in Table 8. The highest
human pressure was exerted on savannah woodlands (�0.78), farmlands (0.76), and
built-ups areas (0.44) between 1992 and 2001 (0.76). Between 1972 and 1992, agricul-
ture, mining activities, and urban expansion’s most important impacts were exerted
on Savannah (�0.5) and forests (�0.16) (Table 8).

3.1.5. Land use dynamics
The Land-use dynamic using the Single land-use dynamics and the comprehensive
land use dynamic index (CLUDI) in the Chingola district from 1972 to 2020 are
shown in Table 9. A negative land use development index was observed for some
land use categories such as Forest, Savannah woodlands, and water bodies while
built-ups areas, mining areas, farmlands, and bare lands gained in area coverage

Table 6. Calculated area of the land cover of Chingola in 1972, 1992, 2001, 2013, and 2020.

Classes
1972

%
1992 % 2001 % 2013 % 2020 %

Area (ha) Area (ha) Area (ha) Area (ha) Area (ha)

Forest 19,626 11.7 13,465 8.0 8653.8 5.2 4825 2.9 3050 1.8
Builtups 10,707 6.4 14,987 8.9 24,737 14.7 40,635 24.2 48,243 28.7
Mining area 5782.6 3.4 18,515 11.0 13,141 7.8 15,394 9.2 13,067 7.8
Savannah

woodlands
84,095 50.1 64,268 38.3 46,878 27.9 27,896 16.6 29,283 17.4

Farmlands 12,881 7.7 27,663 16.5 44,883 26.8 34,685 20.7 32,585 19.4
Water bodies 8929.6 5.3 6675 4.0 5315.2 3.2 4415.7 2.6 3560 2.1
Barelands 25,797 15.4 22,283 13.3 24,172 14.4 39,904 23.8 38,086 22.7
TOTAL 167,818.2 100.0 167,856 100.0 167,780 100.0 167,754.7 100.0 167,874 100.0

Table 7. Land use/land cover change development intensity and annual growth rate from 1972
to 2020.

Classes

Change
rate/year

(1972–1992)
LDI
Total

Change
rate/year

(1992–2001)
LDI
Total

Change
rate/year

(2001–2013)
LDI
Total

Change
rate/year

(2013–2020)
LDI
Total

Change
rate/year

(1972–2020)
LDI
total

Forest �1.72 0.069 �3.97 0.12 �3.68 0.11 �5.25 0.058 �1.75 0.18
Residential areas 1.99 0.06 9.45 0.57 3.87 0.23 2.67 0.120 7.3 1.61
Mining Areas 22 1.76 �3.22 0.096 1.43 �0.04 �6.79 0.095 0.82 0.03
Savannah

woodlands
�1.17 0.14 �3.0 0.3 �3.37 0.34 3.27 0.026 �0.98 0.32

Water bodies �0.53 0.05 6.92 0.69 �1.89 �0.19 �0.86 0.011 �1.25 �0.15
Farmlands �5.73 0.06 �2.26 0.023 �1.41 0.01 �2.76 0.014 3.18 �0.10
Bare land �0.72 0.014 1.1 0.011 5.42 0.05 �4.23 0.047 0.18 0.01
TOTAL 2.15 1.81 0.52 0.37 1.90

Table 8. Urban sprawl index (USI).
Classes 1972–1992 1992–2001 2001–2013 2013–2020 1972–2020

USI builtups 0.11 0.44 0.43 0.20 0.27
USI mining areas 0.16 �0.31 0.06 �0.06 0.05
USI Farmlands 0.37 0.76 �0.27 �0.05 0.14
USI Forest �0.16 �0.21 �0.10 �0.045 �0.12
USI Savannah �0.50 �0.78 �0.51 0.04 �0.40
USI Water bodies �0.057 �0.061 �0.024 �0.022 �0.04
USI Barelands �0.09 0.085 0.42 �0.05 0.09
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between 1972 and 2020. Considering the dynamic of change of each land-use class
estimated by the single dynamic land use dynamic index (SLUDI), the greatest
transformation of land for mining activities occurred between 1972 and 1992, with
a land-use development index of 15.96%. From 1992 to 2001, the landscape was
transformed by Farmlands (21.21%), built-ups areas (15.95%), while the fastest
decline rate occurred in savannah woodlands (�21.63%), followed by mining areas
(�6.72%), forest (�5.88%) and water bodies showed the lowest (�1.72%) but a
very significant change rate. Nevertheless, the fastest decline in forest cover
occurred between 2001 and 2013 with a decline of about (�9.2%), and Savannah
woodlands (�94.2%) between 1972 and 1992. It is important to note that the con-
sistent decline in vegetation and increasing pressure on natural resources due to
the increasing population have seriously impaired the restoration and conservation
efforts. A temporal variation has been observed in LULC, with the highest
Comprehensive Land Use dynamic degree over the 48 years of the study period,
observed between 2001–2013 (623), followed by (360) observed between
1992–2001, (322) for the period 1972–1992. The lowest value (210) was observed
between 2013 and 2020.

Table 9. Summary of land use and land cover structure index and Comprehensive index.

Year LULC types

Land-use
intensity
Index (LDI)

Single land
use dynamic
degree (SLUDI)

(%)
Land use and
cover rate (AiÞ

Rate of
change
(ha/yr)

Comprehensive
land use dynamic

index (CLUDI)

1972–1992 Forest �0.04 �7.7 �0.02 �1.9 0.154
Residential areas 0.03 5.5 0.017 1.7 0.0935
Mining areas 0.08 15.96 �0.06 6 0.9576

Savannah woodlands �0.12 �94.2 �0.0134 1.3 1.262
Water bodies 0.09 �2.73 �0.015 �1.5 0.041
Farmlands �0.01 18.5 0.038 3.8 0.703
Bare lands �0.02 �4.62 �0.0011 �5.8 0.0051

CLUDI 5 100
P

SLUDI 322
1992–2001 Forest �0.03 �5.88 �0.049 �4.9 0.289

Residential areas 0.06 15.95 0.068 6.8 1.1
Mining areas �0.03 �6.72 �0.04 �3.8 0.255

Savannah woodlands �0.10 �21.63 �0.035 �3.5 0.757
Water 0.10 �1.72 �0.03 �2.5 0.043

Farmlands �0.01 21.21 0.054 5.4 1.14
Bare lands 0.01 2.52 0.01 1.0 0.0252

CLUDI 5 100
P

SLUDI 360
2001–2013 Forest �0.02 �9.2 �0.048 �4.87 1.35

Residential areas 0.09 37.5 0.0387 3.87 0.227
Mining areas 0.01 36.7 0.0132 1.32 1.98

Savannah woodlands �0.11 �24.78 �0.043 �4.3 0.0942
Water bodies �0.06 �4.3 �0.0154 �1.54 1.067
Farmlands �0.01 �10.8 �0.0215 �2.2 0.21
Bare lands 0.09 �59.2 �0.042 �4.2 1.31

CLUDI 5 100
P

SLUDI 623
2013–2020 Forest �0.011 �4.83 �0.048 �4.87 0.232

Residential areas 0.045 16.2 0.0387 3.87 0.627
Mining areas �0.014 2.73 0.0132 1.32 0.036

Savannah woodlands 0.008 �23.73 �0.043 �4.3 1.021
Water bodies �0.013 �1.13 �0.0154 �1.54 0.0174
Farmlands �0.005 �12.81 �0.0215 �2.2 0.275
Bare lands �0.011 2.52 �0.042 �4.2 0.11

CLUDI 5 100
P

SLUDI 210
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3.2. Analysis of the environmental and bioclimatic factors of land cover
change intensity

3.2.1. Bioclimatic factors analysis
The temperature (Maxi, mean and mini), precipitation, potential evapotranspiration
were analyzed. Precipitation is an important factor for soil and plant growth and use-
ful for the determination of weather patterns regarding early warning of drought and
flood (Ficka and Hijmans 2017). Temperature (C3) is useful to classify the weather
patterns in combination with precipitation and soil moisture (Ficka and
Hijmans, 2017). The analysis showed, a significant changes in the land-use and land
cover as well as some natural factors depicting environmental quality through some
specific indicators. The analysis of 37 years (1983–2020) of climate variables such as
temperature (Maximum, mean, and Minimum), as well rainfall, and PET shows a tre-
mendous change in the bioclimatic conditions of Chingola. The temperature
(Maximum, mean, and minimum) has increased for about 0.55 �C, 0.47 �C and
0.45 �C) respectively.

The Analysis of 10 ETCCDMI core Climate Indices, showed that in Chingola the
total annual amount of rainfall has declined. Likewise, the analysis showed that rain-
fall intensity and distribution have significantly decreased. A decrease trend was
observed in the annual rainfall with 1986, 1984 and 1992 recorded as the wettest with
respectively rainfall amount above normal of 1631.4mm, 1515.3mm, and 1433.7mm
respectively. The driest years with a precipitation below normal of 625.1mm observed
in 1998, 661.7mm in 2005 and 760.3mm in 1999. A negative trend was observed in
the monthly maximum consecutive 5-days precipitation (Rx5days). The highest values
of 5 consecutive days in the month with intense rainfall were observed in the years
1992 (282.86mm), 2015 (216.1mm) and 1984 (195.7mm). The Annual count of days
when PRCP>¼10mm (R10), and the Annual count of days when PRCP>¼20mm
(R20) also showed a decreasing trend. The peaks in the number of heavy precipita-
tion days (R10) were observed in the years 1986 (60 days), 1993 (59 days) and 1984
(53 days) while the peaks in the number of very heavy precipitation days (R20) were
observed in 1989 (18 days), 1986 (17 days) and 2017 (16 days). The consecutive dry
days (CDD) have increased during the study period while the Consecutive wet days
(CWD) have declined. The years with the highest number of consecutive days were
observed in 1998 (212 days), 2000 (196 days), and 1988 (190 days) and the years with
the highest number of consecutive wet days were recorded in 2001 (95 days), 1996
(93 days) and 1986 (92 days). The analysis showed that the days (TX90p) and nights
(TN90p) are becoming warmer and warmer. The years with the hottest days (percent-
age of days when TX >90th percentile) were recorded in 1998 (46 days), 2005
(36 days) and 2000 (28 days) while the years with the coldest nights were recorded in
1994 (34 days), 2016 (23 days) and 2019 (20 days). The warm spell duration (WSDI)
has increased while the cold spell (CSDI) duration has declined during the study
period (1983–2020). The WSDI (highest count of days with at least 6 consecutive
days when TX >90th percentile) also pinpoints the hottest years in the time series
which were 1998 (103 days), 2000 (71 days) and 2005 (69 days) and coldest years dis-
played by the CSDI were observed in 1994 (30 days), 2002 (18 days) and 2008
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(17 days). However, the highest temperature from 1983 to 2020 was recorded 1994
(39.2 �C) and the lowest was recorded in 1985 (4.08 �C).

The summary statistics on the patterns of Annual total wet-day precipitation
(PRCPTOT) and that of the monthly maximum consecutive 5-days precipitation
(Rx5days) are found in Tables A1 and A2 in the Appendix.

The annual rainfall has decreased by about (�3.25%) while the potential evapo-
transpiration has increased by 0.04%, giving an Aridity Index (0.60) of (UNEP) and
moisture deficit index (�0.42) of Thornthwaite and Mather (1955). Thus, the climate
of Chingola can be categorized as dry-subhumid based on the UNEP’s aridity classifi-
cation and semi-arid according to the United Nations Conference on Desertification
aridity classification. However, the analysis classified the Chingola climate type based
on the Thornthwaite Moisture Index (�42) as Arid (see TMI climate type classifica-
tion scheme in Table A3 in the Appendix). Figure 6 exhibits the patterns of rainfall
with emphasis on the surplus and deficit in Chingola to pinpoint the degree of dry-
ness or wetness. The analysis showed that 1999, 2000, 2005, and 2017 with the great-
est rainfall deficits, with the surplus observed in 1983, 1985, 1989, 1991, 1993,
and 2009.

3.2.2. Environmental factors analysis
This study strives to understand the patterns, magnitude and trend of land degrad-
ation and subsequent changes in the environmental factors in Chingola. The analysis
showed a decrease in vegetation greenness translating to the depletion of natural
vegetation during the study period with 85% explained by the interannual variation
and 15% by other factors. A pixel value derived from this NDVI analysis below 0.2 is
considered bare land. When (0.2�NDVI� 0.5), it stands for a mixture of bare land
and vegetation, and NDVI > 0.5, should be considered a fully vegetated area as rec-
ommended by many scholars (Sobrino et al. 2004, 2008; Skovic 2014; Yu, 2014b; Li
and Jiang 2018). Sobrino et al. (2004) recommended in the global situation a thresh-
old value of 0.5 for the maximum of NDVI and 0.2 for the minimum value of NDVI
(NDVImin). The same negative trend was observed for NDWI between 1972 and
2020, with the lowest value observed in 2001 and 56% of the variation explained by

Figure 4. Variation of annual precipitation and monthly maximum consecutive 5-days from 1983
to 2020.
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Figure 5. Trend analysis of few climates change detection monitoring indices from 1983 to 2020.
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the interannual variation and 44% by other factors. Likewise, similar negative trends
were observed for soil salinity (NDSI) and vegetation moisture content (NDMI).

The result showed a decreasing trend in NDVI, NDWI, NDMI, and NDSI between
1972 and 2020 (see Tables 10 and 11, and the Figures 7–10).

4. Discussion

4.1. Magnitude, intensity, and dynamics of change between land use and land
cover categories from 1972 to 2020

4.1.1. Changes in magnitude of LULC from 1972 to 2020
The results showed substantial changes in LULC in Chingola District, between 1972
and 2020. There is a territorial polarization of development, with most of it concen-
trated in the city’s Center-west, where jobs and adequate infrastructures are available
and expanding to the periphery and along the major highways. The results were like
the research carried out by (Sakuwaha 2017) in the Luyanshia District of Copperbelt.
Sakuwaha found that the growth of Luyanshia city was concentrated around the min-
ing areas and less in the peripheries of the district. Similarly, Thapa and Murayama
(2011) studied urban growth in the Kathmandu metropolitan region, Nepal, and
reported that cities expand from areas with adequate infrastructure toward the city
outskirts, into open lands with perceived suitable development potential. The study
has shown that the main drivers associated with the dynamic and patterns of LULC
in the Chingola district are population growth, infrastructure development, and
expansion in agriculture, and mining activities. Environmental sustainability and sus-
tainable urban development can be improved through informed land-use planning

Figure 6. Patterns of rainfall deficit and surplus observed in Chingola from 1983 to 2020.

Table 10. Variation of environmental factors.
1972 1992 2001 2013 2020

Average environmental indices
NDVI 0.18 0.17 �0.14 0.09 0.11
NDWI 0.11 0.02 �0.30 �0.17 �0.19
NDSI �0.002 �0.43 �0.158 �0.189 �0.196
NDMI �0.033 �0.43 �0.18 �0.19 �0.20
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Figure 7. Spatio-temporal variation of NDVI and NDWI in Chingola from 1972 to 2020.
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(Enoguanbhor et al. 2019). Uncoordinated, unenforced, or non-existent land use
planning may result in haphazard development (Yin 2012) and excess deterioration
of the built and natural environments. In less developed countries (particularly in
Sub-Saharan Africa), rapid urban expansion and growth of informal settlements chal-
lenge current efforts for sustainable land use planning (UN-Habitat 2008).

Over the study period, a significant increase was observed in farmland, built-up,
and mining areas. The mining areas in Chingola increased consistently by about 1.4%
over the study period (1972–2020), with the highest land development urban sprawl
index (7.6) observed between 1972 and 1992. However, a slight decline of about
(�3.2%) between 1992 and 2001. The impacts of mining in the study area included
but were not limited to large open pits, deep shafts, a large volume of overburden
materials and mine waste, tailings storages facilities, air pollution deriving from the
smelting plants, siltation of rivers, polluted rivers and lands large volume of water
extracted from the underground mine, which is one of the wettest in the world. This
observation is common in almost all the mining districts in the Copperbelt province
of Zambia (Limpitlaw 2001; Lindahl 2014). In Chingola, mining activities have not
only altered the landscape and vegetation but have also accelerated environmental
degradation. For instance, a substantial increase in farmlands was observed between
1992 and 2001, coinciding with a decrease in mining areas. A review of the literature
revealed that major environmental, institutional, and political changes happened in
Zambia during the same period (1992 to 2001). Some of these policies included but
were not limited to the Structural Adjustment Programme (SAP), implemented by
the Zambian Government between 1990 and 1995 (Handavu et al. 2019), and the
changes in mine policies that led to a relative slowdown in mining activities. During
this same period, the urban population declined from 39% in 1990 to 35% in 2000.
The rural population increased by 1,657,580 inhabitants while the urban population
increased by not much than 428,980 inhabitants with an annual average growth rate
of 3.0% and 1.3% respectively (CSO 1990a, 1990b, 2000, 2011; Crankshaw and Borel
Saladin 2019). Eventhough there is no clear scientific evidences explaining the con-
nection between the slowdown in mining activities and decline in urban population
and increase in the rural population, it is believe that this slowdown might have trig-
gered the migration of many urban dwellers to rural areas to seek for alternative live-
lihoods or activities such as agriculture and chalcoal burning, given the increase in
farmlands and decline in forest and water resources observed this period.

Figure 8. Annual variation of NDVI and NDWI (Max, Mean, and Min) from 1972 to 2020.
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Figure 9. Spatio-temporal variation of NDSI and NDMI in Chingola from 1972 to 2020.
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Moreover, the analysis of 10 Climate change detection indicators revealed that the
driest and hottest years in 1983–2020 timeseries were found within the period 1992
to 2001. For example, 1998 was the year with the lowest rainfall amount (625.1mm),
the highest consecutive dry days in 1998 (212 days), 2000 (196 days) and 2001
(195 days). Other indicators such as WSDI found 1998 (103 days), the years the
higher of hot days TX90P (46 days) and higher number hot nights (34 days). The
combination of these factors mounted a huge consequence on the ecosystem. Our
findings are in line with the studies done by Capitanio et al. (2016) and Pascucci
et al. (2013), which ascertained that LULC changes can be influenced by policy imple-
mentation. Nevertheless, agricultural activities and mining activities can both affect
negatively the environment. Ticci and Escoba (2015) and Andersson (2017) estimated
the impact of mining on the productivity of agriculture and proposed solutions to
channel these impacts to maximize benefits that can contribute to sustainable devel-
opment. However, there is still a long debate on this problem as scholars’ views are
still divergent. Ticci and Escoba (2015) found that mining companies in Peru have
no statistically significant impact on agricultural production and prices. Andersson
(2017) found that agricultural production did not decrease with the proximity to the
mining areas. In contrast, Aragon (2015) estimated that gold mining in Ghana
reduces the productivity of nearby farming activities due to environmental damage. A
negative impact of coal mining on agricultural productivity has also been found by
Mishra and Pujari (2008) in the Indian state of Orissa. Our findings resonate with
previous studies done in the same Copperbelt Province by (Mines 2007; Mususa
2014; Sakuwaha 2017), in West Africa by Hermann (2020) who found that land deg-
radation appeared to be threefold higher in the vicinity of settlements and farmlands
compared to others, between 1975–2013 and Mensah et al. (2017), discovered that
most farmers who lose their farmlands due to mining activities encroached into the
forest reserves which resulted in the conversion and depletion of forest cover areas
from 75.54 km2 in 2002 to 27.76 km2 in 2015.

The status of surface water and soil moisture content, using NDWI and NDMI
during the study period, showed a decreasing trend in Chingola. This shrinkage can
be explained by the opening of farmlands and built-up and mining areas expansion.
Our findings are in line with (Limpitlaw 2001; Ashraf et al. 2009; Subramani and
Vishnumanoj 2014) who identified deforestation and forest degradation as the main
drivers, affecting water catchments and hydrology.

Figure 10. Annual variation of NDSI and NDMI (Max, Mean and Min) from 1972 to 2020.
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In the coastal city of Jiangsu, China, Li et al. (2013) reported that water bodies
shrank the most during the period when agricultural activities and deforestation
intensified. In Ghana, Hilson and Nyame (2006) found a link between increased
deforestation, mining expansion, and shrinkage of water resources. The study
observed a significant loss of forest cover in Chingola, from 1972 to 2020, decreasing
from 19,626.84 ha in 1972 to 3050 ha, with an annual rate of deforestation of about
(�1.75%yrs�1). A similar observation was made by Limpitlaw (2001), in Kitwe, a
neighboring mining District of Chingola. The annual deforestation rate in Zambia
estimated to be approximately 276,021 ha per annum, making it one of Africa’s high-
est annual deforestation rates (ILUA 2017). This figure is relatively higher in Nigeria,
where the deforestation rate is around 350,000–400,000 hectares per annum (Ladipo
2010). This rate of deforestation greatly contributes to major global concerns such as
increasing concentrations of carbon dioxide (CO2) in the atmosphere, loss of bio-
logical diversity, conversion and fragmentation of natural vegetation areas, and accel-
erated emission of greenhouse gases (Steffen et al. 2006). Also, because forests store
carbon and reduce the impacts of drought and flooding, the loss of forests reduces
carbon sequestration and climate resilience (Hirsh-Pearson et al. 2022). Most of the
reserve forests in Chingola have been completely depleted and absorbed by urban
expansion. The analysis using remotely sensed data and the visit of all classified forest
reserves (Luano Forest reserve No. 12, Chingola Forest Reserve No. 43, Lushishi Forest
reserve No. 11, Lamba Protected Forest area) in the district, showed that some of these
forests have disappeared completely, absorbed by the urban expansion (Chingola for-
est reserve and Luano forest reserve) and some highly encroached by anthropogenic
activities (Lushishi Forest Reserve No. 11 and the Kirila forest reserve adjacent to the
hippo pool). By the year 2003, Mwila (2003) alerted that the Luano national forest in
Chingola was highly encroached by anthropogenic activities. The local people dwell-
ing in the area stated that, they do not view the area as a forest but rather as an agri-
cultural area. Our study found that the alert was not taken seriously leading to the
total depletion of the forest reserve among others. Among the factors depleting the
forest, there are agriculture, charcoal production, wildfire, settlement, and poverty.

As early as 1972, Maxwell (1972) indicated that the encroachment of the Luano
catchment area will disturb the hydrological cycle. Yemshanov et al. (2015), demon-
strated that forested lands located near existing urban and agricultural areas are most
at risk of being converted to cropland or human settlement. Land use and land cover
change through land conversion to man-made infrastructures affect the local ecosys-
tem through altering water and air quality, the nutrient cycles, and degrading a large
portion of arable lands by paving them with impermeable materials such as asphalt
or concrete (Environment and Climate Change Canada 2021).

Nevertheless, the vegetation in Chingola is mainly composed of miombo wood-
lands, which have been found to recover rapidly from disturbances caused by human
activities in Zambia (Boaler and Sciwale 1966; Luoga et al. 2004; Syampungani 2008;
Chirwa et al. 2014). Moreover, a study by Zhen (2019) demonstrated that with a very
good policy and technology, it is possible to curb land degradation and restore eco-
logically vulnerable regions. For instance, returning farmland to forest or grasslands
through artificial afforestation. However, the major constraints and threats to
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reforestation initiatives are the growing insecurity in the land tenure system and
growing scarcity of arable lands for growing subsistence crops, hindering long-term
investment in on-farm tree planting. All these factors are exacerbated by population
growth and the need to secure lands for future infrastructure development (McMillan
et al. 1993; Nebie and West 2019).

4.1.2. Land-use intensity and dynamic degree
Considering Jagadeesh et al. (2015), the CLUDD classification scheme and having
seven land use and cover classes, the upper limit of the Comprehensive Land Use
Dynamic Degree (CLUDD) was set at 700, which equates to the highest combined
impact from both natural and human activities and thus indicates the degree of deg-
radation of the biophysical environment of the study area. The highest LULC
Comprehensive Index (366), observed between 2001 and 2013, can be explained by
the boom in the socio-economic activities that followed my privatization in Zambia
in 1997. This privatization regime attracted massive direct investment in the mining
sector and indirect investment in other economic activities such as farming and busi-
nesses; subsequent economic growth led to a rapid increase in built-up and the open-
ing of new mining areas.

4.1.3. Urban sprawl implications on the environment in Chingola
Urban sprawl is a complex phenomenon, which goes beyond average population
density. Its different dimensions reflect how population density is distributed across
urban space and how fragmented urban land is (OECD 2018). It is important to
understand the extent to which Chingola has grown from 1972 to 2020 as this is
important for policymakers, urban planners, and decision-makers. Urban sprawl has
implications on the increase of the per-user costs of providing public services of pri-
mary importance (water supply, sanitation, electricity, public transport, and waste
management) that are key for the well-being of the population. The field survey
showed a regional disparity and imbalance in terms of development with most public
services concentrated and only available within Chingola town near the mine, and the
administration, while the other wards (Mutenda on the west and Musenga on the
southeast) at the far end of the district are left without and underdeveloped.

The analysis of urban sprawl in Chingola using the urban sprawl index showed the
magnitude of human activity in each land use category. Forest cover, water bodies,
and savannah woodlands have all been stressed by anthropogenic activities. The trend
of forest and wetlands degradation, if not curb, will alter their ecological functions
and their ability to cool the micro-climate, filter freshwater from heavy metals, and
provide habitat for many terrestrial and aquatic species.

With Chingola’s population projected to continue its unabated increase over the
next decades (DPU 2019), intensification of land cover change is expected. Taking
the past as an indicator of the future, the observed patterns of change and persistence
give an idea of what types of future changes might occur, and which areas should be
prioritized for policy implementation. Several studies have also revealed the role of
agriculture in changing the vegetation pattern thereby altering the characteristics of
local meteorological parameters (Niyogi et al. 2010; Rahimian et al. 2021). Urban
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containment policies and initiatives that encourage agricultural intensification are
needed to counteract the tendencies of agriculture to spatially expand and further
encroach into savannah woodlands and forest areas. Draconian measures should be
taken to limit slash-and-burn farming activities on the edge of water bodies. The tele-
connection between land use and land cover change intensification through urban
sprawl and population growth and its implications on the bioclimatic and environ-
mental factors can never be over-emphasized. Land cover trajectories and urban
expansion determine land surface fluxes at local and regional scales, amplifying arid-
ity and global warming. Curbing urban sprawl requires promoting socially desirable
levels of population density and reducing urban fragmentation through urban con-
tainment policies. It also requires reforming land-use regulations and property tax-
ation which is key to achieving more sustainable urban development patterns. Putting
Boundaries to urban development may be effective in protecting forestland on the
outskirts of the city of Chingola and others cities in Zambia and designated open
spaces of environmental importance. Existing urban growth boundaries, buffer zones,
and greenbelts should be periodically reviewed and reformed.

4.2. Environmental and bioclimatic factors analysis in relation to land
degradation

4.2.1. Implications of changes in the bioclimatic factors on the socioeco-
nomic sectors
The computed slope value of total annual rainfall was found negative, implying a
decrease of rainfall over three decades of about (�3.25%). This can be explained by
the increase in temperature and potential evapotranspiration transforming the district
to a dry-subhumid area with a moisture deficit standing at �0.42. Moreover, our ana-
lysis of 10 climate change detection indices showed that the district is becoming
warmer (nights and days) and drier (increase in consecutive dry days and decline in
the consecutive wet days). The rainfall intensity has also declined significantly (lesser
days of heavy rainfall). Some effects of heatwaves include but are not limited to
effects of heatwaves, heat rash, heath cramps (occurring when body temperature
reached T¼ 35 �C, with an increase in heart rate, loss of water and salts from the
muscles), heat exhaustion (occurring when body temperature reached, T¼ 40 �C, fol-
low by increase heart rate, and sweating), and heat stroke (increase in the body tem-
perature to T� 45 �C, dry skin, swooning, damage of certain organs, and possible
death) (Tong et al. 2010; Coumou and Rahmstorf 2012; Perkins and Alexander 2013;
Ncongwane 2015).

These results are consistent with the findings of Chabala et al. (2013) and Lubinga
et al. 2019) who found an increasing trend in temperature in all selected areas in
Zambia. However, there is still a clear geographical disparities in terms of impacts of
climate change across the continent. If the amount of rainfall received per annum in
most southern African countries including Zambia is decreasing, recent studies on
the Western African Sahel showed that the amplitude and frequency of heavy rainfall
events have increased significantly (Taylor et al. 2017; Salack et al. 2018; Bichet &
Diedhiou, 2018).
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Nevertheless, a decline in rainfall amount and an increase in dry days and tem-
perature pose a significant risk of soil moisture stress, which ultimately results in
crop failure and food insecurity (Hulme et al. 2001; Seleshi and Zanke 2004;
Alemayehu and Bewkt 2015, Zhao et al. 2020). A study by Nebie and West (2019),
described population pressure and deforestation as the major causes of the severe
famines in the Sahel in the 1970s and 1980s. Xing (2015) and Yu (2014a) ascertained
that a decrease of rainfall below-normal under a rising temperature provide adequate
condition to trigger frequent and severe meteorological drought.

Consequently, the struggle of the small-scale farmers to obtain surface and ground
water for their crops, livestock and household consumption is going to worsen with
the current rate of environmental degradation, considering that 98% of Zambia’s agri-
cultural land is rain-fed (FAO/IFC 2014). However, if it is obvious and generally
accepted by many studies that climate change affects the agricultural sector, not
much research has been done in Zambia regarding climate change and its effect on
crop yields, particularly under a consistent increase in temperature and decrease in
rainfall (Lubinga et al. 2019). The few undertaken in the country used low-resolution
data (Lubinga et al. 2019), generalizing their findings to different agro-ecological
zones, thereby providing fewer insights to both policy makers and farmers (Kachulu
2018; Lubinga et al. 2019). Lubinga et al. (2019) found that variation in the yields of
maize was much more influenced by the increase in minimum temperature and soil
management practices than other climatic variables, including El Nino and La Nina
in Mpongwe, a district in the same agroecological zone III as Chingola district on the
Copperbelt province, Zambia. Iizumi et al. (2014) ascertained that with supplemen-
tary irrigation, the effect of El Nino on maize yield can be mitigated. However, con-
sidering the level of income, this option will be limited to the majority of the
population living below the poverty line.

The changing microclimate in Chingola can be due to the changes that have
occurred at global levels, but also in the land use and land cover, replacing some sur-
face parameters such as forest, grasslands, wetlands, and water bodies with artificial
features (farmlands, mining areas, built-ups), resulting in increased evaporation and
evapotranspiration and shrinkage of surface water. Moreover, the urban growth made
with buildings and infrastructures most of which are made with low albedo materials,
with high thermal inertia, and the potential of absorbing and storing the heat received
from insolation has also played an important role in the increase of air temperature
and urban heat islands over the city Centre. Consequently, these factors will put
more pressure on the provision of social services and economic activities such as
health, agriculture, livestock, and energy in the nearest future. In Senegal, West
Africa, (Faye 2017) found that decrease in rainfall and increase temperature affected
the agricultural sector in terms of changes in agricultural commodity prices, produc-
tion structure, and livestock production capacity. A study by Karaca et al. (2002),
ascertained that exposure to elevated ambient temperature has a greater impact on
semen quality, decreasing fertility in poultry, rabbits, horses, and male birds. These
factors trigger an influx of migration from rural to urban areas, with severe implica-
tions on measures of well-being such as housing, water, and energy consumption spe-
cifically on household air conditioning and human health. The observed trend if

1924 J. MOUSSA KOUROUMA ET AL.



maintained can lead to increased risks of dehydration, hyperthermia, and heat stroke
mainly affecting the elderly and infants (Kovats and Hajat 2008; Smargiassi
et al. 2009).

4.2.2. Environmental factors analysis
Remote sensing also can map and monitor changes in surface conditions, which are
not related to a direct change in land cover or land use, most notably that vegetation
condition. Trends in the normalized difference vegetation index (NDVI) or other
similar indices (NDWI, NDMI, NDSI are often used as a proxy measure of vegetation
condition (Al-Bakri and Taylor 2003) and for analysis of the impact of drought
(Kourouma et al. 2021). Based on the vegetation indices used for monitoring environ-
mental health conditions (NDVI, NDWI, NDMI, NDSI), through the detection of the
presence and absence of vegetation, soil moisture, soil quality, and surface water. The
high value of each index indicates the presence of vegetation, moisture, and water,
while the low value indicates the absence thereof. A decreasing trend was observed in
the average of each indicator. The decrease can be explained by the increase in agri-
cultural activities, expansion of mining, and human settlement that have altered the
areas of forest, savannah woodlands, and water bodies.

NDVI value ranges from �0.15 to 1 in 1972, to �0.92 to 0.39 in 2020. A value of
NDVI above 0.5 indicates a fully vegetated area and below 0.2 to �1 stands for bare
lands and water bodies. NDWI ranges from �0.29 to 0.94 in 1972, to �1 to 0.16 in
2020. A positive value] 0.5, 1] signifies the presence of extensive deep-water bodies,
while NDWI ranging from] 0.2 to �1] denotes vegetation covers (Xu 2006;
Chowdary et al. 2008; Huang et al. 2009). NDMI ranges between �0.97 to 0.51 in
1972, �1 to 0.34 in 2020. All these factors showed a decline in vegetation covers, sur-
face water availability, and soil moisture, denoting the extent to which the local eco-
system is becoming vulnerable. However, the observed decrease in soil salinity
(NDSI) is a good signal for agricultural activities, which might also be explained by
the decrease in prolonged waterlogged conditions. Environmental factors such as
(NDVI), NDWI, NDSI, and NDMI are among other natural factors that have been
widely used as effective indicators to analyze land degradation (Lu et al. 2007; Abdul-
Qadir and Benni 2010; Aldakheel 2011; Allbed and Kumar 2013; Nguyen et al. 2016;
Ficka and Hijmans 2017; Goigoi et al. 2019; Nguyen and Liou 2019; Kourouma et al.
2021). Analysis of these environmental factors for respectively vegetation cover and
greenness, surface water availability, soil moisture, and soil salinity all showed a
declining trend over the study period. A decline in NDVI implies greater ecological
vulnerability, given its important role in maintaining a good eco-environment and
cooling heat island effect. A study was done in Mongolia, China by Ma et al. (2017)
revealed that unreasonable exploitation of mineral resources, decreasing precipitation,
and temperature are key factors that exacerbate land degradation. It is thus, import-
ant to monitor soil moisture as it is vitally important in controlling the exchange of
water and heat energy between land surface and atmosphere through evapotranspir-
ation. NDSI acts as a key variable to define flood control, soil erosion, and slope fail-
ure (Moran 2009). NDVI and NDWI as having been proved by previous studies here
droughts (Gao 1996; Anyamba and Tucker 2005, 2012; Chen et al. 2005) are very
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useful for detecting and investigating drought effects on vegetation cover in the case
of agriculture. Mishra and Singh (2010) argue that NDWI may be a more sensitive
indicator than NDVI for drought monitoring, but its developer (Gao 1996) empha-
sized that the index is: ‘complementary to, not a substitute for NDVI’. Yengoh et al.
found NDVI very effective in developing famine early warnings systems, such as
FEWS NET, an operational system for data dissemination related to global food pro-
duction and availability. This system rigorously tested the ability of NDVI to detect
areas of imminent food shortages (Hutchinson 1991; Quarmby et al. 1993; Kourouma
et al. 2021). A study by Yengoh and Ard€o et al. (2014) and Eze et al. (2020) found
that NDVI combination with relevant climate data has a very strong potential for
forecasting crop failure. This could help decision-makers in understanding the hydro-
logical patterns of the existing watersheds, allowing planners to develop policies that
minimize the negative effects of LULC changes and the potential occurrence of
hydrological drought, which could be detrimental to the agricultural as well as the
mining sector. Considering the importance of natural vegetation, water resource, and
wetlands, and the observed decline, the study recommends a watershed approach that
is participative, spatially focused, and based on reliable science and data. The applica-
tion of NDVI, NDWI, NDMI, and NDSI in this study has shown their suitability for
detecting changes in a mining environment. Nevertheless, there is a need to regulate
farming activities and the establishment of settlements on the edge of water bodies,
wetlands, and forest reserves.

4.3. Preventive and mitigation measures to avoid future undesirable impacts of
land use and land cover change

Rapid urbanization, population growth and diverse anthropogenic activities are trans-
forming urban landscapes mounting the pressure on housing, health facilities, water
supply and sewerage services, solid waste management, transport services, security,
energy supply and challenging current efforts of sustainable land use planning and
environmental sustainability (UN-Habitat 2008; Seto et al. 2012; Cobbinah and
Darkwah 2016, 2017). Providing science-based solutions through determining the
pace and magnitude of land use and land cover change, can support policymakers for
future development and action plans (Mazeka et al. 2022). In African countries’
economies which are mostly resource-based, the dynamics and intensity at which the
landscapes of cities are transformed are shaped by the governance system, the chosen
pathways of development (shared socio-economic pathways, overshoot/non-overshoot,
mitigation, or adaptation) (Heynen et al. 2006), population growth and human settle-
ments expansion (Iqbal et al. 2013).

Cities’ ability to address key environmental, economic, and social challenges, such
as climate change, regional imbalances, access to affordable housing, water, and sani-
tation facilities, will determine how they develop in the years ahead. This study des-
pite the substantial urban growth found discrepancies and regional imbalances in
terms of development in Chingola.

Consequently, consistent and focused policy initiatives at all levels of government
are urgently needed to steer urban development toward more sustainable paths,
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which will be critical for attaining the Paris Agreement and the UN Sustainable
Development Goals. To control urban sprawl and minimize land cover fragmentation,
the government should consider modifying land-use regulations, urban containment
policies, and property taxation, as well as establishing greenbelt or buffer zones to
conserve the remnant forestlands on the edges of the district. Practically, the govern-
ment should prevent the establishment of settlement areas near the forest reserves
and agricultural lands to lower the urbanization pressure.

The government should form a Public-Private-Partnership (PPP) with the mining
industry to meet their corporate social responsibilities as well as in development plan-
ning, supporting the government in constructing roads, public transportation, water,
and sanitation in the sprawling and underdeveloped areas of the district where they
dont’ necessarily operated. This will allow development and benefits from the mines
to be distributed more fairly. The regional and municipal planning boards should not
be ‘planning for the people’, but rather ‘planning with the people’, by incorporating
citizens’ perspectives and efforts toward future development in government proposal
for urban planning and local development initiatives.

Our study discovered that the main causes of the deforestation and degradation of
natural resources are the lack of monitoring by the forestry department. Chingola for-
estry department is severely understaffed and lacking logistical capacity to conduct
consistent and regular monitoring of the forest reserves. Recruiting more personnel,
providing logistics, and building the capacity of the workers on the current advanced
tools for monitoring natural resources such as remote sensing and GIS would
increase their effectiveness and efficiency. There is a need to also reform the existent
Joint Forest Management strategies with more sustainable management strategies,
complemented by stricter regulations on conservation such as urban containment
policies and land use taxation.

Moreover, it is noteworthy to keep in mind that African cities’ demographic
change will be one of the highest worldwide, which will expose the urban population
to significant natural hazards such floods, drought and heat in the upcoming decades
(Asefi-Najafabady et al. 2018; United Nations 2018). The occurrence and magnitude
of these hazards demand more climate-smart strategies of adaptation. For instance,
the sustainability of livestock productivity in face of climate change can be improved
by implementing new practices and strategies (genetic approaches for breeds resilient
to heat stress). Technological adaptation strategies using stress-tolerant crop varieties,
irrigation, artificial intelligence for advanced crop monitoring could sustain the agricul-
ture sector. In the sector of transportation government can choose more climate
resilient materials for constructing infrastructure such as roads and Railway systems
(using high grade heat-resistant asphalt and the use of concrete instead of wood for
constructing train track).

The study’s recommendations are valid and applicable to all other districts in
Zambia’s agroecological zone III, and if considered have the potential to make a sig-
nificant contribution to addressing the challenges of tackling poverty (SDG1), help
the local government on where to concentrate its effort in achieving food security
(SDG2), understanding the current trend and status of environmental degradation
and how maladaptation and inactiveness will mount pressure on the energy supply
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that highly depends on hydroelectricity (SDG7). Parkes et al. (2019) estimated
Africa’s cost of energy-intensive cooling systems to 51 billion USD and 487 billion
USD by 2035 and 2075 respectively, in the continent where only 44.5% of the sub-
Saharan population has access to electricity. As a result, an increase in energy costs
due to increasing stress on the water resources would likely lower energy access and
its affordability for people with moderate income.

Local government need to proactively plan and move towards revisiting the build-
ing codes and settlements regulations. Recommending sustainable cooling solutions
for building and roofing materials (cool roofs and green roofs) could help residents
contribute towards a more resilient city (SDG11). More efforts should be put on revi-
sing the current Paris Agreement’s roadmap and milestones (SDG13). It is worth not-
ing that achieving these objectives are critical to maintaining peace on a local,
national, and global scale (SDG16).

Consequently, this study advocates for more multidisciplinary research and collab-
oration, as well as increased commitment from policymakers and decision-makers at
all levels, as well as better policy development and implementation.

5. Limitations of study

This research presented the current state of knowledge about the processes of land
use and land cover change, urban sprawl, and its implications on the environmental
and bioclimatic factors. Like any other research, it has limitations that would have to
be overcome, given the ability to formulate conclusions more broadly. One of the
limitations of this study is related to the resolution of the satellite image used
(30	 30) meters for Landsat 5 TM, Landsat 7 TMþ and Landsat 8 OLI/TIRS and
(60	 60) meters for Landsat MSS 1. A study of urban sprawl for instance demands
small grids and high-resolution satellite imagery. The climate changes detection indi-
cators used in this study as bioclimatic factors derived from the Ndola meteorological
station within the same agroecological zone III and within less than 100 km radius.
However, although, this station depicts the climatic condition in Chingola, the results
could have been more accurate if the data was complemented by satellite climate data
such as The Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) products which could help to extract more stations points. Nevertheless,
future research directions should consider these limitations. More studies are needed
to understand whether the current urban expansion in Chingola as well as in other
parts of Zambia is solely caused by economic growth? by rural-urban migration? by
the natural growth of the urban population? by the boom in mining activities and
increasing regional demands for natural resources? by the decline of urban mortality
rates and improvement of the social welfares and food supply? or by the combination
of two or several of these factors.

6. Conclusion

This study assessed LULC dynamics and intensity over the period 1972–2020 using
land-use indices and explore the drivers of change. Although other similar studies
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have been carried out, this research introduces the first attempt to make use of tools
available in GIS and remote sensing and as such, it has provided consistent informa-
tion to fill the existing information gap on land-use and land cover dynamics in
Chingola and implications on bioclimatic and environmental factors. It serves as a
benchmark for monitoring forest, urban expansion, and climate change and has pro-
posed solutions to manage urban sprawl, expansion in agricultural and mining areas,
and most importantly natural resources. The analysis shows that development in
Chingola is polarized around mining areas and major roads. Moreover, the analysis
shows that from 1972 to 2020, a steady decline in forest cover was observed, and
existing policies, regulations, and management systems have failed to restore the for-
est. On the contrary, most forest reserves are being alarmingly encroached upon and
the mine reclamation efforts appear to be relatively limited and inefficient in repair-
ing the environmental damage.

This study used a holistic indicator-based approach in assessing the state and
implications of land use and land cover change in terms of urban growth, changes
in the bioclimatic and environmental factors, and at the same time provide recom-
mendations to guide cities hosting mining industries toward inclusive and green
growth. The study found environmental factors such as (NDVI, NDWI, NDMI,
and NDSI) suitable to assess changes in environmental conditions in the mining
areas.

More research into how land cover changes affect streamflow, and its components
is needed considering the reported shrinkage of water bodies (surface water and
groundwater flow). If the current trend is maintained, Chingola will face a high risk
of agricultural, meteorological, and hydrological drought. The local government
should consider building water storage facilities and protecting the edges of the exist-
ing water bodies. Further urban-related studies with socio-economic effects are
needed in Zambia for a more in-depth understanding of the dynamics of urbaniza-
tion and population, which could help to better plan development sectors and address
effectively the provision of social services.
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Appendix

Figure A1. Area change intensity heatmap for land use and land cover classes between 1972
and 2020.
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Table A3. TMI limits with their corresponding Climate type (Thornthwaite, 1948).
Climate type TMI Climate type TMI

A Perhumid 100 and above C2 Moist Subhumid 0 to 20
B4 Humid 80 to 100 C1 Dry Subhumid �20 to 0
B3 Humid 60 to 80 D Semiarid �40 to �20
B2 Humid 40 to 60 E Arid �60 to �40
B1 humid 20 to 40

Figure A2. LULC areas change intensity analysis for 1972–2020.

Table A1. Summary statistics of annual precipitation regression analysis.

Variable Observations
Obs. with

missing data
Obs. without
missing data Minimum Maximum Mean

Std.
deviation

RR 38 0 38 53.8 137.453 97.64 17.54

The goodness of fit statistics (RR)

Observations 38 MSE 282.257
DF 36 RMSE 16.8
R2 0.108 MAPE 14.356
Adjusted R2 0.083 DW 1.798

Table A2. Summary statistics of RX5days.

Variable Observations
Obs. with

missing data
Obs. without
missing data Minimum Maximum Mean

Std.
deviation

RX5days 38 0 38 20.1 52.76 37. 7.57

The goodness of fit statistics (RX5days)

Observations 38 MSE 52.91
DF 36 RMSE 7.27
R2 0.108 MAPE 16.1
Adjusted R2 0.078 DW 1.798
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Table A6. 1992.

Forest
Built-up
areas

Mine
areas

Savannah
woodlands Water Farmlands Barelands

Total
users

User’s
accuracy

Forest 50 0 0 0 0 0 0 50 100%
Built-up areas 10 39 1 0 0 0 0 50 78%
Mine areas 0 0 50 0 0 0 0 50 100%
Savannah woodlands 0 0 0 49 0 1 0 50 98%
Water 0 0 3 0 47 0 0 50 94%
Farmlands 0 0 0 5 3 42 0 50 84%
Barelands 0 0 0 5 0 4 41 50 82%
Total (Producer) 60 39 54 59 50 47 41 350 90.86%
Producer’s accuracy 83.3% 100 % 92.59 % 83.1% 94% 89.4% 100% 91.77%

Overall accuracy 90.85%
Kappa statistics 0.89

Table A4. Land use and land cover change transitions between 1972 and 2020.
LULC 2020

LULC 1972

From To Barelands
Built-up
areas Farmlands Forest

Mining
areas

Savannah
woodlands

Water
bodies

Total area
(1972)

Barelands 13,060.7 3550.6 117.9 326.6 1508.4 6125.0 3853.7 28,543.0
Built-up areas 821.6 7176.0 31.8 64.8 1306.9 1159.9 2010.3 12,571.2
Farmlands 638.0 3146.5 26.1 18.7 778.8 773.0 1607.5 6988.5
Forest 475.0 1124.3 1.7 586.4 142.3 3009.5 1248.8 6588.0
Mining areas 366.9 1177.6 70.4 5.2 1733.9 655.6 467.9 4477.5
Savannah
woodlands

14,846.4 19,963.2 139.8 1603.8 4465.5 46,428.3 15,321.0 102,768.0

Water bodies 2069.1 193.4 60.7 41.1 95.1 921.1 227.6 3608.0
Total area
(2020)

32,277.7 36,331.6 448.4 2646.6 10,030.9 59,072.3 24,736.8 165,544.4

Values are in hectares.
Accuracy assessment tables of land use/land cover classifications of Chingola district in 1972, 1992, 2001, 2013, and
2020, respectively, in Tables A5–A9.

Table A5. 1972.

Forest
Built-up
areas

Mine
areas

Savannah
woodlands water Farmlands

Bare
lands

Total
(user)

User’s
accuracy

Forest 43 0 0 0 0 0 0 43 100%
Built-up areas 0 35 4 0 0 0 0 39 89.7%
Mine areas 0 0 50 0 0 0 0 50 100%
Savannah woodlands 1 0 0 47 0 2 0 50 94%
Water 3 0 0 6 33 0 0 42 78.5%
Farmlands 1 0 0 0 2 38 0 41 90.47%
Barelands 0 0 0 5 0 1 36 42 85.7%
Total (Producer) 48 35 54 58 35 41 36 307 91.2%
Producer’s accuracy 89.6% 100% 92.5 % 81.03% 94.3% 92.7 100% 92.87%

Overall accuracy 91.85%
Kappa statistics 0.90
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Table A7. 2001.

Forest
Built-up
areas

Mine
areas

Savannah
woodlands Water Farmlands

Bare
lands

Total
users

User’s
accuracy

Forest 47 0 0 4 0 0 0 51 92.1%
Built-up areas 0 29 0 0 0 2 0 31 93.5%
Mine areas 0 0 34 0 0 0 0 34 100%
Savannah woodlands 0 0 0 33 0 1 0 34 97%
Water 0 0 3 0 47 0 0 50 94%
Farmlands 0 0 0 1 3 38 0 42 90.4%
Bare lands 0 0 0 5 0 2 61 68 89.7%
Total (Producer) 47 29 37 43 50 43 61 310 93.8%
Producer’s accuracy 100% 100 % 91.89 % 76.74% 94% 88.37% 100% 93%

Overall accuracy 93.2%
Kappa statistics 0.92

Table A8. 2013.

Forest
Built-up
areas

Mine
areas

Savannah
woodlands Water Farmlands Barelands

Total
users

User’s
accuracy

Forest 40 0 0 3 0 7 0 50 80%
Built-up areas 0 38 0 4 0 2 0 44 86.36%
Mine areas 0 1 34 1 0 2 0 38 91.89 %
Savannah woodlands 0 0 1 53 0 0 0 54 75.7%
Water 0 0 1 1 36 0 0 38 92.3%
Farmlands 0 0 1 3 3 29 3 39 67.4%
Barelands 0 0 0 5 0 3 72 80 96 %
Total (Producer) 40 39 37 70 39 43 75 343 84.2%
Producer’s accuracy 100% 97.4 % 91.9 % 75.7% 92.3% 67.4% 96% 88.7%

Overall accuracy 88.04%
Kappa statistics 0.86

Table A9. 2020.

Forest
Built-up
areas

Mining
areas

Savannah
woodlands Water Farmlands Barelands

Total
(user)

User’s
accuracy

Forest 56 0 0 0 0 0 56 100%
Built-up areas 0 53 1 2 2 0 0 58 91.37
Mining areas 0 0 37 4 1 1 1 44 84.1%
Savannah woodlands 0 0 0 51 0 0 0 51 100%
Water 0 0 0 0 47 0 0 47 100%
Farmlands 1 0 0 1 5 56 3 66 84.84%
Bare lands 1 0 0 0 14 0 70 85 87.1%
Total (Producer) 58 53 38 58 69 57 74 407 92.5%
Producer’s accuracy 96.55% 100% 97.36 87.9% 68.1% 98.2% 94.6% 91.8%

Overall accuracy 90.9%
Kappa statistics 0.89
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