
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

Improving the sustainability of confirmed traffic
in LoRaWANs through an adaptive congestion

scheme
Jaco Morné Marais, Student Member, IEEE, Adnan M. Abu-Mahfouz, Senior Member, IEEE, and

Gerhard P. Hancke, Life Fellow, IEEE

Abstract— The scalability of Long Range Wide Area Networks (Lo-
RaWANs) is known to be very sensitive to the presence of traffic
from gateways to end devices (downlink traffic). The protocol sup-
ports confirmed traffic, for which downlink traffic is generated in the
form of Acknowledgements (ACKs). Research has shown that even
a limited number of ACKs quickly cause network congestion, neg-
atively impacting scalability. This paper introduces a mechanism,
the Adaptive Congestion Scheme (ACS), which aims to monitor the
congestion caused by downlink traffic and take steps to reduce
it. Currently, the ACS supports one counteraction in the form of a
newly developed algorithm called groupedPackets (also introduced
in this paper). This algorithm reduces the number of sent confirmed
packets by requesting that confirmed nodes (nodes that only send confirmed traffic) aggregate their application packets.
Simulations showed that this algorithm improved the successful delivery of both unconfirmed traffic and confirmed traffic.
When traffic volumes are low, the algorithm has a minimal impact, but at high network packet arrival rates (higher than
0.1 pkt/s), the successful delivery of especially confirmed traffic increased significantly.

Index Terms— LoRaWAN, LPWAN, Scalability, ACK, ACS, groupedPackets.

I. INTRODUCTION

THe recent rise in Internet of Things (IoT) deployments
continues to gain momentum, as more and more indus-

tries hope to manage their complex supply chains and the high
cost of logistics through the use of technology [1], [2]. These
deployments require effective Machine-to-Machine (M2M)
communication and have resulted in the development of Low
Power Wide Area Networks (LPWANs). One such technology,
namely LoRa Wireless Area Network (LoRaWAN), was found
to be effective for a range of IoT use cases [3], [4].

Particularly, these networks are well suited for smart city
deployments due to their support for large amounts of devices
(scalability). A LoRaWAN’s scalability is influenced by the
presence of Downlink (DL) traffic [5], [6]. It has been shown

Manuscript received 23 September 2021. This research was sup-
ported by the Council for Scientific and Industrial Research, Pretoria,
South Africa, through the Smart Networks collaboration initiative and
IoT-Factory Program (Funded by the Department of Science and Innova-
tion (DSI), South Africa). This work is based on the research supported
in part by our industry partner Telkom. The grant holder acknowledges
that opinions, findings and conclusions or recommendations expressed
in any publication generated by this research are that of the author(s),
and that our industry partners accept no liability in this regard.

All authors are with with the Department of Electrical, Electronic
and Computer Engineering, University of Pretoria, Pretoria 0028, South
Africa e-mail: (jaco.marais@tuks.co.za; g.hancke@ieee.org)

A.M. Abu-Mahfouz is also with the Council for Scientific and Industrial
Research, Pretoria 0084, South Africa.

G.P. Hancke is also with the Nanjing University of Posts and Telecom-
munications, Nanjing 210023, China.

that, amongst other factors, Duty Cycle (DC) restrictions and
a high maximum number of transmissions (NbTrans) setting
cause a dramatic reduction in network scalability. Their impact
is minimal in small networks but occurs in large networks even
with a low ratio of confirmed to unconfirmed traffic.

This work aims to reduce congestion in large LoRaWANs
through the introduction of the Adaptive Congestion Scheme
(ACS). This scheme was developed by the authors and mon-
itors LoRaWANs for the presence of confirmed traffic and
congestion before proceeding to activate countermeasure(s).
Currently, one countermeasure is available, namely a newly
developed algorithm introduced in this paper that aims to
improve network performance. This algorithm, referred to as
groupedPackets, seeks to reduce the amount of confirmed
traffic in a network by requesting that nodes sending confirmed
traffic aggregate their application packets. The design and
implementation of this algorithm are described in this paper.

Aggregation based techniques have been applied in wireless
networks for some time now due to the many challenges
these types of networks face [7]. The use of aggregation in
LoRaWANs has been mainly explored in the form of Acknowl-
edgement (ACK) aggregation [8]–[11]. Some researchers have
also focused on aggregating application data instead, espe-
cially in use cases where retrieving sensor data is complicated
[12].

This paper focuses on data aggregation in LoRaWANs in a
novel way and contributes the following:

2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

• Discusses how congestion can be monitored in Lo-
RaWANs and introduces the newly developed ACS.

• Introduces and explains how the novel groupedPackets
algorithm operates. Unlike static congestion reduction
mechanisms, this algorithm will continue to make ad-
justments when possible.

• Demonstrates through simulations how this algorithm
improves network performance.

The paper is organised as follows. Some background on
LoRaWAN is provided in Section II. Related work is discussed
in Section III. Information on simulation setup is given in
Section IV. The impact of congestion is discussed in Section
V. Section VI details the methodology behind the ACS and
the groupedPackets algorithm. The impact of this algorithm
on network scalability is presented and discussed in Section
VII. Examples of where this mechanism can be used are given
in Section VIII. Finally, a conclusion is given in Section IX.

II. BACKGROUND: LORAWAN
The LoRaWAN technology consists of two parts: the Long

Range (LoRa) physical layer and the Medium Access Control
(MAC) layer protocol called LoRaWAN. LoRa is based on
Chirp Spread Spectrum (CSS) and provides different data
rates, which represent a trade-off between range and possi-
ble bitrate. This is done through the Spreading Factor (SF)
parameter, whose options are {7, ..., 12} with higher numbers
allowing for greater range. A selling point of LoRa is that
the SFs are considered orthogonal to each other, allowing
transmissions overlapping in time and frequency to be still
received successfully. There are, however, some conditions
that have to be met [13], [14]. Gateways equipped with LoRa
chipsets have eight parallel reception paths to utilise the quasi
orthogonality of the different SFs.

The LoRaWAN standard [15] dictates the MAC and other
protocols for devices utilising LoRa. A star-of-stars topology
is used which consists of end devices, Gateways (GWs) and a
Network Server (NS), which is a central entity responsible for
controlling the network. Maximum application payload sizes
are given in [16] and depend on the region of operation. These
maximums depend on the data rate used and are derived from
the limitations of the PHY layer.

The standard also has an Adaptive Data Rate (ADR) mech-
anism that allows the NS to adapt and optimise the data
rate, channels used and transmit power of static end-devices
[15]. This mechanism’s main focus is to minimise energy
consumption whilst maximising throughput, and is thus not
concerned with scalability [17].

III. RELATED WORK

The research community has been studying congestion
from as early as 2017 ([5]), with numerous new mechanisms
proposed to improve scalability [18], [19]. In [18], a synchro-
nisation and scheduling mechanism is proposed that schedules
Uplink (UL) and DL transmissions with minimal overhead.
The use of groupcasting and geocasting are proposed in [19]
to reduce the traffic volumes in a network by specifying which
types of sensors must transmit if a specified condition is met

in their periodic measurements. These techniques work well
in private LoRaWANs, where the sensor data and application
are known to the network operator.

The use of aggregation in LoRaWANs has been explored in
the form of aggregating acknowledgements [8]–[11]. In [9],
an “AggACK” is periodically sent by the NS to ACK the
receiving of several device’s packets. A similar approach is
followed in [10], where a scheduling algorithm dictates when
a group ACK will be sent for all packets received in the
previous timeslot. The use of timeslots is also explored in [8],
[11], where it is combined with aggregated ACKs to improve
scalability.

A downside of aggregating ACKs is that if the ACK is
not transmitted (DC restrictions) or not successfully received
by multiple nodes, all affected nodes will retransmit their
packets. In the case of groupedPackets, only one device will
be involved, and thus only one transmission will be repeated.
However, more ACKs in total will be sent in a system using
groupedPackets than in a system aggregating ACKs.

Other approaches to reduce the congestion caused by ACKs
are to better manage the use of channels [20], time-slotting
[21] or virtually split network resources through slicing [22].
A node focused approach is suggested in [23], in which nodes
count the number of retransmissions required by their previous
confirmed uplinks and adjust their own DC accordingly. This
action is part of the ADC-MAC protocol, which requires
nodes to also make similar adjustments based off their payload
load and energy levels. Using these techniques, the contention
of resources and overlapping of transmission problems are
alleviated at the cost of increasing overhead and reducing
flexibility.

IV. SIMULATION SETUP AND SCENARIO

This work extended a popular open-source ns-3 LoRaWAN
module called “lorawan”1. Its inner workings are well docu-
mented in [14], [24] and has since been extended by the team
multiple times [25], [26].

The simulation scenario used is a single GW serving multi-
ple nodes, which periodically generate packets with an equal
period but random phases. This traffic characteristic matches
that of devices in The Things Network (a crowd-sourced
LoRaWAN) [27]. The network is configured to follow the
default channels and DC limitations of Europe. SF assignment
was performed with the SetSpreadingFactorsUp function of
the module, which calculates the lowest SF a device should
use to still ensure connectivity (ADR is disabled). Results
were gathered by averaging over 20 simulations using the sem
Python library [28].

A set of 1200 nodes were uniformly distributed in a circular
space around the GW with radius r = 6300 m. This value is
near the maximum distance a node using SF12 can still com-
municate when only propagation loss is considered2. Nodes
generate application packets with a starting size of 10 bytes

1Available at https://github.com/signetlabdei/lorawan.
Work was conducted with developer branch version 159cc5e (4 May 2021).

2Older publications using this simulator used 7500 m, see https://
github.com/signetlabdei/lorawan/issues/101 on why this is
no longer valid.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

to which a random additional i, i ∈ {2, ..., 8} bytes are added.
The payload analysis conducted in [27] also found that 50 %
of payloads are less than 19 bytes, with the average payload
size being 18 bytes. A random element was added as not all
devices in such an extensive network can be assumed to be
transmitting the same data in every period.

To obtain confirmed traffic ratios, a percentage of devices
are selected to send only confirmed traffic, whilst the rest
send unconfirmed traffic only. For unconfirmed traffic, only
one transmission attempt is allowed per UL packet, whilst for
confirmed traffic, the maximum was configured to be eight 3.

A similar approach to [26] was taken to define packet
outcomes and performance metrics. For unconfirmed traffic,
a packet is considered successful if it is received by a GW
who forwarded it to the NS. The case of confirmed traffic is
more complicated and can be split into two cases. In the first
case, transmission is only considered successful when both
the UL and the corresponding DL (ACK) was successfully
received. A second, more relaxed case, is also possible where
success only requires that at least one of the generated UL
packets was successfully delivered to the NS.

Based on the breakdown above, the two performance met-
rics of interest are:

• Confirmed Packet Success Ratio (CPSR): the probability
that a confirmed UL packet was received by a GW and
the corresponding ACK was received by the node.

• Uplink Packet Delivery Ratio (ULPDR): the probability
that a UL unconfirmed packet was correctly received.

Due to this work’s focus on confirmed traffic, the second
case for confirmed traffic is not considered. As a result, this
work’s ULPDR is different from the ULPDR values measured
in [26], which considered both cases.

V. CONGESTION IN LORAWANS

IoT devices infrequently transmit small amounts of data,
with data collection aimed at having many devices rather than
receiving a specific device’s data very reliably. This represents
a generic IoT use case such as smart irrigation, however,
a selling point of LoRaWAN is its flexibility in supporting
different use cases [3]. This is done by supporting downlink
traffic in the form of ACKs and downlink data messages to
the end device’s application. This causes the discussion around
scalability to shift from the limitation of GWs to only receive
eight simultaneous signals to one in which the impact of
downlink traffic must also be considered [29].

The impact of ACKs on network scalability was explored in
[6], which found that the ratio between confirmed traffic and
unconfirmed traffic is a key influence on performance. For low
ratios (≤ 5 %), the impact can be minimal [30], but for higher
ratios, the DC restrictions imposed on gateways cause the
performance to drop significantly [27], [31]. The half-duplex
nature of LoRaWAN gateways also increases missed UL
transmissions as a gateway cannot receive any transmissions
whilst transmitting an ACK [31].

In Fig. 1a and Fig. 1b, the performance of unconfirmed
and confirmed traffic is shown respectively, demonstrating the

3This is the default behaviour of the “lorawan” simulator.

10 2 10 1 100

Arrival rate (pkt/s)

80

100

UL
PD

R
(%

)

5.0 % confirmed

10 2 10 1 100

Arrival rate (pkt/s)

10.0 % confirmed

10 2 10 1 100

Arrival rate (pkt/s)

15.0 % confirmed

(a) Unconfirmed traffic.

10 2 10 1 100

Arrival rate (pkt/s)

60

80

100

CP
SR

 (%
)

5.0 % confirmed

10 2 10 1 100

Arrival rate (pkt/s)

10.0 % confirmed

10 2 10 1 100

Arrival rate (pkt/s)

15.0 % confirmed

(b) Confirmed traffic.

Fig. 1. Performance of network, examined over several arrival rates and
confirmed ratios.

impact even low percentages of confirmed traffic have. The
graphs show that packet delivery remains above 90 % for
network traffic volumes generated by packet arrival rates (λ) of
less than 10−1 packets per second. After this threshold, a steep
decline is experienced for both traffic types, with unconfirmed
traffic reducing earlier.

The LoRaWAN protocol will need some improvements to
combat the negative impact of confirmed traffic. As discussed
in [6], the LoRaWAN protocol does not have a congestion
monitoring and response mechanism. This work aims to solve
that and has resulted in the creation of the ACS.

VI. MECHANISM TO IMPROVE CONGESTION

This section introduces a novel mechanism to improve con-
gestion and is split into three parts. In Section VI-A a method
to monitor congestion is introduced with an algorithm aimed
at reducing detected congestion given in Section VI-B. Finally,
the implementation costs and computational complexity of this
mechanism is discussed in Section VI-C.

A. Adaptive Congestion Scheme (ACS)

The ACS monitors a LoRaWAN for congestion before
taking action to improve network performance. The scheme
is loosely based on LoRaWAN’s ADR, and as is the case
with ADR, participation is voluntary (nodes can opt-out) with
the scheme sending instructions to nodes using a new MAC
command (LinkACSReq). Similar to ADR, an answer in the
form of a LinkACSAns is sent by the device to indicate if the
settings were successfully changed.

In networks with low traffic volumes, congestion control
via the ACS is not needed. The ACS can remain dormant
until it detects traffic volumes greater than a set threshold
in combination with the presence of significant confirmed
traffic. For this paper, an examination of Fig. 1a and Fig
1b revealed that 10−1 packets per second and the presence
of more than 5 % confirmed traffic are good thresholds.
In general, these values should be chosen by the network

4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

operator based on desired ULPDR and CPSR levels. For
multiple gateway networks, monitoring should be performed
at the network level, but the load balancing between gateways
should also be considered. The activation of the ACS might be
unnecessary if more optimum gateway placements can allow
for even utilisation of SFs or better overlap of coverage zones.

To implement the scheme, the LoRaWAN protocol had to
be modified. The MAC payload of a message contains the
Frame Header (FHDR) with a one-byte long FCtrl element.
To add ACS support, this element was expanded to two bytes
as shown in Fig. 2. For downlink packets, one bit is used to
indicate that the network server can send ACS commands.
For uplink packets, one bit is used to indicate a device’s
participation in ACS. Another three bits are used in uplink
packets by the groupedPackets algorithm to indicate how many
application packets were aggregated.

The remaining bits are classified as Reserved for Future Use
(RFU). At this stage, the novel ACS has only one counterac-
tion: the newly developed request to batch application packets
referred to as groupedPackets. More counteractions can be
added later and be activated on their own or in conjunction
with groupedPackets and thus space was reserved in the header
for these.

Uplink FCtr l f ields

Dow nlink FCtr l
f ields

Bit# [15..9] 8 7 6 5 4 [3..0]

RFU ACS ADR RFU ACK FPending FOptsLen

Bit# [15..12] [11...9] 8 7 6 5 4 [3..0]

RFU GroupedP ACS ADR ADRACKReq ACK ClassB FOptsLen

Fig. 2. New contents for FCtrl of the frame header.

To compensate for a larger header, the maximum application
payload size was reduced by one byte to keep the maximum
Time on Air (ToA) for LoRaWAN packets unchanged. The
maximums are SF dependent, and this change would reduce
the maximum allowed payload for packets sent using, e.g.
SF12, from 51 to 50 bytes. The number of IoT applications
this would impact would be minimal, as analyses performed
in [27] showed that 93.7 % of TTN’s payloads were below 50
bytes. The larger header size will cause transmissions to take
slightly longer and slightly increase power consumption.

Implementation wise, the ACS can be added as another
element to the NS similar to ADR algorithms. The meta-data
of all packets received by the NS can be analysed to determine
the traffic volumes in the network and the ratio of confirmed
traffic to unconfirmed traffic.

B. groupedPackets algorithm
This newly developed algorithm seeks to reduce the traffic

volumes generated by confirmed nodes by requesting that they
aggregate their application packets. This causes nodes to send
larger but less frequent confirmed packets. acDC restrictions
limit the sending of ACKs by a GW, and by reducing the
number of confirmed packets, more ACKs can be sent. This,
in turn, reduces the number of retransmissions of confirmed
packets, causing fewer packet collisions due to interference.

Finally, this also combats the half-duplex nature of GWs, as
the number of packets lost due to GW transmissions is reduced
as fewer transmissions are required.

Algorithm 1 Pseudocode for NS side groupedPacket.
INPUT: curNum: Device’s aggregation value;

device: a Pointer to a specific end device;
OUTPUT: newNum: new recommended aggregation value;

1: AppPSize← 0 . Max application packet size
2: TotalAppSize← 0 . Max total application packet size
3: historyRange← 3 . Num of packets to consider
4: maxGrouping ← 5 . Maximum aggregation limit
5: Update AppPSize and TotalAppSize by calling

GetSizes(device, historyRange)
6: if TotalAppSize+AppPSize ≤ 50 then
7: if (curNum+ 1) < maxGrouping then .

Aggregation limit not yet reached
8: newNum← curNum+ 1
9: else

10: newNum← curNum . Limit hit, no changes
11: end if
12: else . Cannot add another
13: if TotalAppSize > 50 then . Max packet size

limit exceeds max, decreasing aggregation.
14: if (curNum− 1) > 0 then
15: newNum← curNum− 1 . Decreasing

aggregation
16: else
17: newNum← curNum . No changes
18: end if
19: else
20: newNum← curNum . Limit hit, no changes
21: end if
22: end if
23: return newNum

The algorithm contains two parts; one is executed on the NS
side to calculate an ideal value for application payload aggre-
gation for each device. The second is executed by each node
and ensures that if the aggregation target is too aggressive, as
many payloads as possible are sent instead.

All nodes start with no aggregation (only sending the current
application payload) whilst the scheme builds up a history of
sent packets and their sizes. Once sufficient history has been
gathered, currently three packets, the NS side algorithm is
enabled and starts making adjustments. The pseudocode for
the NS side algorithm is provided in Algorithm 1.

Adjustments to payload aggregation are in increments of
one payload to prevent large changes between adjustments
(Algorithm 1, lines 8 and 15). The current setting used by a
device is extracted from its latest packet’s FCtrl element and
is used as input curNum. There are two limiting factors on
how many payloads can be aggregated: the maximum allowed
payload size as dictated by the chosen SF and the time delay
caused by aggregation may become unacceptable.

The impact of the first factor can be limited through the
algorithm estimating the total packet size and, should the

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

algorithm get it wrong, sending as many packets as possi-
ble (node side algorithm). This task is made more difficult
because application payload sizes may not be static but vary.
Additionally, aggregation requires the addition of a one-byte
long delimiter between payloads to allow the application server
to separate them.

Total size estimation starts by determining the largest aver-
age application payload size in a node’s sent history (Algo-
rithm 1, line 5). A test is then done to see if the addition of
this largest size and the current payload size(TotalAppSize)
would exceed the maximum allowed (Algorithm 1, line 6).
The AppPSize value returned by GetSizes() finds the largest
average size by inspecting each packet in the history and cal-
culating its average application payload size. One byte is then
added to this total to compensate for the additional delimiter
required should the number of packets to be aggregated be
increased.

If the combined total remains below the maximum, the node
is sent a request to increase the number of payloads it currently
groups. Currently, this test uses 50 bytes as the maximum.
LoRaWAN does support larger packet sizes, but the maximum
depends on the SF used to send a packet. To keep things
simple, 50 bytes was chosen to ensure compliance with all SFs.
Payloads usually are smaller than this, and this limit would still
allow several to be aggregated.

Algorithm 2 Pseudocode for node side groupedPacket.
INPUT: totalPSize: Total application packet size due to

aggregation + latest payload;
numGrouped: The number of payloads aggregated;
latestPSize: The size of the latest payload;
latestP : The latest payload;
storedData: Older payloads stored with delimiters;

OUTPUT: sentData: The data to send;

1: if totalPSize ≤ 50 then
2: Call SetSentGroupedPackets(numGrouped+ 1) .

Update MAC header
3: sentData← (storedData+ latestP) . Send packet
4: else . max size exceeded
5: newnumPackets← 0 . New number of payloads.
6: newTotalSize← latestPSize
7: newData← latestP . newnumPackets is 0

as 0 here refers to 1 packet being added so far (the latest
one).

8: for all p in storedData do
9: if newTotalSize+ size(p) < 50 then

10: newnumPackets← newnumPackets+ 1
11: newTotalSize = newTotalSize+ size(p)
12: newData = newData+ p
13: end if
14: end for
15: Call SetSentGroupedPackets(newnumPackets)
16: sentData← newData . Send packet
17: end if

As application payloads vary, a node may not be able to
successfully aggregate a newly received payload with the

aggregated payloads without exceeding the maximum size.
In these cases, the node side algorithm given in Algorithm
2 is activated. To minimise losing payloads, the node side
algorithm dictates that a node re-aggregates as many payloads
as possible by accessing stored packets in a Last In First
Out (LIFO) fashion. This ensures the latest packet is always
sent, with the oldest packet(s) possibly being discarded. For
example, should three aggregated payloads be 32 bytes with
a newly created payload of 20 bytes, a node will be unable
to transmit all of them. For this example, assume that each of
the aggregated payloads was 10 bytes each, with the delimiters
each requiring one byte. The node will send the latest payload
(20 bytes) as well as two of the previous payloads for a total
of 20 + 1 + 10 + 1 + 10 = 42 bytes. Only the oldest payload
was lost in this case, as the maximum of 50 bytes must be
adhered to. Lines 6 to 8 of Algorithm 2 show how the latest
packet is selected first before the stored packets are examined
and added in lines 10 to 13. A payload and its delimiter are
stored together in storedData.

The aggregation can be too aggressive if payloads are less
than, e.g. 5 bytes, as it will take a lot of aggregation before
the maximum size is reached. To prevent long delays, the
maximum number of packets to be aggregated can be set by
the application developer/network administrator, which is five
in this case (Algorithm 1, line 4).

C. Implementation costs and computational complexity

In terms of computational complexity, Algorithm 1 will be
executed N times, where N is the number of successfully
received confirmed packets from devices using groupedPackets
in a time period of interest. Line 5 is a call of the Get-
Sizes function, which contains a for loop traversing through
historyRange amount of stored packets. This value is fixed,
not dependent on N, and cannot exceed 25 (25 payloads of 1B
+ 24 delimiters = 49 B). All algorithm lines will execute in
O(1), as they do not depend on N. For the NS, the algorithm
thus is considered linear, O(N), as it will be executed N times.

When considering the complexity of Algorithm 2, the for
loop must be considered. This loop will execute in the worst
case X times, where X is the length of storedData’s array.
This length is limited to five by default, with the theoretical
maximum being 25. Except for line 8, all other statements do
not involve the length of storedData and can thus be considered
O(1). The total computational complexity of Algorithm 2 is
thus also linear, O(X), with X being limited to no more than
25.

The addition of these algorithms will have an implementa-
tion cost. Adding ACS and groupedPacket support is minimal
as it was based on the ADR scheme, and the NS already stores
information on received packets for ADR purposes. This same
history can be used for groupedPackets by also storing the
application payload’s length and the groupedPackets bits in
the Uplink FCtrl header. Similarly, the NS already interfaces
with its ADR component to determine if any LinkADRReq
commands must be sent to the device. In addition, the NS
needs to interface with the ACS component to determine if
any LinkACSReq commands should be added.

6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

A LoRaWAN’s NS is typically hosted in the cloud (for
which the additional load would be minimal) or on a gateway
in the case of smaller networks. An example of a gateway
which can easily host a NS which supports groupedPackets
is the Multitech Conduit, which has an ARM9 processor,
128X16M DDR RAM and 256 MB of flash memory [32].

On the end-device side, an example is common LoRaWAN
chips such as the Multitech mDot or the STMicroelectronics
STM32WLE5JC which have at least 256 kBytes of Flash
memory and 64 kBytes of SRAM [33], [34]. The implementa-
tion of the algorithm requires a minimal amount of additional
program memory, and aggregation of packets has a maximum
aggregation target size of 50 bytes. This is minimal compared
to the kBytes of storage available in both cases.

VII. RESULTS

In this section the simulation results is given comparing
standard LoRaWANs with networks utilising groupedPackets.
Section VII-A showcases how groupedPackets impact per-
formance over time and Section VII-B indicates how arrival
rates impacts the algorithm. How various base packet sizes
influences the algorithm is given in Section VII-C and a
discussion on the delay introduced by the algorithm is given
in Section VII-D.

A. Activation of groupedPackets
The groupedPackets algorithm takes several simulation time

periods before settling on an optimum aggregation number.
The algorithm must first gather packet history, which will
allow it to determine if aggregation is possible. If this is the
case, the algorithm has a ramp-up period as adjustments are
made in increments of one. A device could thus be able to
aggregate four packets, but the algorithm will first request it to
group two, then three and finally four. It continues to monitor a
device’s packet history and may request adjustments (increas-
ing or decreasing aggregation) depending on the history.

The algorithm initially requires a three packet history, but
this can be reached quickly as packets’ retransmissions are
included in the history. As a result, the algorithm can send
changes to some devices before simulation period three is
achieved.

The algorithm’s behaviour can be seen in Fig. 3, which
shows how the performance for both types of traffic improves
over time. The x-axis is the simulation’s running time, ex-
pressed in periods. For example, period 10 corresponds with
time interval 5319 s − 5910 s. The third graph, showing the
total number of sent confirmed packets in a simulation period,
shows how the algorithm changes this total from 180 (15%
of a 1200 device network) to around 60 (5%). The algorithm
rapidly reduces the number of sent confirmed packets before
settling.

Fig. 4 further explores the impact of the algorithm. The
total number of sent confirmed packets reduces (Fig. 3) over
time, which causes the total number of retransmissions also
to reduce, as seen in Fig. 4. Thanks to the lower number
of sent confirmed packets, the number of packets lost due
to interference (collisions) reduces. The lower amount of

confirmed packets also reduces the number of ACK transmis-
sions required, and thus fewer packets are lost due to ACK
transmissions.

The use of the algorithm reduces the effective arrival rate,
and subsequently, network performance increases. It is clear
that including the earlier intervals in calculations will skew any
results as a stable state has not yet been reached. Therefore,
the first 20 periods are excluded from the results in this paper.

B. Impact of arrival rate on groupedPackets
The effectiveness of the algorithm across a range of arrival

rates is shown in Fig. 5 and Fig. 6 which contain error bars
showing the standard deviation. Each simulation consisted of
50 simulation periods with data collected for 30 simulation
periods (these periods were after the initial 20 periods as per
the previous reasoning). Each node generates one application
packet in a simulation period. A simulation period’s duration
was fixed for each simulation and depended on the targeted
arrival rate for a specific simulation. For example, creating an
arrival rate of 2.031 pkt/s requires that 1200 nodes transmit
every 591 seconds (1200 packets/591 s = 2.03 pkt/s).

For unconfirmed traffic, the algorithm improved in all cases,
with the improvement increasing at higher arrival rates. In
confirmed traffic’s case, the algorithm provided considerable
improvements for high arrival rates and a slight reduction
(a difference in the mean of ≤ 1 percentage point) at low
arrival rates. When comparing standard and groupedPackets,
a larger standard deviation can be seen when the algorithm
is enabled. This is caused by higher variance in the number
of sent confirmed packets, which causes a variance in both
performance metrics. In other words, the algorithm’s grouping
causes some intervals to have more sent confirmed packets
than others. Intervals with fewer sent packets tend to have
higher packet delivery than intervals with a higher number of
sent packets.

C. Interaction of groupedPackets and various base
packet sizes.

A packet’s size has an impact on its transmission time,
and larger packets will require longer ToA, increasing the
probability of collisions. The algorithm’s ability to aggregate
application packets is dependent on the maximum packet size
(set to 50 bytes). Fig. 7 and Fig. 8 show the impact of three
base packet sizes on the performance. As with previous graphs,
an additional random element of between two bytes and eight
bytes were still added in all cases. The figures show that
performance improves for all ratios and base payloads, with
the algorithm having a bigger impact at higher arrival rates.

In Fig. 7, the performance decrease with increased base
packet size is similar for both options. The overall reduction in
packet delivery as the arrival rate and confirmed ratio increase
is evident. The groupedPackets algorithm is more effective for
smaller base sizes than for larger ones due to aggregating more
packets before reaching the 50-byte limit.

In Fig. 8, variation in base payload size does not affect
CPSR if standard LoRaWAN is used, but the use of grouped-
Packets results in a significant improvement, especially at

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

0 20 40
Simulation period

72

74

76

78

80

UL
PD

R
(%

)

0 20 40
Simulation period

50

60

70

80

90

CP
SR

 (%
)

0 20 40
Simulation period

60

80

100

120

140

160

180

Nu
m

be
r o

f s
en

t c
on

fir
m

ed
 p

ac
ke

ts

Standard LoRaWAN
groupedPackets enabled

Fig. 3. Performance impact of groupedPackets for a 15 % confirmed network with λ = 2.03 pkt/s when examined over a long duration.

0 20 40
Simulation period

200

400

600

800

1000

To
ta

l p
ac

ke
ts

Total confirmed packets (retransmissions)

0 20 40
Simulation period

70

80

90

100

110

120

Interfered packets

0 20 40
Simulation period

140

160

180

200

220

Lost due to GW TX

Standard LoRaWAN
groupedPackets enabled

Fig. 4. Analysing the reasons behind the improvement.

10 1 100

Arrival rate (pkt/s)

75

80

85

90

95

100

UL
PD

R
(%

)

5 % confirmed

10 1 100

Arrival rate (pkt/s)

10 % confirmed

10 1 100

Arrival rate (pkt/s)

15 % confirmed

Standard LoRaWAN
groupedPackets enabled

Fig. 5. Performance of unconfirmed traffic with variation in confirmation ratios (30 simulation periods after reaching stable state, base size is 10
bytes).

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

10 1 100

Arrival rate (pkt/s)

93

94

95

96

97

98

99

100

CP
SR

 (%
)

5 % confirmed

10 1 100

Arrival rate (pkt/s)

65

70

75

80

85

90

95

100
10 % confirmed

10 1 100

Arrival rate (pkt/s)

50

60

70

80

90

100
15 % confirmed

Standard LoRaWAN
groupedPackets enabled

Fig. 6. Performance of confirmed traffic, examined over several arrival rates and confirmed ratios (base size of 10 bytes).

10 1 100

Arrival rate (pkt/s)

70

80

90

100

UL
PD

R
(%

)

5 % confirmed

10 1 100

Arrival rate (pkt/s)

70

80

90

100

UL
PD

R
(%

)

10 % confirmed

10 1 100

Arrival rate (pkt/s)

70

80

90

100

UL
PD

R
(%

)

15 % confirmed

Standard LoRaWAN
groupedPackets enabled

10 B
15 B

20 B

Fig. 7. Performance of unconfirmed traffic, examined over several
arrival rates, base application payload sizes and confirmed ratios.

higher traffic levels. As was the case for unconfirmed traffic,
the algorithm is more effective with smaller payloads due to

10 1 100

Arrival rate (pkt/s)

50
60
70
80
90

100

CP
SR

 (%
)

5 % confirmed

10 1 100

Arrival rate (pkt/s)

50
60
70
80
90

100

CP
SR

 (%
)

10 % confirmed

10 1 100

Arrival rate (pkt/s)

50
60
70
80
90

100

CP
SR

 (%
)

15 % confirmed

Standard LoRaWAN
groupedPackets enabled

10 B
15 B

20 B

Fig. 8. Performance of confirmed traffic, examined over several arrival
rates, base application payload sizes and confirmed ratios.

aggregating more payloads. For an arrival rate of 2.03 pkt/s,
the algorithm improved the ULPDR of a 15 % confirmed

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

network by 8.1, 4.0 and 4.7 percentage points for the three
base sizes respectively. This improvement is slight, but the
CPSR improved by 46.2, 31.6 and 27 percentage points for
the same case.

Welch’s t-tests were conducted to determine if the mean
values for groupedPackets were statistically significant. When
the calculated p-values were compared to a significance level
of 0.05, only two cases failed to reject the null hypothesis (H0

= the two group means are identical). These two cases were
arrival rates of 0.24 pkt/s and 0.41 pkt/s for a 10 % confirmed
network with 15 B base application payloads. In a few cases,
t-tests were unable to be conducted as packet success remained
at 100 % for both options.

D. Delay introduced by the algorithm
The overall goal of the groupedPackets algorithm is to

improve system throughput by improving the probability of
successful packet delivery. This improvement requires intro-
ducing a time delay for confirmed traffic due to the aggregation
of packets. The extent of the delay will vary between nodes
as it is a function of DC restrictions, communication distance,
SF used, the number of packets being aggregated and the
frequency of transmissions.

Fig. 9 shows the average delay between when a node trans-
mits a confirmed packet and an ACK is received in an example
network. This graph does not reflect the additional delay
experienced by aggregated confirmed payloads but only the
delay since transmission of either an aggregated or standard
payload. The delay increases at higher arrival rates, as the
number of retransmissions required starts to increase, due to
increased collisions and GW DC restrictions.

10 1 100

Arrival rate (pkt/s)

0

50

100

150

200

Av
er

ag
e

AC
K

de
la

y
in

 a
 si

m
ul

at
io

n
pe

rio
d

(s
)

Standard LoRaWAN
groupedPackets enabled

Fig. 9. Average delay to receive an ACK in a 15 % confirmed network
sending payloads between 12 B and 18 B.

Networks utilising groupedPackets have a higher standard
deviation in their delays which can be attributed to the higher

variance in sent confirmed packets (as discussed in Section
VII-B). In simulation periods with fewer sent confirmed pack-
ets, the gateway can more easily transmit all of the required
ACKs whilst remaining within DC restrictions. This results
in fewer required retransmissions than in standard networks,
which results in nodes receiving ACKs faster. The reverse is
true in periods with a higher number of sent packets, and as
a result, some variation in the delay is experienced.

Furthermore, this variation in the number of sent confirmed
packets start to become beneficial for groupedPackets at higher
arrival rates, as it reduces the number of retransmissions
required. Whilst groupedPackets appears to offer a lower
average delay than standard networks, one must remember
to add on the additional delay caused by the aggregation of
payloads.

For example, if a node aggregates 4 packets and would
have normally transmitted a packet every 5 minutes, these
packets would have respectively experienced an additional
15 minutes, 10 minutes, 5 minutes and 0 minutes delay
before transmission. Applications sensitive to the end-to-end
delay between the NS and a node can opt out of using
groupedPackets or ignore aggregation requests if a specific
event requires an immediate response. LoRaWAN class A is
not optimised for latency, and one of the other device classes or
another LPWAN technology should be used for delay-sensitive
applications.

VIII. POTENTIAL DEPLOYMENT SCENARIOS

There are several IoT use cases where the deployment of
ACS and the groupedPackets algorithm can be of benefit. An
example would be cold chain control, in which IoT devices are
used to monitor the temperature of products such as vaccines
and produce. An extensive collection of these monitoring
devices would lead to congestion, such as Internet of Ships
scenarios where intelligent containers are used to monitor
goods such as food, medicine and chemicals during travel or
storage in warehouses [35].

The algorithm can also be used with minor modifications
in scenarios where congestion is caused by temporary clus-
tering of devices. This type of scenario is typical of Smart
Agriculture, such as where devices are used to monitor cattle
[36]. In these situations, congestion is increased for a short
duration, but the aggregation can be reduced once devices are
more spread out. An example is a free range smart dairy farm
with multiple gateways, while the milking parlour has only one
gateway. No aggregation would be required whilst cows are
grazing, but when bundled up at the parlour, they can quickly
overwhelm a single gateway.

Finally, LoRaWANs have shown promise for deployment in
emergency scenarios or natural disasters [37]. In emergencies,
LoRaWANs provide a way to provide coverage for many
devices with minimal resources. Utilising groupedPackets can
allow a single gateway to better function in situations where
multiple gateways cannot be deployed due to constraints such
as power or time.

10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

IX. CONCLUSION

This paper investigated congestion caused in LoRaWANs by
downlink traffic. Simulations showed that in large networks,
performance is severely impacted and influenced by packet
arrival rates and the ratio between confirmed and unconfirmed
traffic. The ACS was developed to help counteract this prob-
lem, which monitors a network for congestion and activates a
created algorithm called groupedPackets to reduce congestion.
This is done by requesting that confirmed nodes aggregate
their application data packets. Simulations showed that this
effectively improved both ULPDR and CPSR in congested
LoRaWANs. In the future, this algorithm could be expanded
to also consider unconfirmed nodes and additional algorithms
developed to expand the ACS.

REFERENCES

[1] Y. Song, F. R. Yu, L. Zhou, X. Yang, and Z. He, “Applications of the
Internet of Things (IoT) in Smart Logistics: A Comprehensive Survey,”
IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4250–4274, 2021.

[2] M. A. Albreem, A. M. Sheikh, M. H. Alsharif, M. Jusoh, and M. N.
Mohd Yasin, “Green Internet of Things (GIoT): Applications, Practices,
Awareness, and Challenges,” IEEE Access, vol. 9, pp. 38 833–38 858,
2021.

[3] L. Feltrin, C. Buratti, E. Vinciarelli, R. De Bonis, and R. Verdone,
“LoRaWAN: Evaluation of link- and system-level performance,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 2249–2258, 2018.

[4] E. M. Torroglosa-Garcia, J. M. Calero, J. B. Bernabe, and A. Skarmeta,
“Enabling Roaming across Heterogeneous IoT Wireless Networks: Lo-
RaWAN MEETS 5G,” IEEE Access, vol. 8, pp. 103 164–103 180, 2020.

[5] F. Van Den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke,
“Scalability analysis of large-scale LoRaWAN networks in ns-3,” IEEE
Internet of Things Journal, vol. 4, no. 6, pp. 2186–2198, 2017.

[6] J. M. Marais, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on the
viability of confirmed traffic in a LoRaWAN,” IEEE Access, vol. 8, pp.
9296–9311, 2020.

[7] M. Bagaa, Y. Challal, A. Ksentini, A. Derhab, and N. Badache, “Data
Aggregation Scheduling Algorithms in Wireless Sensor Networks: Solu-
tions and Challenges,” IEEE Communications Surveys Tutorials, vol. 16,
no. 3, pp. 1339–1368, 2014.

[8] K. Q. Abdelfadeel, D. Zorbas, V. Cionca, and D. Pesch, “free —fine-
grained scheduling for reliable and energy-efficient data collection in
lorawan,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 669–683,
2020.

[9] Y. Hasegawa and K. Suzuki, “A Multi-User ACK-Aggregation Method
for Large-Scale Reliable LoRaWAN Service,” in IEEE International
Conference on Communications (ICC), Shanghai, China, May 2019, pp.
1–7.

[10] J. Lee, W. C. Jeong, and B. C. Choi, “A Scheduling Algorithm for
Improving Scalability of LoRaWAN,” in International Conference on
Information and Communication Technology Convergence, ICTC 2018,
Jeju, South Korea, Oct. 2018, pp. 1383–1388.

[11] J. Lee, Y. S. Yoon, H. W. Oh, and K. R. Park, “DG-LoRa: Deterministic
Group Acknowledgment Transmissions in LoRa Networks for Industrial
IoT Applications,” Sensors, vol. 21, no. 4, pp. 1–18, 2021.

[12] C. Trasviña-Moreno, R. Blasco, Á. Marco, R. Casas, and A. Trasviña-
Castro, “Unmanned Aerial Vehicle Based Wireless Sensor Network for
Marine-Coastal Environment Monitoring,” Sensors, vol. 17, no. 3, p.
460, 2017.

[13] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello,
“Impact of LoRa Imperfect Orthogonality: Analysis of Link-level Per-
formance,” IEEE Communications Letters, vol. 22, no. 4, pp. 796–799,
2018.

[14] D. Magrin, M. Centenaro, and L. Vangelista, “Performance Evaluation
of LoRa Networks in a Smart City scenario,” in IEEE International
Conference on Communications (ICC), Paris, France, Apr. 2017, pp.
1–7.

[15] LoRa Alliance, “LoRaWAN 1.1 Specification,” p. 101, 2017.
[16] ——, “LoRaWAN 1.1 Regional Parameters,” LoRa Alliance, pp. 1–72,

2018.

[17] R. Kufakunesu, G. P. Hancke, and A. M. Abu-Mahfouz, “A Survey on
Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and
Major Challenges,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–25,
2020.

[18] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low overhead scheduling
of LoRa transmissions for improved scalability,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 3097–3109, 2019.

[19] B. Kim and K. I. Hwang, “Cooperative Downlink Listening for Low-
Power Long-Range Wide-Area Network,” Sustainability, vol. 9, no. 4,
pp. 1–15, 2017.

[20] M. Centenaro and L. Vangelista, “Time-Power Multiplexing for
LoRa-Based IoT Networks: An Effective Way to Boost LoRaWAN
Network Capacity,” International Journal of Wireless Information
Networks, pp. 1–11, 2019. [Online]. Available: https://doi.org/10.1007/
s10776-019-00437-8

[21] D. Zorbas and X. Fafoutis, “Time-Slotted LoRa Networks: Design
Considerations, Implementations, and Perspectives,” IEEE Internet of
Things Magazine, pp. 84–89, Mar. 2021.

[22] S. Dawaliby, A. Bradai, and Y. Pousset, “Adaptive dynamic network slic-
ing in LoRa networks,” Future Generation Computer Systems, vol. 98,
pp. 697–707, Apr. 2019.

[23] T. Deng, J. Zhu, and Z. Nie, “An Improved LoRaWAN protocol based
on Adaptive Duty Cycle,” in 2017 IEEE 3rd Information Technology
and Mechatronics Engineering Conference, ITOEC 2017, Chongqing,
China, 2017, pp. 1122–1125.

[24] D. Magrin, “Network level performances of a LoRa system,” Master’s
thesis, Università di Padova, Padua, Italy, 2016.

[25] M. Capuzzo, D. Magrin, and A. Zanella, “Confirmed traffic in Lo-
RaWAN: Pitfalls and countermeasures,” in 17th Annual Mediterranean
Ad Hoc Networking Workshop, Med-Hoc-Net 2018, Capri, Italy, June
2018, pp. 1–7.

[26] D. Magrin, M. Capuzzo, and A. Zanella, “A Thorough Study of
LoRaWAN Performance Under Different Parameter Settings,” IEEE
Internet of Things Journal, vol. 7, no. 1, pp. 1–12, 2020.

[27] N. Blenn and F. Kuipers, “LoRaWAN in the wild: Measurements
from the things network,” arXiv, 2017. [Online]. Available: https:
//arxiv.org/abs/1706.03086

[28] D. Magrin, D. Zhou, and M. Zorzi, “A simulation execution manager
for ns-3 encouraging reproducibility and simplifying statistical analysis
of ns-3 simulations,” in MSWiM 2019 - Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, Nov. 2019, pp. 121–125.

[29] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin,
“Improving reliability and scalability of LoRaWANs through lightweight
scheduling,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1830–
1842, 2018.

[30] A. I. Pop, U. Raza, P. Kulkarni, and M. Sooriyabandara, “Does
Bidirectional Traffic Do More Harm Than Good in LoRaWAN
Based LPWA Networks?” in GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Singapore, Singapore, Dec. 2017, pp.
1–6. [Online]. Available: http://arxiv.org/abs/1704.04174

[31] V. Di Vincenzo, M. Heusse, and B. Tourancheau, “Improving Down-
link Scalability in LoRaWAN,” in IEEE International Conference on
Communications. Shanghai, China, China: IEEE, May 2019, pp. 1–7.

[32] Multi-Tech Systems, “MultiTech Conduit,” https://www.multitech.com/
brands/multiconnect-conduit (Accessed: 20 Oct. 2022).

[33] Arm Limited, “MultiTech mDot,” https://os.mbed.com/platforms/
MTS-mDot-F411/ (Accessed: 20 Oct. 2022).

[34] STMicroelectronics, “STM32WLE5JC,” https://www.st.com/en/
microcontrollers-microprocessors/stm32wle5jc.html (Accessed: 20 Oct.
2022).

[35] S. Aslam, M. P. Michaelides, and H. Herodotou, “Internet of ships: A
survey on architectures, emerging applications, and challenges,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9714–9727, 2020.

[36] D. Heeger, M. Garigan, E. E. Tsiropoulou, and J. Plusquellic, “Secure
Energy Constrained LoRa Mesh Network,” in Ad-Hoc, Mobile, and
Wireless Networks, Bari, Italy, Oct. 2020, pp. 228–240.

[37] J. Navarro-Ortiz, J. J. Ramos-Munoz, J. M. Lopez-Soler, C. Cervello-
Pastor, and M. Catalan, “A LoRaWAN Testbed Design for Supporting
Critical Situations: Prototype and Evaluation,” Wireless Communications
and Mobile Computing, pp. 1–13, 2019.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 11

Jaco Morné Marais (S’17) received the BEng
and MEng from the University of Pretoria in 2015
and 2018 respectively and is currently complet-
ing his PhD at the University of Pretoria. His
research interests include LoRaWAN, low power
wide area networks, wireless sensor networks
and embedded systems.

Adnan M. Abu-Mahfouz (M’12—SM’17) re-
ceived his MEng and PhD degrees in computer
engineering from the University of Pretoria. He
is currently a Chief Researcher and the Centre
Manager of the Emerging Digital Technologies
for 4IR (EDT4IR) research centre at the Council
for Scientific and Industrial Research (CSIR),
Extraordinary Professor at University of Pretoria,
Professor Extraordinaire at Tshwane University
of Technology and Visiting Professor at Univer-
sity of Johannesburg. His research interests are

wireless sensor and actuator network, low power wide area networks,
software defined wireless sensor network, cognitive radio, network secu-
rity, network management, sensor/actuator node development. He is a
Section Editor-in-Chief at the Journal of Sensor and Actuator Networks,
an associate editor at IEEE Access, IEEE Internet of Things and IEEE
Transaction on Industrial Informatics, Senior Member of the IEEE and
Member of many IEEE Technical Communities.

Gerhard P. Hancke (M’88-SM’00-F’16-LF’19)
received the B.Sc. and B.Eng. degrees (1970),
and the M.Eng. degree (1973) in Electronic En-
gineering from the University of Stellenbosch,
South Africa, and the D.Eng. degree (1983) from
the University of Pretoria, South Africa. He is a
Professor with the Nanjing University of Posts
and Telecommunications, China and the Uni-
versity of Pretoria, South Africa. He is recog-
nized internationally as a pioneer and leading
scholar in Industrial Wireless Sensor Networks

research. He initiated and co-edited the first Special Section on In-
dustrial Wireless Sensor Networks in the IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS in 2009 and the IEEE TRANSACTIONS
ON INDUSTRIAL INFORMATICS in 2013. He co-edited a textbook,
Industrial Wireless Sensor Networks: Applications, Protocols and Stan-
dards (2013), the first on the topic. Prof. Hancke has been serving as
an Associate Editor and Guest Editor for the IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS, IEEE ACCESS, and the IEEE TRANSAC-
TIONS ON INDUSTRIAL ELECTRONICS. Currently, he is a Co-Editor-
in-Chief of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
and Senior Editor of IEEE ACCESS.

