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DISSERTATION ABSTRACT

Abhishek Dilip Yenpure

Doctor of Philosophy

Department of Computer Science

December 2022

Title: General Purpose Flow Visualization at the Exascale

Exascale computing, i.e., supercomputers that can perform 1018 math

operations per second, provide significant opportunity for improving the

computational sciences. That said, these machines can be difficult to use efficiently,

due to their massive parallelism, due to the use of accelerators, and due to the

diversity of accelerators used. All areas of the computational science stack need

to be reconsidered to address these problems. With this dissertation, we consider

flow visualization, which is critical for analyzing vector field data from simulations.

We specifically consider flow visualization techniques that use particle advection,

i.e., tracing particle trajectories, which presents performance and implementation

challenges. The dissertation makes four primary contributions. First, it synthesizes

previous work on particle advection performance and introduces a high-level

analytical cost model. Second, it proposes an approach for performance portability

across accelerators. Third, it studies expected speedups based on using accelerators,

including the importance of factors such as duration, particle count, data set, and

others. Finally, it proposes an exascale-capable particle advection system that

addresses diversity in many dimensions, including accelerator type, parallelism

approach, analysis use case, underlying vector field, and more.
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CHAPTER I

INTRODUCTION

Most content for this chapter comes from my dissertation proposal. I

was the primary author for this chapter, and Hank Childs provided editorial

suggestions.

1.1 Introduction

Scientific discoveries are driven by the cycle of hypothesizing followed

by experimenting to measure and observe some natural phenomena. The

measurements and observation from the experiments help in confirming, rejecting,

or refining the hypothesis. The experiments performed can be either physical or

computational. Computational experiments, i.e., simulations, are typically used for

one of two reasons. First, they can help in saving time and/or costs compared to

performing physical experiments. Second, in some cases, they can model natural

phenomena for which physical experimentation is impossible.

Computational simulations can take many forms. For many physics-based

simulations, a three-dimensional volume (or two-dimensional area) is simulated

using a “mesh” that discretizes the volume into many elements (such as hexahedra,

tetrahedra, etc.). Physical quantities (such as pressure, temperature, or velocity)

are represented as variables over these meshes.

Computational simulations must be accurate to be useful, and often

supercomputers are needed to achieve this accuracy. The accuracy of a simulation

depends on the underlying mesh and can be improved by increasing the number of

elements in the mesh. Typically, a simulation cannot produce an accurate result

unless the number of elements crosses some threshold, after which additional

elements are no longer useful. Since the volume being simulated is often fixed in

1



size, increasing the number of elements results in each element becoming “finer,”

i.e., smaller in size (at least on average). That said, when the mesh resolution

becomes very fine, then a single computer is often insufficient — it does not have

enough memory to store the mesh nor enough computational power to carry

out the required numerical operations (which increase as mesh size increases)

in a reasonable amount of time. This issue is the main motivation for using

supercomputers, as they have more memory and more computational power. As

the requirements for memory and computational power become more extreme, the

supercomputer must become larger and larger to keep pace. Currently, leading-edge

simulations can require trillions of elements, each with many physical quantities.

Such simulations serve as the motivation for exascale computing.

1.1.1 Exascale Computing. The last decade has seen a shift from

petascale computing (1015 FLOPS) to exascale computing (1018 FLOPS), i.e., to

being capable of executing a billion billion floating point operations (1 exaFLOP)

per second. This increase will in turn enable undertaking large scientific challenges.

This shift has mainly been driven by advances in accelerator hardware, primarily

Graphics Processing Units (GPUs), which are able to offer significant increases

in FLOPS while also being energy efficient. Seven of the top ten most powerful

supercomputers and nine of the top ten green supercomputers are GPU-based

systems [4, 2].

However, even if the move towards exascale promises more computational

power, using this computational power efficiently is a significant challenge.

Developing code for accelerators like GPUs requires expertise with specialized

tools and libraries like CUDA, HIP, etc. Accelerator hardware also works in a

fundamentally different way than traditional CPUs, which further complicates

2



optimizing applications. To add to that, a leading supercomputer has massive

parallelism — thousands of nodes and multiple accelerator devices per node. As

a result, developers will need to write programs that can benefit from billion-way

concurrency.

The pursuit of exascale has also created a diverse ecosystem of computing

hardware that requires the usage of specialized software stacks (compilers, profilers,

etc.). This creates a challenge where a software implementation optimized for

a specific platform might not perform as efficiently on other platforms creating

a problem of portability for simulation and analysis software. However, to help

with this problem, parallelization libraries like OpenMP, DPC++, Kokkos [45],

RAJA [71], and VTK-m [95] are being developed to enable developers to write

portable platform solutions.

Exascale computing is expected to enable advances in many fields of

scientific computing. That said, not only will the computational simulations need

to adapt to the nature of these computers, but also the software that works with

these simulations. In particular, scientific visualization, which enables insight into

simulation results, will need to adapt to the changing trends in computing.

1.1.2 Large Scale Visualization. Visualization algorithms are

commonly used to analyze the data output from simulations, since the imagery

they produce often provides insight into key phenomena. The massive size of

the data sets produced by large-scale simulations present the same issues for

visualization as they do for the simulations. Visualization programs often take a

similar approach to simulations, i.e., running in parallel on a supercomputer and

dividing the data over its nodes. This process is simplified in two key ways: (1) the

simulation typically already decomposes its mesh into “blocks” and these blocks can

3



be used for parallel visualization and (2) a supercomputer is readily available to run

parallel visualization, i.e., the same supercomputer that ran the simulation can be

used for visualization. Traditionally, visualization has been performed “post hoc,”

i.e., it occurs after a simulations has written its output to the disk, and it operates

by reading data from disk. However, trends in supercomputing are challenging this

paradigm.

While billion-way concurrency is one of the main challenges with exascale

computing, a separate and potentially equally difficult challenge is with I/O

bandwidth. Using accelerators like GPUs enable simulations to produce large

volumes of data quickly. However, this increased rate of production is not being

met by a commensurate increased rate in I/O bandwidth — I/O bandwidth

is generally increasing on supercomputers, but much less than the ability to

compute new data. As a result, the I/O bandwidth is going down relative to

the computational power, making the traditional post hoc model of visualization

increasingly infeasible. In response, large-scale simulations are increasingly using in

situ visualization and analysis. In situ processing refers to visualizing or analyzing

the simulation data as it is generated, and then saving the imagery or analyses

instead of the simulation data. Importantly, this model requires visualization

algorithms to not only run on accelerators, but also to not place undue burden

on the simulation. In other words, it must execute quickly (typically by efficiently

using all available parallelism) and not consume too much memory.

There are many visualization techniques that are applied to study

simulations at a large scale. The diversity of visualization techniques and the

different ways to achieve them complicates the goal to achieve efficiency. The

focus of this dissertation are the visualization algorithms that enable study of
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vector fields representing some flow, also known as flow visualization. In particular,

it focuses on flow visualization algorithms that use a technique called “particle

advection.” Since particle advection is of critical importance in the analysis of flow

simulations, understanding and improving its performance is an important research

problem, and serves as the main motivation for this thesis.

1.1.3 Flow Visualization. Flow visualization is the branch of

scientific visualization devoted to understanding flow fields, i.e., fields representing

motion within a volume. It is used to study diverse scientific domains, such as

climate change, ocean movement, and combustion. It helps to identify patterns

in a flow and extract various qualitative or quantitative information about it. There

are two broad techniques to visualize flows: experimental and computational. In

experimental flow visualization, information is extracted by observing natural

phenomena using captured pictures or direct observation. In computational

flow visualization, simulations representing natural phenomena are performed,

and the data is visualized using specialized algorithms and computer graphics.

Computational flow visualization is usually performed using one of two techniques:

particle advection and texture advection. This dissertation proposal focuses on

computational flow visualization techniques that use particle advection, which is far

and away the most commonly used approach. Particle advection involves tracing a

particle’s path in a flow, typically represented by a vector field, by solving ordinary

differential equations (ODEs). The path is traced by taking a series of steps, also

known as advection steps.

As flow simulations scale to tackle bigger problems, the computational

requirements for particle advection-based algorithms often increase proportionally.

That said, different particle advection-based algorithms have very different
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workload requirements. Some algorithms require few particles that travel for long

durations, while others require many particles that travel for shorter durations.

Further, some workloads require calculating billions of total advection steps,

whether from many particles, from many steps per particle, or from both. Some

algorithms also require additional analysis to be performed for every advection step.

These factors affect the behavior of flow visualization algorithms and complicate

their study.

These diverse flow visualization techniques and their corresponding

workloads also exhibit differences in performance for the underlying particle

advection components. The components constitute of different ODE solvers,

different cell locators, different interpolation techniques, etc. The choice of these

components has a substantial effect on the performance of an algorithm.

There is also a significant difference in the way vector fields are represented

for different use cases. Most commonly, the flow is represented using a velocity

field, and the particles being advected have no associated properties. However,

in the case of electromagnetic fields, the flow is represented using electric and

magnetic fields, and the particle velocities are calculated using the mass and charge

on the particle. Implementing a general system that can handle both the typical

case of a vector field and more exotic cases (such as the electromagnetic fields just

discussed) introduces another set of challenges.

Apart from the diverse workloads, components, and data representations,

the performance of particle advection is also determined by how efficiently it can

use its execution environment. In the context of a single node, particles can be

considered as individual work units for parallelization. When particle advection
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Figure 1. Figure describing the organization of chapters towards answering
the dissertation question. The blue boxes represent the two different types of
efficiencies that are describes in the system, the orange boxes represent the two
different types of parallelisms that are required for an efficient system, and finally,
the yellow boxes represent the research presented in this dissertation. The arrows
represent the relation of the different components towards designing the general
purpose system.

workloads are large, more concurrency is available to parallelize the work. However,

the efficient use of parallelism is challenging and requires more research.

1.1.4 Thesis Question. The central question for my dissertation is

in response to the challenges mentioned above: “What flow visualization system

designs will enable both efficiency on exascale systems and be capable of supporting

diverse analysis needs?” The question can be further broken down to achieve two

different objectives:

– What methods and approaches will enable efficient performance on exascale

machines?

– What system design can both address diverse analysis needs while also

delivering performance on exascale machines?

Section 1.2 describes the strategy to answer the first question, while

Section 1.3 describes the strategy to answer the second question. Further, figure
7



1 describes the organization of the chapters in this dissertation that answer the

posed dissertation question.

For performance efficiency, using parallelism is of paramount in the age

of exascale computing. For shared memory parallelism, Chapter III describes

the approaches for designing a platform portable particle advection system,

while Chapter IV describes the factors that impact the performance of particle

advection in a shared memory environment and also suggests best practices for

achieving the best performance which goes beyond conventional wisdom. For

distributed memory parallelism, my thesis question benefits from previous research,

namely the dissertation by Roba Binyahib [15] which was focused on distributed-

memory performance. Since Binyahib’s thesis is very recent and highly applicable,

my dissertation does not contribute any research towards distributed memory

parallelism.

For developer efficiency, providing useful abstractions and means to extend

them without much effort are key. Chapter II identifies the different components

of the particle advection algorithm and details the different optimizations that

are applied to each of them. These components become the basis for designing

abstractions for the general purpose system proposed in Chapter V. Further, the

research for Chapter III and the research by Binyahib et al. are important to

support the abstraction for using the exascale hardware efficiently, making it easier

to adapt to newer and more diverse computing resources. Finally, the takeaways

from Chapter IV about the interplay of various factors related to the particle

advection workload and their impact on performance should help visualization

practitioners to make informed choices about using the system more efficiently.
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The relationship between all the chapters towards the system proposed in Chapter

V are represented by arrows in Figure 1.

1.2 Performant Particle Advection System

This section proposes research to better understand the performance of

particle advection. In turn, this understanding can then be used to optimize

performance. Studying particle advection performance is important for flow

visualization algorithms in general; while these algorithms have aspects that do

not use advection, the computational cost of an algorithm is often dominated

by the advection portion. We organize the factors that affect particle advection

performance into two types:

Intrinsic: defined as “belonging naturally; essential,” these are the factors that

are hardware agnostic, i.e., they do not have a particular relation to the execution

environment of the algorithms. Changes made to these factors have the same

behavior across all platforms.

Extrinsic: defined as “not part of the essential nature of someone or something;

coming or operating from outside,” these are the factors that are hardware

dependent, i.e, they have a relation to the execution environment of the algorithms.

Changes made to these factors result in different behaviors on different platforms.

This dissertation proposal outlines studies to understand the performance

impacts for both of these types of factors. Section 1.2.1 proposes research towards

understanding particle advection as an algorithm, i.e., intrinsic. Section 1.2.2

proposes research towards understanding the behavior of particle advection and

optimizing it for various execution environments, i.e., extrinsic.

1.2.1 Studies for Intrinsic Factors. Particle advection performance

is complicated. The algorithm appears to be (and sometimes is) straightforward
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and embarrassingly parallel: particles are treated as individual work units and

advanced independently. However, simply adding more concurrency to parallelize

the workload does not always lead to proportional speedups. Even advecting

a single particle can be challenging due to the performance issues introduced

by various components responsible for the algorithm. The process of particle

advection requires evaluation of the particle’s velocity and then solving an ordinary

differential equation (ODE). Each of these operations involves a computation. The

particle’s next position (i.e., the outcome of a single advection step) is calculated

by the ODE solver using the particle’s velocity. Further, depending on the nature

of the ODE solver being used, multiple velocity evaluations are usually needed

at locations near the particle. For evaluating the velocity at a location, the cell

containing the location (“containing cell”) in the mesh is determined using a

cell location data structure. Then the velocity is interpolated using this cell’s

information. The process of searching the cell for a location, gathering its velocities,

and interpolating the velocities for the location involves expensive memory accesses.

Understanding the impact of these operations on particle advection as a whole is

critical for performance improvements. For the topic of intrinsic factors, I propose

one research direction, described in Section 1.2.1.1. This section summarizes

existing research for applying specific optimizations to the individual components

of particle advection and makes a new contribution in providing a framework for

assessing the potential speedup that can be realized using such optimizations.

1.2.1.1 Algorithmic Optimizations and Cost Modeling. This

study proposes the identification and organization of all the components of particle

advection that part take in completing the workload for a given flow visualization

algorithm. A workload, in this case, is termed as the total number of advection
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steps for a given algorithm (number of particles × number of steps). This study

aims to enable users to make optimization decisions for particle advection based

on the cost of the workload and the budget of allowed execution time. The study

involves formulating a high-level analytical cost function that can determine the

number of FLOPs necessary to execute the workload with a hope that this cost is

proportional to the execution time for the algorithm. Our meta-study will survey

various studies that propose optimizations to individual components of particle

advection (e.g., cell locators, ODE solvers) and the amount of speedup these studies

can achieve. Visualization scientists can use these techniques and the speedups to

decide which optimizations to apply based on calculated costs. The final result is a

decision-making workflow that users can use to choose algorithmic features for their

workload. The outcome of the preliminary work towards this topic is discussed in

Chapter II.

1.2.2 Studies for Extrinsic Factors. The performance of particle

advection is heavily affected by the execution environment. Some of the factors

that directly contribute to the performance include the accelerator hardware,

the number of threads, and cache sizes. These factors can affect the scheduling

of particles if insufficient concurrency is available or stress the cache hierarchy

introducing bottlenecks. The extent to which these factors affect the workload

also depends on the workload characteristics, namely the number of particles,

the duration of advection, the initial placement of the particles, and the nature

of the vector field. Hence, understanding the impact of the execution environment

combined with the workload is essential to determine efficient optimizations. This is

particularly true for the exascale computers as these are heterogeneous systems
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offering both many-core CPUs and diverse accelerator hardware. The studies

proposed in this section are aimed to understand execution environment effects.

1.2.2.1 Performance Portability. The heterogeneous nature of

exascale systems and the diversity in the accelerator hardware (Nvidia GPUs,

AMD GPUs, Intel GPUs) create many distinct execution environments. This

creates a problem for developers of scientific tools where optimizations applied to

one of the execution environments might not work well on the others. It is also

not feasible to write algorithms that are specifically optimized for each of these

platforms, as it drives down the maintainability of software and decreases developer

efficiency. The scientific visualization community developed the VTK-m library

to address this problem. VTK-m uses data parallel primitives as building blocks

for visualization algorithms [95]. The library maintains optimized versions of the

data parallel primitives, and the developers express their operations using them

as building blocks. Developers can thus produce algorithms that can perform

comparably to algorithms that are optimized specifically to a certain platform,

making their algorithms “platform-portable.” The objective of this study was to

research approaches for platform portable particle advection within a data-parallel

environment. In terms of status, we developed a working, efficient algorithm, and

published a paper describing its details and performance results [110]. The paper

compared the implementation with platform-specific, widely used comparators

and found that our approach can offer great performance portability. The

implementation is now a part of the VTK-m library. The results of this work are

discussed in greater depth in Chapter III.

1.2.2.2 Particle Advection Speedups from GPU and CPU

Parallelism. The particle advection implementation in VTK-m demonstrated
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Figure 2. The organizations of a general purpose flow visualization system for
exascale computers. The components encapsulated in the green box are the
components that make the system exascale ready. The components encapsulated
in the blue box are the components that make the system extendible and general
purpose. Together these components achieve the goal of “efficiency squared,” aiming
for both performance efficiency and developer efficiency.

good portability against its parallel comparators [110]. The study was performed

using two generations of GPUs and demonstrated massive differences in their

speedups. With each new generation, multi-core CPUs and GPUs make a leap in

their performance capabilities. This makes the projecting the potential speedups

for particle advection using these execution devices difficult, and this is the key

challenge this chapter seeks to address. This study aims to identify trends of

performance improvement between different generations of GPUs and multi-

core CPUs for particle advection. It considers different workloads, different data

sets, and different visualization algorithms, along with different execution devices

to understand the performance impact of each of these factors. Based on these

different parameters, this study points out key takeaways about particle advection

and its performance: (a) it compares the speedups of GPUs against serial execution

and identifies the impact of GPU generations, (b) it compares the speedups of
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multi-core CPUs against serial execution and identifies the impact of available

concurrency, (c) it identifies cases where developers should favor serial or multi-

core CPUs over GPUs (d) it investigates the impact of the data set characteristics

on particle advection performance. The results of this work are discussed in greater

depth in Chapter IV.

1.3 General Purpose Flow Visualization System for Exascale

There is a wide diversity in the needs and systems to meet flow visualization

demands. Research is needed to unify these needs into a single system by providing

abstractions for various components for flow visualization and providing concrete

types for those abstractions. The components can later be used or extended across

algorithms and user groups. A unified system will result in an extensible system

that can address the diverse needs of flow visualization rather than make repeated

investments to develop new systems. Saying it another way, this system has the

potential to provide significant savings in developer time by providing a single

system where otherwise many would be needed.

To that end, we propose a flow visualization system that addresses two

essential requirements for a unified system:

Performance Efficiency: The system can efficiently use exascale computing

resources, and in particular both distributed-memory and shared-memory hardware.

Developer Efficiency: The system readily provides necessary abstractions for the

diverse visualization and analysis demands of different algorithms, user groups, and

data representations. If not, the system is extensible such that users can specify

custom components without much effort.

We call achieving these efficiencies “efficiency squared,” since the goal is to

achieve developer efficiency without sacrificing the system’s performance efficiency.
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Pursuing both of thes goals simultaneously makes designing and implementing

this system challenging. i.e., achieving these efficiency goals in isolation, while not

trivial, is simpler than considering both of them together.

To that end, this study aims to design and implement a flow visualization

system that satisfies the “efficiency squared” criteria. Figure 22 describes its

organization. The system makes provisions to accommodate custom specifications

of components and analyses to make the system extensible. All the components

represented with a green rectangle in the organization present the abstractions

necessary for the system, which users can extend and customize.

The goal of performance efficiency is achieved by the components

encapsulated in the larger green box. The implementation will perform shared

memory parallelism using VTK-m as described in Chapter III.

The goal of developer efficiency is achieved by the components encapsulated

in the larger blue box. The system will provide components that can be readily

used to specify popular visualization algorithms like streamlines or Finite Time

Lyapunov Exponents (FTLE). The system will provide flexibility and extendibility

such that users can design their custom algorithms easily.

To study the efficacy of the implemented system, we aim to present case

studies demonstrating exotic flow visualization use cases from different scientific

domains. These case studies will utilize diverse components of the system defined

in Figure 1. Implementing these visualization techniques and studying their

performance should evaluate the “efficiency squared” criteria. The results of this

work are discussed in greater depth in Chapter V.
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CHAPTER II

BACKGROUND

This chapter is an extended version of my area exam (candidacy exam).

It is currently in submission. I was the primary author for the original areaa

exam manuscript, with editorial suggestions from Hank Childs. As this work was

transformed into a survey paper, several authors made contributions: Sudhanshu

Sane to the “Precomputation” section, Christoph Garth to the “ODE solvers”

section, and David Pugmire and Roba Binyahib to the “Hardware Efficiency”

section.

The performance of particle advection-based flow visualization techniques

is complex, since computational work can vary based on many factors, including

number of particles, duration, and mesh type. Further, while many approaches

have been introduced to optimize performance, the efficacy of a given approach

can be similarly complex. In this chapter, we seek to establish a guide for particle

advection performance by conducting a comprehensive survey of the area. We

begin by identifying the building blocks for particle advection and establishing a

simple cost model incorporating these building blocks. We then survey existing

optimizations for particle advection, using two high-level categories: algorithmic

optimizations and hardware efficiency. The sub-categories of algorithmic

optimizations include solvers, cell locators, I/O efficiency, and precomputation,

while the sub-categories of hardware efficiency all involve parallelism: shared-

memory, distributed-memory, and hybrid. Finally, we conclude the survey by

identifying current gaps in particle advection performance, and in particular on

achieving a workflow for predicting performance under various optimizations.
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2.1 Introduction

Flow visualization techniques are used to understand flow patterns and

movement of fluids in many fields, including oceanography, aerodynamics, and

electromagnetics. Many flow visualization techniques operate by placing massless

particles at seed locations, displacing those particles according to a vector field to

form trajectories, and then using those trajectories to create a renderable output.

Each of the trajectories are calculated via a series of “advection steps,” where

each step advances a particle a short distance by solving an ordinary differential

equation.

Particle advection workloads can be quite diverse across different flow

visualization algorithms and grid types. These workloads consist of many factors,

including the number of particles, duration of advection, velocity field evaluation,

and analysis needed for each advection step. One particularly important aspect

with respect to performance is the number of advection steps, which derive

from both the number of particles and their durations. Many flow visualization

techniques have numerous particles that go for short durations, while many others

have few particles that go for long durations. Some cases, like when analyzing flow

in the ocean [101], require numerous particles for long durations and thus billions

of advection steps (or more). With respect to velocity field evaluation, uniform

grids require only a few operations, while unstructured grids require many more

(for cell location and interpolation). In all, the diverse nature of particle advection

workloads makes it difficult to reason about both the execution time for a given

workload and the potential improvement from a given optimization.

The main goal of this chapter is to provide a guide for understanding

particle advection performance, including possible optimizations. It does this
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in four parts. First, Section 2.2 provides background on the building blocks

for particle advection. Second, Section 2.3 introduces a cost model for particle

advection performance, to assist with reasoning about overall execution time and

inform which aspects dominate runtime. Third, Section 2.4 surveys algorithmic

optimizations. Fourth, Section 2.5 surveys approaches for utilizing hardware more

efficiently, with nearly all of these works utilizing parallelism. Contrasting the latter

two sections, Section 2.4 is about reducing the amount of work to perform, while

Section 2.5 is about executing a fixed amount of work more quickly.

In terms of placing this survey into context with previously published

literature, we feel this is the first effort to provide a guide to particle advection

performance. The closest work to our own is the survey on distributed-memory

parallel particle advection by Zhang and Yuan [137]. Our survey is differentiated

in two main ways. First, our survey considers a broader context overall, i.e., it

considers algorithmic optimizations and additional types of parallelism. Second,

our discussion of distributed-memory techniques does a new summarization of

workloads and parallel characteristics (specifically Table 5), and also has been

updated to include works appearing since their publication. There also have been

many other excellent surveys involving flow visualization and particle advection:

feature extraction and tracking [106], dense and texture-based techniques [82],

topology-based flow techniques [83] and a subsequent survey focusing on topology

for unsteady flow [104], integration-based, geometric flow visualization [91], and

seed placement and streamline selection [115]. Our survey complements these

existing surveys — while some of these works consider aspects of performance

within their individual focal point, none of the surveys endeavor to provide a guide

to particle advection performance.
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2.2 Particle Advection Background
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Figure 3. Organization of the components for a particle advection-based flow
visualization algorithm. The components are arranged in three rows in decreasing
levels of granularity from top to bottom. In other words, the components at the
bottom are building blocks for the components at higher levels. The top row shows
components that define the movement and analysis of a particle. The loop in
the top row indicates its components are executed repeatedly until the particle
is terminated. The middle row shows components that define a single step of
advection. The arrows with the ellipsis from ODE solver to velocity field evaluation
are meant to indicate that an ODE solver needs to evaluate the velocity field
multiple times. Each velocity field evaluation takes as input a spatial location and
possibly a time, and returns the velocity at the corresponding location (and time).
The frequently-used Runge-Kutta 4 ODE solver requires four such velocity field
evaluations. Finally, as depicted in the bottom row, each velocity field evaluation
requires first locating which cell in the mesh contains the desired spatial location
and then interpolating the velocity field to the desired location.

Flow visualization algorithms perform three general operations:

– Seed Particles: defines the initial placement of particles.

– Advance Particles: defines how the particles are displaced and analyzed.

– Construct Output: constructs the final output of the flow visualization

algorithm, which may be a renderable form, something quantitative in nature,

etc.

These three operations often happen in sequence, but in some forms they happen in

an overlapping fashion (i.e., seed, advance, seed more, advance more, etc.)
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Our organization, which is illustrated in Figure 3, focuses on the “advance

particles” portion of flow visualization algorithms. It divides the components into

three levels of granularity.

The “top” level of our organization considers the process of advancing a

single particle. It is divided into three components:

– Advection Step: advances a particle to its next position.

– Analyze Step: analyzes the advection step that was just taken.

– Check for Termination: determines whether a particle should be

terminated.

The process of advancing a particle involves three phases that are applied

repeatedly. The first phase is to displace a particle from its current location to

a new location. Such displacements are referred to as particle advection steps.

The second phase is to analyze a step. The specifics of the analysis vary by flow

visualization algorithm, and could be as simple as storing the particle’s new

location in memory or could involve more computation. The third phase is to check

if the particle meets the termination criteria. Similar to the second phase, flow

visualization algorithms define specific criteria for when to terminate a particle.

Finally, if the particle is not terminated, then these three phases are repeated in a

loop until the termination criteria are reached.

The “middle” level of our organization considers the process of completing a

single step for a particle. This level has two components:

– ODE Solver : calculates a particle’s displacement to a new position by

solving an ordinary diffential equation (ODE).
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– Velocity Field Evaluation: calculates the velocity value at a specific

location by interpolating within the located cell.

Thus, to calculate the velocity at a point P, cell location is first used to identify

the cell C that contains P, and then velocity field interpolation is performed to

calculate the velocity at P using information at the vertices of C.

The “bottom” level of our organization considers the process of velocity field

evaluation. This level also has two components:

– Cell Location: locates the cell that contains some location.

– Field Interpolation: calculates velocity field at a specific location via

interpolation of surrounding velocity values.

In terms of a relationship, to calculate velocity at some point P , first cell location is

used to identify the cell C that contains P , and then velocity field interpolation is

used to calculate the velocity at P using C’s information.

Different flow visualization algorithms use these components in different

ways, resulting in different performance across the algorithms. One way of

comparing the different algorithms’ perforamance can be the workload required

by the algorithms, which roughly translates to the total computation required

by the algorithm. This workload can be defined as the total number of advection

steps completed by the algorithm, which is the product of the total number

of particles required by the algorithm and the number of steps expected to

be completed by each particle. Figure 4 shows examples of four different flow

visualization algorithms that demonstrate significant differences in their workloads

and behaviours. Table 1 highlights the differences between the workloads for the

example algorithms.
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(a) streamlines (b) streamsurface

(c) FTLE

(d) Poincaré

Figure 4. Example flow visualizations from four representative algorithms.
Subfigure (a) shows streamlines rendered over a slice of jet plume data created
using the Gerris Flow Solver [105], subfigure (b) shows a streamsurface which
is split by turbulence and vortices that can be observed towards the end [51],
subfigure (c) shows attracting (blue) and repelling (red) Lagrangian structures
extracted as FTLE ridges from a simulation of a von Korman vortex street [74],
and subfigure (d) shows a Poincaré plot of a species being dissolved in water, where
the color of the dots represent the level of dissolution [86].
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Table 1. Parameters for seeding strategy, the number of seeds, and the number
of steps for four representative flow visualization algorithms. (a) describes the
parameters and their classifications, and (b) presents the typical values for the four
algorithms.

Seeding Strategy Sparse Packed Seeding Curves

Number of Seeds Small Medium Large
≤1/1K cells ~1/100 cells ≥1/cell

Number of Steps Small Medium Large
≤100 ~1K ≥10K

(a) Each parameter is classified in three catagories.
Algorithm Seeding # Seeds # Steps

Streamlines Sparse/Packed Small Large

Streamsurface Seeding Curves Medium Large

FTLE Packed Large Small

Poincarè Packed Medium Large

(b) Typical parameter configurations for different flow visualization algorithms.

2.3 Cost Model for Particle Advection Performance

This section considers costs from the perspective of the building blocks used

to carry out particle advection. Its purpose is to build a general framework for

reasoning about costs and also to inform which aspects contribute most to overall

cost. That said, the simplicity of the cost model precludes directly evaluating many

of the optimizations described in later sections (I/O, parallelism, precomputation,

and adaptive step sizing); this topic is revisited in Section 2.6. Finally, Appendix A

goes into more depth on the cost model, including estimating costs for each term in

the model, notional examples, and validation of the model.
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Let the costs for particle advection be denoted by Cost. Then a coarse

formulation for Cost is:

Cost =
i=P∑
i=0

j=Ni∑
j=0

advancei,j (2.1)

where P represents the total number of particles used for the flow visualization,

Ni represents the total number of steps taken by the ith particle, and advancei,j

represents the amount of work required by particle i at step j in the process of

advancing the particle.

To better illuminate the overall costs, the remainder of this section considers

how the coarse formulation in Equation 2.1 can be further decomposed. We first

consider the tasks within advancei,j. In particular, each step that advances a

particle contains three components — taking an advection step, analyzing the step

in a way specific to the individual flow visualization algorithm, and checking if the

particle should be terminated. Hence, Equation 2.1 can be written as:

Cost =
i=P∑
i=0

j=Ni∑
j=0

(
stepi,j + analyzei,j + termi,j

)
(2.2)

where stepi,j is the cost for advecting, analyzei,j is the cost for analyzing, and

termi,j is the cost for checking the termination criteria for the ith particle at the

jth step.

The cost can be further broken down by exploring the cost for a single

advection step, stepi,j. Particle advection uses an ODE solver to determine the

next position of a particle, and this solver requires the velocity of the particle at

the current location. Further, depending on the ODE solver, additional velocity

evaluations in the proximity of the particle may be required. An Euler solver

requires only one velocity evaluation, while an RK4 solver requires four velocity

evaluations. Generalizing, the cost of a single particle advection step can be written
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as:

stepi,j = solvei,j +
k=K∑
k=0

evali,j,k (2.3)

where solvei,j is the cost for the ODE solver to determine the next position, K is

the number of velocity evaluations required by the ODE, and evali,j,k is the cost for

velocity evaluation for the ith particle for the jth step at the kth location.

The cost for velocity evaluations, evali,j,k, can be further broken down into

two components. Each evaluation involves two operations: locating the current

cell for the current evaluation, and interpolating the velocity values for the current

position using velocities at the vertices of the current cell. In all, the cost of

velocity evaluations can be written as:

evali,j,k = locatei,j,k + interpi,j,k (2.4)

where locatei,j,k is the cost for locating the cell, and interpi,j,k is the cost for

interpolating the velocities at the kth location.

Further, we can substitute 2.4 in 2.3 to yield:

stepi,j = solvei,j +
k=K∑
k=0

(locatei,j,k + interpi,j,k) (2.5)

Finally, we can substitute 2.5 in 2.2 to obtain our final formulation:

Cost =
i=P∑
i=0

j=Ni∑
j=0

(
solvei,j +

k=K∑
k=0

(
locatei,j,k + interpi,j,k

)
+ analyzei,j + termi,j

) (2.6)

2.4 Algorithmic Optimizations

This section surveys algorithmic optimizations for particle advection

building blocks, i.e., techniques for executing a given workload using fewer

operations. Some of the building blocks do not particularly lend themselves to

algorithmic optimizations. For example, a RK4 solver requires a fixed number
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of FLOPS, and the only possible “optimization” would be to use a different

solver or adaptive step sizes. That said, cell location allows room for possible

optimizations. Further, the efficiency of vector field evaluation can be improved

by considering underlying I/O operations. This section discusses four optimizations

that address the algorithmic challenges Section 2.4.1 discusses optimizations to

ODE solvers, Section 2.4.2 discusses optiizations for cell location, Section 2.4.3

discusses strategies to improve I/O efficiency, and finally Section 2.4.4 discusses

strategies that involve precomputation.

2.4.1 ODE Solvers. The fundamental problem underlying particle

advection is solving of ODEs. Many methods are available for this, with different

trade-offs, and a comprehensive review is beyond the scope of this work, and we

refer the reader to the excellent book by Hairer et al. [64] for a more thorough

overview. Due to the generally (numerically) benign nature of vector fields

used in visualization, a set of standard schemes is used in many visualization

implementations.

Beyond the Euler and the fourth-order Runge-Kutta (RK4) methods,

techniques with adaptive step size control have proven useful. The primary

objective of such methods is to allow precise control over the error of the

approximation of the solution, which is achieved by automated selection of the

step size (which in turn controls the approximation error) in each step. Often used

methods in this context are the Runge-Kutta Fehlberg (RFK) method [64], the

Runge-Kutta Cash-Karp (RKCK) method [64], and the Dormand-Prince fifth-order

scheme (DOPRI5) [107]. As an additional benefit relevant in this context, due to

the typically low error tolerances required for visualization purposes, significant

performance benefits can be obtained if the adaptive step sizing results in fewer
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large steps taken compared to fixed-step size methods. While the magnitude

of such benefits depends on a variety of factors that are hard to quantify, using

an adaptive step sizing method is generally recommended. Corresponding

implementations are widely available, e.g. in the VTK framework [57, 66].

For specialized applications, substantial performance benefits may be

obtainable by relying on domain-specific integration schemes that generally exhibit

higher accuracy orders and thus allow larger step sizes than general-purpose

schemes. For example, Sanderson et al. [114] report substantial speedup from

employing an Adams-type scheme for visualizing high-order fusion simulation data.

However, general guidance on the selection of optimal schemes for domain-specific

vector field data remains elusive.

2.4.2 Cell Locators. Cell locators facilitate interpolation queries over

a grid and rely on auxiliary data structures that partition candidate cells spatially.

These are typically constructed in a pre-processing step and induce linear memory

overhead in the number of cells N , while accelerating queries to O(logN). Many

cell location schemes allow trading off memory overhead for improved performance.

A variety of schemes have been developed for different scenarios. For example,

limited available memory, e.g. on GPUs, can be addressed through multi-level data

structures. According to Lohner and Ambrosiano [89] the process of cell location

can follow one of the following three approaches.

Using a Cartesian background grid: Cell are spatially subdivided using

a superimposed Cartesian grid, storing a list of overlapping cells of the original

grid per superimposed cell. The superimposed cell can be found in constant time,

and cell location then requires traversing all overlapping cells to find the actual

containing cell for the query point. While conceptually simple, this approach is not
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ideal if the background grid exhibits large variances in cell sizes, either incurring

excessive storage overhead or decreased performance, depending on the resolution

of the superimposed grid.

Using tree structures: A basic approach to hierarchical cell location is

the use of octrees for cell location [120, 132]. Each leaf of an octree stores cells

whose bounding box overlaps with the leaf extents. Leaves are subdivided until

either a maximum depth is reached, or the number of overlapping cells falls below

an upper bound. Cell location proceeds by traversing the octree from the root

and descending through nodes until a leaf is reached, which then contains all the

candidate cells. Due to the regular nature of octree subdivision, this approach does

not work well with non-uniform vertex distributions, requiring either too many

levels of subdivision and thus a considerable memory overhead, or does not shrink

the candidate cell range down to acceptable levels.

Using kd-trees instead of octrees facilitates non-uniform subdivision, at

the cost of generally deeper trees and a storage overhead. An innovative approach

was given by Langbein et al.[80], based on a kd-tree storing just the vertices of an

unstructured grid. This allows to quick location of a grid vertex close to the query

point; using cell adjacency, ray marching is used to traverse the grid towards the

query point using cell walking. Through clever storage of the cell-vertex incidence

information, storage overhead can be kept reasonable.

Garth and Joy described the cell tree [54], which employs a kd-tree-like

bounding interval hierarchy based on cell bounding boxes to quickly identify

candidate cells. This allows a flexible trade-off between performance and storage

overhead and allows rapid cell location even for very large unstructured grids with
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hundreds of millions of cells on commodity hardware and on memory-limited GPU

architectures.

Addressing storage overhead directly, Andrysco and Tricoche [8] presented

an efficient storage scheme for kd-trees and octrees, based on compressed sparse

row (CSR) storage of tree levels, termed Matrix *Trees. The tree data structure

is encoded as a sparse matrix in CSR representation. This alleviates most of

the memory overhead of kd-trees, and they are able to perform cell location

with reduced time and space complexity when compared with typical tree data

structures.

Overall, non-uniform hierarchical subdivision can accommodates large

meshes with significant variations in cell shapes and sizes well. While Lohner and

Ambrosiano note that vectorization of this approach is challenging as tree-based

schemes introduce additional indirect addressing, vectorization is still possible on

modern CPU and GPU architectures with good performance [54].

Using successive neighbor searches: For the case of particle integration,

successive interpolation queries exhibit strong coherence and are typically spatially

close. This enables a form of locality caching: For each interpolation query except

the first, the cell that contained the previous query point is checked first. If it does

not contain the interpolation point, its immediate neighbors are likely to contain

it, potentially reducing the number of cells to check. The initial interpolation point

can be located using a separate scheme, e.g. as discussed above.

Lohner and Ambrosiano, as well as Ueng et al. [125], adopted a

corresponding successive neighbor search method to cell location in particle

advection for efficient streamline, streamribbon, and streamtube construction.

They restricted their work to linear tetrahedral cells for simplification of certain
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formulations, requiring a pre-decomposition for general unstructured grids. Note

that when applied to tetrahedral meshes, the successive neighbor search approach is

sometimes also referred to as tetrahedral walk [118, 28].

Kenwright and Lane [77] extended the work by Ueng et al. by improving

the technique to identify the particle’s containing tetrahedron. Their approach uses

fewer floating point operations for cell location compared to Ueng et al.

Successive neighbor search is also naturally incorporated in the method

of Langbein et al. [80]; ray casting with adjacency walking towards begins at the

previous interpolation point in this case.

2.4.3 I/O Efficiency. Simulations with very large numbers of cells

often output their vector fields in a block-decomposed fashion, such that each

block is small enough to fit in the memory of a compute node. Flow visualization

algorithms that process block-decomposed data vary in strategy, although many

operate by storing a few of these blocks in memory at a time, and loading/purging

blocks as necessary. This method of computation is known as out-of-core

computation. One of the significant bottlenecks for flow visualization algorithms

while performing out-of-core computations is the cost of I/O. Particle advection is

a data-dependent operation and efficient prefetching to ensure sequential access to

data can be very beneficial in minimizing these I/O costs. This section discusses

the works that aim to improve particle advection performance by improving the the

efficiency of I/O operations.

Chen et al. [36] presented an approach to improve the I/O efficiency

of particle advection for out-of-core computation. Their approach relies on

constructing an access dependency graph (ADG) based on the flow data. The

graph’s nodes represent the data blocks, and the edges are weighted based on the
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probability that a particle travels from one block to another. The information from

the graph is used during runtime to minimize data block misses. Their method

demonstrated speedups over the Hilbert curve layout [69].

Chen et al. [34] extended the previous work to out-of-core computation of

pathlines. Their results show a performance improvement in the range of 10%-40%

compared to the Z-curve layout [138, 134].

Chen et al.[35] expanded the work further to introduce a seed scheduling

strategy to be used along with the graph-based data layout. They demonstrated an

efficient out-of-core approach for calculating FTLE. The performance improvements

observed against the Z-curve layout were in the range of 8%-32%.

2.4.4 Precomputation. Besides optimizing individual particle

advection building blocks, optimization of certain flow visualization workloads

can benefit from a two-stage approach. During the first stage, based on current

literature, a set of particle trajectories can be computed to inform data access

patterns, or serve as a basis for interpolating new trajectories. Depending on the

objectives, the number of trajectories computed during the first stage varies. The

resulting set of trajectories can be referred to as the precomputed trajectories.

Precomputed trajectories can inform data access patterns to provide a

strategy to improve I/O efficiency, as mentioned in the context of the study

by Chen et al. [36] in the previous section. A similar approach was studied by

Nouansengsy et al. [100] to improve load balancing in a distributed memory setting.

In these cases, the first stage is a preprocessing step and a small number of particle

might be advected to form the set of precomputed trajectories.

For a computationally expensive particle advection workload, a strategy to

accelerate the computation or improve interactivity of time-varying vector field
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visualization is to divide the workload into two sets. The first set includes particle

trajectories computed using high-order numerical integration. The second set

includes particle trajectories that are derived by interpolating the precomputed

trajectories. If new particle trajectories can be derived from the precomputed set

faster than numerical integration, while remaining accurate and satisfying particle

trajectory requirements for the specific flow visualization use case, then the total

computational cost of the workload can be reduced compared to the numerical

intergration of every trajectory.

Hlawatsch et al. [70] introduced a hierarchical scheme to construct integral

curves, streamlines or pathlines, using sets of precomputed short flow maps. They

demonstrated the approach for the computation of the finite-time Lyapunov

exponent and the line integral convolution. Although the method introduces a

trade-off of reduced accuracy, they demonstrate their approach can result in an

order of magnitude speed up for long integration times.

To accelerate the computation of streamline workloads, Bleile et al. [20]

employed block exterior flow maps (BEFMs) produced using precomputed

trajectories. BEFMs, i.e., a mapping of block-specific particle entry to exit

locations, are generated to map the transport of particles across entire blocks

in a single interpolation step. Thus, when a new particle enters a block, instead

of performing an unknown number of numerical integration steps to traverse

the region within the block, based on the mapping information provided by

precomputed trajectories, the location of the particle exiting (or terminating

within) the block can be directly interpolated as a single step. Depending on the

nature of the workload, large speedups can be observed using this strategy. For

32



example, Bleile et al. [20] observed up to 20X speed up for a small loss of accuracy

due to interpolation error.

To support exploratory visualization of time-varying vector fields,

Agranovsky et al. [5] proposed usage of in situ processing to extract accurate

Lagrangian representations. In the context of large-scale vector field data,

and subsequent temporally sparse settings during post hoc analysis, reduced

Lagrangian representations offer improved accuracy-storage propositions compared

to traditional Eulerian approaches, as well as, can support acceleration of trajectory

computation during post hoc analysis. By seeding the precomputed trajectories

along a uniform grid, structured (uniform or rectilinear) grid interpolation

performance can be achieved during post hoc analysis. To further optimize the

accuracy of reconstructed pathlines in settings of temporal sparsity, research

has considered how varying the set of precomputed trajectories can improve

accuracy-storage propositions. For example, Sane et al. [116] studied the use of

longer trajectories to reduce error propagation and improve accuracy, and Rapp et

al. [111] proposed a statistical sampling technique to determine where seeds should

be placed. Unstructured sampling strategies, however, can increase the cost of post

hoc interpolation and diminish computational performance benefits.

2.4.5 Summary. Table 2 summarizes studies that address

algorithmic optimizations and report performance improvements against a

baseline implementation. The studies mentioned in the table either target

optimizations for cell location or perform better I/O operations. For ODE solvers

and precomputation, reporting performance improvements is difficult because of

an associated accuracy trade-off for better performance. Optimizations to cell

locators for unstructured grid enable significant speedups for the workloads. With a
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Table 2. Summary of studies considering algorithmic optimizations to particle
advection. Studies that do not report quantitative performance improvements
are not mentioned in the table. The asterisk for entries in the data size column
represent unstructured grids.

Algorithm Application Intent / Data Time Seed Performance
Evaluation Size Steps Count

[89] Streamlines
Fast cell location
and efficient
vectorization

870∗ - 10K 14×

[125] Streamlines
Streamline
computation
and cell
location in
canonical
coordinate
space

320K∗ -
100

1.61×
225K∗ - 1.59×
288K∗ - 1.58×

[36] Streamlines
Improving data
layout for better
I/O performance

134M -
4K

0.96− 1.30×
200M - 0.98− 1.98×
537M - 0.99− 1.29×

[34] Pathlines
Improving data
layout for better
I/O performance

25M 48
4K

1.25− 1.38×
65M 29 1.10− 1.31×
80M 25 1.19− 1.36×

[35] FTLE
Improving data
layout for better
I/O performance

25M 48
- 1.08− 1.32×65M 29

80M 25
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combination of efficient cell location and vectorization, Lohner and Ambrosiano [89]

achieved the speed of 14×. However, the other study [125] demonstrated a speedup

of around 1.6×. The works by Chen et al. [36, 34, 35] for efficient I/O for particle

advection all demonstrated speedups up to 1.3×.

2.5 Using Hardware Efficiently

Flow visualization algorithms often share resources with large simulation

codes, or require large amounts of computational resources of their own depending

on the needs of the analysis task. This means flow visualization algorithms are

often required to execute on supercomputers. Executing codes on supercomputers is

expensive and it is necessary that all analysis and visualization tasks execute with

utmost efficiency. Modern supercomputers have multiple ways to make algorithms

execute fast. Typically, supercomputers have thousands of nodes over which

computation can be distributed, and each node has multi-core CPUs on along

with multiple accelerators (e.g., GPUs) for parallelization. As a result, algorithms

are expected to make efficient use of this billion-way concurrency. This section

discusses research for particle advection that addresses efficient usage of available

hardware. Section 2.5.1 discusses research that aims to improve shared-memory

(on-node) parallelism. Section 2.5.2 discusses research that aims to improve

distributed memory parallelism. Section 2.5.3 discusses research that uses both

shared and distributed memory parallelism.

2.5.1 Shared Memory Parallelism for Particle Advection.

Shared memory parallelism refers to using parallel resources on a single node. The

devices that enable shared memory parallelism are multi- and many-core CPUs

and other accelerators, such as GPUs. In the case of shared memory parallelism,

multiple threads of a program running on different cores of a processor (CPU or a
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GPU) share memory, hence the nomenclature. One of the primary reasons for the

increase in supercomputers’ compute power can be attributed to the advancements

of CPUs and accelerator hardware. In all, for applications to make cost-effective

use of resources, it has become exceedingly important to use shared memory

resources efficiently. However, making efficient use creates many challenges for the

programmers and users. Two important factors to consider are 1) efficient use of

shared memory concurrency, and 2) performance portability.

GPUs have become a popular accelerator choice in the past decade, with

most leading supercomputers using GPUs as accelerators [4]. Part of this has been

the availability of specialized toolkits, including early efforts like Brook-GPU [23]

and popular efforts like Nvidia’s CUDA [98], that enable GPUs to be used as

general purpose computing devices [13]. However, programming applications for

efficient execution on a GPU remains challenging for three main reasons. First,

unlike CPUs which are built for low latency, GPUs are built for high throughput.

CPUs have fewer than a hundred cores, while GPUs have a few thousand. However,

each CPU core is significantly more powerful than a single GPU core. Second,

efficient use of the GPU requires applications to have sufficiently large parallel

workloads. Third, executing a workload on a GPU also has an implicit cost of

data movement between the host and the device, where a host is the CPU and the

DRAM of the system, and the device is the GPU and its dedicated memory. This

cost makes GPUs inefficient for smaller workloads.

This sub-section discusses particle advection using shared memory

parallelism in two parts. That said, published research to date has limitations

with respect to understanding how much benefit parallelism provides. We address

this limitation with our work in Chapter IV. Section 2.5.1.1 discuss works to
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optimize the performance particle advection on GPUs and Section 2.5.1.1 describes

optimizations for cell locators. Section 2.5.1.2 discusses works that use CPUs for

improving the performance of particle advection.

2.5.1.1 Shared memory GPUs. Most of the solutions that focused

on shared memory optimization focused on improving the performance on GPUs.

This is because particle advection can benefit from using GPUs when there are

many particles to advect. As particles can be advected independently from one

another, each particle can be scheduled with a separate thread of the GPU,

making the most of the available concurrency. Many works have tried to address

performance issues of particle advection using GPUs, however, with different goals.

Krüger et al. [78] presented an approach for interactive visualization of

particles in a steady flow field using a GPU. They exploited the GPU’s ability

to simultaneously perform advection and render results without moving the data

between the CPU and the CPU. This was done by accessing the texture maps in

the GPU’s vertex units and writing the advection result. Their approach on the

GPU provided the interactive rendering at 41 fps (frames per second) compared to

0.5 fps on the CPU.

Bürger et al. [27] extended the particle advection framework described

by Krüger et al. for unsteady flow fields. With their method, unsteady data is

streamed to the GPU using a ring-buffer. While the particles are being advected

in some time interval [ti, ti+1], another host thread is responsible for moving ti+2

from host memory to device memory. At any time, up to three timesteps of data

are stored on the device. By decoupling the visualization and data management

tasks, particle advection and visualization can occur without delays due to data

loading. Bürger et al. [26] further demonstrated the efficacy of their particle tracing
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framework for visualizing an array of flow features. These features were gathered

using some metric of importance, e.g., FTLE, vorticity, helicity, etc.

Bürger et al. [24] also provided a way for interactively rendering streak

surfaces. Using GPUs, the streak surfaces can be adaptively refined/coarsened

while still maintaining interactivity.

Cell Locators for GPUs Bußler et al. [28] presented a GPU-based

tetrahedral walk for particle advection. Their approach for cell location borrowed

heavily from the work by Schiriski et al. [118] discussed in Section 2.4.2. However,

they could execute the cell location strategy entirely on the GPU and do not

require the CPU for the initial search. Additionally, they evaluated different Kd-

tree traversal strategies to evaluate the impact of these strategies on the tetrahedral

walk Their results concluded that the single-pass method, which performs only

one pass through the kd-tree to find the nearest cell vertex (without the guarantee

of it being the nearest) performs the best. The other strategies evaluated in the

study were random restart and backtracking .

Garth and Joy [54] presented an approach for cell location based on

bounding interval hierarchies. Their search structure, called celltree , improves

construction times via a heuristic to determine good spatial partitions. The authors

presented a use case of advecting a million particles on a GPU in an unstructured

grid with roughly 23 million hexahedral elements. The celltree data structure was

able to obtain good performance on GPUs despite no GPU-specific optimizations.

2.5.1.2 Shared Memory Parallelism on CPUs. Hentschel et

al. [68] presented a solution that focused on optimizing particle advection on

CPUs. Their solution studied the performance benefits of using SIMD extensions

on CPUs to achieve better performance. This paper addresses the general tendency
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of particles to move around in the flow field. This decreases memory locality of

that data that are required to perform the advection computation. This work

demonstrated the advantage of packaging particles into spatially local groups

where SIMD extensions are able to be more efficient. Their approach resulted in

performance improvements of up to 5.6X over the baseline implementation.

Finally, Pugmire et al. [110] provided a platform portable solution for

particle advection using the VTK-m library. The solution builds on data parallel

primitives provided by VTK-m. Their results demonstrated very good platform

portability, providing comparable performance to platform specific solutions on

many-core CPUs and Nvidia GPUs.

2.5.1.3 Summary. In terms of published research, Table 3 presents

a summary of shared memory particle advection. These studies either presented

approaches for interactive flow visualization or optimizations for particle advection

of GPUs using cell locators, with one exception that demonstrated platform

portability.

The performance difference for particle advection between two generations

of GPUs can be significant. Existing studies fail to capture this relation and makes

it harder to estimate to speedup that can be realized. The research to estimate the

speedups realized by using a newer GPU is discussed in Chapter IV.

2.5.2 Distributed Memory Parallelism for Particle Advection.

Fluid simulations are capable of producing large volumes of data. Analyzing

and visualizing volumes of data to extract useful information demands resources

equivalent to that of the simulation. In most cases, this means access to many

nodes of a supercomputer to handle the computational and memory needs of the

analysis. Particle advection based flow visualization algorithms often execute in a
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Table 3. Summary of studies considering optimizations for shared memory particle
advection. The asterisk for entries in the data size column represent unstructured
grids.

Algorithm Application Intent / Data Time Seed Performance
Evaluation Size Steps Count

[78] source-
dest

Interactive flow
visualization (steady) using
GPUs

- - - 60-80×

[27] various Interactive flow
visualization (unsteady)

[26] various Interactive flow
visualization using
importance metrics

7M -
4M 22
1M 30

[25] streak
surface

Interactive streak surface
visualization

589K 102 4004.1M 22

[118] pathlines,
source-
dest

Efficient cell location on
GPUs

0.8M∗ 5
1M1.1M∗ 101

3.7M∗ 200

[54] source-
dest

Efficient cell location on
GPUs for unstructured
grids / Comparison against
CPUs

23.6M∗ - 250K
16.5×1M

[28] source-
dest

Efficient cell location on
GPUs using improved
tetrahedral walk

4.2M∗ 5
1M115M∗ 101

743M∗ 200

[110]

source-
dest

Performance Portability /
Comparison with
specialized comparators for
CPUs and GPUs

134M

- 10M

0.37− 0.48× (GPUs)
0.29− 0.36× (CPUs)

134M 1.56− 2.24× (GPUs)
0.79− 0.84× (CPUs)

134M 1.42− 2.04× (GPUs)
0.51− 0.59× (CPUs)

distributed memory setting. The objective of the distribution of work is to perform

efficient computation, memory and I/O operations, and communication. There are

multiple strategies for distributing particle advection workloads in a distributed

memory setting to achieve these objectives. These can be categorized under two

main classes:
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Parallelize over particles: Particles are distributed among parallel processes.

Each process only advances particles assigned to it. Data is typically loaded as

required for each of the particles.

Parallelize over data: Blocks of partitioned data are distributed among parallel

processes. Each process only advances particles that occur within the data blocks

assigned to it. Particles are communicated between processes based on their data

requirement.

Most distributed particle advection solutions are either an optimization of

these two classes or a combination of them. The decision to choose between these

two classes depends on multiple factors, of which Camp et al. [32] identify the most

prominent to be:

The volume of data set: If the data set can fit in memory, it can be easily

replicated across nodes and particles can be distributed among nodes, i.e., the work

can be parallelized over particles. However, for large partitioned data sets, work

parallelized over data can be more efficient.

The number of particles: Some flow visualization algorithms require small

number of particles integrated over a long duration, while others require a large

number of particles advanced for a short duration. In the case where fewer particles

are needed, parallelization over data is a better approach as it could potentially

reduce I/O costs. In the case where more particles are needed, parallelization over

particles can help better distribute computational costs.

Distribution of particles: The placement of particles for advection can

potentially cause performance problems. When using parallelization over data,

if particles are concentrated within a small region of the data set, the processes

owning the associated data blocks will be responsible for a lot of computation while
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most other processes remain idle. Parallelization over particles can lead to better

work distribution in such cases.

Data set complexity: The characteristics of the vector field have a significant

influence on the work for the processes, e.g., if a process owning a data block that

contains a sink, most particles will advect towards it, causing the process to do

more work than the others. In such a case, parallelize over particles will enable

better load balance. On the other hand, when particles switch data blocks often

(e.g., a circular vector field), parallelize over data is better since it reduces the costs

of I/O to load required blocks.

This section describes distributed particle advection works in two parts.

Section 2.5.2.1 describes the optimization for parallelizing distributed particle

advection in more depth. Section 2.5.2.2 summarizes findings from the survey of

distributed particle advection studies.

2.5.2.1 Parallelization Methods. This section presents distributed

particle advection works in three parts. Section 2.5.2.1 presents works that

optimize parallelization over data. Section 2.5.2.1 presents works that optimize

parallelization over particles. Section 2.5.2.1 presents works that use a combination

of parallelization over data and particles.

Parallelization over data “Parallelize over data” is a paradigm for work

distribution in flow visualization where M data blocks are distributed among N

processors. Each process is responsible for performing computations for active

particles within the data blocks assigned to them. This method aims to reduce

the cost of I/O operations, which is more expensive than the cost of performing

computations.
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Sujudi and Haimes [124] elicited the problems introduced by decomposing

data into smaller blocks that can be used within the working memory of a single

node. They presented important work in generating streamlines in a distributed

memory setting using the parallelize over data scheme. They used a typical client-

server model where clients perform the work, and the server coordinates the

work. Clients are responsible for the computation of streamlines within their sub-

domain; if a particle hits the boundary of the sub-domain, it requests the server to

transfer the streamline to the process that owns the next sub-domain. The server is

responsible for keeping track of client request and sending streamlines across to the

clients with the correct sub-domain. No details of the method used to decompose

the data in sub-domains are provided.

Camp et al. [32] compared the MPI-only implementation to the MPI-hybrid

implementation of parallelizing over data. They noticed that the MPI-hybrid

version benefits from reduced communication of streamlines across processes and

increased throughput when using multiple cores to advance streamlines within

data blocks. Their results demonstrated performance improvements between 1.5x-

6x in the overall times for the MPI-hybrid version over the MPI-only version.

The parallelize over data scheme is sensitive to the distribution of particles and

complexity of vector field. The presence of critical points in certain blocks of data

can potentially lead to load imbalances. Several techniques have been developed to

deal with such cases and can be classified into two categories 1) works that require

knowledge of vector field, and 2) works that do not require knowledge of vector

field.

Knowledge of vector field required The works classified in this category acquire

knowledge of vector fields by performing a pre-processing step. Pre-processing
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allows for either data or particles to be distributed such that all processes perform

the same amount of computation.

Chen et al. presented a method that employs repartitioning of the data

based on flow direction, flow features, and the number of particles [37]. They

performed pre-processing of the vector field using various statistical and topological

methods to enable effective partitioning. The objective of their work is to produce

partitions such that the streamlines produced would seldom have to travel

between different data blocks. This enabled them to speed up the computation

of streamlines due to the reduced communication between processes.

Yu et al. [133] presented another method that relies on pre-processing

the vector field. They treated their spatiotemporal data as 4D data instead of

considering the space and time dimensions as separate. They performed adaptive

refinement of the 4D data using a higher resolution for regions with flow features

and a lower resolution for others. Later, cells in this adaptive grid were clustered

hierarchically using a binary cluster tree based on the similarity of cells in a

neighborhood. This hierarchical clustering helped them to partition data that

ensure workload balance. It also enabled them to render pathlines at different levels

of abstraction.

Nouanesengsy et al. [100] used pre-processing to estimate the workload for

each data block by advecting the initial set of particles. The estimates calculated

from this step are used to distribute the work among processes. Their proposed

solution maintained load balance and improved performance. While the solutions

in this category are better at load balancing, they introduce an additional step of

pre-processing which has its costs. This cost may be expensive and undesirable if

the volume of data is significant.
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Knowledge of vector field not required The works classified in this category

aim to balance load dynamically without any pre-processing.

Peterka et al. [102] performed a study to analyze the effects of data

partitioning on the performance of particle tracing. Their study compared static

round-robin (also known as block-cyclic) partitioning to dynamic geometric

repartitioning. The study concluded that while static round-robin assignment

provided good load balancing for random dense distribution of particles, it fails

to provide load balancing when data blocks contain critical points. They also

noticed that dynamic repartitioning based on workload could improve the execution

time between 5% to 25%. However, the costs to perform the repartitioning are

restrictive. They suggest more research needs to focus on using less synchronous

communication and improvements in computational load balancing.

Nouanesengsy et al. [99] extended the work by Perterka et al. to develop a

solution for calculating Finite-Time Lyapunov Exponents (FTLE) for large time-

varying data. The major cost in performing FTLE calculations is incurred due

to particle tracing. Along with parallelize over data, they also used parallelize

over time, which enabled them to create a pipeline that could advect particles

in multiple time intervals in parallel. Although their work did not focus on load-

balancing among processes, it presented a novel way to optimize time-varying

particle tracing. Their work solidifies the conclusions about static data partitioning

of the study by Peterka et aL [102].

Zhang et al. [135] proposed a method that is better at achieving dynamic

load balancing. Their approach used a new method for domain decomposition,

which they term as the constrained K-d tree. Initially, they decompose the data

using the K-d tree approach such that there is no overlap in the partitioned data.
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The partitioned data is then expanded to include ghost regions to the extent that

it still fits in memory. Later, the overlapping areas between data blocks become

regions to place the splitting plane to repartition data such that each block gets

an equal number of particles. Their results demonstrated better load balance

was achieved among processes without additional costs of pre-processing and

expensive communication. Their results also demonstrate higher parallel efficiency.

However, their work made two crucial assumptions 1) an equal number of particles

in data blocks might translate to equal work, and 2) the constrained K-d tree

decomposition leads to an even distribution of particles. These assumptions do

not always hold practically.

In conclusion, pre-processing works can achieve load balance with an

additional cost for parallelize over data. This cost goes up with large volumes

of data. The overall time for completing particle advection might not benefit

from the additional cost of pre-processing, especially when the workload is not

compute-intensive. Most solutions that rely on dynamic load balancing suffer from

increased communication costs or are affected by the distribution of particles and

the complexity of the vector field. The work proposed by Zhang et al. [135] is

promising but still does not guarantee optimal load balancing.

Parallelize over particles “Parallelize over particles” is a paradigm for

work distribution in flow visualization where M particles are distributed among

N processors. Most commonly, the particle distribution is done such that each

process is responsible for computing the trajectories of M
N

particles. Each process

is responsible for the computation of streamlines for particles assigned to it. This

is done by loading the data blocks required by the process in order to advect
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the particles. Particles are advected until they can no longer continue within the

current data block, in which case another data block is requested and loaded.

Previous works have explored different approaches to optimize the scheme

described above. Since the blocks of data are loaded whenever requested, the

cost of I/O is a dominant factor in the total time. Prefetching of data involves

predicting the next needed data block while continuing to advect particles in the

current block to hide the I/O cost. Most commonly, predictions are made by

observing the I/O access patterns. Rhodes et al. [112] used these access patterns

as a priori knowledge for caching and prefetching to improve I/O performance

dynamically. Akande et al. [7] extended their work to unstructured grids. The

performance of these methods depends on making correct predictions of the

required blocks. One way to improve the prediction accuracy is by using a graph-

based approach to model the dependencies between data blocks. Some works used

a preprocessing step to construct these graphs [36, 34, 35]. Guo et al. [61] used

the access dependencies to produce fine-grained partitions that could be loaded at

runtime for better efficiency of data accesses.

Zhang et al. [136] presented an idea of higher-order access transitions, which

produce a more accurate prediction of data accesses. They incorporated historical

data access information to calculate access dependencies.

Since particles assigned to a single process might require access to different

blocks of data, most of the works using parallelization over particles use a cache to

hold multiple data blocks. The process advects all the particles that occur within

the blocks of data currently present in the cache. When it is no longer possible to

continue computation with the data in the cache, blocks of data are purged, and

new blocks are loaded into the cache. Different purging schemes are employed by

47



these methods, among which “Least-Recently Used,” or LRU is most common. Lu

et al. [90] demonstrated the benefits of using a cache in their work for generating

stream surfaces. They also performed a cache-performance trade-off study to

determine the optimal size of the cache.

Camp et al. [32] presented work comparing the MPI only and MPI-hybrid

implementations of parallelizing over particles. Their objective was to prove the

efficacy of using shared memory parallelism with distributed memory to reduce

communication and I/O costs. They observed 2x-10x improvement in the overall

time for calculation of streamlines while using the MPI-hybrid version.

Along with caching, Camp et al. [30] also presented work that leveraged

different memory hierarchies available on modern supercomputers to improve the

performance of particle advection. The objective of the work is to reduce the cost

of I/O operations. Their work used Solid State Drives (SSDs) and local disks to

store data blocks, where SSDs are used as a cache. Since the cache can only hold

limited amounts of data compared to local disks, blocks are purged using the LRU

method. When required blocks are not in the cache, the required data is searched

in local disks before accessing the file system. The extended hierarchy allows for a

larger than usual cache, reducing the need to perform expensive I/O operations.

One trait that makes the parallel computation of integral curves challenging

is the dynamic data dependency. The data required to compute the curve cannot

be determined in advance unless there is a priori knowledge of the data. However,

this information is crucial for optimal load-balanced parallel scheduling. One

solution to this problem is to opt for dynamic scheduling. Two well-studied

techniques for dynamic scheduling are work-stealing and work-requesting. In both

approaches, an idle process acquires work from a busy process. Popularly, idle
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processes are referred to as thieves, and busy processes are referred to as victims.

The major distinction between work-stealing and work requesting is how the thief

acquires work from the victim. In work-requesting, the thief requests work items,

and the victim voluntarily shares it. In work-stealing, the thief directly accesses the

victim’s queue for work items without the victim knowing.

A large body of works addresses work-stealing in task-based parallel

systems in general [22, 44, 121]. In the case of integral curve calculation, task-

based parallelism inspires the parallelize over particles scheme. Dinan et al. [44]

demonstrated the scalability of the work-stealing approach. Lu et al. [90] presented

a technique for calculating stream surface efficiently using work-stealing. Their

algorithm aimed for the efficient generation of stream surfaces. The seeding curve

for streamlines was divided into segments, and these segments were assigned to

processes as tasks. In their implementation, each process maintains a queue of

segments. When advancing the streamline segment using the front advancing

algorithm proposed by Garth et al. [56], if a segment starts to diverge, it is split

into two and placed back in the queue. When a processor requires additional data

to advance a segment, it requests the data from the processes that own the data

block. Their solution demonstrated good load balancing and scalability.

Work stealing has been proven to be efficient in theory and practice.

However, Dinan et al. reported its implementation is complicated.

Muller et al. [97] presented an approach that used work requesting for

tracing particle trajectories. Their algorithm started by equally distributing all

work items (particles) among processes. However, they started by assigning all

particles to a single process for performing the load balancing study. Every time

an active particle from the work queue is unable to continue in the currently
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cached data, it is placed at the end of the queue. Whenever a thief tries to request

work, the particles from the end of the queue are provided, reducing the current

processes’ need to load the data block for the particle. The results reported

performance improvements between 30% to 60%.

Binyahib et al. [16] compared the parallelize over particle strategy to

parallelize over data for its in-situ applicability. Their findings suggest that for

workloads where particles are densely seeded in a certain region of the data,

parallelize over partilces is a much better strategy and can result in speedups upto

10×.

According to Childs et al. [42], the dominant factor affecting the

performance of parallelizing over particles is I/O. The solution to solve the I/O

problem during runtime is to perform prefetching of data. However, works that

propose prefetching incur additional costs of making predictions of which blocks to

read. Leveraging the memory hierarchy similar to Camp et al. is a good strategy,

provided proper considerations for vector field size and complexity are made.

Apart from I/O costs, load balancing remains another factor affecting performance

adversely. Previous work stealing and work requesting strategies have demonstrated

good load balance with additional costs of communicating work items. These costs

could potentially be restrictive in the case of workloads with a large number of

particles.

Hybrid Particle Advection The works described in this section combine

parallelize over data and parallelize over particles schemes to achieve optimal

load balance. Pugmire et al. [108] introduced an algorithm that uses a master-

worker model. The processes were divided into groups, and each group had a

master process. The master is responsible for maintaining the load balance between
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processes as it coordinates the assignment of work. The algorithm begins with

statically partitioning the data. All processes load data on demand. Whenever

a process needs to load data for advancing its particles, it coordinates with the

master. The master decides whether it is more efficient for the process to load data

or to send its particles to another process. The method proved to be more efficient

in I/O and communication than the traditional parallelization approaches.

Kendall et al. [76] provided a hybrid solution which they call DStep and

works like the MapReduce framework [43]. Their algorithm used groups for

processes as well and has a master to coordinate work among different groups. A

static round-robin partitioning strategy is used to assign data blocks to processes,

similar to Peterka et al. [102]. The work of tracking particles is split among

groups where the master process maintains a work queue and assigns work to

processes in its group. Processors within a group can communicate particles among

them. However, particles across groups can only be communicated by the master

processes. The algorithm provided an efficient and scalable solution for particle

tracing and has been used by other works [60, 59, 87].

Binyahib et al [17] proposed a new ‘HyLiPoD’ algorithm for particle

advection. Their work was inspired from the finding of the previous bake-off study

comparing different distributed particle advection strategies [19]. HyLiPoD is short

for Hybrid Lifeline and Parallelize over Data, and the algorithm aims to choose

the best strategy between the Lifeline algorithm [18] and parallelize over data for

distributed particle advection given a certain workload.
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Table 4. Recommendation of parallelization strategy for particle advection workloads based on features of the problem.
This table appears in the survey by Binyahib [14].

Problem Classification Parallelization Strategy
Over Data Over Particles

Dataset size Large Small

Number of particles Small Large

Seed Distribution Sparse Dense

Vector Field Complexity No critical No circular
points field

Table 5. Summary of studies considering optimizations for large scale distributed particle advection. The numbers in
parenthesis in the Architecture column represent the total number of cores available on the execution platform. The
keys to application: SL - streamlines, PL - pathlines, SS - stream surface, S-D - source - destination, STRS - streak
surface. The keys to seeding strategy: U - uniform, RD - random distrubution, D - dense, LN - seed line, RK - rakes

Algo. Arch. Procs. Data Time Seed App. Seeding Intent /
size steps count Strategy Evaluation

[133] Intel Xeon 32 644M - 1M SL, - hierarchical
representation, strong
scaling

(8x4) PL
AMD
Optron

256 644M 100 1M -

(2048x2)
[37] Intel Xeon 32 162M - 700 SL - data partitioning, strong

scaling(48x2)
[108] Cray XT5

(ORNL)
512 512M - 4k, 22K SL U data loading, data

partitioning, weak
scaling
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(149K) 512 512M - 10K U
512 512M - 20K U

[102] PowerPC-
450

16k 8B - 128k SL, RD domain decomposition,
dynamic repartitioning,
strong and weak scaling(40960x4) 32K 1.2B 32 16k PL RD

[30] Intel Xeon - 512M - 2.5K, 10K SL D, Effects of storage
hierarchy

Dash
(SDSC)

- 512M - 2.5K, 10K U

- 512M - 2.5K, 10K
[32] Cray XT4

(NERSC)
128 512M - 2.5K, 10K SL D, MPI-hybrid parallelism

9572x4 128 512M - 2.5K, 10K U
128 512M - 1.5K, 6K

[100] PowerPC-
450

4K 2B - 256K SL RD workload aware domain
decomposition, strong
and weak scaling(1024x4) 4K 1.2B - 128K RD

[99] PowerPC-
450

1k 8M 29 186M FTLE U pipelined temporal
advection, caching,
strong and weak scaling(40960x4) 1K 25M 48 65.2M U

16k 345M 36 288M U
16K 43.5M 50 62M U

[31] Cray XT4
(NERSC)

128 512M - 128 SS RK comparison of
parallelization
algorithms for stream
surfaces

(9572x4) 128 512M - 361 RK
128 512M - 128 RK

[97] AMD
Magny-
Cours

1K 32M 735 1M SL, U work requesting load
balancing, strong scaling

(6384x24) PL
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[39] Nvidia
Kepler

8 1B - 8M S-D U distriburted particle
advection over different
hardware architectures
comparison, strong
scaling

(1 GPU /
Proc)
Intel Xeon 192 1B - 8M

[61] Intel Xeon 64 755M 100 - STRS LN sparse data
management, strong
scaling

(8x8) 64 3.75M 24 200 PL, U
Intel Xeon 512 25M 48 - FTLE U
(700x12)

[90] PowerPC
A2

1K 25M - 32K SS RK
caching, performance,
strong scaling(2048x16) 4K 80M - 32K RK /

8K 500M - 32K RK
8K 2B - 64K RK

[136] Intel Xeon 64 3.75M 24 6250 PL U
data prefetching, strong
scaling

(8x8) 64 25M 48 4096 -

[135] PowerPC
A2

8K 1B - 128M SL, - domain decomposition,
using K-d trees, strong
and weak scaling(2048x16) 8K 3.8M 24 8M S-D, - /

8K 25M 48 24M FTLE U

[16] Intel Xeon 512 67M - 1M S-D D, in situ parallelization
over particles(2388x32) U

[19] Intel Xeon 1K 34B - 343M S-D D, comparison of
parallelization
algorithms

(2388x32) (8K cores) - U

[17] Intel Xeon 1K 34B - 343M S-D D, novel hybrid
parallelization algorithm(2388x32) (8K cores) - U

54



Table 6. Number of particles used per one thousand cells of data for different
applications from works described in Table 5.

Application Particles /1k Cells

Souce-destination 72222.20

FTLE 5013.02

Streamlines 9.89

Pathlines 6.93

Stream surface 0.25

2.5.2.2 Summary. This section summarizes distributed particle

advection in two parts. First, general take-aways are discussed based on the various

factors discussed in the introduction of this section. Second, observations from the

studies in terms of their particle advection workloads are presented.

Table 4 provides a simple lookup for a parallelization strategy based on

various workload factors discussed earlier in the section. These strategies were

presented in a survey by Binyahib [14]. Parallelize over data is best suited

when the data set volume is large. However, in the presence of flow features like

critical points and vortices, parallelize over data can suffer from load imbalance.

While several methods have been proposed for data repartitioning for load-balanced

computation, these works incur the cost of pre-processing and redistributing data.

Parallelize over particles is best suited when the number of particles is large.

It can suffer from load imbalance due to inconsistencies in the computational work

for different particles. Some works aim to address the problem of load imbalance

but have added costs of pre-processing, communication, and I/O. Hybrid solutions

demonstrate better scalability and efficiency compared to the traditional methods.

However, implementing these methods is very complicated and typically has some

added cost of communication and I/O.
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Figure 5. Weak scaling plots for distributed memory particle advection based on
the comparison of four parallelization algorithms by Binyahib et al. [19]. The plots
present performance comparison of the algorithms for two different workloads.
The large workload used 1 particle per 100 cells where each particle advanced
10K steps. The small workload used 1 particle per 10K cells where each particle
advanced 1K steps. The plots on the top present the performance of the algorithms
in terms of throughput along the Y axis, while the plots on the bottom present the
parallel efficiency while using weak scaling along the Y axis. In all cases the X axis
represents the number of MPI ranks used to perform the experiments.

Figure 5 shows a comparison of scaling behaviors of four parallelization

algorithms, extracted from the study presented by Binyahib et al. [19]. These

algorithms include parallelize over particles, parallelize over data, Lifeline

Scheduling Method (LSM, an extension of parallelize over particles) [18], and

master-worker (a hybrid parallel algorithm). The Figure presents a weak scaling

of these algorithms. The top row plots show the throughput of these algorithms

in terms of number of steps completed by each MPI rank per second. The bottom
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row plots show the efficiency of weak scaling achieved by the different algorithms.

The efficiency of the algorithms drop significantly as the concurrency and workload

are increased. The drop is more significant in smaller workloads than in larger

workloads. The only study which compared the scaling behaviors of the most

widely used parallelization algorithm used weak scaling. In order to be able to

quantify the speedups resulting from added distributed parallelism for a given

workload, a strong scaling study is necessary. The strong scaling study for these

algorithms is a potential avenue for future research.

Table 5 summarizes large-scale parallel particle advection-based flow

visualization studies in terms of the distributed executions and the magnitudes

of the workloads. The platforms used by the considered studies in this section

span from desktop computers to large supercomputers. The work with the least

amount of processes and workload in this survey is by Chen et al. [37], which used

only 32 processes to produce 700 streamlines. The work with the largest number

of processes was by Nouanesengsy et al. [99], which used 16 thousand processes for

FTLE calculation. However, the work with the most workload was by Binyahib et

al. [19], which used 343 million particles for advection in data with 34 billion cells.

Table 6 summarizes the number of particles used in proportion to the size

of the data used in the works included in Table 5. Stream surface generation is

the application that required the least amount of particles. A significant part of

the cost of generating stream surfaces comes from triangulating the surfaces from

the advected streamlines. These streamlines cannot be numerous as they may

lead to issues like occlusion. Source-destination queries use the most particles in

proportion to the data size. All other applications need to store a lot of information

in addition to the final location of the particle — streamlines and pathlines need
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to save intermediate locations for representing the trajectories, stream surfaces

need the triangulated surface for rendering, and FTLE analysis needs to generate

an additional scalar field. Source-destination analysis has no such costs and can

instead use the savings in storage and computation to incorporate more particles.

2.5.3 Hybrid Parallelism for Particle Advection. Hybrid

parallelism refers to a combination of using shared- and distributed-memory

parallel techniques. For these works, the distributed-memory elements managed

dividing work among nodes, and the shared-memory parallelism approach was

providing a “pool” of cores that could advect particles quickly. Camp et al.[32]

presented two approaches that used multi-core processors to parallelize particle

advection 1) parallelization over particles, and 2) parallelize over data blocks. In

both cases, the authors aimed to use the N allocated cores. For parallelization

over particles, N worker threads were used along with N I/O threads. The worker

threads are responsible for performing particle advection. The I/O threads manage

the cache of data blocks to support the worker threads. For parallelization over

data blocks, N − 1 worker threads are used, which access the cache of data blocks

directly, and an additional thread was used for communicating results with other

processes.

Camp et al. [33] also extended their previous work to GPUs. One of their

objectives was to compare particle advection performance on the GPU against CPU

under different workloads. They varied the datasets, the number of particles, and

the duration of advection for their experiments. Their findings suggest that in

the case where the workloads have fewer particles or longer durations, the CPU

performed better. However, in most other cases, the GPU was able to outperform

the CPU.
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Childs et al. [39] explored particle advection performance across various

GPUs (counts and device) and CPUs (processors and concurrency). Their objective

was to explore the relationship between parallel device choice and the execution

time for particle advection. Two of their key findings were: 1) For CPUs, adding

more cores benefited workloads that execute for medium to longer duration, 2)

CPUs with many cores were as performant as GPUs and often outperformed GPUs

for small workloads with short execution times. 3) With higher particle densities

(503 or more) GPUs can be saturated and result in performance imporvements

proportpional to their FLOP rates, faster GPUs can provide better speedups.

Jiang et al. [73] studied shared memory multi-threaded generation of

streamlines with a locally attached NVRAM. Their particular area of interest

was in understanding data movement strategies that will keep the threads busy

performing particle advection. They used two data management strategies. The

first used explicit I/O to access data. The second was a kernel-managed implicit

I/O method that used memory-mapping to provide access to data. Their study

indicated that thread oversubscription of streamline tasks is an effective method for

hiding I/O latency, which is bottleneck for particle advection.

2.6 Conclusion and Future Work

This survey has provided a guide to particle advection performance. The

first two parts focused on high-level concepts: particle advection building blocks

and a cost model. The last two parts surveyed existing approaches for algorithmic

optimizations and parallelism. While the guide has summarized research findings

to date, additional research can make the guide more complete. Looking ahead to

future work, we feel this survey has illuminated three types of gaps in the area of

particle advection performance.
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Figure 6. A flow chart to determine the potential optimizatios to be applied to a
flow visualization algorithm.

The first type of gap involves the lack of holistic studies to inform behavior

across diverse workloads. Adaptive step sizing, since its focus is more on accuracy

than performance, can lead to highly varying speedups. Understanding when

speedups occur and their magnitude would be very helpful for practitioners when

deciding whether to include this approach. Similarly, the expected speedup for a

GPU is highly varied based on workload and GPU architecture. While this survey

was able to synthesize results from a recent study [110], significantly more detail

would be useful. To bridge this gap, the study to estimate the speedups for particle

advection on diverse GPUs is discussed in Chapter IV.

The second type of gap covers possible optimizations that have not

yet been pursued. All of the hardware efficiency works in this survey involved

parallelism, yet there are still additional hardware optimizations available. In the

ray tracing community — similar to particle advection in that rays move through

a volume in a data-dependent manner — packet tracing, where rays on similar

trajectories are traced together, has led to significant speedups. Further, there

can be significant improvement from complex schemes. For example, Benthin et
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al. [12] employed a hybrid approach that generates and traces rays in packets and

then automatically switches to tracing rays individually when they diverge. This

hybrid algorithm outperforms conventional packet tracers by up to 2X. Finally,

there are additional types of optimizations. Taking another example from ray

tracing, Morrical et al. [96] presented a method that improved the performance of

direct unstructured mesh point location [117] by using Nvidia RTX GPU. Their

approach re-implemented the point location problem as a ray tracing problem,

which enabled tracing the points using the hardware. Their results showed equal

or better performance compared to state-of-the-art solutions and could provide

inspiration for improved cell locators on GPUs for particle advection.

The third type of gap is in cost modeling. While our cost model is useful

in the context of providing a guide for particle advection performance, future

work could make the model more powerful. One possible extension relates to

the first type of gap (lack of holistic studies). In particular, holistic studies on

expected speedups over diverse workloads would enable adaptive step sizing and

GPU acceleration to fit within the model. Incorporating the findings for GPU

acceleration from Chapter IV to test the cost model still remains unexplored.

Another possible optimization is to broaden the model. In particular, I/O is not

part of our cost model, so optimizations for I/O efficiency cannot be included

at this time. Further, precomputation likely requires a different type of model

altogether, i.e., using a form of the current model for regular particle advection

and a different model for precomputation, and selecting the best approach from the

two. Finally, distributed-memory parallelism is often applied to very large data sets

that cannot fit into memory of a single node, which significantly increases modeling

complexity. That said, these extensions could have significant benefit. One benefit
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would be using prediction to adapt workloads to fit available runtime. A second

(perhaps more powerful) benefit would be to enable a workflow for decision-making.

This workflow is shown via a flow chart in Figure 6, and would operate in three

steps. In the first step, the desired workload would be analyzed to see how many

operations need to be performed. In the second step, the analysis from the first

step would be used to estimate the execution time costs to execute the algorithm.

In the third step, the estimated costs from the second step would be compared

to user requirements. If the estimated costs are within the user’s budget, then no

optimizations are necessary and the workload can be executed as is. If not, then

candidate optimizations should be considered and the workflow should be repeated

with candidate optimizations until the desired runtime is predicted.
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CHAPTER III

PORTABLE PARTICLE ADVECTION USING VTK-M

The contents for this chapter come from published co-authored work [110],

where David Pugmire was the first author. I was the second author of the paper.

David designed and implemented the initial algorithm. This design is included in

the dissertation for reference. My contributions were in leading the evaluation,

as I was primarily responsible for designing the experiments and running all

experiments. I also led the efforts to analyze and interpret the results. Hank

Childs, Bernd Hentschel, and David Pugmire all assisted in interpreting the results

and editing. David Pugmire also played a major role in writing the sections not

involving experiment design and analysis.

Particle advection is the fundamental kernel behind most vector field

visualization methods. Yet, the efficient parallel computation of large amounts of

particle traces remains challenging. This is exacerbated by the variety of hardware

trends in today’s HPC arena, including increasing core counts in classical CPUs,

many-core designs such as the Intel Xeon Phi, and massively parallel GPUs. The

dedicated optimization of a particle advection kernel for each individual target

architecture is both time-consuming and error prone. In this chapter, we propose

a performance-portable algorithm for particle advection. Our algorithm is based

on the recently introduced VTK-m system and chiefly relies on its device adapter

abstraction. We demonstrate the general portability of our implementation across a

wide variety of hardware. Finally, our evaluation shows that our hardware-agnostic

algorithm has comparable performance to hardware-specific algorithms.

63



3.1 Introduction

In order to keep up with the amounts of raw data generated by state of

the art simulations, modern visualization algorithms have to be able to efficiently

leverage the same, massively parallel hardware that is used for data generation,

i.e. today’s largest supercomputers. This holds true for both classical post

processing and modern in situ strategies. Specifically, as the latter have to run

at simulation time, they have to be able to deal with a large variety of hardware

platforms efficiently. Even more challenging, as visualization is oftentimes not seen

as a first class citizen, it might have to run on different resources whenever they

are available, e.g. utilizing idle CPU cores while the simulation is advanced on

GPUs or using a local GPU while the simulation is blocked by communication.

Custom-tailoring visualization algorithms to specific hardware platforms and

potential usage scenarios is both time-consuming and error-prone. This leads to a

gap with regard to practically available visualization methods for large data: either

they are portable across a number of architectures, but do not feature ultimate

performance, or they are highly-optimized, yet work only on a very limited subset

of today’s diverse hardware architectures. Performance-portable formulations of key

algorithms have the potential to bridge this gap: the developer specifies what can

be run in parallel while an underlying run-time system decides the how and where.

Further, the runtime system is optimized once to make good use of a specific target

architecture. Ideally, the result is that all previously formulated kernels will be

available — with good, if not fully optimal, performance — on the newly addressed

system. In the past, this approach has been demonstrated to show good results

for inherently data parallel visualization problems, e.g. ray tracing [85] and direct

volume rendering [84].
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In this chapter, we extend the body of performance-portable approaches

with a method for parallel particle advection. Particle advection is the basic

algorithmic kernel of many vector field visualization techniques. Applications

encompass, e.g., the direct representation of field lines [119, 47], dense vector field

visualization methods [29, 127, 81], flow surfaces [48, 55, 72], and the computation

of derived data fields or representations [5, 53, 65, 113] or statistical measures [131,

130]. These techniques depend on the ability to compute large numbers of particle

trajectories through a vector field. The resulting workloads are taxing with respect

to both their computational requirements and their inherent dependence on

high data bandwidth. In contrast to the aforementioned visualization kernels —

isosurfacing and ray casting — particle tracing computations are not trivially data

parallel. Worse, workloads are highly dynamic, as the outcome inherently depends

on the input vector field. The computations’ overall demands are therefore hard

to predict in advance. This complicates — among other things — the efficient

scheduling of parallel particle advection computations. In the recent past, a variety

parallelization strategies has been proposed, all sharing the goal of providing many

particles fast (see, e.g., [27, 108, 32, 33, 38, 100, 99, 97]).

Our approach is based on the parallelize-over-seeds (POS) strategy. In

order to facilitate performance portability, we rely on the concepts of the recently

introduced VTK-m framework [95]. This facilitates the direct use of classical CPUs

and GPUs without the need to implement and maintain two distinct code paths.

We evaluate our algorithm’s performance for a set of five well-defined workloads

which cover a wide range of vector field visualization tasks. Our results show that

our technique performs as expected, and matches the performance characteristics

identified in previously published work. Further, we demonstrate that there are
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minimal performance penalties in our portable implementation when compared to

hand-coded reference implementations.

To summarize, we make the following contributions. We propose a

performance-portable formulation of POS particle tracing embedded in the

VTK-m framework. We demonstrate general effectiveness and performance-

portability based on the results of several performance experiments. As part of

these experiments, we assess the cost of performance portability by comparing our

method’s performance to that of native implementations on a variety of execution

platforms. Against this backdrop, we discuss the advantages and limitations of our

approach with respect to natively-optimized techniques.

3.2 Related Work

In this section, we briefly review related work under two different aspects:

parallel visualization systems and particle advection.

Parallel Visualization Systems The increasing need for production-ready,

scalable visualization methods led to the development of several general purpose

packages such as Paraview [6, 9] and VisIt [40]. These tools have primarily focused

on distributed-memory parallelism, which is complementary to our own focus.

Recent changes in both HPC hardware and software environments led to

the development of new frameworks, which address certain aspects of the changing

HPC environment.

The DAX toolkit [93], introduced by Moreland et al., is built around the

notion of a worklet : a small, stateless construct which operates — in serial —

on a small piece of data. Worklets are run in an execution environment under

the control of an executive. They help programmers to exhibit fine-grained data

parallelism, which is subsequently used for data-parallel execution.
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Lo et al. proposed to use data parallel primitives (DPP) [21] for a

performance-portable formulation of visualization kernels [88] in the Piston

framework. Based on NVidia’s Thrust library [11], Piston supports both GPUs

and CPUs as target architectures, by providing a CUDA and an OpenMP backend,

respectively. Performance results demonstrated the ability to achieve good

performance on different platforms using the exact same source code for each.

Meredith et al. introduce EAVL, a data parallel execution library

with a flexible data model that addresses a wide range of potential data

representations [92]. With this data model, they aim at increased efficiency –

both in terms of memory use and computational demand – and scalability. The

generic model proposed for EAVL allows developers to represent (almost) arbitrary

input data in a way that accounts for hardware-specific preferences. For example,

it allows them to switch between structure-of-arrays and array-of-structures

representations of multi-dimensional data fields. Low-level parallelism is supported

by an iterator-functor model: iteration happens in parallel, applying a functor to

each item of a range.

Eventually, the experiences gathered in the development of these libraries

resulted in the consolidated development of VTK-m [95]. It integrates an evolution

of EAVL’s data model with the two-tier control/execution environment of DAX and

the idea to facilitate performance portability by formulating visualization workloads

in terms of data parallel primitives. Currently, it offers parallel backends for CUDA

and Intel Threading Building Blocks (TBB). Moreland et al. discuss the cost of

portability for a variety of visualization workloads. Their findings are inline with

and partially based on work by Larsen et al., who studied DPP-based formulations

for ray tracing and direct volume rendering, respectively [85, 84]. In this chapter,
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we focus on an efficient formulation of a basic, general-purpose particle advection

kernel running in a shared memory parallel environment. Hence, we chose VTK-m

as our development platform.

Particle Advection The computation of integral lines is a fundamental

kernel of vector field visualization [91]. Pugmire et al. review the two fundamental

approaches – parallelize-over-seeds (POS) and parallelize-over-blocks POB –

in a distributed memory environment and introduce a hybrid master-slave

scheme that addresses load-balancing issues [108]. POS distributes the seeds of a

target particle population across processing elements (PEs) and computes them

independently of each other. In contrast, POB assigns the individual blocks of

a domain decomposition to PEs; then, each PE is responsible for generating the

traces that enter one of its assigned blocks. The newly introduced hybrid scheme,

which dynamically – and potentially redundantly – assigns blocks to PEs addresses

load-balancing problems that typically become a problem for pure POB while

also limiting redundant I/O operations which oftentimes limit POS’ scaling.

An overview of distributed memory parallel particle advection methods is given

in [109].

Camp et al. propose a two-tier scheduling scheme: they use MPI to

parallelize computations across multiple nodes and then execute local advection

using OpenMP-parallel loop constructs [32]. Subsequently, Camp et al. analyze the

effects exchanging the OpenMP-based advection for a CUDA-based solution [33].

We use a refined version of Camp’s original CUDA advection scheme for

comparisons in Sec. 3.4.

Kendall et al. propose a method inspired by MapReduce to parallize the

domain travseral inherent to parallel particle tracing [76].
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Yu et al. propose a data-dependent clustering of vector fields

which enables the development of a data-aware POB strategy [133].

Nouanesengsy et al. accumulate information about the probable propagation

of particles across blocks and subsequently formulate the task of partitioning

the set of blocks to PEs as an optimization problem [100]. Subsequently,

Nouanesengsy et al. propose to extend the basic POB idea to the time dimensions,

distributing time intervals to PEs in order to generate the pathlines needed to

compute the Finite Time Lyapunov Exponent (FTLE) [99].

Guo et al. propose a method using K-D tree decompositions to dynamically

balance the workload for both steady and unsteady state particle advection [135].

Mueller et al. investigate the use of an alternative, decentralized scheduling

scheme, work requesting : whenever a process runs out of work – i.e. particles

to integrate – it randomly picks a peer and requests half its work in order to

continue [97]. Hence scheduling overhead only occurs when there is actual

imbalance in the system.

Being a key computational kernel for an array of vector field visualization

algorithms, the optimization of particle advection for different architectures has

garnered significant interest in the visualization research community. Initially,

this was fueled by the advent of modern, programmable graphics hardware

(GPUs). Interactive particle integration has been targeted for steady-state

uniform grids [27], time-varying uniform grids [27], and tetrahedral meshes [118],

respectively. Bussler et al. propose a CUDA formulation for particle advection

on unstructured meshes and additionally investigate the use of 3D mesh

decimation algorithms in order to reduce the GPU memory requirements.

Hentschel et al. propose the tracing of particle packets which facilitates the use
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of SIMD extensions in modern CPU designs [68]. They found that significant

gains can be achieved specifically due to the optimization of memory accesses.

Chen et al. follow a similar idea: they propose to integrate spatially coherent

bundles of particles through time-varying, unstructured meshes in order increase

memory locality on the GPU [38].

The studies presented in [33, 39] compare CPU and GPU-based hardware

architectures w.r.t. their suitability for parallel integral curve computations.

Sisneros et al. performed a parameter space study for a round-based POB

advection algorithm [122]. Their findings suggest that naïvely chosen default

settings – e.g. advecting all particles in each round – often lead to significantly

degraded performance.

In summary, we find a great variety of optimization efforts targeting the

important yet seemingly inconspicuous computational kernel of particle integration.

In light of studies like [33, 39, 68], we argue that making good use of any new

hardware architecture or even of new features on the one hand requires an intimate

knowledge of said features and on the other hand can be very time consuming,

particularly due to the required low-level programming. This observation provides

the major motivation for the performance-portable approach proposed in the

following section.

3.3 Parallel Particle Advection in VTK-m

As stated above, the VTK-m framework is a response to the growing on-

node parallelism that is available on a wide variety of new architectures. In order

to be able to efficiently cater to a variety of different hardware platforms, VTK-

m relies on the concept of data parallel primitives. VTK-m distinguishes two

different realms: the control environment and the execution environment. The
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control environment is the application-facing side of VTK-m. It contains the data

model and allows application programmers to interface with algorithms at large. In

contrast, the execution environment contains the computational portion of VTK-m.

It is designed for massive parallelism. Worklets (c.f. Sec. 3.2) are an essential part

of the execution environment, and are the mechanism for performing operations on

elements of the data model in parallel. Finally, device adapters provide platform-

specific implementations of generic DPPs and memory management. Specifically

— where necessary — they abstract the transfer of data between host and device

memory.

Algorithms in VTK-m are created by specifying a sequence of DPP

operations on data representations. When compiled, the parallel primitives

are mapped to the particular device implementation for each primitive. This

indirection limits the amount of optimization that can be done for a particular

algorithm on a particular device, which in turn raises the question of costs for

performance portability. In the following, we describe a DPP-based realization

of parallel particle advection which will eventually lead to a parallelize-over-seeds

scheme.

3.3.1 A Data-Parallel Formulation of Particle Advection. In

formulating a design for particle tracing using the DPP in VTK-m, our primary

task was to determine the definition for the elementary unit of work. This

elementary work unit can then be mapped onto the set of execution threads to

perform the total amount of work using massive parallelism. The most natural

elemental unit of work is the advection of a single particle. However there are

subtleties in providing a precise definition. The traditional option, and the one

we selected, is to define the unit of work as the entire advection of an individual
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INPUTS:
Seed , VectorFie ld , NumberOfSteps , StepS ize
OUTPUTS:
Advected

Advected = Advect ( Seed , VectorFie ld ,
NumberOfSteps , StepS ize )

Function :
Advect ( pos , vec to rF i e ld , numberOfSteps , s t epS i z e ) :

S = 0
while S < numberOfSteps :
{

i f pos in v e c t o rF i e l d :
newPos = RK4( pos , s t epS i ze , v e c t o rF i e l d )
pos = newPos
S = S+1

else :
break

}

return pos

Function :
RK4(p , h , f )

k1 = f(p)

k2 = f(
h

2
k1)

k3 = f(p+
h

2
k2)

k4 = f(p+ hk3)

return
h

6
(k1 + 2k2 + 2k3 + k4)

Figure 7. Pseudocode for our implementation of Advect, our particle advection
for a routine parallelize-over-seed (POS) strategy. This routine operates on a single
particle and provides the definition of our elementary unit of work.
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particle. Other options include those studied in [122] where the unit of work

is defined as a fixed number of advection steps for an individual particle, or a

group of particles. These other options provide smaller granularity which provide

opportunities for better load balancing of total work. This, however, comes at the

cost of increased overhead for scheduling.

For our study, we decided to define the entire advection of a single particle

as the elementary unit of work for the following reasons. First, this choice naturally

encodes a map from an input position — the seed location — to an output position

— the advected particle. Second, this map can directly be expressed by a data

parallel primitive. Finally, since this is the most widely used approach, we felt it

was imperative to thoroughly understand this method as it would inform directions

for future improvements.

The pseudocode in Figure 7 shows the implementation of our elementary

unit of work, the Advect(. . .) function. The input to this function consists of a

seed location, a vector field, an integration step size, and the maximum number of

integration steps. The particle trajectory is computed using a numerical integration

scheme. For this chapter, we use the well-established 4th order Runge-Kutta

method. Advection terminates when a maximum number of steps is reached, or

when the particle leaves the spatial domain of the vector field. To advect multiple

seeds, the Advect kernel is applied to each individual seed.

The advection of each seed position, i.e. each loop iteration, is independent

of all other seed locations. This leads to the following two observations: First, the

computation for each seed can be performed in parallel without the need for any

form of synchronization. Second, as stated above, this forms a basic unit of work

that is to be executed per seed. Hence, we express the handling of a single seed
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INPUTS:
Seeds , vec to rF i e ld , numberOfSteps , s t epS i z e
OUTPUTS:
Advected

Advected = map<Advect>(Seeds ,
vec to rF i e ld ,
numberOfSteps ,
s t epS i z e )

Figure 8. Pseudocode for our implementation of particle advection using DPP.
The Advect function is defined in Figure 7. It serves as the functor to the map
DPP which calls it – in parallel – for all seeds. The DPP is shown in the form of
primitive<functor>(arguments).

by means of a functor that operates on an elementary piece of data — the seed

location and wrap this functor as a VTK-m worklet. In order to keep the worklet

description hardware-independent, it is important to note that all accesses to raw

memory are encapsulated by so called array handles. In this way, the exact location

of a data item in memory — specifically if it resides in host or device memory — is

hidden from the worklet. This enables the flexible, automatic management of the

actual memory by the underlying device adapter.

With the elementary operation of advection of an individual particle

formulated in a generic fashion, the remaining task is to enable a concurrent

execution for multiple particles. This is realized by means of a specific data parallel

primitive: the map operation. In this specific case, we aim to map an input seed

position to its eventual end position after advection. The map operation is one

of the DPPs which is implemented in a highly optimized form by the VTK-m

runtime. Hence its use — illustrated in Figure 8 — entails a platform-specific,

parallel execution of the Advect functor on each particle on the underlying parallel

hardware. In particular, if the runtime environment is an accelerator device, all
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data that is consumed or produced by the advection operation is automatically

transferred to/from device memory. In this way, the decision of where the advection

operation is executed is completely hidden from the developer of the worklet. This

is the main reason why worklets can access data only via so called array handles

(see above). Using the map DPP, we now have obtained a data parallel formulation

of particle advection that resembles the basic parallelize-over-seeds principle.

Finally, we note that for the purposes of this study we are focused

exclusively on the performance of particle advection techniques where only

the final location of the seeds is computed. This is the exact formulation for

analysis techniques such as FTLE, and a fundamental building block for other

techniques which use the saved trajectories of seeds such as streamlines, pathlines,

streamsurfaces, and Poincaré methods.

3.4 Performance Evaluation

In this section we discuss the experimental setup, including data sets,

workloads, and hardware platforms, followed by the performance of our approach

on each experiment.

3.4.1 Experimental Setup. In order to evaluate our work, we have

selected a number of different experiments that cover a range of uses cases for

particle advection. We use three different parameters for our study, which we

vary independently. The first parameter is the vector field data. The types of flow

structures present in a data set has a tremendous impact on the performance of

an implementation, and so we capture various types of flows by using multiple

data sets. The second parameter is the workload, which consists of the number

of particles and the number of integration steps. The various types of vector field

analysis techniques tend to use different classes of workloads, and so we have
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(a) Astro (b) Fusion (c) Thermal Hydraulics

Figure 9. Sample streamlines show typical vector field patterns in the three data
sets used in this study.

selected a set of workloads that capture the common use cases. The third and final

parameter that we vary in our study is the execution hardware in order to capture

performance on both CPU and GPU environments. We vary this third parameter

at an even finer level of granularity by performing each test on several different

types of CPUs and GPUs.

Data Figure 9 provides information on the three different data sets used in

our study. The Astro data set contains the magnetic field surrounding a solar

core collapse resulting from a supernova. This data set was generated by the

GenASiS [46] code which is used to model the mechanisms operating during these

solar core collapse events. The Fusion data set contains the magnetic field in

a plasma within a fusion tokamak device. This data set was generated by the

NIMROD [123] simulation code which is used to model the behavior of burning

plasma. The plasma is driven in large measure by the magnetic field within the

device. Finally, the Thermal Hydraulics data set contains the fluid flow field

inside a chamber when water of different temperatures is injected through a

small inlet. This data set was generated by the NEK5000 [49] code which is used
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for the simulation computational fluid dynamics. The vector fields for all of our

representative data sets are defined on uniform grids. All three data sets feature a

resolution of 512 × 512 × 512 accounting for 1, 536MB per vector field. We have

specifically chosen the simplest type of data representation to exclude additional

performance complexities that can manifest with more complex grid types, e.g.,

point location in unstructured meshes.

Workloads As stated above, a workload consists of a set of particles and the

number integration steps to be taken. The particles are randomly distributed

throughout the spatial extents of the data set grid. We chose a set of five

workloads that we felt mimicked the behavior of common uses cases, e.g., from

streamlines to FTLE computations. Further, we specifically choose this set based

on work by Camp et al. [33], who studied the performance of both CPU and

GPU implementations, and identified workloads that were well suited to each

architecture.

These five workloads are defined as follows:

– W1: 100 seeds integrated for 10 steps.

– W2: 100 seeds integrated for 2000 steps.

– W3: 10M seeds integrated for 10 steps.

– W4: 10M seeds integrated for 100 steps.

– W5: 10M seeds integrated for 1000 steps.
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Table 7. Hardware used in performance portable particle advection study.

Machine CPU GPU

Rhea
Partion 1

Dual Intel Xeon E5-2650
“Ivy Bridge”, 2.0 GHz

16 total cores
128 GB RAM

None

Rhea
Partition 2

Dual Intel Xeon E5-2695 v3
“Haswell”, 2.3 GHz

28 total cores
1 TB RAM

2x NVIDIA K80
12 GB Memory

Titan Not used NVIDIA K20X
6 GB Memory

SummitDev

Dual IBM Power8
3.5 GHz

20 total cores
256 GB RAM

4x NVIDIA P100
16 GB Memory

Hardware The execution environment for our study consists of the three

systems deployed at the Oak Ridge Leadership Compute Facility (OLCF)

(c.f. Table 7).

– Titan is a Cray XK7, and is the current production supercomputer in use at

the OLCF. It contains 18, 688 compute nodes and has a peak performance of

27 petaflops.

– Rhea is a production cluster used for analysis and visualization via pre- or

post-processing. It is a 512 node commodity Linux cluster that is configured

in two partitions. The first partition is targeted for processing tasks requiring

larger amounts of memory and/or GPUs. The nodes in its second partition do

not have GPUs.

– SummitDev is an early access 54 node system that is one generation removed

from Summit, the next supercomputer that will be installed at the OLCF.
78



We note that both Rhea and SummitDev contain multiple GPUs on each node,

however in this study we are only studying our implementation on a single GPU.

Compilers Our VTK-m code was compiled on Rhea and Titan using the 4.8.2

version of the GCC compiler, the most stable version for Titan. For SummitDev

we used the closest available version, which was 4.8.5. On Rhea and Titan we used

version 7.5.18 of CUDA as it is the most stable version for Titan. On SummitDev

the only version of CUDA available was version 8.0.54. On all platforms, our code

was compiled using full optimization flags, -O3

3.4.2 Results. In this section we present the results from our

experiments. In Section 3.4.2.1 we present results for our VTK-m implementation

across the workloads described above and discuss the performance. We also

demonstrate the parallel efficiency of our implementation for CPUs. Finally, in

Section 3.4.2.2 we compare our implementation with two hand-coded hardware

specific implementations and discuss the performances.

3.4.2.1 VTK-m Results. The data in Table 8 contains the runtimes

for our VTK-m implementation for the cross-product of the five workloads, the

three data sets, and hardware types. We ran the GPU experiments under two

different scenarios, which are shown in the first two sets of three columns each. For

the first scenario, we assume that the vector field data resides in host memory and

has to be uploaded to the device before tracing. The timings for this scenario are

shown in the set of three columns of the table labeled “GPUs with data transfer”.

The second scenario assumes an in situ setting: the vector field resides

on the device already, either because it has been generated there or because it

is uploaded once for subsequent interactive exploration. This second scenario is
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Table 8. Timings (in seconds) for VTK-m implementations for each test in our
experimental setup.

GPU
with data transfer

GPU
without data transfer CPU

File K20X K80 P100 K20X K80 P100 Intel16 Intel28 IBM P820

W1

Astro 0.627s 0.521s 0.389s 0.000s 0.011s 0.014s 0.001s 0.001s 0.001s
Fusion 0.627s 0.521s 0.387s 0.001s 0.011s 0.015s 0.001s 0.001s 0.001s
Thermal 0.627s 0.521s 0.392s 0.001s 0.011s 0.024s 0.001s 0.001s 0.001s

W2

Astro 0.648s 0.543s 0.404s 0.021s 0.033s 0.029s 0.071s 0.046s 0.053s
Fusion 0.649s 0.543s 0.400s 0.023s 0.033s 0.028s 0.071s 0.051s 0.052s
Thermal 0.648s 0.541s 0.395s 0.021s 0.031s 0.027s 0.074s 0.048s 0.051s

W3

Astro 1.511s 0.946s 0.577s 0.884s 0.436s 0.202s 3.003s 1.257s 2.327s
Fusion 1.509s 0.961s 0.582s 0.883s 0.451s 0.210s 2.948s 1.208s 2.609s
Thermal 1.508s 0.945s 0.583s 0.881s 0.435s 0.215s 2.801s 1.179s 2.691s

W4

Astro 5.193s 2.851s 1.765s 4.566s 2.341s 1.390s 28.702s 10.688s 20.708s
Fusion 5.327s 2.795s 1.776s 4.701s 2.285s 1.404s 26.295s 10.785s 19.949s
Thermal 5.099s 2.785s 1.777s 4.472s 2.275s 1.409s 26.641s 11.266s 19.365s

W5

Astro 38.660s 23.322s 13.338s 38.033s 22.812s 12.963s 256.900s 107.806s 185.852s
Fusion 41.116s 24.450s 13.648s 40.490s 23.940s 13.276s 272.165s 107.113s 186.455s
Thermal 39.444s 24.153s 13.626s 38.817s 23.643s 13.258s 260.740s 106.881s 193.110s

representative for, e.g., an in situ change of the data’s representation [5] or an

exploratory visualization where particles are seeded and displayed in a highly

interactive fashion [27, 118]. The timings for this in situ scenario are shown in the

set of three columns of the table labeled “GPUs without data transfer”.

For workloads with few particles (e.g., W1 and W2) the overhead for data

transfers to the GPU is clearly evident. As would be expected, as more work is

available for the GPUs this data transfer overhead can be better amortized over the

particle advection work.

Analogous timings for various CPU settings are shown in the last three

columns of Table 8.

In comparing the GPU and CPU implementations, we offer the following

observations. CPUs tend to perform better than GPUs for lower seed counts. We

observe this behavior in workloads W1 and W2 where a small number of seeds are

advected very short and very long distances respectively. In contrast, GPUs tend
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to perform better with higher seed counts, and more advection steps. We observe

this behavior in workloads W3, W4, and W5. In workload W3, which features

a large number of particles advected for a medium number of steps, we see only

moderate wins for the GPU. These observations are in line with earlier studies by

Camp et al. [32, 33].

We note that the particle advection source code was identical for all tests;

in particular, it was not hand-tuned to any hardware platform. Hence, these results

provide evidence of the portable performance of a single implementation on a broad

set of execution environments.

In addition, we see the expected trends in performance across hardware

families. For example, the NVIDIA P100 is faster than the K80, which in turn

outperforms the K20X. We see a similar trend when comparing the times for the

two different generations of Intel processors on each of the Rhea partitions. We also

note that the performance on the IBM Power8 CPUs that contain 20 cores each

falls between the performance of the 16 and 28 core Intel processors, which aligns

with expectations.

Finally, we are interested in understanding the scalability of the VTK-m

implementation on the CPU. Figure 10 shows the efficiency with respect to number

of cores used for several workloads run on the Rhea Partition 2 CPU. For low seed

counts, parallel efficiency is lacking. Quite simply, there is not enough concurrently

executable work in the system to enable efficient scheduling and thus good resource

utilization. However, once enough parallelism becomes available – afforded by

increased number of particles – we see excellent efficiency: for short duration

workloads, and populations of 1 million particles or more, parallel efficiency remains

above 60%; for longer duration workloads, the efficiency is around 80%.
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Figure 10. Parallel efficiency for the VTK-m implementation running on the CPU
of the Rhea Partition 2. The workloads shown are for 10k, 100k, 1M , and 10M
seeds on all three data sets. The top row shows advections for short durations,
and the bottom row shows advections for long durations. Note: Our allocation was
exahusted before we could complete the data collection for the 10M seed case in
the bottom, far right, and so these numbers are not included. Overall, we feel the
scaling behavior is good, as efficiency often drops as more and more cores are used.

3.4.2.2 Comparisons to Other Implementations. Since our

implementation is per definition agnostic of the eventual execution environment,

we are particularly interested in any performance penalties due to portability.

To explore these impacts, we compare our results to two different reference

implementations. These comparison codes were run on the same hardware, and

compiled using the same compilers as our VTK-m implementation.

First, we compare our code to hand-coded implementations for CPUs

and GPUs using pthreads and CUDA, respectively. The reference code has been

evaluated in [32, 33].

The data in Table 9 lists the runtimes for each workload using the CUDA

specific implementation, and a performance factor for the VTK-m runtimes.
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This factor gives the relative speedup of our implementation over the reference

implementation, i.e. factors larger than 1 indicate our implementation is faster. For

many of the tests run, we observe that the VTK-m version outperforms the hand-

coded implementation by factors up to 4X.

These performance improvements are largely a function of two differences.

The first difference is that VTK-m’s CUDA device adapter performs all global

device memory accesses through texture cache lookups. Hence, it is able to perform

random accesses at a granularity of 32 bytes per load instead of 128 bytes. This

gives the VTK-m implementation a significant advantage for workloads that heavily

depend on highly random read operations, such as particle advection. Second, we

note that the reference implementation is a more fully-featured system that can be

run in a distributed memory parallel setting using several parallelization strategies

(e.g., POS and POB). As such there are overheads associated with running this

code on a single node using a POS approach. A combination of these factors

explains the good performance of the VTK-m implementation.

We also note tests where the hand-coded implementation outperforms the

VTK-m version.

First, for the Astro data set in W5, the hand-coded implementation

performs significantly better. In the particular vector field for this data set, there

are regions of the flow where particles quickly exit the grid. Rapidly terminating

particles, however, induce imbalanced workloads which in turn is detrimental to

overall performance. The hand-coded implementation handles these situations

better than our implementation, and as a result achieves better performance for

high workloads. We see this same situation in W4 for the Astro data set, but since
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this workload consists of less work than that of W5 the impact of this imbalance is

not nearly as dramatic.

Second, we note performance on the K80 GPU for workloads W1 and

W2. For these tests the performance of the VTK-m implementation is roughly

half. We suspect that the hand-coded CUDA implementation has better work

management for the low seed counts of W1 and W2 on the K80 architecture, but

we are at a loss to provide a specific explanation. We note that for the performance

for workloads W1,W2 on the K80 GPU is better than the performance on the

newer P100 GPU. For workload W3, where there are more particles, the difference

in performance between the K80 and P100 is less dramatic. For workloads W4

and W5 where there is much more work, the performance maps directly onto

the generation of the GPU, as expected. We note that the hand-coded GPU

implementation we are using to compare was written, tuned and optimized in the

time frame of the Kepler generation of GPUs. It is possible that such optimizations

specific to a particular generation of hardware might not perform well on later

generation hardware and need to be optimized differently.

The data in Table 10 lists the runtimes for each workload using the

pthreads specific code path of the reference implementation, and a performance

factor for the VTK-m runtimes. For workloads where there is less work to be

done (W1, W2), the hand-coded phtreads code performs much better than the

VTK-m implementation. However, it should be noted that when there are very

few particles, run times are very small, and the overheads associated with each

implementation tend to dominate the comparison.

In subsequent workloads, where is more work to be performed, the

performance of our VTK-m implementation is comparable in many instances.
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Table 9. Timings (in seconds) for the GPU comparison implementation along with
a performance factor for the VTK-m timings (factors > 1X indicate VTK-m is
faster).

CUDA Code VTK-m Comparison
File K20X K80 P100 K20X K80 P100

W1

Astro 0.844s 0.285s 0.836s 1.35X 0.55X 2.15X
Fusion 0.845s 0.284s 0.838s 1.35X 0.55X 2.17X
Thermal 0.844s 0.284s 0.837s 1.35X 0.54X 2.14X

W2

Astro 0.869s 0.301s 0.842s 1.34X 0.55X 2.08X
Fusion 0.874s 0.304s 0.845s 1.35X 0.56X 2.11X
Thermal 0.871s 0.304s 0.844s 1.34X 0.56X 2.14X

W3

Astro 3.418s 1.959s 2.353s 2.26X 2.07X 4.08X
Fusion 3.367s 1.824s 2.219s 2.23X 1.90X 3.81X
Thermal 3.327s 1.856s 2.247s 2.21X 1.96X 3.85X

W4

Astro 6.682s 5.067s 3.564s 1.29X 1.78X 2.02X
Fusion 8.803s 6.763s 4.420s 1.65X 2.42X 2.49X
Thermal 8.793s 6.830s 4.500s 1.72X 2.45X 2.53X

W5

Astro 14.353s 12.963s 6.464s 0.37X 0.56X 0.48X
Fusion 63.993s 54.670s 25.694s 1.56X 2.24X 1.88X
Thermal 56.133s 49.172s 23.161s 1.42X 2.04X 1.70X

We note that in general, the VTK-m implementation performs better on the Intel

CPUs. This fact is not too surprising given that TBB, an Intel product, is likely

optimized for Intel hardware.

One outlier in the Table 10 that is worth exploring is W5 for the Astro and

Thermal data sets. As discussed above for the GPU implementations, the quickly

exiting particles in the Astro data set leads to imbalance. We are seeing this same

effect in the CPU implementation. For the Thermal data set, there is a similar

issue. In the Thermal data set there are regions of the flow where particles stagnate

due to zero velocities. These stagnating particles can also lead to load imbalance

which in turn is detrimental to overall performance. The GPUs have enough

parallelization to better amortize these stagnant particles, but in CPUs where there

is less parallelization, these effects cannot be overcome. The hand-coded pthreads
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Table 10. Timings (in seconds) for the CPU comparison implementation along
with a comparison factor to the VTK-m timings (factors > 1X indicate VTK-m is
faster).

pthreads Code VTK-m Comparison
File Intel28 IBM P820 Intel28 IBM P820

W1

Astro 0.0006s 0.0002s 0.59X 0.17X
Fusion 0.0004s 0.0001s 0.43X 0.09X
Thermal 0.0004s 0.0001s 0.43X 0.07X

W2

Astro 0.001s 0.003s 0.03X 0.05X
Fusion 0.003s 0.012s 0.05X 0.22X
Thermal 0.001s 0.006s 0.03X 0.12X

W3

Astro 2.001s 2.408s 1.59X 1.03X
Fusion 1.389s 2.137s 1.15X 0.82X
Thermal 1.048s 1.719s 0.89X 0.64X

W4

Astro 11.675s 14.227s 1.09X 0.69X
Fusion 11.247s 18.076s 1.04X 0.91X
Thermal 8.123s 14.633s 0.72X 0.76X

W5

Astro 38.693s 53.015s 0.36X 0.29X
Fusion 84.129s 156.735s 0.79X 0.84X
Thermal 54.591s 113.881s 0.51X 0.59X

code handles these situations better than our VTK-m implementation, and as a

result, achieves better load balancing in these situations. The issues identified in

both of these data sets are planned on being addressed in the future for our VTK-

m implementation.

Our final comparison is made with a fully featured production visualization

and analysis software tool. The data in Table 11 contains a comparison of our

VTK-m implementation to VisIt [40]. These tests were run on a CPU on the

Rhea Partition 1, and compiled with the same compiler and options as our VTK-m

implementation.

VisIt uses a serial execution model, and so we compare two different

workloads on all three data sets using a single core execution of the VTK-m
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Table 11. Timings (in seconds) for the VisIt implementation on two different
workloads along with a comparison factor to the VTK-m timings (factors > 1X
indicate VTK-m is faster).

VTK-m
File VisIt 1 core 28 core

100 Seeds
1000 Steps

Astro 0.0543s 2.36X 2.36X
Fusion 0.0855s 3.56X 3.56X
Thermal 0.0628s 2.61X 2.61X

10,000 Seeds
1000 Steps

Astro 5.5253s 2.46X 8.55X
Fusion 7.9353s 3.22X 12.53X
Thermal 5.9484s 2.45X 9.64X

implementation. We also provide timings made with a 28 core execution for the

VTK-m implementation for additional comparisons.

On the single core example, we see a clear performance increase of VTK-

m that is 2 − 3X faster than the VisIt implementation across both workloads.

For the 28 core example, there is not enough work in the small workload to see

improvements in performance when more cores are used.

However, for the larger workload we see increased performance when using

28 cores, as is expected. We note, that VisIt is a fully featured production tool, and

so there are overheads associated with the implementation in VisIt. Further, the

tests run in VisIt are computing streamlines, as opposed to simply advecting seed

locations. As such, there are overheads associated with the storing and managing of

the particle trajectories.

3.4.3 Discussion. Overall, we argue that our results support our

aim of creating a performance-portable formulation for particle tracing. Across

all workloads, our implementation usually outperforms the reference codes. In rare

cases it takes around twice the time to complete a given benchmark, with the worst

case scenario (W5, Astro on Power8) taking approximately 3.5× as long as the
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reference implementation. We note that for most of these cases we understand the

reasons for the performance, and are planning to address these cases in the future.

Moreover, our implementation — by virtue of the underlying VTK-m

runtime — shows good scaling on multi-core, shared memory machines. However,

during preliminary experiments we discovered an aspect that affected both the

TBB and the CUDA backends of VTK-m. Specifically, we noticed that the

performance behavior of our test workloads was susceptible to changes in the

underlying runtime’s granularity settings: for TBB this would be the grainsize

whereas for CUDA it would be the blocksize parameter for 1D scheduling.

Changing both had a significant effect on performance. For the TBB device

adapter, our experiments helped inform the decision in favor of a new, smaller

default setting in VTK-m. In contrast, the general performance impact of the

CUDA blocksize parameter on workloads outside particle advection is harder

to assess and may require solutions like autotuning.

Beyond such technical issues, we observe that the performance of our

implementation across the five chosen workloads matches the findings in published

results that studied performance of hand coded CPU and GPU implementations.

We therefore conclude that it is mostly bounded by the same limitations as

the reference code. This gives us confidence that the portability of our VTK-m

implementation is not introducing significant overhead issues. Further, we restate

that our implementation does not contain the platform-specific optimizations that

are typically found in hand-coded, hardware-specific implementations.

In summary, our findings suggest that our implementation shows

competitive performance across a variety of hardware architectures and workloads.
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It therefore provides a solid, and efficient basis for more sophisticated, advection-

based visualization methods.

3.5 Conclusion & Future Work

In this chapter, we have introduced a performance-portable, general purpose

formulation for one of the fundamental techniques for the analysis and visualization

of vector fields: particle advection. Our implementation is based on the VTK-m

framework, which has been developed to address the rapidly changing landscape of

execution environments in HPC systems. The issue of portable performance across

diverse architectures is of growing importance to simulation and experimental

scientists across a wide set of disciplines. The growing compute and I/O imbalance

in current and future HPC systems is causing a keen interest in scenarios where

compute is moved to the data, as opposed to the traditional model where data are

moved to the computational resources. Portability is extremely important in these

use cases: a visualization code has to run with reasonable efficiency close to the

data, regardless of the specific hardware that generated said data.

We have demonstrated the portable performance of our implementation on a

set of typical workloads, across a representative set of vector fields, and on a diverse

set of CPU and GPU hardware. We have shown that the behavior of our portable

implementation agrees with previously published results on hand-coded GPU and

CPU implementations. We have also compared the performance of our portable

implementation to several hand-coded implementations on a variety of workloads

and hardware configurations.

As stated previously, we have not performed any hand-tuning of the VTK-

m backend to achieve portable performance. However, we believe that there are

improvements that could be made to the VTK-m backends that would yield
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increased performance for particle tracing methods. We plan to explore and

evaluate these aspects and balance them against the general performance of the

VTK-m backend as a whole.

Finally, there are a large number of extensions to this work, including

support for streamlines where particle trajectories are stored. Because of early

termination of particles, it is unknown at runtime what memory resources are

required for the particle trajectories. In the future, we plan to explore methods

to efficiently support storing particle trajectories for streamlines. We are also

planning on support for time-varying vector fields and the analysis techniques

associated with these types of vector fields. Eventually, we would like to re-evaluate

performance portability for both of these cases; due to the dynamic memory

allocations (streamlines) and the increased read-bandwidth requirements (pathlines)

we might find different effects. In that regard, we plan to study the impact of

unified memory available on new GPUs for particle tracing in general, but also

to handle the storing of particle trajectories for streamlines and pathlines.

In summary, we believe that the portable performance of our

implementation makes it a fruitful platform for work in particle-advection based

techniques.
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CHAPTER IV

STEADY STATE PARTICLE ADVECTION ON GPUS AND CPUS

This chapter is based on a co-authored work which is in submission. I am

the primary author for this chapter and I was the primary author for this chapter.

In particular, I performed all coding and ran all experiments. Dave Pugmire and

Hank Childs had input on experiments and paper direction, and Hank Childs

provided editorial suggestions.

This study evaluates the benefit of using parallelism from GPUs or multi-

core CPUs for particle advection workloads. We perform 1000+ experiments,

involving four generations of Nvidia GPUs, four CPUs with varying numbers of

cores, two particle advection algorithms, many different workloads (i.e., number

of particles and number of steps), five different data sets, and, for GPU tests,

performance with and without data transfer. The results inform whether or not

a visualization developer should incorporate parallelism in their code, and what

type (CPU or GPU).

4.1 Introduction

Particle advection, i.e., displacing a massless particle according to a vector

field, is a foundational operation for flow visualization. This operation is carried

out by calculating particle trajectories by a series of “advection steps.” Each

advection step involves evaluating a vector field at one or more locations and then

solving an ordinary differential equation. Some flow visualization techniques require

many particles, many advection steps per particle, or both. As a result, particle

advection-based flow visualization can be very computationally expensive, making

interactivity difficult.
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Parallel processing is a key approach reducing long execution times. That

said, this very simple question — “how much speedup should I expect to get if

I enhance my visualization software to use parallelism?” — has a surprisingly

complex answer. The followup question “which type of parallelism should I use?:

CPU or GPU" also is non-obvious. On the one hand, GPUs provide significant

computational resources, making them potentially very useful for particle advection

problems. That said, it is quite difficult to achieve peak performance on a GPU,

especially for data intensive operations. Further, particle advection-based flow

visualization includes diverse use cases which can lead to varying performance

characteristics and varying speedups across GPU architectures. On the other hand,

while multi-core CPUs often do not have the raw FLOPS of a GPU, they can

compare favorably to a GPU either because of faster individual cores or because

of direct access to data (i.e., no data transfers).

In response, we consider five related research questions on particle advection

performance:

– RQ1: How much speedup will a GPU provide over a serial CPU

implementation? How much does individual GPU architecture matter?

– RQ2: How much speedup will a multi-core CPU provide over a serial CPU

implementation? How much does CPU concurrency matter?

– RQ3: When given the opportunity to use either a GPU or a multi-core CPU,

which should a visualization developer choose?

– RQ4: What is the impact of the data set on particle advection performance?

– RQ5: What are the trends in performance by using newer hardware?

The main outcome of this study is informing visualization developers

whether parallelism will speed up their particle advection workloads, and, if so,
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to what extent. That said, the space of possible experiments is quite large and, to

maintain an achievable scope, we introduce two boundaries. For the first boundary,

our study is targeted at visualization software running on desktop machines, and

does not consider supercomputers. Desktop machines are more widely accessible,

and they increasingly have general-purpose computing environments on their GPUs

(CUDA, OpenCL, etc.) and also significant parallelism via CPU cores. Further,

while we do not run distributed-memory experiments on supercomputers, our

findings also have implications for this environment. For the second boundary,

our study focuses exclusively on steady-state flow. Steady-state flow advection is

a common use case, and particularly common for the workloads that consider many

advection steps (i.e., the workloads that benefit most from parallel processing).

That said, our findings again have implications beyond our scope, and we consider

how our findings apply to the unsteady-state case in our conclusions.

4.2 Related Work

Shared memory parallelism refers to using the parallelism available on a

single node where the data resides in the main memory and is shared by all the

parallel elements. Traditionally shared-memory parallelism has been possible using

multi-core CPUs, and more recently, GPUs. There has been a significant body

of particle advection works that focuses on using shared memory parallelism to

improve the performance of related flow visualization algorithms.

Some past works have investigated the use of shared-memory parallelism

for particle advection in the context of distributed-memory parallelism, i.e.,

MPI-hybrid parallelism. Camp et al. proposed two different algorithms for

particle advection on large data that used multi-core CPUs for shared-memory

parallelization [32]. The multiple cores of the CPU were used to perform particle
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advection, I/O operations, and communication between nodes. Camp et al. [33]

later extended their work to use GPUs and compared the performance of GPUs

to multi-core CPUs. Their findings reveal that the CPUs performed better

for certain workloads where there are fewer particles or where the duration of

advection is long. However, the GPU was able to perform better for the other

workloads. Childs et al. [39] compared various GPUs and CPUs to understand

the relationship between the execution devices and the execution time. They

made two key observations, 1) CPUs were better for medium to long duration of

advection, and 2) for many cases with overall short execution times CPUs matched

or outperformed the GPUs. Jiang et al. used the multiple threads of CPUs to

perform I/O operation to hide the I/O latency and improve particle advection

performance [?]. Hentschel et al. [68] studied the benefits of using SIMD extensions

to achieve better performance for particle advection. They packed spatially close

particles together to use SIMD extensions efficiently by improving the spatial

locality of memory accesses. They reported a performance improvement of 5.6×

over a baseline implementation.

GPUs have gained a lot of popularity as general-purpose computing devices

over the last decade because of specialized tools like Nvidia’s CUDA library [98].

And as of lately, libraries like Kokkos [45], RAJA [10], VTK-m [95] allow users to

write C++ code that runs on GPUs without the user requiring much expertise,

making it easy to write parallel applications. GPUs offer excellent parallelism,

given that there is enough work that can be efficiently parallelized. Particle

advection lends itself to parallelization easily as each particle can be advanced

independently, making it embarrassingly parallel. That said, parallelism is limited
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to only the particles, since each advection step for a particle depends on the result

of the previous step.

Past studies have used GPUs for particle advection to perform interactive

flow visualization. Krüger et al. investigated using GPUs to produce particle

visualizations for a million particles at once [78]. Their strategy was to exploit

the GPU’s ability to perform particle advection and produce visualizations

without having to move data between the GPU and the host. The authors

demonstrated the efficacy of their system for unsteady-state particle visualizations

and also for 3D steady-state visualizations like streamlines and stream ribbons.

Bürger et al. extended the system of Krüger et al. to produce unsteady flow

visualizations[27]. Their approach was to stream data to the GPU while the

GPU was busy performing particle advection, such that the next data slice would

be available when needed. Bürger et al. later demonstrated their system could

efficiently recognize flow features using some measure of importance such as Finite

Time Lyapunov Exponent (FTLE), helicity, vorticity, etc. [26]. Bürger et al.

then demonstrated their system could render streak surfaces [24] by adaptively

refining/coarsening the surface at interactive rates with the GPUs.

Pugmire et al. [110] implemented a platform portable particle advection

solution using VTK-m [95]. They evaluated their implementation on multi-core

CPUs and GPUs. Their demonstrated implementation can perform well against

platform optimized particle advection solutions, demonstrating good portability.

Their work has also been of crucial importance for many studies that investigate

the efficiency of large scale MPI-hybrid parallel particle advection [18, 16, 19, 17].

Our work is different than that of Pugmire et al. as we focus on answering our

research questions, where their focus was on demonstrating portable performance.

95



There have been many studies about the performance of particle advection

at large scale by optimizing certain aspects for distributed particle advection.

Operating in a distrubuted setting often demands data to decomposed into small

blocks which are distributed among processes. Since particle advection is highly

data dependant domain decomposition to ensure load balanced computation is

important. Efficient domain decomposition can also help in avoiding unnecessary

I/O and communication. To that end many studied have proposed schemes for

data decomposition for particle advection based algorithms [37, 102, 100, 135]

or for efficient I/O performance [75]. Another important aspect of distributed

particle advection is work distribution and scheduling that leads to efficient use

of parallelization and underlying hardware. To that end studies proposed new

parallelization strategies [108, 99, 31, 90, 97] and demonstrate ways to use the

whole spectrum of execution devices available using co-processing [58].

4.3 Experimental Overview

This section describes the setup for our experiments, which varied over the

following parameters:

– Data sets: 5 options

– Advection workloads

∗ Number of seeds: 5 options

∗ Duration: 3 options

∗ Seeding volume: 3 options

∗ Algorithms: 2 options

– Hardware usage
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∗ GPU transfer modes: 2 options

∗ Devices: 4 CPUs and 4 GPUs

These options create for a potential 5400 experiments total — 5 data sets ×

90 advection workloads × 12 hardware options (4 for the CPU and 8 for the GPU

with the transfer modes). That said, for each research question, we considered only

a subset of the experiments, tailored to answer the question. For example, RQ1

considered only 180 experiments while RQ5 considered 864.

All experiments were run using particle advection modules implemented

in VTK-m [95]. VTK-m takes a portably performant approach, i.e., a single code

implementation can run efficiently in serial, in parallel on a CPU, or in parallel

on a GPU. This approach has been demonstrated to produce code that runs as

efficiently as CPU-specific code or GPU-specific code, with findings specifically

considering particle advection [110] and also a meta-study considering nine different

visualization algorithms [94].

The remainder of this section describes the options for our experiments in

more depth.

4.3.1 Data Sets. Four of the data sets for our experiments consisted

of a vector field on a 5123 uniform grid:

– Astro comes from a GenASiS simulation code [46] of a magnetic field

simulation surrounding a solar core collapse that results in a supernova.

– Fusion comes from the NIMROD simulation code [123] of a magnetic field in

a fusion tokamak device used to model the behavior of burning plasma.
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– Fishtank comes from the NEK5000 simulation code [50] of a fluid flow inside

a chamber when water of different temperatures is injected through a small

inlet.

– Noise is a reference data set provided with the VisIt project [41]. The

data set begins as scattered data, consisting of one hundred points in a

volume. VisIt then constructs a vector field on a rectilinear grid by smoothly

interpolating between the scattered data values.

The fifth data set, Zero, consists of a single hexahedron with all vectors

having zero magnitude. This data set served as a reference for cache performance.

RQ4 considers the impact of data set. Its findings show that data set is

important, but not as important as other factors (hardware, workload). As a

result, to simplify the analysis for RQ1, RQ2, and RQ3, their experiments only

utilize the Noise data set. Noise was chosen because it has the least variability in

number of steps, i.e., particles hit zero-velocity spots or exit the volume less often,

making for more consistent results.

4.3.2 Workloads. In the context of this study, we define a particle

advection workload to have four factors:

– Number of seeds: the number of particles placed in the volume. For this

study, we considered five amounts: 100, 1000, 10,000, 100,000, and 1,000,000.

– Duration: the number of advection steps performed for each particle. For

this study, we considered three amounts: 100, 1000, and 10000.

– Seeding volume: the size of the sub-volume where seeds are placed. For this

study, we considered three seeding volumes: Small (i.e., all seeds are placed

in a small region near each other), Medium, and Large (i.e., seeds are placed
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randomly throughout the entirety of the data set). This factor is considered

since small seeding volumes can have better cache coherency (especially in

combination with short durations).

– Algorithm: how particle trajectories will be used. For this study, we

considered two algorithms: particle advection and streamlines. Particle

advection refers to simply advecting the particles to find their final position,

which is useful for FTLE and some other advanced analyses. The streamline

algorithm stores the resulting position of each advection step. These two

algorithms were chosen because they demonstrate significant differences in

the strain they place on the memory system.

4.3.3 Hardware Usage. GPU Transfer Mode: This factor

considers the difference in performance when data needs to be transferred to/from

the GPU (“with transfer”), as opposed to when data is already in the GPU’s

memory (“without transfer”). We ran experiments of both types in our study, in

the following way:

– With Transfer: time to transfer the vector field data to the GPU, the time

to perform the algorithm (streamlines or particle advection), and the time

to transfer the data back. Note that the amount of data transferred back is

different based on algorithm: proportional to the number of seeds for particle

advection and proportion to the number of steps (seeds times duration) for

streamlines. Note that the amount of data transferred back is variable for

streamlines
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– Without Transfer: time to carry out the algorithm (streamlines or particle

advection). In this scenario, the vector field data is already on the GPU, and

the results are not transferred off the GPU.

Devices: Our experiments were run on four different machines which provided

access to four different CPUs and four generations of Nvidia GPUs. Table 12

describes these configurations for these Machines. Alaska, Voltar, and Saturn

(CPUs and GPUs 1, 2, and 4 respectively) are hosted at the University of Oregon,

and Summit (CPU and GPU 3) is hosted at the Oak Ridge National Laboratory.

Table 12. The list of CPUs an GPUs that were used for the experiments in the
chapter.

CPUs GPUs
CPU1: 2 x Intel Xeon
E5-1650 w/ 12 cores, 3.8
GHz, and 32 GB memory.

GPU1: Nvidia Tesla K40C
w/ 12 GB memory and double
precision performance of 1.68
TFLOPS.

CPU2: 2 x Intel Xeon
6226R w/ 32 cores, 3.9
GHz, and 256 GB memory.

GPU2: Nvidia Tesla P100 w/
16 GB memory and a double
precision performance of 4.7
TFLOPS

CPU3: 2 x IBM Power9
w/ 32 cores, 3.8 GHz, and
512 GB memory.

GPU3: Nvidia Tesla V100 w/
16 GB memory and a double
precision performance of 7
TFLOPS.

CPU4: 4 x Intel Xeon
8367HC w/ 104 cores, 4.2
GHz, and 376 GB memory.

GPU4: Nvidia Tesla A100 w/
80 GB memory and a double
precision performance of 9.7
TFLOPS.

4.4 Results

This section is organized around our five research questions, with

Section 4.4.1 addressing RQ1, Section 4.4.2 addressing RQ2, Section 4.4.3

addressing RQ3, Section 4.4.4 addressing RQ4, and Section 4.4.5 addressing RQ5.
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Table 13. The 270 configurations used to explore RQ1. 240 of these configurations
were on a GPU and 30 served as baseline experiments on a serial CPU. However,
24 GPU experiments were unable to finish as the required memory exceeded the
device memory; these experiments all involved streamlines with many advection
steps.

Parameter Value Total
Data Sets Noise 1

Seed Volume Large 1
Seeds All 5

Duration All 3
Algorithm Particle Advection, Streamlines 2
Hardware CPUs (Serial), GPUs (w/o Xfer, w/ Xfer) 9

4.4.1 RQ1: How Much Speedup Will a GPU Provide Over a

Serial CPU Implementation?. Table 13 shows the parameters for this phase’s

experiments and Figure 11 shows the results for these experiments. This plot shows

a wide range of outcomes — for some experiments a GPU can be over 100X faster

than a serial CPU while other experiments show a serial CPU to be over 50X faster

than a GPU. Across all experiments, however, the average GPU speedup is 6.14X

compared to a serial CPU, with the following breakdown into ranges:

GPU Speedup <1X 1X-4X 4X-16X 16X-64X >64X
% of tests 20% 18% 28% 20% 14%

The following subsections analyze these results with respect to the

importance of some of our test factors: number of steps, GPU architecture,

algorithm, and memory transfer mode.

4.4.1.1 Effect from Number of Advection Steps. This section

considers the effects from the number of advection steps, i.e., number of particles

and duration.

Number of particles is a dominant factor in speedup. This is an expected

finding — parallelization occurs over particles, and having ten thousand particles
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Figure 11. A chart showing GPU speedup compared to a serial CPU. For each of
the four figures, the X-axis represents the GPU generation, older to newer from
left to right. The colors represent the number of particles in the workload and the
glyphs represent the duration of the workload.

or more allows all threads to be engaged. Focusing on the portion of Figure 11

devoted to advection without transfer, the speedups for ten thousand particles are

nearly identical to those with one million particles. For the workloads with one

million particles, the speedups are as low as 8X (on GPU1) and as high as 160X

(on GPU4). Further, the workloads with ten thousand and one hundred thousand

particles also show strong speedups. Looking at the other configurations in

Figure 11, some ten thousand particle workloads are just as fast as million particle

comparators. For others, the speedup is less, but still significant. For example, for

“streamlines without transfer” on GPU4, the speedup with ten thousand particles is

about 70X, while for one million particles it is over 120X. Across all configurations,

the workloads with one hundred particles fare much worse, with speedups topping

off at 2X, and many actually running slower on the GPUs. The workloads with one

thousand particles perform better, with some seeing speedups of 8X, although some

of these workloads are still slower on GPUs compared to a serial CPU.
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Duration affects speedup less. For the workloads with ten thousand particles

or more, the expected speedup does not change much as duration varies. For

workloads with fewer particles, however, duration is a more significant factor.

For example, for the “advection with transfer” case with one hundred particles,

durations of 100 steps are 30X faster on a CPU while durations of 10000 steps are

merely 4X faster on the CPU. In all, the effect of duration is only significant for

workloads where GPUs provide little-to-no value.
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Figure 12. Scatter plot of speedups achieved for GPU4 (Ampere) versus GPU1
(Kepler) for workloads with no data transfer. If a given workload had a 30X
speedup on GPU4 and a 6X speedup on GPU1, then that workload would be
plotted at (30, 6) in this figure. The dotted lines show relationships between GPU1
and GPU4: the dotted black line shows where performance between the two GPUs
is equal, the dotted green line shows where GPU4 is 4× faster than GPU1, and the
dotted blue line shows where GPU4 is 16× faster than GPU1. Finally, the three
dotted circles indicate three clusters of similarly performing experiments.

4.4.1.2 Effect of GPU Architecture. Figure 11 shows the expected

result that newer GPUs are able to offer better performance. For the workloads
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with the most advection work, each newer generation of GPU provided an

improvement in performance, especially in cases where memory transfers were

not considered. The newest GPU (GPU4) provided a maximum speedup of 160X

in case of particle advection and 130X in case of streamlines. The oldest GPU

(GPU1) provided a maximum speedup of 16X in all cases.

Figure 12 plots the speedups for these extreme GPUs in our study: Ampere

(GPU4) versus Kepler (GPU1). This plot shows three distinct clusters:

1. The first cluster contains workloads where neither GPU1 nor GPU4 offered

any improvements over serial CPU. These workloads generally have a small

amount of work to do. That said, GPU4 still performs 4× better compared to

GPU1 for these workloads.

2. The second cluster contains workloads where both GPU1 and GPU4 offer

significant speedups over serial CPU. Once again, GPU4 is only 2 − 4× faster

than GPU1.

3. The third cluster contains workloads with a bigger disparity between GPU4

and GPU1 (much larger than 4X): ~128X speedups for GPU4 versus only

~8X for GPU1. This is where the majority of our workloads fall, and thus

reflects the most common outcome within our corpus of tests. The best

speedups were achieved by the workloads that only advected particles and

did not generate streamlines, which leads into the next section on algorithm

effects.

These clusters are revisited in Section 4.4.4 which looks at hardware trends.

4.4.1.3 Effect of Algorithm. In the context of our performance

study, there are two main effects due to algorithm. First, the streamline algorithm
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stores each particle position (12 bytes of position data for every advection step),

which can stress the memory system. Second, the output of the streamline

algorithm is much larger than particle advection, and so the configurations where

data is transferred back to the CPU can potentially face bottlenecks. Figure 11

illustrates the impact of each effect. First, the second and fourth sub-figures

of Figure 11 show the experiment results without transfer, i.e., it shows the

differences solely due to storing more particle positions. The average speedup for

streamlines (fourth sub-figure) is 10.45X, while the average speedup for advection

(second sub-figure) is 12.28X, i.e., streamlines’ extra memory stressors cause a

17% slowdown. (Note that some streamline experiments could not complete due

to exceeding memory, and the corresponding advection experiments were removed

for this analysis.) Next, the the first and third sub-figures of Figure 11 inform the

effects of transfer. For the experiments involving transfer, the average speedup for

streamlines (third sub-figure) is 1.92X, while the average speedup for advection

(first sub-figure) is 2.23X. The gap between the two algorithms has narrowed from

17% to 16%, i.e., the fixed cost of transferring data set causes them both equal

slowdown and the extra memory stressors for streamlines becomes slightly less

pronounced. Finally, the averages presented in this analysis are geometric means,

which help with interpreting behaviors that range between large speedups and

slowdowns. Repeating the analysis with arithmetic means gives 13.25X, 37.78X,

9.88X and 27.32X for the four sub-figures. While these numbers are skewed higher

by the experiments with many advection steps, the same trends hold: without

transfer has a 38% slowdown for streamline memory stressors, and adding transfer

times narrows to 34%.
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Figure 13. A scatter plot showing the differences between the particle advection
and streamline algorithms. The X-axis represents the speedup achieved by a certain
workload for the particle advection workload, and the Y-axis represents how much
faster the particle advection algorithm executed compared to the streamline
algorithm. A glyph at (X, Y) indicates the particle advection algorithm running
on a GPU achieved a speedup of X times, and that its speedup was Y times better
than the streamline algorithm with the similar workload. The glyph color indicates
the GPU device type, the glyph shape indicates whether or not data transfer was
involved, and the glyph size indicates the number of particles (which informs how
many GPU cores could be engaged).

Finally, Figure 13 shows a scatter plot considering speedups for the two

algorithms on GPUs compared to a serial CPU. This figure has several findings.

First, streamlines consistently achieve speedups within a factor of two of advection.

Second, the ratio between streamline speedup and advection speedup appears to

get larger as the overall speedup improves. In other words, in the cases where

the speedup is great (i.e., many advection steps), streamlines fall off the pace

somewhat, due to stresses on the memory system. Third, the GPUs perform

differently. In particular, GPU2 has worse streamline performance than the other

hardware architectures.
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Figure 14. Plotting the slowdown for using memory transfer as a function of
execution time. The figure is split into two, with advection experiments in the
top figure and streamline experiments in the bottom figure. A glyph at (X, Y)
means that a given workload took X seconds to execute without transfer and that
workload was Y times slower when running with transfer. There are no glyphs for
streamlines with execution times greater than four seconds, since those experiments
consistently exceeded GPU memory.

4.4.1.4 Effect of GPU Transfer Mode. Figure 14 shows the

effect of GPU transfer mode, i.e., if the data starts on the CPU, then how much
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effect is there to transfer the data to the GPU and back? In the “with transfer”

experiments, the vector field was always transferred to the GPU, as were the

starting seed positions. The data retrieved differed based on algorithm: either

every position of every step (streamlines) or just final particle position (advection).

This overhead was significant, as no experiment that involved transfers went faster

than 0.18s. As a result, the overhead dominates the left portion of both figures —

when the runtime without transfer is fast, then the slowdown is proportional to

the data transfer time. For example, for streamlines on GPU4 with 10000 particles

going 100 steps, the time without transfer is 0.007s and with transfer is 0.372s for

a transfer slowdown of 50X. Both plots show an inflection point around execution

times of 0.5s, when the data transfer overheads are more amortized. That said,

relatively few streamline experiments are able to benefit from this amortization,

since the streamline experiments that ran large numbers of advection steps to

exceed 0.5s often ran out of memory. In other words, streamlines with memory

transfer was almost always a poor idea in our set of experiments — with little

work, the transfers dominated while with significant work, the experiment could not

complete. Advection, on the other hand, showed significant benefit for the highest

workloads.

Summarizing, the main findings from this analysis are: (1) small workloads

perform poorly due to data transfer overhead, (2) few workloads perform well with

the streamline algorithm due to data transfer overhead, and (3) large workloads can

perform well with the advection algorithm.

4.4.1.5 Synthesis. Table 14 synthesizes the findings from the previous

section. Each of the four factors (# of advection steps, architecture, transfer mode,

algorithm) significantly affects performance:
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Table 14. The speedups over serial execution achieved by the two algorithms for the
different workloads while using GPU1 and GPU4 (denoted G1 and G4 in the table)
with both transfer modes. Each value represents the average of all workloads that
used the specified number of steps. Note the 109 workload consists of 1M particles
for 1K steps and 100K particles for 10K steps, while the 1010 workload consists of
only 1M particles with 10K steps. The shorter duration (1K) workload ran faster,
resulting some apparent slowdowns between the 109 and 1010 cases. In actuality,
the 10K experiments did increase speedup when going from 100K particles to 1M
particles.

# of Advection Streamlines
Steps w/ X w/o X w/ X w/o X

G1 G4 G1 G4 G1 G4 G1 G4
< 105 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

105 < 1 < 1 2 5 < 1 < 1 2 5
106 < 1 < 1 3 14 < 1 < 1 2 10
107 6 8 8 60 5 7 8 39
108 11 61 12 138 9 38 11 100
109 11 139 11 166 X X X X
1010 8 155 8 160 X X X X

– GPUs were not useful for many workloads with small numbers of steps,

although the threshold for when they became useful varied based on GPU

transfer mode.

– For workloads doing the particle advection algorithm and many advection

steps, the GPU transfer mode becomes less relevant.

– The streamline algorithm is a little slower than the particle advection

algorithm in all cases, but the magnitude of effect is not as big as the other

factors. That said, the streamline algorithm is not viable for very large

numbers of steps.

– The improvements in hardware architecture (GPU1 to GPU4) make an

impact (4X-20X) in almost all cases where a GPU can outperform a serial

CPU. The most notable cases where the change in hardware architecture does
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not make an impact is with the 107 workloads with data transfer. In these

cases, the data transfer time is large enough that the increased computational

power does not significantly affect speedup. Larger workloads do benefit from

the increased computational power from GPU4, while smaller workloads are

affected by transfer times to the point that a serial CPU is preferable.

Table 15. The 150 configurations used to explore RQ2. 120 of these configurations
were on multi-core CPUs and 30 served as baseline experiments on a serial CPU.
The largest serial CPU streamline experiment failed so we have excluded the 4
respective multi-core counterparts, leading to a total of 116 multi-core experiments.

Parameter Value Total
Data Sets Noise 1

Seed Volume Large 1
Seeds All 5

Duration All 3
Algorithm Particle Advection, Streamlines 2
Hardware CPUs (Serial, Multi) 5

4.4.2 RQ2: How Much Speedup Will a Multi-core CPU

Provide Over a Serial CPU Implementation?. Table 15 shows the

parameters for the experiments we conducted for this phase and Figure 15 plots the

speedup for multi-core CPUs using both the advection and streamlines algorithms,

and shows the expected result that newer CPUs with more cores perform better

than older CPUs with fewer cores. Compared to GPUs experiments, this plot shows

relatively narrower range of outcomes — multi-core CPUs perform better than

serial in all but two cases. These outcomes spanned a spectrum from 6X to 64X.

Across all experiments, the average CPU speedup is 13.91X compared to a serial

CPU, with a breakdown into ranges as follows:
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Figure 15. A chart showing CPU speedup compared to a serial CPU. For both
subfigures, the X-axis represents the CPU generation, older to newer from left to
right. The colors represent the number of particles in the workload and the glyphs
represent the duration of the workload.

CPU Speedup <1X 1X-4X 4X-16X 16X-64X >64X
% of tests 0% 1% 41% 50% 8%

In all cases, the multi-core CPUs fall short of their maximum possible

speedup, e.g., CPU4 (104-core Xeon) achieves ~70X speedups instead of 104X

speedups. That said, this level of speedup is consistent with previous multi-core

scaling studies.

Focusing on the results from the advection algorithm, all CPUs

demonstrated the same behavior. CPU1 is able to consistently provide similar

speedup of 8X for all workloads, while the other CPUs demonstrate a spread

in terms of their speedups based on the number of particles in the experiments.

However, the spread between the best and worse speedup using any CPU is smaller
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that the corresponding GPU experiments; the highest spread for CPUs is for CPU4

with a spread of 4.5X between the best and the worse experiment, the spread for

the corresponding GPU, GPU4, is 140X.

In terms of the parallel performance efficiencies, CPU2 and CPU3 (>

75%) performed better than CPU4 and CPU1 (66%). For all CPU2 and CPU3

experiments, speedup increased for both, i.e., speedup increased when increasing

the number of particles or increasing their duration. While CPU1 is able to offer

its best performance even for the workloads of lower magnitude due to minimal

overhead of using threads, the limited number of threads and slower memory

prevents it from performing better for workloads with a greater magnitude. On the

other hand, CPU4, which offers a lot of parallelism, suffers from an initialization

cost for smaller workloads (thread launch) and poor memory accesses (across

NUMA regions) for the larger ones.

The streamline results from Figure 15 shows the effects of memory accesses

from storing each advection step. The 32-core CPU2 and CPU3 are both slowed

by ~2X. The 104-core CPU4 is affected more dramatically, as performance starts

dropping as the number of advection steps increases, sometimes falling below the

32 core CPUs. In all, memory effects clearly denigrate the streamline algorithm’s

performance. Finally, Figure 16 shows a comparison between the 12-core CPU1

and the 104-core CPU4. This figure emphasizes that the behavior is varying across

these architectures. It shows that the CPU1 has very consistent performance, while

CPU4 spans the spectrum from doing ~12X faster to performing ~70X faster.

CPU4 is able to offer better scalability as the workload increases as each core gets

substantial work relative to overhead of assigning work. Eventually, for streamlines,
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Figure 16. This scatter plot compares the performance of a 104-core Xeon with a
12-core Xeon. If a workload was 64X faster than a reference serial implementation
on the 104-core Xeon and 6X faster on the 12-core Xeon, then a glyph would be
placed at (64, 6).

the performance is capped at at 40X, and for particle advection, the speedups can

exceed 64X.

4.4.2.1 Takeaways For CPUs. Table 16 presents the speedups for

CPUs while considering all the factors that impact the performance discussed

in this section. Since using multi-core CPUs is always helpful, this table acts a

lookup for users to determine the extent of speedups they can achieve using multi-

core CPUs. For both algorithms, multi-core CPUs are able to achieve the best

performance once the workload has a total number steps ≥ 107. CPUs with a lower

number of total cores are able to achieve their best performance even for workloads

of lower magnitudes, however, newer CPUs with a lot many cores show a steady

increase in speedups with increases in the workloads.
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Table 16. The speedups over serial execution achieved by the two algorithms for
the different workloads while using CPU1 and CPU4. This table can be used a
a lookup to estimate the speedup that can be expected for executing a certain
workload.

Workload Arch. 104 105 106 107 108 109 1010

Advection C1 7 7 7 8 8 8 8
C4 21 51 37 64 70 72 78

Streamline C1 6 5 6 7 7 7 X
C4 16 24 30 38 38 35 X

Table 17. The 360 configurations used to explore RQ3. 120 experiments were
run on multi-core CPUs, 120 experiments were run on GPUs and did not involve
data transfers, and the final 120 experiments were run on GPUs and involved data
transfers.

Parameter Value Total
Data Sets Noise 1

Seed Volume Large 1
Seeds All 5

Duration All 3
Algorithm Particle Advection, Streamlines 2
Hardware CPUs (Multi), GPUs (w/o Xfer, w/ Xfer) 12

4.4.3 RQ3: How Does GPU Performance Compare to Multi-

Core CPU Performance?. Table 17 shows the parameters for the experiments

we conducted for this phase and Figure 17 compares multi-core CPU performance

with GPU performance for each of our four machines. Of note, the CPU power

and GPU power appears to be somewhat balanced across the machines, with

the 12-core Xeon paired with the Kepler GPU (CPU1 and GPU1), the 32-core

Xeon paired with the Pascal GPU (CPU2 and GPU2), the 32-core Power9 paired

with the Volta GPU (CPU3 and GPU3), and the 104-core Xeon paired with the

Ampere GPU (CPU4 and GPU4). In terms of results, an overwhelming trend is

the imbalance in the range of outcomes — some multi-core CPU experiments are
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Figure 17. Comparison of GPU speedups for particle advection over their multi-
core CPU counterparts with log scale in the Y-axis. This enables the identification
of cases where the GPUs perform worse or better than a multi-core CPU. The
horizontal line at Y = 1 is where the GPU performance equals that of a multi-
core CPU. All data points below the line indicate slower GPU performance for an
experiment.

as much as 1000X faster than their GPU counterparts, but GPU experiments are

never more than 4X faster than their multi-core CPU counterparts.

For experiments without data transfer, the key factor in whether the GPU

or CPU will be faster is the number of particles advected. For the most part, if

10,000 or more particles are advected, then the GPU is faster (since all GPU cores

can be engaged), and if 1,000 or fewer particles are advected, then the CPU is

faster (since the GPU cores cannot all be engaged). Experiments involving data

transfer and streamlines are almost always faster on the CPU. The only exceptions

involve cases with 100M advection steps, and even then speedups were only modest

(< 2×). One reason is that GPUs can only outperform multi-core CPUs when there

is significant work, but, for the streamline algorithm, the amount of work needed to

offset transfer costs exceeds GPU memory.

Finally, Figure 18 shows results when comparing the extreme of each

architecture: best CPU (CPU4) vs worst GPU (GPU1), best CPU (CPU4) vs best

GPU (GPU4), worst CPU (CPU1) vs worst GPU (GPU1), and worst CPU (CPU1)
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Figure 18. A small multiples chart comparing speedups for GPUs and multi-core
CPUs compared to a serial CPU. Each figure contains a scatter plot with CPU
results along the X-axis and GPU results along the Y-axis. Each point in the
scatter plot corresponds to a workload; when comparing to serial CPU times, if
a workload was 30X faster on a multi-core CPU and 15X faster on a GPU, then a
glyph would be placed at (30, 15). The overall layout of the small multiples chart
is 4x2. The two rows correspond to data transfer, with top row plotting without
data transfer and the bottom row plotting with data transfer. The four columns go
through the combinations of best and worst CPU and GPU. The worst GPU in our
study, GPU1 (Kepler), is in the left two columns, while the best GPU in our study,
GPU4 (Ampere), is in the right two columns. The worst CPU in our study, CPU1
(Xeon 12 cores), is in the first and third columns, while the best CPU in our study,
CPU4 (Xeon 104 cores), is in the second and fourth columns.

vs best GPU (GPU4). CPU4 beat the worst GPU1, and often by significant

amounts, in all but a few configurations. CPU4 was also able to beat the best

GPU4 in most configurations. When considering experiments with data transfer,

the CPU4 is able to either beat or keep up with GPU4 in almost all cases, with the

only exception being those with large workloads. The worst CPU (CPU1) beat the

worst GPU (GPU1) only for smaller workloads. When comparing the worst CPU
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(CPU1) and the best GPU (GPU4), GPU4 was substantially faster for almost all of

the cases losing only in the cases that involve small workloads.

Table 18. The ratio of the GPU and CPU speedups achieved by the two algorithms
for the different workloads while using GPU1 with CPU1 and GPU4 with CPU4
with both the memory modes. The entries are represented as (GPU1/CPU1) /
(GPU4/CPU4) in the table. This table can be used a decision lookup of whether to
use the GPU or the CPU for executing a certain workload.

Workload Advection Streamlines
w/ X w/o X w/ X w/o X

< 107 < 1 < 1 < 1 < 1
107 < 1/1.0 < 1 < 1/1.1 < 1/1.02
108 1.4/1.5 < 1/1.9 1.3/1.5 < 1/2.58
109 1.4/1.4 1.9/2.2 X X
1010 1.0/1.0 1.9/2.0 X X

4.4.3.1 Takeaways for GPUs and CPUs. Table 18 presents the

factor of speedups (over serial) achieved by GPUs over their multi-core CPU

counterparts. A factor greater than 1 means that the GPU performed as many

times better than their comparator CPU. The table also acts as an easy lookup for

users to determine when GPUs will be better than CPUs for a particular workload.

In general, for workloads below the total number of steps being less than 108,

GPUs should not be used as they perform worse than the comparator CPUs. The

range where GPUs are helpful for generating streamlines is very narrow, as they

need significant amount of work to offset the costs of memory operations but are

not able to support workloads which have memory requirements higher than the

available GPU memory.

4.4.4 RQ4: What Are the Trends in Performance by Using

Newer Hardware?. For GPUs, the three clusters identified in Section 4.4.1.2

inform hardware trends both for the last decade of GPUs and looking forward.

Some workloads have so little work that GPUs are not very useful. The
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Figure 19. Figure plotting the speedups achieved by a workload by the different
generation of GPUs and CPUs for the two algorithms. (a) shows GPU scaling
similar to Figure 11, and (b) shows CPU scaling data similar to Figure 15. Both
of these figures plot the Y-axis without the log scale unlike the reference figures.
The plots are colored by the cluster they are categorized in in Figure 12. Cluster
1 represents the poorest performing cluster and Cluster 3 represents the best
performing cluster. Cluster 4 represents the experiments that finished on the CPUs
but not on the GPUs due to limited memory.
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improvements from GPU1 to GPU4 cause these workloads to cross the threshold

of outperforming a serial CPU when there is no data transfer involved. It would

be surprising if future GPUs become so powerful that they become relevant for

these small workloads. Other workloads have modest speedups compared to a serial

CPU. GPU1 had 3X to 8X speedups on these workloads and GPU4 improved these

to 8X to 20X. That said, given the performance of multi-core CPUs, GPUs are

unlikely to be the best choice for these workloads – if a visualization programmer is

choosing between implementing a multi-core CPU code base and a GPU code base

to address these workloads, they should likely choose a multi-core CPU approach.

The final cluster of workloads is the one where recent improvements in GPUs have

made the most difference, and future GPUs are likely to improve further still.

GPU1 had speedups of 8X to 16X, but GPU4 improved these to 64X to 128X. For

the most part, these are the workloads where GPUs outperformed the multi-core

CPU. Further, given hardware trends (more cores, better memory infrastructure),

future GPUs are likely to improve these speedups further.

Finally, Figure 19 presents the scaling behaviors of all the GPUs and CPUs

considered in our study. It combines the clusters identified in Figure 12 and uses

it to enumerate the experiments in Figures 11 and 15. This figure reveals insights

into advances in GPUs and CPUs and informs their performance based on two

factors, the workload and the algorithm. Focusing on workload, For the largest

ones (identified by Cluster 3), newer GPUs and CPUs are able to offer increasing

speedups. This is due to the fact that newer CPUs and GPUs have more numerous

cores and each core is able to perform much better than the previous generations.

These additional cores help workloads that are able to saturate all the cores of

the GPUs and the CPUs. For the smaller workloads (identified by Clusters 1 and
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2), however, the newer generations of GPUs did not offer significant performance

improvements over the previous generations. Newer CPUs are able to offer modest

speedups for the workloads in Clusters 1 and 2. Focusing on algorithm, newer

GPUs demonstrate similar same behaviors of scaling for both the particle advection

and streamlines, i.e., for both the algorithms workloads in Cluster 3 are able

to scale very well and workloads in Clusters 1 and 2 are not. This trend is not

consistent for CPUs. Newer generations of CPUs are able to behave similarly for

particle advection, but demonstrate much smaller gains for streamlines, many times

even performing worse than previous generations. However, there’s still value in

using CPUs for streamlines as very large workloads (in our case, total steps ≥ 108)

GPUs cannot be used because of very high memory requirements, while CPUs can

still offer decent speedups. These very high workload cases are identified by Cluster

4. Hence, the findings can be summarized as:

– Newer generations of GPUs are able to scale much better for both particle

advection and streamlines only for workloads that are able to use all the cores

of the GPU.

– Newer generations of CPUs are much better at scaling or particle advection,

but not for streamlines. However, they can still support very large workloads.

4.4.5 RQ5: How Does Data Set Impact Performance? . This

section considers the effect from data set on performance on GPUs and multi-

core CPUs. Table 19 shows the parameters for the experiments we conducted for

this phase. Data set can affect performance in two fundamental ways: caching

and divergence. With respect to caching, some data sets may attract particles

to key regions, potentially increasing cache performance, while other data sets
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Table 19. The configuration for experiments that were executed to answer RQ5.
Based on the parameters used, a total of 936 experiments were considered to
answer this question of which 72 were run with Zero data set and served as a
baseline (“Zero” data set used only one seeding volume).

Parameter Value Total
Data Sets All 5

Seed Volume All 3
Seeds {100, 10000, 1000000} 3

Duration All 3
Algorithm Particle Advection 1
Hardware CPUs (Multi), GPUs (w/o Xfer) 8

may move particles throughout the region uniformly, potentially decreasing

cache performance. With respect to divergence, the fundamental issue is early

termination, i.e., if a particle is supposed to advect for a duration of N steps, but it

stops after K steps, where K < N . This early termination can happen because

a particle entered a zero-velocity region (making further steps unnecessary) or

because it exited the data set’s spatial domain (making further steps impossible).

In the context of a parallel architecture, the effect of early termination is that some

threads will be asked to do asymmetric work — threads assigned particles that

terminate early will perform fewer advection steps — which can create performance

degradation due to divergence.

Measuring the effect of data set on performance is non-trivial. The execution

time for a given workload on a given architecture reflects a combination of factors:

clock speed, number of steps taken, and hardware efficiency (i.e., caching and

divergence). Since our interest is on the hardware efficiency changes due to data

set, we normalize our analysis with respect to clock speed and number of steps

taken. We did this normalization by using a reference data set, which refer to as

“Zero.” This data set consists of a single cell with velocity value (0, 0, 0) everywhere

121



in the cell. For a workload W , a hardware architecture H, and a data set D, our

analysis used the following terms:

– NW,H,D: the number of advection steps performed for workload W , hardware

architecture H, and data set D.

– TW,H,D: the execution time for workload W , hardware architecture H, and

data set D.

– AW,H,D: the average time per step for workload W , hardware architecture H,

and data set D. This is calculated as AW,H,D =
TW,H,D

NW,H,D
.

– NormW,H,D: the normalized time per advection step for workload W ,

hardware architecture H, and data set D. This is calculated relative to the

Zero data set as NormW,H,D =
AW,H,D

AW,H,Zero
.

– AggrNormH,D: the aggregated time per advection step for hardware

architecture H and data set D over all six workloads. This aggregation is

performed with a geometric mean, i.e., (
∏w=6

w=1Normw,H,D)
1
6 .

To understand the meaning of these terms, consider an example. If Workload W4,

hardware architecture GPU2, and data set Astro, have NormW4,GPU2,Astro = 1.2,

then the average step was 20% slower than for the Zero data set. Further, if

AggrNormGPU2,Astro = 1.4, then then the average step was 40% slower than

for the Zero data set over all workloads. The remainder of this section focuses on

AggrNorm values. That said, the individual Norm values for each comparison

(over the four data sets, eight hardware architectures, and six workloads) can be

found in the supplemental material,

Table 20 contains the AggrNorm values for each combination of hardware

architecture and data set. There are two primary findings from this table: effects

from hardware architecture and effects from data set. With respect to hardware
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Table 20. AggrNorm values for all combinations of hardware architectures and
data sets. Each entry cell shows the aggregate slowdown (over six advection
workloads) for a given data set compared to the Zero data set on a given
architecture. For example, the number 1.08 in the top left of the table means
that the Fusion data set took an average of 8% longer than the Zero data set on
Xeon 8 architectures.

Fusion Astro Fishtank Noise
CPU1 1.08 1.02 1.35 0.98
CPU2 1.35 1.13 1.85 1.13
CPU3 1.23 1.11 1.76 1.05
CPU4 1.12 0.99 1.61 0.93
GPU1 2.77 2.49 7.04 1.97
GPU2 3.13 2.73 8.15 1.97
GPU3 4.99 4.17 9.55 3.90
GPU4 3.73 3.03 9.58 2.35

architecture, the impact for CPUs is significantly less than that for GPUs. The

largest AggrNorm value for CPUs is 1.85, while the largest value for GPUs is

9.58. This means that our experiments showed at worst an 85% slowdown on CPU

architectures, compared to a 858% slowdown for GPUs. Further, GPUs were almost

always twice as slow compared to the Zero data set, while CPUs were able to run

nearly as quickly in some cases. In short, caching and divergence affected the CPUs

much less than the GPUs. While this is an expected outcome, the magnitude of

the effect (1.85 vs 9.58) was surprising. Another finding for hardware was that

the AggrNorm values climbed on each subsequent generation of GPU, from an

average of 3.12 on GPU1 to an average of 3.99 on GPU4. So while later GPUs offer

higher performance, degradations due to data set effects become more prominent.

With respect to data set, Table 20 informs the extent of slowdown due to data

set. The Noise data set (which has few zero-velocity spots and does not regularly

push particles outside its spatial boundary) is able to perform similarly to the

single-cell Zero data set on CPUs, and performs better than the other data sets on
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GPUs. The Fishtank data set is the clear worst performer, with GPU performance

being approximately three times slower than the other data sets. Once again,

while this type of effect is to be expected, we found the magnitude of this effect

to be surprising. That said, more analysis is needed to figure out the cause of the

slowdown: divergence, caching, or both.

Figure 20 and Table 21 isolate the effects from divergence. As stated earlier,

divergence occurs because of early termination. Our solution is to modify our

algorithm to not terminate these particles — if a particle hits a zero-velocity region,

then the algorithm continues performance advection steps (and remaining in the

same position) and if a particle exits the spatial domain, then we have it advect

backwards in time (i.e., retrace the path from where it came). For ease of reference,

we refer to these additional steps as “fake steps.”

Table 21. Table demonstrating the relative slowdown in terms of time per step for
different architectures when particles are not terminated at all. For example, for
Xeon 8 CPU and Fusion data set the number 1.06 represents that the experiment
is 1.06x slower than the ideal case.

Fusion Astro Fishtank Noise
CPU1 1.06 1.02 1.22 0.99
CPU2 1.14 1.05 1.42 1.11
CPU3 1.11 1.07 1.28 1.02
CPU4 1.02 0.97 1.26 0.94
GPU1 1.84 1.62 1.75 1.61
GPU2 1.54 1.46 1.78 1.48
GPU3 3.42 3.02 3.70 3.06
GPU4 2.28 2.07 2.62 1.90

Figure 20 plots the proportion of “real steps” versus “fake steps”

(differentiating between those from zero velocity and those from exiting the

boundary) for all data sets, workloads, and seeding volumes. It shows that:
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Figure 20. Evaluating the proportion of fake steps contributed by different
termination criteria when particles are not terminated at all.

– the Fusion data set is made up of 50% fake steps due to zero velocity (or,

rather, that the number of steps taken under normal conditions is 2X less

than the workload specifies),
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– the Astro data set has a large range of outcomes (from 5% fake steps to 70%

fake steps, mostly from exiting the boundary),

– the Fishtank data set always has more than 50% fake steps (from a

combination of zero velocity and exiting the boundary), and

– the Noise data set has the least number of fake steps, although workloads

with longer durations due ultimately find zero-velocity locations.

These results inform Table 21, which repeats the analysis from Table 20 but

incorporates fake steps in the timings. As a result, these experiments have no

effects from divergence and slowdowns are solely from caching effects. On the CPU

side, Table 21 shows that the Fishtank data set is still slower than the other data

sets. In this data set, a given particle will hit the ceiling of an assembly and can

move in any direction, and then will recirculate and hit the ceiling again. As a

result, this data set is the one that most stresses cache, as each particle can travel

through the entire volume. The slowdowns for Fishtank and Fusion are roughly

half of those in Table 20, while for Astro and Noise the slowdowns are very similar.

In all, these experiments show that data set does affect CPU performance — two

data sets appear to be affected by caching and divergence in approximately equal

measure, while two other data sets appear to be affected only by caching. On the

GPU side, eliminating divergence improved slowdown factors for all four data sets.

The biggest effects were for Fishtank, with the GPU4 experiments dropping from

a slowdown of 9.58 in Table 20 to 2.62 in Table 21. For this data set, divergence

was a much larger cause of slowdown than caching. The effects are smaller for other

data sets. For example, the Noise data set on GPU4 improved from 2.35 to 1.90.

For this data set, cache performance appears to be a bigger issue than divergence.

We are reluctant perform further analysis to quantify the relative effects of each. In
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particular, the experiments in Table 21 have extra cache benefits from zero-velocity

steps, which contributes to the reduction in slowdown.

4.5 Conclusion

The research goals of this chapter were to understand the benefits of using

the parallelism of GPUs and multi-core CPUs for particle advection. We identified

five research questions that we felt were key to this understanding. In RQ1, our

goals were to determine how much speedup a GPU provided over using a serial

CPU, and the differences between different GPU architectures. Our study shows

that a GPU can provide speedups, but only for certain types of workloads. Over all

our tests, GPU speedups were rather modest (2X-5X, depending on architecture).

The maximal speedups (6X-25X, depending on architecture) were achieved for the

larger workflows consisting of more than 1M steps. Because of memory costs on

the GPU, the type of algorithm used has a large impact. The expected speedups

across different architectures for the streamline algorithm ranges from 3-9X, while

the particle advection algorithm ranges from 4-27X. The takeaway message is that

a GPU implementation only makes sense when used on large enough workloads

to overcome the costs associated with memory usage and data transfers. Finally,

RQ1 also asked about the difference between GPU architectures, and, on the whole,

the best GPU in our study was ~4X better than the worst. RQ2 investigated how

much speedup could be achieved using multi-core CPUs over using a serial CPU.

We found that multi-core parallelism was always useful, and significantly useful

if the number of particles was 1000 or more. We also found that the speedup

can vary based on the algorithm (streamlines strain memory more) and CPU

architecture. As far as comparing CPU architectures, the 104-core Xeon ran fastest

for all experiments with more than 100 particles, but the amount of improvement
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varied. RQ3 investigated if there were clear choices to be made for the community

in deciding what type of parallelism to deploy for particle advection tools. For this

question, the overall takeaway is that multi-core CPUs tend to be more efficient

than GPUs. The costs for data transfer and memory usage are so high that it

takes significant amounts of work to overcome. Further, because of the way the

algorithms parallelize the work, only large number of particles can engage all

of the cores on the GPU. CPUs with a large number of cores are very efficient

at advecting particles. RQ4 presented the trends of performance improvement

afforded by the advancements in both, GPUs and multi-core CPUs. The findings

suggest that the both the architectures are able to benefit form the increasing

concurrency of the execution hardware. The difference between the performance

of the worse and the best GPUs and CPUs for the largest workloads was 10X.

Finally, RQ4 demonstrated that the underlying vector field can have a significant

impact on the performance of particle advection. The performance largely depends

on the proportion of the total workload that is actually executed, as well as the

characteristics (convergence and divergence) of the vector field which affects cache

performance.

Our findings are somewhat different than the those by Pugmire et al. [110]

who did a smaller study in 2018 comparing GPU and multi-core CPU performance

again using VTK-m. We are using different architectures so direct comparison

is difficult. That said, their comparisons on “Summit Dev” between Pascal and

20 cores of IBM Power-8 showed more significant speedups on the GPU than

our comparisons on Summit between a Volta and 32 cores of IBM Power-9

performance. While none of our experiments match exactly, the most comparable

involve our runs of one million particles with one thousand steps versus their runs
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of ten million particles with 100 steps. They achieved 1.4s with a P100, while we

achieved 2.39s. On the CPU side, our run was 4.8s, while their run was 19.9s. The

GPU slowndown may be attributable to many factors, but we point to changes in

the last four years of the VTK-m source code. During that time, the code has been

extended to be “lean and mean” to be functional for a variety of use cases (FTLE,

different grid types, electomagnetic fields, etc.) and this has led to more branching,

etc., that can slow down GPUs. As a result, our findings should be interpreted as

expected performance for a practical, richly-featured implementation.

In summary, we feel this chapter provides information for the visualization

community to guide decisions for tool development and deployment for particle

advection. It will also help set expectations for algorithm performance on different

hardware. This will help focus the efforts of developers to provide efficient solutions

for the types of problems they plan to support and hardware that is available.

While programming models for GPUs are improving, they are still challenging

devices for development and debugging. Realistic expections for the performance

on GPUs can be balanced against the development and maintenance cost for the

anticipated uses cases of the software. For visualizations tools with large user

bases, and use cases that are varied, this work provides valuable information for

the development of heuristics that can be used at run-time to make decisions on

which hardware to target. Finally, we feel this work has significant implications

for distributed memory parallelism and in situ use cases. A distributed memory

implementation might need to support very large workloads, but this workload

might be spread across a number of nodes. In such a case, there is globally a

lot of work to do, but locally only modest amounts of work to do. It would be

advantageous to use this study to inform how the node-level particle advection is
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performed. For in situ processing, there are different options for how algorithms can

be run. Is the simulation data already on the GPU? Are there CPU cores idle while

the simulation runs? Is the GPU idle while simulation does communication, or

switches to using the CPU cores? Is there enough work to warrant a transfer from

the CPU to GPU, or vice versa? The best choice will vary based on the answers to

these questions, and the findings in this chapter can help inform these decisions.
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CHAPTER V

GENERAL PURPOSE FLOW VISUALIZATION FOR THE EXASCALE

This chapter is based on a co-authored work which is in preparation. I am

the primary author for this chapter and I will be the first author when the work is

submitted. Hank Childs has made editorial suggestions and also made suggestions

for overall project direction.

5.1 Introduction

There is a wide diversity of options for flow visualization systems, ranging

from velocity field evaluation to solver to parallelism style. Each of these options

exists because they have utility in a given setting, i.e., this velocity field evaluation

is appropriate for this data, this solver is most efficient for these conditions, or

this parallelism is the fastest for this combination of workload and architecture.

One option for a visualization flow developer is to identify the specific options

for their use case and implement a corresponding system. However, the resulting

system may only be useful to a limited set of people, and, stating it explicitly,

not applicable to most potential users. As a result, additional systems may get

developed, each with their own special purpose. In all, focusing on the specific

needs of one use case may result in many different implementations, each coming

at high cost.

The premise of this research is that developing a general system capable

of satisfying many use cases will obviate the need for many bespoke systems. The

value of this approach would primarily be in reduced development time, i.e., one

visualization developer implements a general system — likely at a higher cost

than a bespoke system — and many future visualization developers can re-use

this work. Another value may come in extensibility. Rather than a rigid system
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that was written for a specific purpose (which can lead to extensibility barriers),

a general system would already have extension paths built in, making adding new

functionality straightforward.

An important consideration for this thesis is efficient performance on

modern supercomputers. This requires two types of parallelism: distributed-

memory parallelism and shared-memory parallelism. The first type of parallelism

was well explored by Binyahib in her dissertation [15], which considered the efficacy

of parallelization-over-data techniques, parallelization-over-particles techniques, and

hybrids between the two. Her findings remain very relevant, in particular because

the number of nodes on supercomputers is remaining relatively fixed. Instead, the

major change is the presence of accelerators and the number of cores available per

node. The second type of parallelism was the focus of Chapter 3. In all, the best

approaches for both types of parallelism are now well understood, partially from

previous work and partially from results earlier in this thesis.

This research for this general system contains two significant elements: First,

what are the abstractions? And, second, how can these abstractions be achieved?

The first element, identifying abstractions, is a significant challenge. That

said, most of the work for this challenge has already been performed earlier in this

dissertation. In particular, Chapter 2 identified the abstractions for the advection

process, and the work from Binyahib and Chapter 3 add additional abstractions

for parallelization. These abstractions, as well as concrete implementations, can be

seen in Figure 21. These choices will be validated in the Results section through

demonstrations of diverse flow visualizations, i.e., the ability to support a wide

range of use cases provides evidence the choices of abstractions are good ones.
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Figure 21. The abstractions and their concrete realizations for our general purpose
flow visualization system. The components encapsulated in the green box are the
components that make the system exascale ready. The components encapsulated
in the blue box are the components that make the system extendible and general
purpose. Together these components aim to achieve a goal of “efficiency squared,”
i.e., both performance efficiency and developer efficiency.

The second challenge is implementing these abstractions. In C++, it is easy

to envision a solution using virtual functions. Abstract types provide interfaces

via pure virtual functions and concrete types provide implementations for those

virtual functions. Each abstraction interacts with the others as appropriate, i.e., a

Solver class calls VelocityFieldEvaluator::EvaluateAtPoint as many times as needed

to do its work. However, a key goal for this work is to provide a solution that will

work on modern supercomputers, and that requires that the code code can run on

accelerators. In particular, some GPUs do not support virtual functions. Further,

even though some GPUs do support virutal functions, they could still be a poor

choice — while the overhead from virtual functions is often small, it can denigrate

performance when invoked at a high rate. As a result, a C++-style virtual function

approach was not possible for this work. Instead, we focused on template meta-
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programming and specifically using traits for specialization. More on this topic can

be found in Section 3.

5.2 Related Work

Flow Visualization is supported in widely adapted scientific visualization

packages like VisIt [41], Paraview [67], VTK [57], FieldView [1]. Special flow

visualization tools are also made explicitly for flow visualization, like OSUFlow [52].

Most of these tools still offer limited support for using advances on multi-core

CPUs and accelerator technologies (specifically GPUs) for anything apart from

rendering. Also, using these tools for novel analysis becomes challenging as either

significant expertise is required to contribute code to them or these tools inherently

allow themselves to be extended easily. Hence there is a void in the research for

developing the flow visualization tools that satisfy our “efficiency squared” criteria.

However, there is plenty of research tackling specific problems using these tools.

5.2.1 Towards Performance Efficiency. Recently, the landscape of

high performance computing has been transformed by the advances in accelerator

technologies, specifically Graphical Processing Units (GPUs). Previous research

on using GPUs for particle advection focuses on interactive visualization since

using GPUs for particle advection makes the geometry to produce visualizations

readily available on the GPU [78, 27, 26, 24]. Other studies present algorithmic

optimizations to components like cell location to efficiently use the available

concurrency [54, 118]. These works successfully demonstrated the value of using

GPUs for particle advection with performance improvements of up to 80X for

interactive visualization and up to 17X using algorithmic improvements for better

use of GPU. However, these works demonstrated were explicitly designed to execute

on a single hardware platform. The scientific computing community has seen
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a diversity of accelerator hardware being used to build the latest and greatest

supercomputers. The top five current supercomputers use 3 different types of

technologies, AMD GPUs, ARM-based CPUs, and Nvidia GPUs. With such a

variety of computing landscapes, optimizing software for each of these platforms

is not feasible, warranting more research in platform portable technologies. An

alternative to remedy this situation is to use “data parallel primitives (DPP),”

where most common code patterns are optimized for a specific platform, and

developers are encouraged to use these code patterns as building blocks for their

algorithms. Using DPPs for particle advection was explored in Chapter III, with

findings demonstrating speedups ranging from 0.4X to 2.25X compared to platform-

specific implementations [95, 110].

In term of large-scale flow visualization, there is research that abounds.

A survey by Zhang et al. [137] summarized a large set of studies that aims to

solve flow visualization challenges at scale. At large scales, where work and data

need to be distributed among multiple nodes, communication of intermediate

results, managing data and I/O, scheduling work, and load balancing become

issues of critical importance. Several notable studies presenting novel strategies

for improving the efficiency of large-scale particle advection stand out. However,

most of these studies have a singular focus, focusing on better communication or

better work scheduling, etc. Also, most of these studies primarily use distributed

memory parallelism, ignoring the potential performance benefits of using shared

memory parallelism. Using shared and distributed memory parallelism together

is termed “hybrid parallelism.” With the advances in accelerator technologies and

the need to tackle more significant scientific problems, research in efficient hybrid

parallelism is becoming increasingly important. Only a few particle advection-based
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studies demonstrate the use of hybrid parallelism. Key among them were studies

presented by Camp et al. and Childs et al. that generated streamlines using hybrid

parallelism [39, 32, 33]. More recently, Binyahib et al. demonstrated using VTK-m

to develop and test multiple hybrid particle advection algorithms [19, 18, 17].

5.2.2 Towards Developer Efficiency. While no effort has tackled

our particular flavor of developer efficiency, many previous visualization efforts

have considered this topic. First, VTK-m [95] provides developer efficiency over

platforms, i.e., write once, run everywhere. Outside of the visualization community,

efforts such as Kokkos [45], RAJA [71], and Thrust [3] do the same (among others).

These projects differ from ours because they focus on portable performance. Our

effort values portable performance, but it achieves this property via VTK-m and

seeks additional developer efficiencies for advection. Second, several visualization

systems have provided great flexibility by providing many visualization modules

and interoperability capabilities to connect these modules. These projects include

VTK [57], AVS [126], and OpenDX [103], among others. Our effort differs because

we are considering how to provide developer efficiency at the module level, i.e.,

instead of providing hundreds of advection-related modules within these systems,

we are asking how to develop a single module that can be specialized to realize each

of the desired advection modules. Our effort is operating at a different level than

these visualization systems.

5.3 Implementation

Figure 21 presents the main abstractions we identify as essential to make

the system general and easily extensible. Seven total abstractions are required, of

which two are required for efficient execution on heterogeneous supercomputers,

and five are required for general flow visualization. This section is divided into four
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subsections. Section 5.3.1 discusses the necessary VTK-m concepts that help better

understand the design of the system. Section 6.2 discusses the abstractions that are

required for making a general flow visualization system. Section 5.3.3 discusses the

organization of all the abstractions inside and the instantiation of a VTK-m filter.

Section 5.3.4 discusses the process of specifying a new particle advection-based filter

in VTK-m.

5.3.1 Terminology. In HPC terminology, to better distinguish

between the CPU and the accelerator being used, the CPU is termed as a “host,”

and the accelerator device is called a “device”. This also extends to refer to the

memory for each device; The main memory for the CPU is termed “host memory”,

and the dedicated memory for the the accelerator is termed “device memory.” Users

have to explicitly control copying the memory from the host to the device before

processing and later from the device to the host post-processing. VTK-m allows

users to specify complex objects composed of multiple arrays. However, users

must specify how these objects manage host and device memories. To represent

these objects, VTK-m terms the objects that reside in host memory as “control

objects” and their counterparts on the accelerators as “execution objects.” For

each of the abstractions introduced in our flow visualization system later in this

section, there are specific requirements users need to follow while writing their

custom objects such that they work with the infrastructure defined by our system.

In each of these abstractions, we’ll define what the control object requires and

what the execution objects require. For the most part, control objects serve just

as containers for arrays on the host side, and if they serve any other particular role,

it will be discussed in the relevant section. For a more detailed discussion of VTK-
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m’s control and execution objects, we recommend referring to the VTK-m user’s

guide.

5.3.2 Achieving Developer Efficiency and Generality.

Integration-based flow visualization is used in multiple scientific domains, e.g.,

aerodynamics, fusion, combustion, etc. These scientific domains have different

needs for visualization and analysis of the flow being represented. However, these

flow visualization algorithms share many of the same underpinnings, allowing for

the potential for generalizations and abstractions. In theory, these abstractions

should enable users/developers to quickly compose new algorithms by specifying

custom components that can work with each other to achieve analysis needs.

Towards that end, our system provides abstractions of the following components

of an integration-based flow visualization system.

5.3.2.1 Particle Abstraction. ‘Particle’ abstraction allows users

to specify special properties that are required to advect or analyze the particle.

Typically study of fields like aerodynamics requires massless particles for analysis

and requires no unique properties. However, domains like fusion require particles to

have momentum and charge. Since particles only represent a container for their

properties which we assume to mostly be single entities, there is no separation

between control and execution objects.

5.3.2.2 Evaluator Abstraction. ‘Evaluator‘ abstraction allows users

to specify how the field will be resolved at a certain location, depending on how the

field was discretized for the simulation. Based on popular mesh types supported

by VTK-m, out implementations support the evaluation of fields in uniform,

rectilinear, or unstructured meshes. The evaluator acts as a means to access the

data from the vector fields using a cell locator that works over the input mesh.
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Hence, on the control object, it maintains the control objects of the field and the

cell locator. On the execution object, it maintains the execution objects of the field

and the cell locator. It uses the following methods on the execution object to query

and return the relevant field information.

ErrorCode Evaluate ( const Point& point ,

const f loat& time ,

FieldOutputType& out )

In the above code listing, point is the location where the evaluation needs to

happen, time is used while dealing with temporal data to calculate the velocity

at a specific time, and out represents the value to be returned.

5.3.2.3 Field Abstraction. ‘Field’ abstraction allows users to

easily specify the vector fields representing the flow. However, the specification

of a flow field can be complicated. E.g., vector fields for aerodynamics that are

discretized into a velocity field are sufficient for flow visualization, while the study

of fusion and electromagnetics requires an electric field and a magnetic field. The

control side object for the field only contains the arrays representing the flow.

The execution object must support one of the following three methods to return

the necessary data. These methods are used by the ‘Evaluator‘ to return the

correct velocity information or to return all the information needed to calculate

the velocity.

First, if the field is zonal, the following method needs to be supported:

void GetValue ( const Id c e l l I d ,

OutputType& value ) const
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In the above code listing, cellId refers to the identity of the cell identified by the

cell locator for the query location, and value refers to the relevant information to

be returned.

Second, if the field is zonal, the following method needs to be supported:

void GetValue ( const Vec<Id , 8>& ind i c e s ,

const Id numVertices ,

const Vec3f& parametric ,

const UInt8 ce l lShape ,

OutputType& value ) const

In the above code listing, indices refers to the indices of the vertices that

make up the containing cell for the query location, numVertices refers to the

number of vertices, parametric refers to the parametric coordinates of the query

location within the cell, and cellShape refers to the cell’s shape so that correct

interpolation schemes can be used.

Finally, if a more complicated strategy is needed for field evaluation, the entire

process is delegated to the field using the following method:

template <typename Point ,

typename Locator ,

typename Helper>

void GetValue ( const Point& point ,

const f loat& time ,

OutputType& out ,

const Locator& loca to r ,

const Helper& he lpe r ) const

Here, the first three parameters are similar to the Evaluator objects. In addition

to them, locator refers to the object of cell locator that might be needed to

perform query cells, and the helper refers to an internal object used to query more
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information like indices of the vertices representing the cell, querying the cell shape,

etc.

5.3.2.4 Analysis Abstraction. ‘Analysis’ abstraction allows users to

specify custom analysis based on successive positions of the particle. Users can also

choose a wide variety of analysis tasks to perform during particle advection, e.g.,

storing successive locations of a particle for streamlines and storing intersections

with a set of planes for Poincaré plots. Typically, the analysis class is where users

need to specialize many more things on the control side to guide the process of

output construction. Three main methods are used to accomplish the task of

analysis on the control side.

First, users need to specify if the analysis requires developers to handle the initial

state of the particle.

void I n i t i a l i z e A n a l y s i s (

const Array<Part ic leType>& array )

In the code listing, array refers to the initial state of the particles that need to be

advected.

Second, users need to specify if the analysis requires developers to handle the final

state of the particle.

void F ina l i z eAna l y s i s (

const Array<Part ic leType>& array )

In the code listing, array refers to the final state of the particles that have been

advected.

Finally, users need to specify how to generate the output for the analysis.

void GetOutput ( DataSet& data )
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In the code listing, data refers to the data set that will contain the output of the

current analysis instance. Users will call this method once the entire algorithm has

finished execution.

On the execution side, however, users only need to specify what must be

done between two successive particle states.

void Analyze ( const Id index ,

const Pa r t i c l e& o ldPa r t i c l e ,

P a r t i c l e& newPart i c l e )

In the code listing, index marks the location of the particle relative to other

particles at the beginning of the analysis, oldParticle refers to the previous

state of the particle, and newParticle refers to the new state of the particle. The

‘Analyze’ method is called for the particle when it’s completed a new step.

5.3.2.5 Termination Criteria Abstraction. ‘Termination

Criteria’ abstraction allows users to specify conditions where particles should

stop advection, in other words, terminate. Based on the analysis needs, users

can also choose different termination criteria for particles, e.g., for generating

flow maps and streamlines, users may use duration as termination criteria. In

contrast, for generating Poincaré plots, users may use the number of punctures

as termination criteria. The implementation of the termination abstraction is quite

straightforward.

void CheckTermination ( Pa r t i c l e& p a r t i c l e )

In the code listing, particle represents the particle whose termination is being

queried based on the properties (time, position, etc.) set on it.

5.3.2.6 Solver Abstraction. ‘Solver’ abstraction allows users to

specify custom solvers for their analysis needs. Different scientific domains also
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require solvers with varying accuracy. E.g., in electromagnetic simulations, one

might use the Boris solver. In contrast, one might use the RK4 or similar higher-

order solver for aerodynamics. These solvers also present different performance-

accuracy trade-offs, since low-order, low-accuracy solvers also require fewer velocity

evaluations than higher-order evaluations. The solver has the responsibility to solve

for the particle’s velocity.

ErrorCode Solve ( const Pa r t i c l e& pa r t i c l e ,

const f loat& deltaT ,

Vec3f& v e l o c i t y )

In the code listing, particle refers to the particle being advected, deltaT refers to

the step length for the solver, and velocity is the solved velocity for the particle

with which it will be displaced.

Advection Filter Instantiation

Stepper

Particle
Container

Solver

Particles

Termination

Analysis

Data Container

Evaluator

Field

Figure 22. The organization of components using the abstractions discussed
earlier for a particle advection-based flow visualization filter. The outer blue box
represents a flow filter, and the small yellow boxes represent all the components
required by the filter. The orange boxes encapsulate the yellow boxes that represent
the components shared throughout the filter execution, while the yellow boxes
represent components related to the particles being advected at the moment.
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5.3.3 Organization and Interaction. Figure 22 describes the

organization of the components in a VTK-m filter instantiation. Based on the

user-provided inputs, the VTK-m system creates essential objects for the current

context of particle advection. “Particle Container” contains all the objects that

modify properties of the particle being advected. First, it stores all the particles

being advected as an array represented by “Particles.” Second, it guides the

lifecycle of all particles by querying the “Termination” object if a particle should

be terminated. Finally, it is responsible for feeding the old and current state of

the particles to the “Analysis” class so that the output for the algorithm can be

generated.

“Data Container” contains all the means to access the data required to

calculate the particle’s velocity. It maintains an object of the “Evaluator,” which

maintains all the necessary means to query the data arrays maintained in the

“Field.” For that, it builds the cell locator based on the coordinates and cells of

the current data and some other utilities to help interpolate quantities. “Stepper” is

the main driving class for the entire advection process and maintains the instance

of the “Solver.” It operates over each particle represented in the particle container

and advects it one step and a time.

5.3.4 Specifying a VTK-m Flow Filter. VTK-m achieves the

generality for flow visualization and analysis by the virtue of “trait-based template

programming.” Trait-based template programming allows for modification of the

behavior of the trait class based on specialization. The process involves specifying

the specialization of a “FlowTraits” class which contains the information of all

required realizations of abstractions for the filter being defined.

template <typename Derived>
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struct FlowTraits ;

Hence, writing new filters in VTK-m is as easy as writing a new FlowTraits class

for the filter. The trait class defines four things: a flow visualization filter depends

on the particle type, the termination criteria, the analysis performed, and the

type of vector field used. E.g., the streamline filter in VTK-m is implemented by

specifying the following trait class.

template<>

struct FlowTraits<Streamline>

{

using Part ic l eType = Pa r t i c l e ;

using Termination = NormalTermination ;

using Analys i s = Streaml ineAna lys i s ;

using Fie ld = Ve l o c i t yF i e l d ;

}

Here, the trait class is specialized for the “Streamline” filter, which uses a simple

particle and requires normal termination while it does the streamline analysis. The

process for simple streamline generation requires a simple velocity field. Section 5.4

describes these specializations for three scientific use cases.

5.4 Results

To demonstrate the efficacy of our system, we ran three campaigns and an

additional campaign to evaluate the system’s performance. The first two campaigns

were: the WarpX simulation code (Section 5.4.1) and the XGC simulation code

(Section 5.4.2). These two campaigns were selected for this study for two reasons.

First, they represent real-world exascale use cases with simulation code teams

that will run on the exascale computer when it comes online. Second, their

requirements have key differences compared to typical flow visualization, so
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their inclusion demonstrates the system’s flexibility. For the third campaign, we

designed a campaign to maximize diversity compared to the first two. Since the

first two were very non-traditional, the third campaign looked like a traditional

flow visualization use case (RK4 on a velocity field defined on a rectilinear grid). It

used the CloverLeaf simulation code and is described in Section 5.4.3. Finally, the

performance evaluation for the implemented system was performed against a widely

used tool for large-scale visualization, VisIt [40], and is discussed in Section 5.4.4

The options for each campaign can be found in Table 22.

Table 22. Abstractions and their realizations for the three scientific use cases
and the performance study considered to demonstrate the efficacy of the general
purpose particle advection system.

Abstraction
Realization

Streamlines Poincaré FTLE Performance study
for WarpX for XGC for CloverLeaf3D for CloverLeaf3D

ODE solver Euler Solver RK4 Solver RK4 Solver RK4 Solver
Field Electromagnetic Specialized Electromagnetic Velocity Velocity

Location Rectilinear Unstructured Structured Structured
Interpolation Trilinear Barycentric Trilinear Trilinear

Particles Charged w/ mass Massless Particle Massless Particle Massless Particle
Analysis Streamlines Poincaré FTLE Streamines

Termination Duration Number of Punctures Duration Duration
On Node Parallelism CUDA Kokkos + HIP OpenMP OpenMP

Distributed Parallelism over Data over Data over Data over Data

5.4.1 Streamlines for WarpX. Our first scientific use case focuses

on rendering streamlines for WarpX. WarpX is an advanced electromagnetic

Particle-In-Cell code and can be used in many domains of laser-plasma science,

plasma physics, accelerator physics, and beyond [129, 128]. The US DOE Exascale

Computing Project primarily funds it, and WarpX contributors are LBNL, LLNL,

CEA-LIDYL, SLAC, DESY, CERN, and Modern Electron. We acknowledge

all WarpX contributors. The data from WarpX was rectilinear, divided into 64

blocks of equal dimensions of 256 × 256 × 512. The experiments with WarpX

were conducted on the Crusher supercomputer hosted at the Oak Ridge National
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Laboratory, using AMD MI250X GPUs as accelerators. The experiments were

conducted using 8 nodes and 64 tasks, with each node running 8 tasks and each

task running on 1 GPU using Kokkos with the HIP backend. The abstractions that

were used for this use case are described in Table 22.

The following code listing shows the required specialization of the trait class

for specifying a filter that can generate streamlines for WarpX.

template<>

struct FlowTraits<WarpXStreamline>

{

using Part ic l eType = ChargedPart i c l e ;

using Termination = NormalTermination ;

using Analys i s = Streaml ineAna lys i s ;

using Fie ld = Elec t roMagnet i cF ie ld ;

}

Finally, Figure 23 presents visualizations of the streamlines generated for the

WarpX use case. The streamlines represent the movement of electrons in a laser

wakefield.

5.4.2 Poincaré for XGC. XGC is a gyrokinetic particle-in-cell

code that specializes in the simulation of the edge region of magnetically confined

thermonuclear fusion plasma [62, 63, 79]. The data from XGC was unstructured,

with a total of X triangular cells representing a slice of the tokamak. The

experiments with XGC were conducted on the Summit supercomputer hosted at

the Oak Ridge National Laboratory, using an Nvidia V100 GPU as an accelerator.

The experiments were conducted using 1 node and 1 task using the CUDA backend

for shared memory parallelism using GPUs. The abstractions that were used for

this use case are described in Table 22
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Figure 23. Streamline visualizations for WarpX data. The Y-component of the
electric field iso-surfaces colors the green blobs in the top subfigures. The bottom
subfigures plot the only streamlines, with the top-left being the initial location
of the electrons. A total of 50 streamlines, representing the trajectories of 50
electrons, are shown in the bottom subfigure.

The following code listing shows the required specialization of the trait class

for specifying a filter that can generate Poincaré plots for XGC.

template<>

struct FlowTraits<XGCPoincare>

{

using Part ic l eType = Pa r t i c l e ;

using Termination = PoincareTermination ;

using Analys i s = PoincareAna lys i s ;
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Figure 24. Poincaré (puncture) plots generated for the XGC app. This image
is courtesy of David Pugmire and contains additional post-processing after the
Poincaré punctures are generated.

using Fie ld = XGCField ;

}

Finally, Figure 24 presents the visualizations representing the Poincarë

plots for the XGC use case. The visualization represents the turbulent homoclinic

tangles.

5.4.3 FTLE for Cloverleaf. CloverLeaf is a mini-app that solves the

compressible Euler equations on a Cartesian grid using an explicit, second-order

accurate method. Each cell stores three values: energy, density, and pressure. The

data from CloverLeaf3D was structured with the dimensions 261 × 133 × 261. The

experiments with CloverLeaf3D were conducted on the Summit supercomputer

hosted at the Oak Ridge National Laboratory, using IBM Power9 multi-core CPUs.

The experiments user conducted using 1 nodes and 1 task using the OpenMP
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Figure 25. Iso-surfaces extracted using 5 different values of the FTLE field
generated using CloverLeaf3D’s velocity field.

backend for shared memory parallelism using multi-core CPUs. A total of 1

Million seeds, going for 100 seeds each, were used to generate the FTLE field. The

abstractions that were used for this use case are described in Table 22

The following code listing shows the required specialization of the trait class

for specifying a filter that can generate FTLE fields for a general case.

template<>

struct FlowTraits<FTLE>

{

using Part ic l eType = Pa r t i c l e ;

using Termination = NormalTermination ;

using Analys i s = FTLEAnalysis ;

using Fie ld = Ve l o c i t yF i e l d ;

}

Finally, Figure 25 presents the visualization of the iso-surfaces extracted

from the FTLE field generated using VTK-m. The contours represent the areas

that share similar convergence or divergence in the velocity field.
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5.4.4 Performance Evaluations using Cloverleaf. For the

performance tests with CloverLeaf, the original data was resampled into 27 blocks

of rectilinear data with with the dimensions 384× 384× 384. The experiments with

CloverLeaf3D were conducted on the Summit supercomputer hosted at the Oak

Ridge National Laboratory, using IBM Power9 multi-core CPUs, using 27 nodes,

with each task using a maximum of 42 CPU cores. A total of 4 experiments with

a varying number of seeds were considered to compare the VTK-m implementation

against VisIt. The abstractions that were used for this use case are described in

Table 22

The following code listing shows the required specialization of the trait class

for specifying a filter that can generate FTLE fields for a general case.

template<>

struct FlowTraits<FTLE>

{

using Part ic l eType = Pa r t i c l e ;

using Termination = NormalTermination ;

using Analys i s = Streaml ineAna lys i s ;

using Fie ld = Ve l o c i t yF i e l d ;

}

Figure 26 presents the visualization of streamlines obtained from the

CloverLeaf simulation for reference.

Table 23 presents the results of our performance experiments with our

system and VisIt. The results show that VTK-m is able to outperform Visit

in the case of generating streamlines even when run in serial mode. VisIt is a

fully featured visualization tool, and we believe it incurs a performance penalty

in the way it treats data to make consequent operations (like rendering) more
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Figure 26. Streamlines generated using the CloverLeaf data using 100 seeds being
advected for 10000 steps each.

Table 23. Comparison of performance against VisIt for large-scale experiments
of streamline visualizations using CloverLeaf data. The number in parenthesis
following VTK-m represents the number of CPU threads used by VTK-m. All
timing are measured in seconds.

# of VisIt VTK-m VTK-m VTK-m (1) VTK-m (42) Avg. Seeds/
Particles (1) (42) vs. VisIt vs. VisIt Proc

100 0.42 0.09 0.08 4.50 4.95 3
500 1.20 0.52 0.35 2.29 3.35 18
1000 2.25 1.24 0.86 1.81 2.60 37
5000 10.55 6.37 3.94 1.65 2.67 185

convenient. These penalties are significant when the amount of computation is

low. Hence, even in serial execution, VTK-m performs 4.5X faster when generating

100 streamlines, but the advantage is reduced to 1.65X when generating 5000

streamlines. While using parallel execution, VTK-m can afford better performance,

but not in proportion to the 42 CPU cores used by the OpenMP backend. This
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is because the number of particles per task is very low to mitigate the overhead

incurred by OpenMP in managing work in concurrent threads. On average, the

smallest workload had only 3 particles per task, and the largest workload had only

185 particles. More work is needed to make efficient use of available parallelism.

We planned on performing more experiments with a larger number of particles but

were limited by the availability of the cluster (Summit) used for the experiments at

this time. We reserve a thorough performance evaluation for the future.

5.5 Conclusion

This chapter is both short in length and the culmination of the dissertation.

It is short since it benefits from the works before it, in particular the identification

of abstractions in Chapter 2 and the data-parallel approach in Chapter 3. The use

of template meta-programming and traits for specialization allowed us to combine

our abstractions on GPUs, which was necessary for our goal of achieving an

exascale capability. Finally, we believe the demonstrations with XGC and WarpX

are noteworthy — these are important simulation codes for the US Department of

Energy’s Exascale Computing Program and will be among the first to run on the

exascale machine when it comes online. Further, they represent exactly the sort of

diversity that has led to bespoke solutions in the past, and we were pleased that

our system could accommodate them. This work does suggest future work; this is

discussed in the final chapter.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

I was the primary author for this chapter, and Hank Childs provided

editorial suggestions.

The scientific community is at the gates of the exascale. The availability of

such powerful supercomputers is going to make it easier to tackle larger scientific

problems, but while doing so, will also create new challenges in terms of processing

and interpreting these results. Simulation codes will be able to generate data at

much faster rates and much higher volumes than the ability to store the data to

disk, hence, requiring scientists and developer to research ways to analyze and

reduce data as it is being generated, a process referred to as “in situ analysis.”

In situ analysis requires the data analysis and data reduction algorithms to run

besides the simulation code and hence need to be efficient so that they do not

encumber the simulation time and resources. Hence, understanding the nature and

performance characteristics of the analysis algorithms becomes critically important.

This dissertation focused on analysis algorithms that are often used to

analyze data from fluid simulations. In particular, it focused on algorithms that use

“particle advection,” to drive flow visualization and analysis. The question posed

for this dissertation study was: “What flow visualization system designs will enable

both efficiency on exascale systems and be capable of supporting diverse analysis

needs?” The question was further broken down into two different objectives:

– What methods and approaches will enable efficient performance on exascale

machines?

– What system design can both address diverse analysis needs while also

delivering performance on exascale machines?
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This chapter describes the takeaways from this dissertation in context of the

two question. First, 6.1 describes takeaways from our efforts to answer the first

question. Second, 6.2 described takeaways from our efforts to answer the second

question.

6.1 Efficient Approaches for Particle Advection

This section answers the question "What methods and approaches will

enable efficient performance on exascale machines?" The research conducted

towards this question was presented in Chapters II, III, and IV, each of which

covered the problem of particle advection from different perspectives.

First, Chapter II surveyed the field of flow visualization works that used

particle advection and studies the different kinds of optimizations to improve

the efficiency of the algorithms. These optimizations were separated into two

parts: “Algorithmic,” which covered the optimizations that are possible for the

individual components involved in calculating the particle’s next position, and

“Hardware Efficiency,” which covered using different types of shared and distributed

memory parallelisms. This was a first-of-a-kind survey to document all possible

optimizations and to establish the expected range of benefits by incorporating each

of these optimizations. This chapter also introduced a novel analytical cost model

for particle advection workloads and tried to validate it using empirical results.

The objective of the cost model was to equip users with a workflow for choosing

optimizations based on their budget for executing the workload.

Second, Chapter III introduced a particle advection framework that uses

“Data Parallel Primitives (DPPs),” through the VTK-m library to make the

framework portable. Using DPPs allows the algorithm to execute efficiently on a

wide variety of shared memory parallel environments. The VTK-m implementation
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demonstrated efficient execution and good scalability, while outperforming the

hand tuned reference implementations in most experiments. Overall this chapter

helped in establishing the efficacy of the proposed platform portable design for

particle advection, which was further improved to support additional types of flow

visualizations and analysis.

Finally, Chapter IV considered multiple variables: the number of particles,

the duration of advection, the algorithm (advection or streamline), the execution

device (4 CPUs or 4 GPUs), and memory transfers for GPUs (with and without)

to analyze which factors dominate the performance of particle advection workloads.

The study also studied the impact of the dataset on the performance of particle

advection. The findings from this chapter enable users to make better decisions

about executing their workloads on a system where parallelism is available. In

particular, the findings suggest GPUs are often poor means of parallelism when

memory needs to be transferred back and forth between the CPU and the GPU

and when there’s not enough work to be done to offset these memory costs. This

already narrows the usability of GPUs for particle advection to workloads which

have a large number of particles, however, at such high workloads the limited

dedicated memory with the GPU becomes restrictive.

In all, the contributions from Chapter II provide a high-level understanding

of costs for various approaches. That said, this understanding does provide

sufficient insight into the issue of parallelization, which is critical for exascale

machines. Chapter III then provided the “how” for algorithmic design, namely

to use data-parallel primitives to achieve portable performance. Finally, Chapter

IV informed the specific outcomes for different hardware and workloads,

complementing the missing information from Chapter 2 to inform the overall space.
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6.1.1 Future Work. The work discussed in each of the above

mentioned Chapters also identifies scope for more research for the future.

Chapter II introduced the an analytical cost model, however, the cost model

was not used to make predictions about the performance of real world applications.

The empirical validation performed was also very trivial. As future work, this cost

model can be improved to be a hybrid approach, combining the analytical and

empirical approaches of cost modeling to better predict the execution times of a

flow visualization algorithm. The evaluation also focused on particle tracing alone,

and can be extended to reasoning about the performance of additional use cases,

e.g. streamlines, Poincaré analysis, etc.

Both, Chapter III and IV focus on using VTK-m to evaluate the efficacy of

using DDPs and to identify the dominant factors for particle advection performance

respectively. These studies can be further improved by considering the “roofline

model,” to measure the achieved performance or efficiency by the algorithms.

The roofline model can help establish a range of efficiency for the VTK-m

implementation of particle advection, and also can be a quantitative measure for

the dominant factors of particle advection.

Finally, Chapter IV makes interesting observations about the performance of

particle advection on GPUs and multi-core CPUs, in turn establishing when each

of these execution devices are helpful over the other. The behaviors observed were

consistent on multiple generations of CPUs and CPUs. Using these observations,

it is possible to design a system of particle advection that is able to make runtime

decisions about which execution device to choose, also termed as “device targeting.”

Such a system will be very helpful in large scale experiments involving distributed
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memory parallelism, where GPUs do not consistently have enough work and using

them might affect performance in a negative way.

6.2 Achieving Generality for Flow Visualization

The demonstrations from Chapter 5 show a system design for achieving

generality and still maintaining performance. A key approach was embracing

template metaprogramming with specialization through traits. It is my belief that

this system is without comparator. The only close comparator is the one in VisIt,

but its infrastructure cannot support accelerators for GPUs. Further, the WarpX

and XGC campaigns show this code can handle a diversity beyond any previous

system — another differentiating point from VisIt.

Going forward, there are several more concrete types that would make the

system more useful. More of the distributed-memory parallelism techniques from

Binyahib should be added, creating more opportunities. That said, this library

will primarily be used for in situ processing, making the existing parallelize-over-

data far and away the most useful (since it does not require moving data). Further,

additional useful vortex and feature detection analysis like Q-Criterion, additional

higher order solvers like Dormand Prince and Adams Bashforth, will make the

system desirable to an even broader scientific community.

158



APPENDIX A

COST MODEL VALIDATION

Chapter II introduced a nascent cost model for particle advection, however,

it did not demonstrate its usefulness in determining the execution times for a

particle advection workload. The ability to determine the execution times for a

workload will enable the realization of the optimization workflow presented in the

conclusion of this chapter. To that end, this appendix evaluates our cost model for

particle advection performance in three parts. First, it considers the actual costs for

terms in the cost model, measured in floating point operations. Second, it considers

a notional example of how the cost model can be used to predict the number of

floating point operations. Finally, it provides an evaluation of the cost model’s

accuracy on various workloads, and also provides an approach for converting the

output of the cost model to execution time.

A.1 Evaluating Cost Model Terms in Floating-Point Operations

Equation 2.6 does not specify the unit of measurement for each term and

for the overall cost. While time would be a common choice, we choose our unit of

measurement to be number of floating-point operations. We make this choice since

floating-point operations are consistent over architecture and caching effects, and,

further, are easy to quantify (either by studying code or through profilers). Finally,

looking ahead to validation, counting floating-point operations does track closely

with actual execution.

Table A.1 presents the floating-point costs for the terms in Equation 2.6 for

a variety of instantiations: RK4 and Euler solvers and three commonly used types

of meshes. The terms is this table were determined by studying code and counting

floating-point operations. As noted in the table caption, some operations vary
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Table A.1. Analytical cost calculation for particle advection. The costs in
the table are by reference of a 503 grid. Hence, for the next two equations,
d = 50. Rectilinear location costs : 3 × log(d). Unstructured location costs :
log(d3) times10 + 748. The costs for unstructured grid are highlighted in red as
these are estimates based on a tree structure. This study assumes 10 FLOPs for
checking each level of the tree. An additional 748 FLOPs are required to check if
the point indeed belongs inside the identified containing cell which is estimated
using the Newton’s method. Each iteration of the Newton’s method requires 374
FLOPs (code reviewed from VisIt), and based on our experimental validation each
check required 2 iterations to converge.

Solver Data set solve locate interp terminate Total
type

Euler Uniform 6 15 15 5 41
Rectilinear 6 17 15 5 43

Unstructured 6 918 35 5 964
RK4 Uniform 37 15 15 5 162

Rectilinear 37 17 15 5 170
Unstructured 37 918 35 5 3854

based on mesh size and the table entries correspond to a typical size. Finally, cell

location with unstructured meshes incorporate Newton’s method, and we performed

experiments to find the average number of iterations to converge (2 iterations).

A.2 Notional Usage of the Cost Model

This section demonstrates cost estimation for a hypothetical workload based

on Equation 2.6 and Table A.1. The hypothetical workloads consists of a flow

visualization algorithm advancing a million particles in a 3D uniform grid for a

maximum of 1000 steps using a RK4 solver. Then, the cost of each component can

be estimated as follows:

Locate: The locate operation in a uniform grid uses 15 FLOP to find the cell

and the particle’s location within the cell for interpolation.
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Figure A.1. Comparing analytical cost and actual execution cost for particle
advection. The first four columns describe the workload. The X axis represents
the estimated number of FLOPS for a workload using information from Table A.1
and our cost formula (Equation 2.6). The Y axis represents the execution time of
running this workload on a single core using VTK-m. All experimental points being
collinear would build confidence that an analytic approach can be used to estimate
runtimes.

Interpolate: The interpolate operation in a uniform grid requires trilinear

interpolation which uses 15 FLOP to evaluate the velocity at the given

location.

Solve: The solve operation for the RK4 integration scheme uses 37 FLOP to

calculate the determine the next position of the particle.

Analyze: The cost of analysis of the step varies based on the visualization

technique being used. In case only deals with advancing particles and hence

the analysis cost is 0.

Terminate: The terminate operation requires 5 FLOP to determine if the

particle is outside the spatio-temporal bounds or if the particles completes the

maximum number of steps.
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These costs can be substituted in Equation 2.6 to get the final cost of a single step

of a particle in the presented situation.

Cost =
i=1M∑
i=0

j=1000∑
j=0

(
37 +

k=4∑
k=0

(
15 + 15

)
+ 0 + 5

)
=

i=1M∑
i=0

j=1000∑
j=0

(
37 + 120 + 0 + 5

)
=

i=1M∑
i=0

j=1000∑
j=0

162

=
i=1M∑
i=0

162, 000

= 162, 000, 000, 000 FLOP

(A.1)

A.3 Empirical Validation

This section performs experimental validation of our cost model

(Equation 2.6) incorporating our measurements for the number of floating-point

operations per term (Table A.1). It presents a set of experiments performed where

the calculated cost is translated into an execution time for a workload and them

compared against its actual execution time. These experiments were performed

on an Intel Xeon E5-1650 CPU with a clock rate of 3.80 GHz using a particle

advection implementation from the VTK-m visualization library [95] with a single

CPU core. The data used for the experiments was of the resolution 50 × 50 × 50,

which matches the assumptions in Table A.1.

The results of the experiments are presented in Figure A.1. This figure

shows a very strong fit between the predicted cost in FLOPS and the actual

execution time; statistical analysis shows a correlation coefficient of X , and a best
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fit line of Y=mx+b. In effect, the best fit line provides the actual time prediction.

For example, a workload with 108 FLOPS would take m× 108 + b seconds.

In the context of our workflow, a visualization application developer

may choose to do more work. First, they could run several experiments on their

intended architecture to calculate their own best fit line. Second, they could

recalculate Table A.1 using their own implementation and/or anticipated data sizes.

That said, performing such additional work is likely unnecessary. Our model and

workflow are intended to infer coarse trends, and repeating our analysis with new

implementations, architectures, or data sets would likely not yield a significantly

different cost model.
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APPENDIX B

GPU AND CPU PERFORMANCE ON DIFFERENT DATA SETS

Chapter IV evaluated the impact of data sets on the performance of particle

advection. This appendix provided additional analysis to understand this impact

better by expanding the data summarized in Table 20 and 21. Section B.2 presents

the impact of data sets for the CPUs, and Section B.2 presents the impact of data

sets for the GPUs.

B.1 CPU Performance on Different Data Sets

Figure B.1 helps understand the outcomes for the different data sets

against the “Zero” dataset in two ways. First, it considers the performance without

terminating the particles (glyphs represented in green) to uncover the impact of

caching and memory accesses involved in particle advection. For almost all CPUs

and data sets, these experiments performed very close to the ideal case, implying

that the impact of caching and memory accesses on CPUs for particle advection is

minimal. Second, it considers the performance of terminating the particles normally

(glyphs represented in oranges) to uncover the impact of divergence in work for

different particles. Again, the experiments performed very close to the ideal case

for almost all CPUs data sets, implying that the impact of divergence on CPUs

for particle advection is minimal. The anomaly to both these observations was

the Fishtank data set, which shows the effects of both poor caching and more

divergence. Although Figure 20 demonstrates that while not terminating particles

for the Fishtank data set leads to more cache-friendly steps (zero velocity), the

particles subjected to this data set also suffer a high variance in the amount of

duration contributing to real steps. These variances are the primary reason for this

anomaly.

164



W
1

W
2

W
3

W
4

W
5

W
6

alaska fusion

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

voltar fusion

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

summit fusion

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

saturn fusion

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

alaska astro

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

voltar astro

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

summit astro

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

saturn astro

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

alaska fishtank

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

voltar fishtank

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

summit fishtank

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

saturn fishtank

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

alaska noise

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

voltar noise

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

summit noise

2 -2

2 -1

2 0

2 1

2 2

W
1

W
2

W
3

W
4

W
5

W
6

saturn noise

2 -2

2 -1

2 0

2 1

2 2

Large
Medium
Small

0.0 0.5 1.0

Real Steps / Workload

Figure B.1. Comparison of CPU performance for different data sets. The Y-axis
represents the ratio of time taken per step against the ideal case (equivalent
experiment executed on the “Zero” data set), while the X-axis represents the
workload. The different glyphs represent the seeding volume of the experiment.
The green dots represent experiments where particles are not terminated at all.
In contrast, the orange dots represent experiments where particles are terminated
whenever they encounter zero-velocity regions or encounter spatial boundaries.
Here a higher Y axis represents the experiment was y times slower than the ideal
case.

B.2 GPU Performance on Different Data Sets

Figure B.2 presents a similar analysis as Section , but for GPUs. However,

in contrast to CPUs, GPUs performance is impacted significantly due to caching

and divergence. Across all the data sets, the two newer GPUs (GPU3 and GPU4)

performed poorly in experiments studying caching (green glyphs). In other words,

the newer GPUs can offer much better performance when memory accesses for
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Figure B.2. Comparison of GPU performance for different data sets. The Y-
axis represents the ratio of time taken per step against the ideal case (equivalent
experiment executed on the “Zero” data set), while the X-axis represents the
workload. The different glyphs represent the seeding volume of the experiment.
The green dots represent experiments where particles are not terminated at all.
In contrast, the orange dots represent experiments where particles are terminated
whenever they encounter zero-velocity regions or encounter spatial boundaries.
Here a higher Y axis represents the experiment was y times slower than the ideal
case.

an application are cache friendly. Particle advection involves random memory

accesses, which hurts GPU performance. Further, the performance of a particle

advection for a data set is tied to the amount of real work that the algorithm

performs proportional to the workload (orange glyphs). For the case of divergence,

the takeaway is that a low amount of real work relative to the workload results in

poorer performance against the ideal case.
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