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Range expansions are common in natural populations. They can take such forms as an invasive
species spreading into a new habitat or a virus spreading from host to host during a pandemic. When
the expanding species is capable of dispersing offspring over long distances, population growth is
driven by rare but consequential long-range dispersal events that seed satellite colonies far from the
densely occupied core of the population. These satellites accelerate growth by accessing unoccupied
territory, and also act as reservoirs for maintaining neutral genetic variation present in the originating
population, which would ordinarily be lost to drift. Prior theoretical studies of dispersal-driven
expansions have shown that the sequential establishment of satellites causes initial genetic diversity
to be either lost or maintained to a level determined by the breadth of the distribution of dispersal
distances. If the tail of the distribution falls off faster than a critical threshold, diversity is steadily
eroded over time; by contrast, broader distributions with a slower falloff allow some initial diversity
to be maintained for arbitrarily long times. However, these studies used lattice-based models and
assumed an instantaneous saturation of the local carrying capacity after the arrival of a founder.
Real-world populations expand in continuous space with complex local dynamics, which potentially
allow multiple pioneers to arrive and establish within the same local region. Here, we evaluate the
impact of local dynamics on the population growth and the evolution of neutral diversity using a
computational model of range expansions with long-range dispersal in continuous space, with explicit
local dynamics that can be controlled by altering the mix of local and long-range dispersal events.
We found that many qualitative features of population growth and neutral genetic diversity observed
in lattice-based models are preserved under more complex local dynamics, but quantitative aspects
such as the rate of population growth, the level of maintained diversity, and the rate of decay of
diversity all depend strongly on the local dynamics. Besides identifying situations in which modeling
the explicit local population dynamics becomes necessary to understand the population structure
of jump-driven range expansions, our results show that local dynamics affects different features of
the population in distinct ways, and can be more or less consequential depending on the degree and
form of long-range dispersal as well as the scale at which the population structure is measured.

I. INTRODUCTION5

Range expansion—the act of a population expanding6

into new territory—is common in biological populations.7

Range expansions occur naturally and randomly all the8

time, often as the result of a species’ natural movement,9

such as by animals moving into new territory or maple10

helicopters carrying seeds away from their parent tree.11

Researchers have documented range expansions in a wide12

variety of organisms, such as plants [1], birds [2], sea13

creatures [3, 4], and terrestrial animals [5, 6], even hu-14

mans [7]. Range expansions are increasingly forced by15

global warming as the changing climate makes traditional16

habitats inhospitable, while potentially opening up new17

hospitable regions [8].18

Range expansions leave distinctive signatures in the19

patterns of genetic diversity of a population that can20

mimic the effects of natural selection [9]. Individuals21

at the frontier of an expanding population make a large22

contribution to the subsequent expansion wave, even if23

their frontier position was solely due to chance; as a re-24

sult, genetic variants they carry can acquire high fre-25
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quencies in the population in a phenomenon termed gene26

surfing [10, 11]. Independent surfing events in separate27

sections of the expansion front cause the population to28

segregate into genetically distinct sectors, promoting an29

illusion of local adaptation from purely neutral muta-30

tions [12–15]. Modeling the combined effect of spatial31

structure and stochasticity on neutral genetic diversity32

is key to understanding the biological origins of estab-33

lished genetic patterns, and to the successful prediction34

of future genetic diversity in pandemics and ecological35

expansions.36

The influence of random chance on genetic diversity37

during range expansions can be amplified by long-range38

dispersal [16]. Many species have evolved ingenious ways39

of dispersing offspring over long distances with help from40

natural forces and from other organisms [17]. Plants rely41

on the dispersal of seeds and pollen by wind, waves, and42

animals [18]. Glacier ice worms can travel hundreds of43

miles, likely carried by migratory birds [19]. Modern pan-44

demics are driven by microorganisms hitchhiking on air45

travelers to find new uninfected populations [20]. Even46

if long-range dispersal events are rare, they have an out-47

sized influence on the expansion because they enable pi-48

oneers to seed satellite colonies in uninhabited areas. If49

a pioneer happens to land in a place with abundant re-50

sources and little to no competition, its descendants may51

flourish. The pioneer’s genes will then propagate and any52
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genetic variants they carry will reach high frequencies in53

the vicinity of the satellite [21–25] even in the absence of54

a selective advantage; random chance alone has caused55

the pioneer’s genes to become prominent by means of a56

founder effect, leading to a suppression of local diversity57

within satellites. However, long-range dispersal also fa-58

vors neutral diversity at larger scales, by ensuring that59

individuals well within the expanding population have a60

chance of contributing to growth. The evolution of over-61

all diversity during the range expansion is governed by62

the trade-off between the two effects, and can depend sen-63

sitively on the degree of long-range dispersal experienced64

by the population [26, 27].65

Modeling the general characteristics of range expan-66

sions requires two minimal ingredients: a probability dis-67

tribution of dispersal distances J(r), also called the jump68

kernel, from which dispersal events are randomly drawn;69

and a method of local density regulation to model the70

existence of a finite carrying capacity. When long-range71

jumps are present, the tail of the jump kernel, i.e. its72

behavior at long distances, critically influences the fate73

of the population at long times. Fundamental differences74

from short-range dispersal are observed when the jump75

kernel is “fat-tailed”; i.e. it decays slower than exponen-76

tially with increasing distance. Fat-tailed jump kernels77

lead to expansions that accelerate as they progress, unlike78

the constant-speed expansions that occur when dispersal79

is exclusively short-range [28].80

A commonly used fat-tailed kernel is the power-law81

jump kernel J(r) ∼ 1/rµ+1. Besides providing a good82

description of the dispersal behavior of many species [29],83

power-law kernels are a useful tool for analyzing and clas-84

sifying the breadth of potential population outcomes due85

to long-range dispersal [16]. The exponent µ is a key fac-86

tor governing the long-time characteristics of the growth87

and the dispersal patterns, whereas other details of J(r)88

such as its short-distance functional behavior are less rel-89

evant [16]. A broad range of expansion behaviors is en-90

compassed by varying the kernel exponent (limited to91

µ > 0 to ensure a normalizable distance distribution).92

At high µ, the jump kernel decays quickly with increas-93

ing distance, and a colony expands at a constant rate as94

if there were exclusively short-range dispersal. As µ → 0,95

spatial structure becomes irrelevant and a colony grows96

as if it were in a well-mixed liquid environment. The97

intermediate range of kernel values connects these two98

extremes in a tunable manner.99

Recent work has catalogued the distinctive features100

of population growth dynamics [16] and spatial genomic101

patterns [27] that can be achieved upon varying the ker-102

nel exponent in range expansions driven by power-law103

growth kernels (a detailed summary is provided in Sec-104

tion II). These studies have identified a critical value105

of the kernel exponent µ below which the population106

grows nearly as fast as a well-mixed population, and a107

significant fraction of the neutral variation in the orig-108

inating population is preserved for arbitrary long times109

due to serial reintroduction of variants from the core of110

the expanding population. For kernel exponents close111

to but above the critical threshold, population growth112

is slowed down dramatically and neutral diversity is113

steadily eroded. However, at even higher values of µ, the114

behavior approaches that of short-ranged jump kernels,115

where the population advances as a front moving outward116

at constant speed. In this situation, a small fraction of117

the diversity in the originating population persists due118

to the formation of sectors [12, 30].119

Less well understood is the influence of the second key120

feature of spatial population models: the density regula-121

tion mechanism. Modeling growing populations in a spa-122

tial continuum presents challenges to both the forward-123

in-time [31] and backward-in-time [32, 33] approaches,124

due to the necessity of systematically imposing a local re-125

gion of influence within which each individual can impact126

the growth of its neighbors. Local density regulation is127

commonly implemented by dividing up space into a regu-128

lar grid of well-mixed subpopulations called demes, each129

of which has a fixed carrying capacity. Migration events,130

drawn from the jump kernel, transport individuals across131

demes. Deme-based models and their variants are widely132

used in population genetics [34], including for the study133

of range expansions [9, 30]. However, models that rely134

on a lattice of demes have their limitations. By design,135

they do not capture spatial structure and stochasticity136

at scales smaller than the effective deme size. Impos-137

ing an artificial grid of demes also introduces artifacts138

to the population structure, which can in some instances139

get worse upon increasing the grid resolution to better140

approximate a continuum [35].141

Additionally, using deme-based models forces re-142

searchers to make decisions about the specifics of deme143

saturation and population management. The follow-144

ing selection of recent work exemplifies various possible145

strategies. Some may choose to have demes that instan-146

taneously change from being empty to full upon the ar-147

rival of the first migrant [16, 27], while others may let148

the deme population grow logistically at a predetermined149

rate [36, 37] or let the growth be determined by random150

migration events that bring in individuals from other151

demes [38]. Death can occur in various ways, such as by152

attempting to disperse into an already full deme [16, 27]153

or by being randomly resampled out of an overfull deme’s154

population [38]. If the density regulation unit is the deme155

population as a whole rather than the individuals in the156

deme, death may not explicitly occur to any individuals,157

but the deme population size changes from one time step158

to the next [36, 37]. Since most computational studies159

involving long-range dispersal, including the quoted prior160

results [16, 21–25, 27, 36, 37, 39], have relied on deme-161

based approximations, the applicability of their conclu-162

sions to continuum-space population growth remains an163

open question.164

The aforementioned results on the population dynam-165

ics and neutral evolution of range expansions driven by166

power-law kernels [16, 27] were derived using a lattice of167

demes with an additional simplifying assumption: upon168
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arrival at an empty deme, the pioneer immediately sat-169

urates the deme, excluding any other migrants from es-170

tablishing themselves. Not only does this assumption ex-171

clude any effects of local dynamics on population growth,172

it also enforces a local founder takes all effect where173

only one migrant is allowed to contribute to the genetic174

makeup of a density regulation region. Instant local sat-175

uration is justified when long-range jumps are rare and176

most offspring land within a short distance of their par-177

ents; then, the local logistic growth within a deme oc-178

curs extremely fast compared to the typical time to ar-179

rival of another migrant from a different deme, and can180

be treated as instantaneous. However, the instant satu-181

ration and founder-takes-all assumptions can be invalid182

when the time scales of local and long-range dispersal183

are comparable, in which case a local region might receive184

and send out several migrants while it is being saturated.185

The influence of the breakdown of fast local saturation on186

the population dynamics and the spatial genomic struc-187

tures left behind by long-range dispersal is unknown.188

In this work, we address these gaps in our knowledge189

of range expansions driven by long-range dispersal by190

performing and analyzing continuum space, individual-191

based simulations of range expansions driven by power-192

law kernels. Our simulations were implemented in the193

population genetics program SLiM [40], and do not use194

a grid of demes or assume instant saturation of the local195

carrying capacity by the first arrival. Instead, individ-196

uals occupy positions in continuum space and their sur-197

vival depends on the number of other individuals present198

within a defined region of influence at the time of their199

birth. When possible, we compared the outputs to the200

predictions from models based on lattices of demes of201

the population growth rate [16] and the evolution of neu-202

tral genetic diversity [27]—we term these prior models203

“lattice-based” predictions. We found that our results204

often agreed with the lattice-based predictions, giving205

conditional support to prior results based on models that206

only focus on the founders. However, when individuals207

can share resources with many others, we found that fo-208

cusing exclusively on the founders misses important dy-209

namics between coexisting or competing alleles. In those210

cases, it becomes necessary to also consider individu-211

als who arrive after the pioneer. We identify parameter212

regimes where using the lattice-based models is justified,213

and show that they depend on the specific kernel expo-214

nent.215

II. BACKGROUND216

We first summarize prior results [16, 27] on range217

expansion dynamics for populations experiencing long-218

range dispersal with fat-tailed kernels, which were ob-219

tained using lattice models conforming to the founder-220

takes-all assumption at the deme level. Ref. 16 used221

a lattice model to quantify how a colony expands into222

unoccupied space when offspring are dispersed accord-223

ing to a power law jump kernel that decays according224

to J(r) ∼ 1/rµ+1. The authors showed that the power-225

law tail captures the qualitative features of the long-term226

population growth, and that the short-range behavior of227

the jump kernel has a negligible impact on the long term228

population growth. The model of Ref. 16 (hereafter “the229

lattice model”) divides d-dimensional space into a lattice230

of habitats or “demes”. Occupied demes generate off-231

spring according to a Poisson process; offspring attempt232

to migrate to a new deme randomly chosen by drawing233

a dispersal distance from J(r) and a random direction234

relative to the originating deme. Instant local satura-235

tion is assumed and is enforced in the model by allowing236

only two states to each deme: occupied, or empty. A237

migration attempt to an empty deme is successful, and238

immediately turns the state of that deme to occupied.239

A migration attempt to an occupied deme is unsuccess-240

ful, and the offspring dies. These assumptions guarantee241

a founder-takes-all effect at the local level. Henceforth,242

when we refer to the lattice model, it is implied that243

instant local saturation and local founder-takes-all are244

enforced. Much of our current understanding of jump-245

driven range expansions derives from the lattice model,246

as summarized below.247

A. Population growth and time-doubling hierarchy248

Analysis of the lattice model [16] showed that at all249

times t, a core region of the colony can be identified that250

is centered at the originating population of the range ex-251

pansion and within which most demes are occupied. The252

size of this core region is proportional to the total pop-253

ulation size M(t) of occupied demes in the expansion.254

The long-time asymptotic behavior of the radius of the255

core region ℓ(t) ∝ [M(t)]1/d depends on the “heaviness”256

of the tail of the jump kernel, which is set by the kernel257

exponent µ. There are two distinct growth possibilities,258

separated by the value µ = d + 1: the colony expands259

at a constant rate for µ > d + 1 and it expands faster260

than linearly when µ < d+1 [16]. The faster-than-linear261

growth regime is driven by long jumps whose character-262

istic size continues to increase as the core expands: this263

“jump-driven” growth regime, in which pioneers have a264

large impact on growth, will be the focus of this pa-265

per. Within the jump-driven regime, a second special266

value µ = d separates two distinct asymptotic behav-267

iors of the core growth at long times (t → ∞): when268

d < µ < d+ 1, the core grows asymptotically as a power269

law which is faster-than-linear in time (ℓ(t) ∝ t
1

µ−d ), in270

contrast to stretched-exponential growth when µ < d271

(ℓ(t) ∝ exp(Bµt
η), where Bµ and η themselves depend272

on µ and d).273

A key result of Ref. 16 was that expansions in the274

jump-driven regime are governed by a hierarchical time-275

doubling structure, as depicted in Fig. 1. The core of276

the colony expands by “absorbing” satellite colonies that277

were seeded at an earlier time by a rare but consequen-278
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FIG. 1. Schematic diagram of the time doubling hierarchy
discovered by Ref. 16. Shaded parts of the plot represent
regions of space that are occupied at a given time. The core
of the colony (central funnel) grows by absorbing satellites
that were seeded at an earlier time by long-range dispersal.
A typical satellite being absorbed into the core at time T
(smaller funnel at right) was seeded at time of order T/2 by
an offspring who dispersed a distance of roughly ℓ(T ) from
its parent in the core of the colony; it has grown to a size of
order ℓ(T/2) when it merges with, and becomes part of, the
core.

tial long jump. A typical satellite being absorbed into the279

core at time t was seeded approximately at time t/2 by280

an offspring who dispersed roughly a distance ℓ(t) from281

its parent in the core of the colony. Mathematically, this282

self-consistency condition can be expressed as283

ℓ(t)d+µ ∼ tℓ(t/2)2d, (1)

where the tilde signifies agreement of the leading func-284

tional dependence of either side of the relation on the285

time variable, without including time-independent pref-286

actors or terms whose fractional contributions vanish at287

long times. The time-doubling hierarchy and Eq. (1)288

form the basis for deriving the asymptotic functional289

forms of ℓ(t) summarized above; unlike those asymptotic290

forms that are valid only at very long times t → ∞, the291

self-consistency condition holds as long as the population292

is large enough that an appreciable number of long-range293

jumps have occurred [16]. Equation (1) forms a basis for294

more accurate functional forms of the outbreak growth295

dynamics [16], and also leads to quantitative insights into296

the evolution of genetic diversity when multiple variants297

are present in a population experiencing long-range dis-298

persal [27, 39]. Note that the time-doubling hierarchy299

only relies on the assumption of instant local saturation,300

and does not require that space be discretized into a reg-301

ular lattice of demes.302

B. Persistence of initial neutral variation303

A striking consequence of range expansions is that the304

combination of stochasticity and spatial structure can305

leave behind patterns of neutral genetic variation that are306

typically associated with selection, such as sweep-like en-307

richment of individual alleles [10], diversity gradients [11],308

and segregation of variants into distinct regions [12].309

Simplified models of neutral evolution in spatially struc-310

tured populations enable us to understand such patterns311

and to distinguish them from the outcomes of selective312

events. One aspect of neutral variation that is closely313

tied to the mode of dispersal is the persistence of initial314

genetic diversity in the originating population during its315

expansion into new territory [21, 26]. When dispersal is316

exclusively short-ranged, only individuals near the edge317

of the range expansion contribute to future variation; in318

the absence of new mutations, much of the initial di-319

versity can be lost over time due to successive founder320

events at the edge. Long-range dispersal enables regions321

far within the population to contribute to the expansion,322

which maintains their alleles in the growing population323

and favors diversity. However, founder effects are not324

eliminated: each long-range jump seeds a satellite out-325

break in which all offspring share the allelic identity of326

the seeding pioneer, acting as a genetic bottleneck which327

eliminates diversity locally in the absence of mutations.328

The fate of the initial neutral variation as the expansion329

progresses is determined by the balance between these330

contrasting effects.331

The evolution of initial neutral diversity in jump-332

driven range expansions was analyzed in Ref. 27, us-333

ing a lattice model in which neutral variation was intro-334

duced in the starting population, and no new mutations335

appeared during the expansions. The existence of the336

time-doubling hierarchy, Eq. (1), was used to identify an337

effective population of homogeneous satellites whose evo-338

lution captures the balance between diversification and339

coarsening for a given jump kernel exponent. As with the340

behavior of the core radius growth, the amount of initial341

diversity preserved after a range expansion was shown to342

suffer different fates depending on the value of the kernel343

exponent relative to the spatial dimension. When µ < d,344

the diversifying influence of long jumps dominates; note345

the large number of satellites well separated from the346

core in Fig. 2g–i. The seeding of many satellites by long-347

range dispersal events from the core enables the popu-348

lation to preserve a finite amount of its initial heterozy-349

gosity at long times. By contrast, when d < µ < d + 1,350

the local coarsening of diversity due to bottlenecks be-351

comes more significant; note the small number of large352

monoclonal satellites in Fig. 2d–f. The heterozygosity353

decays inexorably towards zero as the range expansion354

progresses, albeit at a slow rate. As µ approaches d, the355

heterozygosity approaches a finite value but the conver-356

gence to this value becomes extremely slow and cannot357

be observed over practical simulation times. Notably, for358

µ > d+ 1, some diversity is also preserved at long times359
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FIG. 2. Snapshots of simulated range expansions at different population sizes M . These simulations began with 100 individuals
equally split between two neutral alleles, labeled as either purple or yellow in these plots. a-c.) Diversity is preserved by the
formation of monoallelic sectors for µ > d + 1. d-f.) The small number of satellite outbreaks act as bottlenecks, eroding
diversity for d < µ < d + 1. g-i.) Long-range jumps transport alleles from the core to the exterior of the colony, preserving
diversity for µ < d. Additional parameters are K = 10 and p = 0.

due to the formation of sectors in outward range expan-360

sions, as shown in Fig. 2a–c [12, 30]. Jump kernels of361

intermediate breadth (d < µ < d + 1) therefore support362

lower neutral diversity than broader (µ ≤ d) and nar-363

rower (µ ≥ d+ 1) kernels.364

In summary, Ref. 27 established that long-range dis-365

persal can preserve some of the genetic diversity from the366

originating population at long times, but only for jump367

kernels broader than a dimension-dependent threshold.368

Narrower kernels cause diversity to erode over the course369

of the expansion due to successive founder events, which370

can erase even the limited heterozygosity preserved due371

to the formation of sectors in range expansions with ex-372

clusively short-ranged dispersal. However, these features373

were observed in lattice models which assumed instant lo-374

cal dynamics and founder-takes-all at the deme level; the375

influence of slow local saturation on the evolution of het-376

erozygosity could not be gauged. In this study, we aim to377

establish whether insights derived from lattice models of378

range expansions still apply in a continuous-space model379

for which the lattice model assumptions can be violated380

to a controllable degree, and to quantify the effect of ex-381

plicit local dynamics on neutral genetic variation as the382

expansion progresses. We next introduce our simulation383

model which we use to investigate these questions.384

III. METHODS385

In order to study jump-driven range expansions which386

rely on neither a lattice nor the assumption of instant lo-387

cal dynamics, we used the evolutionary simulation soft-388

ware SLiM [40] to simulate range expansions on a 2D389

continuous landscape without restricting ourselves to a390

lattice of demes. Individuals produce offspring at a con-391

stant rate, and offspring attempt to establish themselves392

by dispersing in a random direction with dispersal dis-393

tances drawn from a jump kernel incorporating short-394

ranged and long-ranged dispersal which we define below395

(Eq. (3)). To focus on the effects of the spreading pro-396

cess and enable direct comparison with previous work397

(see Section II), our model includes two simplifying as-398

sumptions. First, each individual has an allelic identity399

which is passed on exactly to offspring with no possi-400

bility of new mutations; this enables us to evaluate the401

persistence of initial neutral variation purely due to dis-402

persal and spatial structure during spreading. Second,403

once offspring are successfully established, they do not404
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FIG. 3. An outline of the simulation procedure. a.) A snap-
shot of a population during a range expansion. The dots rep-
resent individuals in the population. Suppose the local carry-
ing capacity is 5. An individual born at position A would only
count three others in its local region (dashed circle centered
at A), so it would survive. An individual born at position B
would count seven others within its local region. That is too
many for the individual to successfully compete against, so it
would die. b.) An example jump kernel. There is a proba-
bility p of dispersing within the “local” (shaded) region, that
is, within distance rb. The jump kernel decays according to
the power law J(r) ∼ 1/rµ+1 beyond the local region.

move, die, or renew themselves. This assumption al-405

lows us to hone in on the dynamics of establishment406

and expansion, without confounding effects or compu-407

tational expense from reshuffling and replenishment of408

regions that have already been saturated. Immortality409

and immobility post-establishment provide a reasonable410

approximation for trees that produce massive numbers of411

seeds over scores of growing seasons, or perennial plants412

that replenish themselves in place once established. Even413

in populations for which these assumptions do not hold,414

the patterns left behind by the initial expansion can still415

be representative of long-time trends despite the subse-416

quent gene flow due to replenishment and reshuffling of417

individuals [14, 15].418

In the absence of demes with a fixed carrying capacity,419

a different mechanism to regulate population growth is420

needed. We assume that the environment has uniformly-421

distributed resources which can support a uniform car-422

rying capacity per unit area, quantified by a maximum423

population density ρ. We introduce an interaction dis-424

tance rb which demarcates a disc-shaped region within425

which an individual competes with others for resources426

(Fig. 3a). The population density and interaction dis-427

tance can be combined to define a local carrying capacity428

K via429

K = ρπr2b. (2)

When an individual is born, it undertakes a random dis-430

persal event and counts the number of individuals within431

the interaction region surrounding its new location. If432

there are at least K other individuals in the interaction433

region, the duplication event is unsuccessful and the new434

individual dies. If there are fewer than K other individu-435

als, the new individual establishes successfully in its new436

location and survives for the remainder of the simulation.437

The local interaction region in our continuous-space438

simulation resembles the geographic subdivision unit (the439

deme) used in lattice-based models. The concept of in-440

stantaneous local saturation, or a local founder-takes-441

all effect, would therefore correspond to an individual442

quickly filling its interaction region with its offspring be-443

fore it (or its descendants) attempted any long-range dis-444

persal events. In order to smoothly depart from the as-445

sumptions of the lattice model, it would be useful to con-446

trol the fraction of dispersal events which are “local”, i.e.447

within the interaction region, as opposed to long-range.448

To do so, we used a two-part jump kernel that allows us449

to explicitly specify the probabilities of local versus long-450

range dispersal, as sketched in Fig. 3b. In full, the jump451

kernel is as follows:452

J(r) =


p/rb r ≤ rb
(1− p)

r−µ
b

µr−(µ+1) r > rb
(3)

where p is the probability of dispersing within the local453

region. The short-range part of the jump kernel is cho-454

sen to be featureless, with the only notable property be-455

ing that the integrated probability
∫ rb
0

J(r) dr = p. The456

long-range part of the jump kernel matches the power-law457

kernel used in the prior works discussed [16, 27, 39] and458

the prefactor ensures the normalization
∫∞
rb

J(r) dr =459

1 − p. Jump distances are randomly drawn from this460

distribution using inverse transform sampling (detailed461

procedure in SI Section VIA).462

A few comments about our choice of jump kernel,463

Eq. (3), are in order. Our aim is not to exactly reproduce464

a biologically measured jump distribution at all lengths,465

but rather to capture the two main features of interest466

in a simplified kernel—a tunable balance between short-467

and long-range dispersal determined by the parameter p,468

and a fat-tailed kernel with a specified power-law falloff469

controlled by the exponent µ. For simplicity, we chose470

the short-range part of the jump kernel to be constant471

with distance r; other forms are expected to lead to sim-472

ilar results provided the integrated probability of jump473

lengths between 0 and rb evaluates to p. The chosen474

form also implicitly assumes that the same length scale475

rb governs the interaction distance for the density regu-476

lation and the dispersal behavior. We could have built477

a model with an additional length parameter dictating478

the spatial features of the dispersal kernel, but at the479

cost of added complexity and a larger parameter space.480

Our simplified choice allows us to dial in a specific bal-481

ance between local and long-range dispersal by adjusting482

the parameter p alone, which enables direct comparisons483

of different simulations where the kernel exponent, local484

carrying capacity, and size of the density regulation re-485

gion are kept unchanged. Since the exact shape of the486

jump kernel at short distances is not biologically realis-487

tic (for instance, it has a discontinuity at r = rb), we488

do not use our model to draw any conclusions about the489

spatial distribution of individuals on scales smaller than490

the interaction distance.491
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We now specify appropriate units for length and time492

in our simulations. Since the individuals and the envi-493

ronment are both featureless, and the same length scale494

rb governs both the density regulation and the disper-495

sal, the interaction distance is the natural length unit in496

our model. In our simulations, we set rb to one, so that497

all distances reported from simulations are in units of rb.498

Time units are chosen such that each individual generates499

offspring via a Poisson process with a duplication rate of500

one; i.e. time is reported in units of the average gener-501

ation time for an individual. Note that not all offspring502

survive, because of the density regulation mechanism.503

Once the length and time units have been fixed, the504

consequential parameters are the kernel exponent µ, the505

probability of local dispersal p, and the local carrying506

capacity K (which determines the local density ρ via507

Eq. (2)). Simulations begin with 10K individuals whose508

x and y positions are random draws from a Gaussian509

distribution with mean zero and standard deviation 2rb.510

Everyone in the population gets a chance to produce off-511

spring every time step, which disperse according to the512

jump kernel with relevant p and µ and then either survive513

or don’t depending on the population density where they514

happen to land. Simulations end once the population515

size exceeds a predetermined threshold, usually four or-516

ders of magnitude larger than the initial population size.517

See SI Section VIA for more details on the simulation518

procedure.519

We next identify characteristic time scales in the prob-520

lem which will enable us to choose parameters which vi-521

olate the instant local dynamics and local founder-takes-522

all assumptions. (For an expanded discussion with po-523

tential improvements, see SI Section VIB). First let us524

consider the characteristic saturation time scale for a sin-525

gle interaction region (which takes the place of a deme in526

our model). While the full saturation dynamics is com-527

plicated because of the influence of offspring from nearby528

interaction regions, we can make a simplified estimate of529

the saturation time by considering only the descendants530

of the pioneer individual which undergo local dispersal.531

Assuming that all these descendants land in the same532

interaction region, we have an effective division rate of533

p (in our units) for the local population. In this simpli-534

fied model, the interaction region fills up according to a535

logistic function with growth rate p, for which the satu-536

ration dynamics are set by the characteristic time scale537

τs ≡ 1/p. (The actual saturation time for a deme with538

a discrete population has an additional logarithmic de-539

pendence on the carrying capacity, see SI Section VIC;540

we ignore this weaker dependence compared to the dom-541

inant 1/p dependence in the present discussion of char-542

acteristic time scales.) The saturation time scale must543

be compared to the typical time for the interaction re-544

gion to send out long-range jumps. The highest possible545

rate occurs when the region has saturated to population546

K and sends out long-range jumps at a rate K(1 − p).547

Therefore, we identify τj ≡ 1/(K(1 − p)) as the charac-548

teristic time scale separating long-range jumps out of an549

interaction region. Note that the local saturation time550

scale is independent of K, whereas the rate of long-range551

jumps out of an interaction region does depend on K.552

The instantaneous local dynamics assumed in the lat-553

tice model is approached when the local saturation time554

is much smaller than the typical time between long-range555

jumps; i.e. τs ≪ τj. Using the above estimates for the556

characteristic times, we find the criterion557

p

1− p
≫ K (4)

for fast local dynamics. This criterion is always satisfied558

as p → 1. When K is large, p must be at least 1− 1/K559

for Eq. (4) to be satisfied: for appreciable local carrying560

capacities, the fraction of local dispersal events must be561

very close to one for the criterion to hold. If an individual562

competes with a large number of other individuals in its563

neighborhood for resources, Eq. (4) is satisfied only if the564

vast majority of dispersal events are local and long-range565

jumps are exceedingly rare. Our estimate emphasizes the566

need for simulations with explicit local dynamics to in-567

vestigate the broad range of parameters where the lattice568

model assumptions do not hold during jump-driven range569

expansions.570

The criterion τs ≪ τj ensures that new migrants origi-571

nate from fully saturated regions. To satisfy the second572

assumption of the lattice model—the local founder-takes-573

all effect—we additionally require that the characteristic574

time between the arrival of the first migrant and a po-575

tential second migrant by long-range dispersal, which we576

call τ2, is much larger than the local saturation time scale577

τs. Unlike τs and τj, however, we do not have direct con-578

trol over τ2; the latter time scale will depend not only579

on the model parameters but also on the location of the580

region being colonized. For example, the expected time581

to second arrival will be different for a region near the582

core of a colony compared with a region far from the core583

that was recently seeded by long-range dispersal. Never-584

theless, we expect that τ2 is closely related to the time585

scale τj associated with sequential long-range jumps out586

of any given region: if long-range dispersal from all re-587

gions is exceedingly rare (τj is large), it will take a very588

long time for a second migrant to arrive into a newly589

colonized region (τ2 is large as well). Therefore, we use590

the same criterion, Eq. (4), to gauge whether both as-591

sumptions underlying the lattice model are satisfied in592

our continuum model. In the next section, we directly593

verify that our simulation results include regimes which594

violate the assumptions of instantaneous local saturation595

(Section IVA) and local founder-takes-all (Section IVB),596

thereby departing strongly from the prior lattice models.597

In summary, to violate the lattice model assumptions598

we require local dispersal probability values comparable599

to or lower than 1− 1/K. If we evenly sample values of600

p between zero and one, we find that the lattice model601

assumptions are violated at most parameter values. For602

instance, if we set the carrying capacity to K = 10, the603

criterion is violated for p values up to around 0.9; when604
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K = 100, the criterion is satisfied only for p > 0.99. In605

our simulations, we choose values of carrying capacity K606

between 10 and 100, and local dispersal probabilities in607

the range 0 ≤ p ≤ 0.997. We expect the lattice model608

assumptions to be violated over most of these parameter609

values, except at the upper range of values of p.610

IV. RESULTS611

A. Local dynamics are consistent with logistic612

growth613

We first analyze the effect of modifying the local dis-614

persal probability p on the population dynamics within615

interaction regions. Consider the fate of the interaction616

region surrounding a pioneer that has landed in an empty617

part of the range. If all local dispersal events experienced618

by the pioneer and its offspring landed within the pio-619

neer’s interaction region, we would expect exponential620

growth of the local population with rate p until the car-621

rying capacity K is reached. In practice, the interaction622

regions of the offspring only partially overlap with that of623

the pioneer, so the population growth levels off smoothly624

upon approaching the maximum value. When saturation625

curves across many interaction regions are averaged for626

a given set of parameters, the average curve takes on the627

form of a logistic function as shown in Fig. 4a–b. Upon628

varying p and µ independently, we find that the satura-629

tion proceeds faster as p is increased whereas it is not630

strongly affected by the kernel exponent (Fig. 4b).631

We use the logistic growth rate, extracted from a two632

parameter fit to the average growth curves (see SI Sec-633

tion VIC for details), to quantify the local saturation634

dynamics. As expected, we find that the growth rate635

is largely independent of carrying capacity and is de-636

termined by the local probability p (SI Fig. 12). The637

growth rate remains nonzero as p → 0, due to multi-step638

colonization: although no direct offspring of the pioneer639

can land in its own interaction region, the descendants640

of these offspring can land within the interaction region641

of the pioneer which eventually gets filled. Multi-step ef-642

fects are also responsible for generating saturation curves643

whose final population values do not exactly equal the644

carrying capacity K (plateaus at large t in Fig. 4a–b),645

as outlined in SI Section VIC. The true saturation value646

of the population within an interaction region can be ex-647

tracted from the logistic fit and is denoted as K ′.648

Although the logistic growth rate is set by the local dis-649

persal probability and not the carrying capacity, the typ-650

ical time taken to fill the interaction region of a pioneer651

depends on both quantities. Since the logistic growth652

function is continuous and strictly reaches K ′ only as653

t → ∞, we define the time taken to reach a local popu-654

lation of K ′ − 1 as the saturation time for an interaction655

region. We find that the saturation time falls with in-656

creasing local dispersal levels, and rises with increasing657

local carrying capacity, as shown in Fig. 4c. The interac-658

tion region around a pioneer that seeds a distant satellite659

takes longer to fill up at low local dispersal rates and/or660

at high carrying capacities. Notably, the saturation time661

falls linearly with p, but has a slow (roughly logarithmic)662

functional dependence on the carrying capacity.663

B. Slow local saturation invalidates664

founder-takes-all assumption within interaction665

regions666

Slow saturation of the pioneer’s local region increases667

the chance that other individuals who are not descen-668

dants of the original pioneer will disperse into the region669

and establish themselves before the region is full. If an670

individual who arrives later has a different allele than the671

original pioneer, there will be multiple alleles within the672

region, which introduces genetic diversity within interac-673

tion regions in stark contrast to the homogeneous demes674

imposed by the lattice model. This creates a measurable675

signal that local saturation times are now comparable to676

or slower than the typical time gap between the arrivals677

of first and second migrants by long-range dispersal, τ2.678

To quantify the deviation of local population structure
from the local founder-takes-all assumption as the sat-
uration time is increased, we introduced neutral genetic
variation in the initial population. Every individual in
the initial population was assigned a unique allele, which
did not affect the dispersal or reproduction dynamics but
was passed on to offspring. The establishment of multi-
ple alleles in the same interaction region was detected by
computing the local heterozygosities in the interaction
region of isolated pioneers. The heterozygosity, H, is the
probability that any two randomly selected individuals
will have different alleles. Upon counting the fraction fi
of individuals with each neutral allele i in an interaction
region, the heterozygosity of that region is computed as

H = 1−
∑
i

f2
i .

A nonzero heterozygosity indicates that more than one679

allele is present in the region; the larger the heterozygos-680

ity, the more evenly distributed the different alleles are681

in frequency, corresponding to a region in which no single682

allele dominates.683

We averaged the local heterozygosity within the in-684

teraction regions of many independent pioneers to ob-685

tain a characteristic measurement of the local diversity686

for each parameter value. The averaged heterozygosi-687

ties are normalized against the value at which one ex-688

pects a fully occupied interaction region to have exactly689

one individual with a different allele than the pioneer:690

HN ≡ 2(1/K)(1 − 1/K). With this definition, the nor-691

malized average heterozygosity ⟨H⟩/HN has the following692

interpretation: normalized average heterozygosities less693

than one indicate that interaction regions typically have694

a single allele, whereas values greater than one indicate695

the expected presence of more than one allele signaling696
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FIG. 4. Saturation dynamics of interaction regions around pioneers. a.) and b.) show the population growth within
the interaction region of pioneers (individuals which land in an empty region) as a function of time from establishment of
the pioneer, averaged across many pioneers for different values of p (colors). a., K = 10 and µ = 1.5; b., K = 100 and
three different kernel exponents (dashes). Each curve in panels (a.) and (b.) is the average of the local saturation around
approximately 60 pioneers gathered across multiple simulations. c.) Saturation time of interaction regions, defined as the time
taken for the fitted logistic growth function describing the population within an interaction region to reach one less than the
saturating population (see SI Section VIC for details), for µ = 1.5. We fit the logistic growth function to the local saturation
data of approximately 60 interaction regions around pioneers and then computed the saturation time for each region based on
the fitted growth rate and carrying capacity. The points in the plot are averages and the error bars are the standard deviations
of the computed saturation times of individual interaction regions at each set of parameters.
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and its color shows the average heterozygosity within the interaction regions around several pioneers who seeded distant
satellites, normalized against the heterozygosity at which a fully occupied interaction region is expected to have one individual
with an allele different from everyone else in the region. Interaction regions are expected to be homogeneous at parameter
combinations where the average normalized heterozygosity is less than one (blue points). They are expected to have more
than one allele where the average normalized heterozygosity is greater than one (red points), indicating that other individuals
typically disperse into and establish themselves within a pioneer’s interaction region before it fills up with descendants of the
pioneer. The values reported come from the averages across about 50 interaction regions gathered from multiple simulations
at each set of parameters.

a deviation from the founder “taking all” at the level of697

the interaction region.698

We find that the local heterozygosity is high at low lo-699

cal dispersal rates and high carrying capacities (Fig. 5),700

consistent with our expectations from the slow satura-701

tion dynamics in this part of parameter space. At the702

smallest carrying capacity (K = 10), heterozygosity lev-703

els are low across nearly all jump kernels: local saturation704

occurs fast enough that interaction regions are filled by705

descendants of the pioneer individual that first arrived706

in the vicinity. This situation most closely parallels the707

lattice models. As the carrying capacity is increased,708

however, we observe appreciable levels of heterozygosity709

at low levels of local dispersal where the saturation dy-710

namics of regulation regions is slowest (Fig. 4c). As the711

local dispersal rate increases, a smooth crossover occurs712

from high to low heterozygosity. The value of p at which713

this crossover occurs is larger for broader jump kernels714
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(lower µ): longer dispersal events favor mixing of alleles.715

We expect these trends to continue for carrying capacities716

on either side of the range we show here. For lower car-717

rying capacities, local diversity would become lower ev-718

erywhere. For higher carrying capacities, the boundary719

between pioneer-dominated and not pioneer-dominated720

(blue points and red points, respectively) would continue721

to move to the right. The region of parameter space722

where founders typically “take all” will continue to shrink723

as carrying capacity increases.724

In summary, measurements of local heterozygosity725

(Fig. 5) indicate a breakdown of founder takes all over726

wide swaths of parameter space, especially for high car-727

rying capacities and broad jump kernels. While lo-728

cal interaction regions remain largely monoallelic when729

long-range dispersal is very rare (p ≳ 0.9), we find evi-730

dence that multiple incursions into the same region leave731

a persistent contribution to the local genetic makeup732

within interaction regions when long-range and local dis-733

persal rates are of similar order. We next investigate734

the extent to which these local deviations from founder735

takes all impact global features of the population ex-736

pansion, and in particular whether they lead to depar-737

tures from the population-level behavior of jump-driven738

range expansions predicted using lattice-based models in739

Refs. [16, 27].740

C. Increased long-range dispersal favors faster741

population growth742

The salient feature of the global population growth un-743

der jump-driven expansions is their dramatic speedup744

compared to expansions that only involve short-range745

jumps: the typical radial extent of the core region ℓ(t)746

grows faster-than-linearly with time when µ < d + 1.747

This boost occurs because offspring attempting short-748

range jumps will land close to their parents and siblings,749

and are more likely to be unsuccessful due to a lack of750

local carrying capacity. By contrast, long-range jumps751

tend to transport offspring to empty areas where they752

establish and proliferate successfully. Therefore, lower753

values of the local dispersal probability p are expected to754

favor faster population growth overall, even though the755

local saturation is slower.756

We measured the population growth with time, M(t),757

for many independent range expansions at each parame-758

ter value. To connect with the results from lattice-based759

models described in Section IIA, we need an estimate of760

the core region within which the population has reached761

saturation. When growth is driven by long-range jumps,762

there is no sharp boundary between occupied and empty763

regions even in the lattice model. Rather, the local den-764

sity is close to ρ out to some distance from the origin, be-765

yond which it crosses over to a power-law decline in den-766

sity determined by the value of µ [16, 39]. This smoothly767

varying occupancy profile leaves some ambiguity in pre-768

cisely defining the core region. We follow Ref. 39 in using769

the mass-equivalent radius of the population as our best770

estimate of the core radius from our simulation data:771

ℓ(t) ≡

√
M(t)

πρ
, (5)

which provides the required scaling M(t) ∼ [ℓ(t)]d [16].772

This definition assumes that the bulk of the population773

is present in regions where the population has reached its774

maximum density locally. We averaged ℓ(t) trajectories775

across different instances at each set of parameters to776

get a growth curve characterizing the average growth in777

extent of the population.778

We found that the acceleration of range expansion due779

to long-range dispersal is preserved in the continuum780

model, as shown by the growth curves in Fig. 6. We781

focus on the behavior at long times beyond the satura-782

tion time scale of a single interaction region (which is of783

order 10 for K = 10, see Fig. 4c). When all dispersal is784

short-range (p = 1), the average colony size approaches785

a linear relationship at long times (dashed curves; linear786

fit shown with solid curves at upper right), signifying the787

expected constant-speed outward advance of the popula-788

tion front [30]. Small levels of long-range dispersal (solid789

curves) are sufficient for the size to grow faster than lin-790

early with time, as evidenced by a steeper slope on log-791

log axes compared to the dashed curves. The growth792

at long times appears to be faster than any power law793

(i.e. faster than linear on log-log axes) for all values of794

p at µ = 1.5 and µ = 2.0 (Fig. 6a–b), in line with ex-795

pectations from the lattice model. Growth approaches a796

power law in time with exponent greater than one at the797

the two largest p values for µ = 2.5, but is faster than798

power-law for the smaller values of p over the population799

sizes simulated. In all cases, decreasing the probability800

of short-range dispersal speeds up the colony expansion,801

as expected: long-range jumps are far more likely to land802

in empty regions and succeed, compared to local jumps.803

Many consequential features of the expansion, how-804

ever, are determined not by the absolute growth of the805

population size with time but by the functional form806

of the growth. For instance, the qualitative differences807

in global diversity among different kernel ranges (Sec-808

tion II B) are owed to the different functional forms of809

ℓ(t) observed in the lattice model (see Section II for a810

summary). It would be useful to quantify whether and811

how the local dispersal rate influences the functional form812

of the population growth curves. A direct comparison813

of the growth curves to the asymptotic forms derived814

using the lattice model is not expected to succeed, be-815

cause the growth curves can take a long time to reach816

their asymptotic forms, especially for values of µ near the817

space dimension d = 2 [16]. This feature of jump-driven818

growth is apparent in Fig. 6c, in which the measured819

growth curves for µ = 2.5 are nonlinear on logarithmic820

axes and deviate from the asymptotic power-law form821

even at long times. Instead, we use the self-consistency822

condition from Ref. 16, Eq. (1), which is expected to823
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hold for times beyond the local saturation time scale but824

well before the time at which the asymptotic regime is825

reached in the lattice model. If the entire population826

in our continuum model were contained in regions that827

have reached local saturation at all times, then the hier-828

archy depicted in Fig. 1 would translate to the continuum829

model as well, and we would expect Eq. (1) to be satisfied830

exactly. This would enable us to predict future popula-831

tion growth given only the current population size and832

the exponent that characterizes the jump kernel. The833

size of deviations from the exact relation could be used834

to quantify differences in satellite structure between the835

continuum model and the lattice model.836

To test the validity of the consistency condition and its837

ability to predict population growth, we measured the re-838

lationship between the colony size ℓ(t) at time t and the839

quantity tℓ(t/2)2d in our simulations. For t values larger840

than the local saturation time (order 20 or less for all pa-841

rameters, Fig. 4c), we found that the simulated growth842

curves are consistent with a power-law relationship be-843

tween the two quantities across the entire range of local844

dispersal probability values tested. Data for two repre-845

sentative values of p and two local carrying capacities are846

shown in Fig. 7; additional curves are shown in SI Fig. 14.847

For parameter values which best approximate the as-848

sumption of instantaneous filling of density regulation849

regions (local dispersal probability close to one and low850

carrying capacity), the power-law exponent quantifying851

the relationship between ℓ(t) and tℓ(t/2)2d also matches852

the expected exponent of d + µ (compare green discs to853

dashed line in Fig. 7). By contrast, the relationship no854

longer quantitatively matches the consistency condition855

when local saturation is slowed down by low values of856

p or high values of K. Instead, the population size at857

time t is larger than that predicted by the population at858

time t/2 according to Eq. (1) (square symbols and or-859

ange discs in Fig. 7). The functional form of the growth860

curve appears to be faster than would be expected from861

1026 × 101 2 × 102

colony size (t)

108

109
At

(t/
2)

2d

p = 0.99
p = 0.00
(t)d +

K = 10
K = 100

FIG. 7. Quantitative test of the hierarchical time-doubling
structure. Plots show the RHS of the consistency condition
(Eq. (1)) versus the colony size ℓ(t) for µ = 2. Data are from
the average of about 200 growth curves at each set of parame-
ters, and only include the second half of the simulation to ex-
clude expected deviations at short times (see SI Section VID
for details). The scaling factor A was adjusted manually to
overlay data from different p values for ease of comparison of
the apparent power-law exponent (slope of curves on log-log
scale). Analogous plots at µ = 1.5 and µ = 2.5 are shown in
SI Fig. 14.

the time doubling hierarchy, so using Eq. (1) leads to an862

underestimate of the colony size at time t given its size863

at time t/2. Note that Fig. 7 is plotted on logarithmic864

axes, so the visibly slight difference between the slopes865

of sets of symbols and dashed lines corresponds to dif-866

ferent power law relationships between ℓ(t) and tℓ(t/2)2d867

in our continuum expansions than what is predicted by868

the time doubling hierarchy derived using lattice models869

that assume instant saturation of local regions.870

To quantify the extent of the deviation from the lattice-871

model behavior, we fit measurements of the quantity872
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FIG. 8. Inferring kernel exponents using the consistency condition. Symbols show the kernel exponent µi inferred for the power
law relationship between measured ℓ(t) and tℓ(t/2)2d (i.e. the slope in Fig. 7) from many individual simulations. Panels are
labeled by the true kernel exponent µ used in simulations. The dashed line indicates µi = µ. Each point represents the mean
of the individual inferences from roughly 200 independent simulations and the error bars are the 95% confidence interval of the
distribution of bootstrapped mean inferred kernel exponents.

tℓ(t/2)2d to the form Bℓ(t)ν to extract the power-law ex-873

ponent ν (see SI Section VID for details). This exponent874

was used to infer a kernel exponent µi ≡ ν− d from data875

such as those shown in Fig. 7, which can be compared876

to the true kernel exponent µ. To cover the two dis-877

tinct jump-driven growth regimes and the marginal value878

µ = d separating them (as referenced in Section II), we879

estimate the kernel exponent from growth curves of pop-880

ulations whose jump kernels decay with µ equal to 1.5,881

2.0, and 2.5. We find that the inferred kernel exponent882

is close to the true exponent when the local dispersal883

probability approaches one across all jump kernels and884

carrying capacities tested (Fig. 8). This observation is885

consistent with our expectation that the limit p → 1 best886

approximates the lattice model assumptions. However,887

the inferred kernel exponent is systematically lower than888

the true value for much of the range 0 < p < 1, reflecting889

the shallower-than-expected slopes at low local dispersal890

in Fig. 7. The inferred exponent grows slowly with the891

local dispersal probability up to p ≈ 0.9, and then rises892

sharply toward the true value as p → 1. This suggests893

that there could be some functional change to the struc-894

ture of colony expansion as the parameter changes to895

nearly all short-range dispersal, while anything less than896

nearly all short-range dispersal seems to behave similarly897

regardless of p. The deviations also systematically differ898

depending on the local carrying capacity, with inferred899

exponents at K = 100 consistently lower than than those900

at K = 10.901

We have not isolated the mechanism leading to an in-902

ferred kernel exponent µi that deviates from the true ker-903

nel exponent µ. The fact that µi < µ implies that the904

time-doubling hierarchy from the lattice model, quanti-905

fied in Eq. (1), does not hold exactly over much of the906

range of p values. Furthermore, it shows again that the907

functional form of the population growth with time is908

faster in the continuum model than the lattice model.909

However, this observation by itself does not provide infor-910

mation about how the hierarchy breaks down in the con-911

tinuum model, or whether a modified version of Eq. (1)912

might be found for continuum space models.913

We can nevertheless identify the likely sources of the914

discrepancy between the continuum and lattice models915

based on our knowledge of the local and global dynam-916

ics. The hierarchy in the lattice model was derived under917

the assumption that satellites which drive the expansion918

originate in a core region that has reached its satura-919

tion density nearly everywhere, and whose size scales as920

[M(t)]1/d. In our simulations, local regions take some921

finite amount of time to fill up, but they can begin send-922

ing out long range migrants as soon as they are seeded.923

An appreciable fraction of satellites may be seeded by924

individuals dispersing from regions with local densities925

between zero and ρ; furthermore, the local density could926

itself vary significantly through the population. These927

deviations become more prevalent for larger carrying ca-928

pacities (Fig. 4c), which would suggest larger deviations929

at higher values of K consistent with the behavior of the930

inferred kernel exponents in Fig. 8.931

Altogether, measurements in the continuous-space932

model reveal small but consistent deviations in the pop-933

ulation growth curves from the time-doubling hierarchy934

predicted in the lattice model. Our simulations indi-935

cate that slow local dynamics introduce corrections to936

the time-doubling hierarchy over a large range of values937

of the local dispersal probability, consistent with our es-938

timates of the parameter regimes for which the lattice939

model assumptions break down (Section III). Next, we940

numerically investigate the impact of these corrections941

on the dynamics of global diversity, for which the hierar-942

chy of satellite sizes determined the long-time behavior943

in the lattice model as summarized in Section II B.944
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D. Increased local diversity boosts global945

heterozygosity but does not overcome long-term946

trends947

Finally, we investigated the consequences of the en-948

hanced local diversity generated by slow local dynamics949

(Section IVB and Fig. 5) on the fate of the initial neutral950

diversity. Recall the predicted evolution of heterozygos-951

ity in prior models assuming fast local saturation and lo-952

cal founder-takes-all effects (summarized in Section II B):953

initial variation decayed steadily towards zero for jump954

kernels with 2 < µ < 3 in two dimensions, but some pro-955

portion of the initial diversity was preserved for broader956

(µ < 2) or narrower (µ > 3) kernels. We simulated range957

expansions where the initial population had equal pro-958

portions of two fitness-equivalent alleles (initial global959

heterozygosity HG = 0.5) and measured the evolution of960

global heterozygosity. While the outcome of a single sim-961

ulation is stochastic, we estimated the expected value of962

the hetorozygosity as a function of population size by av-963

eraging the outcomes of many independent runs at each964

set of parameters. Recall that no new mutations appear965

during the expansions; here we study the long term fate966

of any pre-existing diversity present in the initial pop-967

ulation rather than the emergence of some balance be-968

tween the loss of diversity (e.g. due to drift) and the969

promotion of diversity due to new mutations. Although970

we used a specific initial heterozygosity in our simula-971

tions, we expect the observed trends in the proportion972

of initial diversity over time to hold for other values of973

initial global heterozygosity as well. This proportion is974

obtained from our simulation data (Fig. 9) by dividing975

the reported heterozygosity values by 0.5.976

We first considered a set of parameters (K = 10,977

p = 0.5) for which each interaction region is dominated978

by the offspring of the seed individual (Fig. 9a). This979

situation approximates the local founder-takes-all mech-980

anism of the lattice models, but does not replicate it ex-981

actly as multiple incursions into interaction regions are982

not strictly excluded. Despite the deviations, we find983

that the evolution of global diversity in the continuum984

simulations is consistent with expectations from the lat-985

tice model when different kernel exponents are compared.986

(See SI Section VIF for a quantitative comparison.) Av-987

erage population heterozygosity has settled to a constant988

proportion of its initial value for µ = 1, and appears to989

be approaching a constant value as well for µ = 1.5. The990

slow decay of heterozygosity for µ = 2 is expected; the991

population may have to grow by several more orders of992

magnitude before converging to a constant heterozygos-993

ity [27]. At µ = 2.5, the heterozygosity decays steadily994

with no sign of convergence to a finite value, as predicted995

for lattice models in the range d < µ < d+ 1. At µ = 4,996

a constant heterozygosity is attained at large population997

sizes due to the formation of persistent sectors with dis-998

tinct allelic identities (Fig. 2a–c). In each of the growth999

regimes separated by the critical kernel exponent values1000

of d and d+1 (2 and 3 respectively in our two-dimensional1001

expansions), the behavior of the global heterozygosity fol-1002

lows the qualitative patterns derived in the lattice model.1003

In spite of the small quantitative differences in the hi-1004

erarchical structure of satellites merging with the core1005

(Fig. 8), the overall differences in structure which deter-1006

mine the balance between diversification and coarsening1007

in jump-driven expansions are maintained deep within1008

the different growth regimes.1009

Next, we considered parameters K = 100, p = 0 for1010

which the local founder-takes-all assumption is violated1011

across all kernels tested according to local heterozygosity1012

measurements. We found that the increased local diver-1013

sity at these values (as indicated by colors in Fig. 5c)1014

contributes to higher global heterozygosities compared1015

to the fast saturation region, as seen in Fig. 9b when1016

compared to Fig. 9a and SI Fig. 16. For instance, at1017

µ = 2.5 the heterozygosity has decayed by around 8% of1018

its initial value when M/M0 = 104 in Fig. 9b, in con-1019

trast to a reduction by over 20% in Fig. 9a. The same1020

trend is observed at all kernel exponents: The mix of al-1021

lelic identities within each interaction region under slower1022

local dynamics provides a reservoir of genetic diversity1023

that allows populations to retain much more diversity1024

than possible under the monoallelic regions imposed by1025

fast local saturation. Nevertheless, the qualitative trends1026

in diversity as the kernel exponent is varied continue to1027

track the expectation for lattice models. In particular,1028

the global heterozygosity steadily decays towards zero for1029

µ = 2.5, albeit at a slower rate compared to the K = 101030

simulations.1031

A steady decay in heterozygosity is also observed for1032

other values of the local dispersal probability for the same1033

kernel exponent µ = 2.5, see Fig. 9c. Slowing down local1034

dynamics by increasing K and reducing p raises the value1035

of heterozygosity at each population size, but does not1036

prevent the steady decay as a function of M/M0. These1037

results show that at long times, the diversity-reducing1038

effect of bottlenecks outweighs the local mixing due to1039

slow saturation dynamics for µ = 2.5. We expect that1040

continual heterozygosity loss will be experienced for other1041

kernels in the range d < µ < d+ 1 as well, although the1042

rate of decay will be very slow for kernels close to the1043

critical value of µ = d, and for kernels with slower lo-1044

cal dynamics (i.e. large carrying capacity and low local1045

dispersal probability). In this regard, the high local het-1046

erozygosities observed for kernels with µ > 2 and low p1047

values in Fig. 5 are transients which we expect to de-1048

cay to lower values if the expansions are allowed to run1049

longer.1050

V. DISCUSSION1051

Range expansions in populations experiencing long-1052

range dispersal can be dominated by the pioneers who1053

travel long distances and seed satellite colonies. Lattice1054

models that assume that these pioneers quickly saturate1055

the carrying capacity within their local interaction re-1056
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FIG. 9. Evolution of global heterozygosity for different kernels and local dispersal rates. a.) Average global heterozygosity
as a function of the growing population size for different jump kernels, with K = 10 and p = 0.5. At these parameters, each
interaction region is dominated by a single allele (Fig. 5). b.) Same as a for K = 100 and p = 0; at these parameters interaction
regions tend to harbor multiple alleles. c.) Global heterozygosity curves for µ = 2.5 and different local dynamics traversing
the spectrum from monoallelic to multiallelic local interaction regions (blue points to red points in Fig. 5). The K = 10 data
is the same as in panel (a.) but has been truncated for this plot. Data as a function of relative population size were generated
by by binning the population sizes from all available simulations and then computing the within-bin ⟨HG⟩; see SI Section VIE
for details. Shading reports the standard error of the mean within each bin in all panels, as an estimate of the uncertainty in
our estimate of the ensemble average. Data come from about 200 independent simulations for µ ≤ 2 in panel (a.) and about
400 simulations for µ = 2.5 in panel (a.) and all of panels (b.) and (c.). The curve for µ = 4 in panel (a.) comes from just 24
runs since simulations with µ > d+1 take much longer and the sectoring mechanism for preserving diversity is well understood
(see Fig. 2a–c).

gion have provided many insights into the dynamics and1057

population structure of such range expansions [16, 27].1058

However, real populations operate in continuous space1059

and with local population dynamics which play out con-1060

currently with the global dynamics driven by long jumps.1061

In particular, the limits on the rates of long-range disper-1062

sal for lattice models to be accurate become increasingly1063

strict as the local carrying capacity increases (Eq. (4)).1064

We have introduced a continuous-space simulation of1065

range expansions which departs from the gridlike spa-1066

tial structure and instantaneous local dynamics implied1067

in lattice models, enabling us to quantitatively investi-1068

gate population growth and neutral diversity in parame-1069

ter regimes where the lattice models are not expected to1070

be valid.1071

We found that introducing explicit local dynamics is1072

associated with slow local saturation at low local disper-1073

sal rates and especially at high local carrying capacities1074

(Fig. 4). By contrast, the global population growth oc-1075

curs faster when local dispersal rates are low, because of1076

the increase in long-range jumps that seed satellite pop-1077

ulations in unoccupied regions (Fig. 6). The functional1078

forms of the population growth curves show similarities1079

with those from lattice-based models (Fig. 7), but with1080

small yet quantifiable differences (Fig. 8). We suspect1081

that these differences arise due to a violation of a cen-1082

tral assumption of the lattice model: that satellites are1083

seeded by long-range migrants who disperse from fully1084

occupied source regions. In our continuum model, satel-1085

lites can begin sending out long-range migrants as soon1086

as they are seeded, which can occur several generations1087

before they saturate at high carrying capacities and low1088

local dispersal rates. In future work, we aim to incorpo-1089

rate this feature into the model of hierarchical population1090

growth sketched in Fig. 1, which would improve the ac-1091

curacy of theoretical predictions for jump-driven range1092

expansions in situations where local interaction regions1093

are not immediately saturated upon the arrival of a new1094

migrant.1095

We investigated the effects of departing from instan-1096

taneous local saturation on both local and global mea-1097

surements of neutral diversity. Interrogating the pop-1098

ulations within individual interaction regions originally1099

seeded by a long-range dispersal event reveals that mul-1100

tiple lineages, rather than just descendants of the pioneer,1101

become likely as local saturation becomes slower (Fig. 5):1102

our continuum model violates the assumption of a strictly1103

enforced local founder-takes-all effect. Having multiple1104

lineages within interaction regions provides a reservoir1105

of genetic diversity that also enables greater global het-1106

erozygosity outside the regime where local founder-takes-1107

all applies: generically, expansions with slower local dy-1108

namics exhibit higher global diversity at every stage in1109

the expansion (Fig. 9). Nevertheless, the enhancement1110

in local diversity is not sufficient to overcome long-time1111

trends in global diversity, which continue to be deter-1112

mined by the kernel exponent as was shown in the lat-1113

tice model [27]. In particular, when µ < 2 the global1114

heterozygosity settles to a stable value after an initial1115

period of decay, whereas for 2 < µ < 3 the heterozy-1116

gosity decays steadily as the range expansion progresses1117

albeit at a slow rate. The decay is a consequence of1118

the repeated coarsening of diversity due to bottlenecks1119

as pioneers expand into their newly occupied surround-1120
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ings (Fig. 2d–f). Our results show that this coarsening1121

is slowed down by the increased local diversity when the1122

local founder-takes-all assumption is violated, but it is1123

not completely mitigated and the qualitative long-term1124

trends in global diversity are similar to those predicted1125

using the lattice model. This qualitative agreement with1126

lattice-based predictions is a non-trivial result in light1127

of recent research [35] showing that models based on a1128

discretization of space can leave surprising artifacts in1129

measures of population genetic variation.1130

Our method of discovering local diversity outside the1131

local founder-takes-all regime was unable to detect if de-1132

scendants of an individual other than the pioneer were1133

within a local region if they happened to have the same1134

allele as the pioneer by chance. Such information would1135

be useful to investigate genealogical structure beyond the1136

fate of the initial neutral diversity in the population, for1137

example to determine if the pioneer is the most recent1138

common ancestor of everyone else in the interaction re-1139

gion or to study the accumulation of additional neutral1140

mutations during the expansion. A tool like tree se-1141

quences [41] could readily be incorporated into our com-1142

putational model to study such questions, which are a1143

promising target of future work. Understanding the com-1144

peting effects of local and long-range dynamics on ge-1145

nealogies in our forward-in-time simulations could also1146

aid the construction of backward-in-time models that in-1147

corporate long-range dispersal [42, 43].1148

Another promising future direction would be to incor-1149

porate ongoing local competition among all individuals1150

in the population. In this work, we assumed that estab-1151

lished individuals never move or die, modeling popula-1152

tions such as trees which release large numbers of seeds1153

annually and where young saplings stand little chance1154

of outcompeting mature trees around them. However,1155

there are many species of perennial plants, for exam-1156

ple, where younger individuals can successfully compete1157

against older individuals in their surroundings. Incorpo-1158

rating population renewal and density-dependent com-1159

petition in simulations could provide new insights into1160

how these species evolve during range expansions. We1161

suspect that such competition should accelerate the de-1162

cay of diversity relative to our results for 2 < µ < 31163

(Fig. 9). Local competition can completely remove alleles1164

from the population, whereas in our model the “losing”1165

allele is surrounded but not lost, and retains a nonzero1166

probability of dispersing an offspring to a faraway vacant1167

habitat.1168

This work provides a better understanding of the range1169

of validity and the limitations of models of long-range1170

dispersal which rely on instantaneous saturation of local1171

interaction regions and divide continuous space into a lat-1172

tice. We have confirmed that the conclusions of the lat-1173

tice model are upheld in populations where pioneers who1174

disperse long distances quickly saturate their immediate1175

surroundings with their descendants; namely in popula-1176

tions with low local carrying capacities and high local dis-1177

persal probabilities. Even when the local founder-takes-1178

all condition is violated, we have shown that qualitative1179

trends in population growth and in the evolution of neu-1180

tral diversity mirror those in the lattice model, albeit1181

with measurable quantitative differences. Heuristics such1182

as the time-doubling hierarchy of Ref. 16 (Fig. 1) and the1183

effective population of satellites identified in Ref. 27 re-1184

main useful to understand the qualitative behavior of ex-1185

pansions under long-range dispersal in non-lattice mod-1186

els. Researchers could employ hybrid discrete/continuous1187

research strategies: identify regimes of interest using the1188

heuristics of the lattice model, and then test and refine1189

these predictions in more realistic continuum simulations.1190

Our results are relevant to understanding and model-1191

ing the dynamics of range expansions in true biological1192

populations, including invasive species, populations flee-1193

ing climate catastrophes, and spreading viruses. We now1194

have a better understanding of when the first individual1195

to arrive in a region of space effectively determines the1196

genetic outcome of all others who will later inhabit the1197

same immediate area. Experimenters could estimate the1198

size of the interaction region, the local carrying capac-1199

ity, and the local dispersal probability in populations of1200

organisms in the lab or in nature. Estimates of those1201

quantities could allow researchers to predict whether or1202

not the founders will “take all” when the population ex-1203

pands its range outwards into new territory, leading to1204

insights about how the population will evolve.1205
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VI. SUPPLEMENTARY INFORMATION1216

A. Simulation details1217

Simulations begin with 10K individuals who are given1218

random positions near the origin. Their x and y posi-1219

tions are random draws from a normal distribution with1220

a standard deviation of 2rb. Typically about 80% of1221

those individuals survive the density regulation in the1222

first time step. The spatial landscape is large, so the1223

periodic boundary conditions have no effect.1224

Offspring are produced by cloning without the possi-1225

bility of mutations, so offspring have the same allele as1226

their parent. Dispersal distances are drawn using inverse1227

transform sampling. Recall, the jump kernel is1228

J(r) =


p/rb r ≤ rb
(1− p)

r−µ
b

µr−(µ+1) r > rb
(6)

where rb is the boundary between local and long-range1229

and p is the probability of dispersing within the local1230

region.1231

We begin the sampling procedure by drawing a random1232

number X from the uniform distribution between 0 and1233

1. That number X is taken to be the the probability of1234

drawing a dispersal distance less than or equal to some1235

distance x (i.e. the integral of the jump kernel from 0 to1236

x). Solving for x gives us our dispersal distance.1237

If X ≤ p, the offspring disperses locally, so we only
need to consider the first term of the jump kernel.

X =

∫ x

0

p/rb dr =
px

rb
→ x =

Xrb
p

If X > p, the offspring disperses a long distance, so we
have

X = p+
(1− p)µ

r−µ
b

∫ x

rb

r−(µ+1)dr

which leads to

x =

(
(1− p)rµb
1−X

)1/µ

The dispersal direction is chosen at random from the uni-1238

form distribution between 0 and 2π.1239

All individuals in the population get a chance to pro-1240

duce offspring each time step. Offspring generation is1241

the first thing that happens each time step; the num-1242

ber of offspring for each individual is a random draw1243

from the Poisson distribution with mean 1. Then all1244

newborns simultaneously count how many other individ-1245

uals are within their density regulation regions. This1246

means newborns will count other newborns if they hap-1247

pen to land near each other by chance. It also means that1248

space often doesn’t quite fill up to the population den-1249

sity ρ = K/(πr2b) (as defined in section III). SI Fig. 101250

shows how regions of space may appear habitable, and1251

indeed would be if one single offspring were generated1252

and counted its neighbors at a time, but do not saturate1253

since everyone in the population typically produces an1254

offspring every generation and all newborns count their1255

neighbors simultaneously. All individuals produce one1256

offspring per generation on average, so a region saturated1257

to K individuals is expected to have roughly K newborn1258

individuals attempting to establish within that same re-1259

gion every generation. Our density regulation mechanism1260

mimics the biological scenario where none of those new-1261

born individuals are able to get enough resources to sur-1262

vive since there are so many competing for what little is1263

left, a situation termed “scramble competition” in ecol-1264

ogy [44]. The typical population that is actually attained1265

in a local density region, which we term K ′, is estimated1266

using a fit to a logistic growth curve (see SI Section VIC1267

below), and deviates by at most 20% fromK (SI Fig. 12).1268

Alternative choices for the density regulation step, such1269

as randomly choosing a subset of newborns to survive so1270

that local density regions can saturate up to the target1271

value K (the “contest competition” scenario), could also1272

be implemented, but at the cost of additional computa-1273

tional resources which would affect the maximum popu-1274

lation sizes and growth times that could be simulated.1275

We typically let the populations grow by about four1276

orders of magnitude, so simulations were ended once the1277

populations exceeded 106 or 107 individuals for K equal1278

to 10 or 100, respectively. This allowed core radii to1279

grow by about two orders of magnitude, as shown in the1280

average growth curves at K = 10 in Fig. 6 and at K =1281

100 in SI Fig. 11. The solid line indicating the linear1282

relationship between ⟨ℓ(t)⟩ and t at p = 1 in Fig. 6 was1283

generated by fitting a line to the average growth curve1284

from generations 100 to 1000 using NumPy’s polyfit()1285

function.1286

B. Time scales1287

The assumption of instant local saturation in the lat-1288

tice models relied on a separation of time scales between1289

local and global dynamics: it is valid provided the time1290

scale for saturation of local regions τs = 1/α is small com-1291

pared to the typical time between long-range dispersal1292

attempts from each “deme” or interaction region, which1293

we call τj. In our tunable model, our time units are set1294

such that the characteristic time between reproduction1295

attempts is one. The rate of divisions that land within1296

the interaction region is p, which sets the time scale of1297

the logistic growth. Therefore, the characteristic satura-1298

tion time of local regions is α = p, and as a zeroth-order1299

estimate we have τs ≈ 1/p. This form is only useful for1300

p close to one, because it ignores the effect of secondary1301

events which land in the interaction region. As a result,1302

the true dependence of α on p is weaker: α grows from1303

0.4 to 1 as p varies from zero to one (Fig. 12a). Therefore1304

τs varies weakly from roughly 2.5 to one over the range1305
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FIG. 10. Space doesn’t quite fill up to the local maximum population density ρ. The two panels are snapshots from simulations
that grew to roughly fifty thousand individuals. The blue points are individuals, and the color of the small yellow and green
dots represents how many individuals are within a distance of rb of that point. Yellow points represent saturated regions; an
individual born there would count at least K within its density regulation region. Non-yellow points look hospitable, and one
individual born there would count less than K within its density regulation region, but individuals can’t fill those spaces since
typically everyone produces an offspring every generation and the newborns “destructively interfere”.
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FIG. 11. Average growth curves for different µ and p at K = 100. Average curves for K = 10 are shown in Fig. 6. These are
averages of about 140 growth curves at each set of parameters.

of p values. For a more accurate estimate, we can use the1306

phenomenological form α ≈ (1 + p)/2 ⇒ τs ≈ 2/(1 + p)1307

which does not diverge as p → 0.1308

When regions have reached local saturation, the rate at
which each interaction region sends out long-range jumps
is K(1 − p). If we assume that the expansion is driven
by jumps out of regions that have reached saturation, we
have τj = 1/(K(1− p)). Therefore, the condition τj ≫ τs
reduces to

1

K(1− p)
≫ 1

p
,

or

K ≪ p

1− p
.

According to this criterion, most of our simulations1309

explicitly do not satisfy the separation of time scales as-1310

sumed in the lattice model.1311

C. Logistic growth description of population1312

dynamics within interaction regions1313

We started the logistic growth measurements by1314

searching for sufficiently isolated individuals. To find1315

individuals worthy of tracking, we searched at the end1316

of every generation for individuals who had no one else1317

within a distance of 10rb. Those individuals must have1318

dispersed a long distance. We searched at the end of ev-1319

ery generation until we found at least a predetermined1320

minimum number of isolated individuals at the same1321

time. We required several at the same time purely for1322

convenience on the data processing side; these measure-1323

ments could just as well have been gathered one at a1324

time as we found the isolated individuals. Nevertheless,1325

once we found the isolated individuals, we recorded the1326

number within their interaction regions every generation1327

until the end of the simulation. The local saturation data1328

was then used to fit for logistic growth parameters. We1329
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FIG. 12. Fitted logistic growth parameters. a.) The growth rate increases with increasing short-range dispersal as expected.
It does not depend on the carrying capacity because the growth rate is determined by the early growth of the population before
the density regulation restricts population growth. b.) The fitted local carrying capacity increases slightly with increasing
short-range dispersal. Regions often don’t saturate all the way to K as discussed above and shown in Fig. 10. We fit the logistic
growth function to the saturation data of about 60 interaction regions across multiple simulations at each set of parameters.
The points are averages and the error bars are standard deviations of the individual fits. This data comes from expansions
with µ = 1.5 and is what formed the saturation times reported in Fig. 4c.

fit to the logistic function of the form1330

N(t) =
K ′

1 +
(

K′−N0

N0

)
e−αt

(7)

where N(t) is the population at time t, K ′ is the local1331

carrying capacity, α is the growth rate, and the initial1332

population is N0 = 1. We used SciPy’s curve fit() func-1333

tion to make the fits and obtain K ′ and α. We performed1334

the fits on all individual interaction regions around the1335

initially isolated individuals that we found that filled up1336

to at least 60% of the local carrying capacity K. Average1337

values and standard deviations are shown in SI Fig. 12.1338

We computed the saturation time for an interaction1339

region by setting the population size in Eq. (7) equal to1340

K ′ − 1 and then solving for t, which leads to1341

tsat =
1

α
log

(
(K ′ − 1)2

)
(8)

In addition to the dominant dependence ∼ 1/α, where1342

α is itself proportional to p (see SI Section VIB), we1343

find a logarithmic dependence of the saturation time on1344

the local carrying capacity, which arises from the discrete1345

nature of the local population within a deme. We com-1346

puted the saturation time for every individual interaction1347

region for which we fit the logistic growth function, using1348

values of α and K ′ from the fits to the logistic function.1349

We report averages and standard deviations at µ = 1.51350

in Fig. 4c.1351

For the local heterozygosity measurements, every in-1352

dividual in the initial population had a unique allele.1353

We tracked the heterozygosity in the interaction regions1354

of the same individuals for whom we measured logistic1355

growth as described above (i.e. initially isolated individ-1356

uals). The heterozygosities reported in Fig. 5 are aver-1357

ages of heterozygosities measured across typically about1358

50 separate interaction regions in the final generation of1359

simulations and gathered from initially isolated individ-1360

uals in multiple different simulations.1361

D. Quantitative assessment of time-doubling1362

hierarchy1363

We assessed the validity of simulation run times us-1364

ing the consistency condition ℓ(t)d+µ ∼ tℓ(t/2)2d (eq. 1).1365

The consistency condition is only valid after enough time1366

has elapsed for long dispersal distances to be the driving1367

factor behind a colony’s growth [16]. It is necessary to1368

avoid the early times when applying the consistency con-1369

dition, such as when estimating the kernel exponent as1370

in Fig. 8. Colony growth remains self-consistent once1371

the consistency condition becomes valid. For simulations1372

that ran for T time steps, the values of t we used when1373

applying the consistency condition ran from T/2 to T ,1374

so the values of t/2 ran from T/4 to T/2. The first data1375

point we used with the consistency condition is marked1376

with a red × in SI Fig. 13. We need at least a handful1377

of data points after the first one to check for agreement1378

with the consistency condition and to estimate the kernel1379

exponent. Our run times were just enough at the lowest1380

probabilities of local dispersal and gave us many useful1381

data points at high local dispersal. We compared our1382

data at µ = 2 against Eq. (1) in Fig. 7; analogous plots1383

at µ = 1.5 and 2.5 are shown in SI Fig. 14.1384

The expansions at high local dispersal require many1385

more time steps to reach the predetermined population1386

threshold necessary to end simulations than those at low1387

local dispersal. Expansions at high local dispersal take1388

longer and grow slower than those at low local dispersal1389

since offspring are much more likely to land near their1390

parent in regions that may already be saturated, which1391

means the times t and sizes ℓ(t/2) used here are higher1392

at high local dispersal. A scaling factor of A ≈ 20 was1393

needed to raise the points at low local dispersal to the1394
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FIG. 13. We show tℓ(t/2)2d plotted against ℓ(t) from average growth curves at all sets of parameters that went into figure 7.
The dots are points from all even-numbered time steps. Simulations with high values of p require many more time steps to
reach a given population size than those with low values of p. We use only the points after the red × in figure 7 and for inferring
the kernel exponent as in figure 8. For simulations to be “long enough,” we needed at least a handful of points once the growth
became self-consistent (i.e. linear on these plots). Using average growth curves from expansions at intermediate probabilities
of local dispersal result in plots somewhere between these two extremes: more data points in the linear sections than the p = 0
case but not as many as in the p = 0.99 case.
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level of those at high local dispersal. Bringing them to-1395

gether highlights the difference in power laws (slopes)1396

between the sets of points at each value of K.1397

We found the inferred kernel exponent µi from the1398

growth curves by fitting Bℓ(t)ν to the quantity tℓ(t/2)2d1399

using SciPy’s curve fit() function. We obtained values1400

for both the prefactor B and the exponent ν, but only1401

the exponent was of any interest for estimating the ker-1402

nel exponent from the growth curves. We estimated the1403

kernel exponent by performing this fit using data from1404

only a later subset of the time steps as discussed in the1405

previous paragraph. We then compute the inferred ex-1406

ponent as µi ≡ ν−d. We computed µi using all available1407

growth curves (typically about 200 at any given set of1408

parameters) to get the averages and confidence intervals1409

reported in Fig. 8.1410

The exact value of µi somewhat depends on the fit1411

method. For comparison, we repeated the process of ex-1412
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tracting µi by finding the best fit line to the relevant1413

data in log-log space, where the exponent could be found1414

from the inferred slope. These two values would exactly1415

match if we had infinitely long simulations that had per-1416

fectly converged to constant power laws, but in practice1417

that is not the case. There is often a slight difference1418

between the average values of µi from the two proce-1419

dures, as shown at the example parameters in SI Fig. 15.1420

However, we take the generally overlapping error bars as1421

a signal that it’s safe to proceed with our inferred val-1422

ues. This sort of comparison could be used as a test of1423

whether or not population growth has converged to the1424

expected time-doubling hierarchy: consistent gaps be-1425

tween error bars are a warning that simulations may not1426

be long enough. This test led us to run longer simula-1427

tions to generate the data shown at p ≤ 0.5 in SI Fig. 151428

and the corresponding data points in Fig. 8. The longer1429

simulations ran until they reached population sizes of 301430

million individuals, triple the size of our usual cutoff for1431

simulations with K = 100.1432

E. Reporting the evolution of global heterozygosity1433

There are multiple reasonable ways to compute and1434

display the global heterozygosity as a function of the1435

growing population size as in Fig. 9 and SI Fig. 16; here1436

we discuss some options and justify our choice. The true1437

independent variable in our simulations is time. Every1438

time step consists of offspring generation and dispersal1439

followed by density regulation as discussed in Section III1440

and SI Section VIA. Population size and heterozygosity1441

are recorded at the end of each time step, after indi-1442

viduals have been removed from the population if their1443

birthplaces are too densely occupied. This suggests that1444

the “ground truth” for reporting the evolution of global1445

heterozygosity might be plots of ⟨HG⟩ versus time, where1446

averages and standard errors are computed with all avail-1447

able data at a given time step.1448

However, for generalizing results or comparing with the1449

results of Ref. 27, it would be useful to compute ⟨HG⟩ as1450

a function of the population size. One method of doing1451

this would be to compute the averages ⟨HG⟩ and ⟨M/M0⟩1452

each time step. This method ignores what can be signif-1453

icant variation in population growth rates between indi-1454

vidual simulations and generates points whose horizontal1455

and vertical coordinates in the plots of Fig. 9 are both1456

functions of time.1457

We sought to compute ⟨HG⟩ directly as a function1458

of population size by generating binned population sizes1459

and computing the average heterozygosity from all avail-1460

able simulation time steps where the population size was1461

within a given bin. This means that a single simulation1462

can contribute to a given data point on the ⟨HG⟩ versus1463

M/M0 curve multiple times or not at all depending on1464

how many time steps the population size was within that1465

bin in that simulation. We used the R function cut() to1466

place population sizes within 20 bins of equivalent width1467

in logarithmic space, thus generating equally spaced data1468

points for Fig. 9 and SI Fig. 16.1469

We use the standard error of the mean to estimate our1470

uncertainty in ⟨HG⟩. A consequence of the binning pro-1471

cedure is that standard errors of the mean heterozygosity1472

get vanishingly small in Fig. 9 and SI Fig. 16, despite the1473

fact that the heterozygosity trajectory can vary quite a1474

bit between individual simulations. The bins in those1475

figures often consist of multiple data points from each1476

simulation, especially for the bins at larger population1477

sizes. Even though we generally have 200-400 indepen-1478

dent simulations at each parameter combination shown1479

in those figures, the points in the figures are often aver-1480

ages of thousands of data points that fall within each bin,1481

resulting in nearly invisible uncertainty bands since the1482

standard error of the mean is s/
√
N where s is the sam-1483

ple standard deviation and N is the number of samples.1484

Such a large number of samples within each bin gives us1485

a small uncertainty in our estimate of the average ⟨HG⟩.1486

F. Direct comparison to lattice model1487

We used data for lattice-based simulations from Ref. 271488

to compare results between continuum simulations at pa-1489

rameter values K = 10, p = 0.5 where the averaged nor-1490

mal heterozygosity is less than one (see Fig. 5), approx-1491

imating local founder-takes-all, and lattice-based simu-1492

lations where founder-takes-all is imposed at the deme1493

level. The initial conditions in the two types of simula-1494

tions were not exactly matched: both began with a 50/501495
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FIG. 16. Direct comparison of heterozygosity evolution in
the continuum simulations with fast local dynamics (K = 10,
p = 0.5; solid lines and shading are same as in Fig. 9a) to that
of the lattice-based simulations reported in Ref. 27 (dashed
lines). In both cases, the initial population had a 50/50 mix
of two alleles (initial heterozygosity of 0.5). Kernel exponents
match at all values except µ = 2.5 (continuum), for which the
same color refers to µ = 2.4 (lattice).

mix of two alleles, but the continuum simulations began1496

with typically about 80 individuals near the origin (SI1497

Section VIA) while the lattice-based simulations began1498

with 111 occupied demes packed in a disc around the1499

origin. Note that a deme is roughly a discrete analogue1500

of an interaction region, so the continuum simulations’1501

8̃0 individuals correspond to roughly 80/K = 8 occu-1502

pied demes. Another discrepancy is that Ref. 27 did not1503

generate data at µ = 2.5, so we include their data from1504

µ = 2.4 as a comparison with our µ = 2.5 data.1505

We observe that the difference in initial conditions1506

leads to different dynamics at early times/small popu-1507

lation sizes. In the continuum simulations, most of the1508

early dynamics involves local events which mix and even1509

out the starting population near the origin, and signifi-1510

cant changes in heterozygosity only kick in when the pop-1511

ulation has reached ten times its initial size. By contrast,1512

the lattice simulations only included long-range jumps,1513

and the heterozygosity begins to fall earlier. This dis-1514

crepancy leads to early differences in the observed het-1515

erozygosities between the two sets of models. However,1516

the later trends, especially the contrast between a quick1517

saturation of heterozygosity to a constant value at µ = 11518

as opposed to a persistent decay for µ = 2.5 and a decay1519

followed by a delayed saturation for µ = 4.0, are success-1520

fully captured by the lattice model. The quantitative1521

discrepancy between the lattice and continuum values of1522

⟨HG⟩ is largest at µ = d = 2, which is a special point1523

for the underlying dynamics that leads to extremely slow1524

changes in the heterozygosity [16, 27]; we hypothesize1525

that the small discrepancy in the initial conditions per-1526

sists the longest at this special kernel exponent.1527

We also observe that the continuum ⟨HG⟩ at large1528

population sizes is higher than that from lattice-based1529

simulations for all jump-driven kernels (µ < 3). This1530

is consistent with the observation that while local het-1531

erozygosity is small in the continuum simulations, it is1532

not zero for the chosen parameter values of K = 10,1533

p = 0.5 (left panel in Fig. 5) and the slight deviations1534

from local founder takes all promote higher heterozygos-1535

ity compared to the strict founder-takes-all assumption1536

of the lattice model.1537
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