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Abstract
No tillage (NT) has been proposed as a practice to reduce the adverse effects of till-
age on contaminant (e.g., sediment and nutrient) losses to waterways. Nonetheless, 
previous reports on impacts of NT on nitrate (NO−

3
) leaching are inconsistent. A 

global meta-analysis was conducted to test the hypothesis that the response of NO−

3
 

leaching under NT, relative to tillage, is associated with tillage type (inversion vs 
non-inversion tillage), soil properties (e.g., soil organic carbon [SOC]), climate fac-
tors (i.e., water input), and management practices (e.g., NT duration and nitrogen 
fertilizer inputs). Overall, compared with all forms of tillage combined, NT had 4% 
and 14% greater area-scaled and yield-scaled NO−

3
 leaching losses, respectively. The 

NO
−

3
 leaching under NT tended to be 7% greater than that of inversion tillage but 

comparable to non-inversion tillage. Greater NO−

3
 leaching under NT, compared with 

inversion tillage, was most evident under short-duration NT (<5 years), where water 
inputs were low (<2 mm  day−1), in medium texture and low SOC (<1%) soils, and 
at both higher (>200 kg ha−1) and lower (0–100 kg ha−1) rates of nitrogen addition. 
Of these, SOC was the most important factor affecting the risk of NO3

− leaching 
under NT compared with inversion tillage. Globally, on average, the greater amount 
of NO3

− leached under NT, compared with inversion tillage, was mainly attributed 
to corresponding increases in drainage. The percentage of global cropping land with 
lower risk of NO3

− leaching under NT, relative to inversion tillage, increased with 
NT duration from 3 years (31%) to 15 years (54%). This study highlighted that the 
benefits of NT adoption for mitigating NO−

3
 leaching are most likely in long-term NT 

cropping systems on high-SOC soils.
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3
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1  |  INTRODUC TION

About 50%–70% of nitrogen (N) fertilizer applied in agricultural 
systems is lost to the environment (Cassman et al.,  2002; Coskun 
et al., 2017; Ladha et al., 2005). Nitrate (NO−

3
) leaching is regarded as 

one of the main loss pathways, as nitrate is mobile and easily trans-
ported to ground water through the soil profile when drainage occurs 
(Coskun et al., 2017; Wang et al., 2019). Previous studies suggested 
that NO−

3
 leaching losses accounted for about 8%–19% of the total 

N applied (Lin et al., 2001; Sebilo et al., 2013). These losses not only 
reduce soil fertility and crop yield (Cameron et al., 2013), but also 
degrade water quality (Rivett et al., 2008; Stuart et al., 2011) and put 
human health at risk (Cameron et al., 2013; Liu, Peng, et al., 2021). 
Thus, appropriate management strategies are urgently needed to re-
duce NO−

3
 leaching.

The use of no tillage (NT) has been proposed as a means of de-
creasing NO−

3
 leaching (Spiess et al., 2020). However, the reported 

impacts of NT on NO−

3
 leaching are inconsistent. Compared with 

tillage, NT has been shown to increase (Huang, Liang, et al., 2015), 
decrease (Spiess et al., 2020; Zhang et al., 2020), or have no impacts 
(Meisinger et al., 2015) on NO−

3
 leaching. For the sake of brevity, we 

refer to “tillage” here to represent all forms of tillage (i.e., inversion 
tillage and non-inversion tillage). A previous meta-analysis showed 
that, on average, NT increased NO−

3
 leaching in corn, soybean, and 

wheat systems compared with tillage (Daryanto et al., 2017). Their 
study highlighted that the effect of NT on NO3

− leaching differed 
depending on soil texture, water input, crop type, fertilizer type, and 
duration of NT. For example, it was reported that NT increased NO3

− 
leaching in drylands (aridity index [rainfall/potential evapotranspira-
tion] <0.65), but decreased NO3

− leaching in non-drylands (aridity 
index >0.65). However, the Daryanto et al. (2017) meta-analysis did 
not consider other factors such as how NT compares with different 
forms of tillage and the role of soil organic carbon (SOC) content, 
which may affect the response of NO3

− leaching to NT. It remains 
unclear what soil, climate, and management factors most strongly 
affect the risk of NO3

− leaching under NT compared to different 
forms of tillage.

Most previous meta-analyses of NT practices have tended to 
compare NT with all forms of tillage combined, without distinguish-
ing the impacts of different tillage forms (Briones & Schmidt, 2017; 
Zhao et al., 2022). Non-inversion tillage generally involves less dis-
turbance of the soil than inversion tillage (Morris et al., 2010). Some 
previous studies have shown that non-inversion tillage (also termed 
reduced tillage) has little or no significant effects on soil physical 
properties (e.g., bulk density and wet aggregate stability) com-
pared with NT (Abdollahi et al., 2017; Blanco-Canqui et al., 2017; de 
Moraes et al., 2016; Reichert et al., 2017). Soil physical properties 
affect storage and transport of water and N in soils, and hence soil 
water drainage and NO3

− leaching. Therefore, we expect the differ-
ence in NO3

− leaching between NT and inversion tillage to be greater 
than that between NT and non-inversion tillage. SOC affects both 
soil physical (e.g., soil aggregates) (Kong et al., 2005) and chemical 
(e.g., mineralization) (Alvarez & Alvarez, 2000) properties. Increasing 

SOC was found to significantly decrease NO3
− leaching (Kanthle 

et al., 2016), but it is unknown whether SOC content influences the 
response of NO3

− leaching to NT relative to that of tillage. For ex-
ample, SOC content may affect the response of NO3

− leaching to 
NT by decoupling some key N cycling processes (e.g., N protection 
in aggregates, N immobilization, and N uptake) compared to tillage.

Despite numerous studies having reported both area-scaled 
NO3

− leaching and crop yields under different cultivation systems 
(Spiess et al., 2020; Waring et al., 2020), it remains unknown how 
yield-scaled NO3

− leaching (kg NO3
−/ kg produce) responds to NT. 

In the context of sustainable agriculture, where both the environ-
ment and food production are crucial, yield-scaled NO3

− leaching 
may be more informative than area-scaled NO3

− leaching. Daryanto 
et al.  (2017) attributed the greater NO3

− leaching under NT to in-
creased drainage due to an increase in macropores; however, it re-
mains unclear what the relative contributions of drainage or nitrate 
concentration are to NO3

− leaching under NT compared with tillage. 
Therefore, a more comprehensive meta-analysis was required to 
identify the major factors affecting the response of NO3

− leaching to 
NT relative to different forms of tillage and to identify the conditions 
(e.g., soil, climate, and management practices) where a reduction in 
NO3

− leaching from NT may be possible.
In this study, we tested the hypothesis that the response of NO3

− 
leaching to NT relative to tillage is context specific. In particular, we 
aimed to (1) evaluate how NO3

− leaching under NT cropping com-
pares to that of inversion and non-inversion tillage practices and (2) 
determine to what extent these effects are influenced by soil prop-
erties (SOC content, soil texture), water input (as a climate factor), 
and management factors (e.g., NT duration, crop type, and nitrogen 
fertilizer inputs). We also applied the results of these analyses to 
evaluate the potential impacts of NT adoption on the risk of NO3

− 
leaching at a global scale.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

Data were collected from the Web of Science and Google Scholar 
databases up to December 2021. The search terms “tillage” and 
“nitrate leaching” resulted in 633 publications. Studies had to 
meet the following criteria to be included in the final dataset: (1) 
NO3

− leaching must have been measured under field conditions or 
modeled using field data; (2) NT was compared with inversion tillage 
and/or non-inversion tillage. NT refers to both NT and direct drilling 
where no soil cultivation is applied. Inversion tillage includes those 
practices that create high inversion and high mixing of soil, such as 
produced by moldboard ploughing, and non-inversion tillage refers to 
those practices that result in shattering and aeration of topsoil, such 
as produced by chisel ploughing (Briones & Schmidt, 2017) (Table 1); 
(3) means and replicates of NO3

− leaching were reported; (4) NO3
− 

leaching measurement covered at least one entire crop growing 
season (from sowing to harvest); and (5) the deepest measurement of 
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2174  |    LI et al.

leaching was used if multiple depths were reported. Data from a total 
of 724 observations (362 pairs) at 29 sites and 44 scientific papers 
met these criteria. Among these, 201 pairs compared NO3

− leaching 
between NT and inversion tillage, and 161 pairs compared NO3

− 
leaching between NT and non-inversion tillage. These observations 
were mainly from studies conducted in Europe and North America 
(Figure S1). Multiple observations (e.g., multiple years and multiple 
treatments) from the same publication were treated as independent 
data points because these observations were subjected to different 
treatments and cover distinct environmental conditions. In addition, 
this approach has been shown to increase the statistical power of 
meta-analysis by reducing the error variance of effect sizes resulting 
from an increased number of independent observations (Lajeunesse 
& Forbes, 2003; Nouri et al., 2022).

In addition, drainage volumes, NO3
− concentration of leachate 

samples, soil properties (soil texture and SOC content of top 30 cm), 
water input (as a climate variable), and management practices (tillage 
type, NT duration, nitrogen input, and crop type) were also recorded 
to identify the most influential factors affecting the response of 
NO3

− leaching to tillage systems (Table 1). Water input represents 
a climate factor because of the dominant effect of rainfall on total 
water input during the measurement period (i.e., rainfall accounts 
for 89% of total water input on average; R2 = .88). The yield-scaled 
NO3

− leaching (kg kg−1) was calculated by dividing the area-scaled 
NO3

− leaching (kg ha−1) by the crop yield (kg ha−1). Total water input 

(mm) during the sampling period was calculated as the sum of pre-
cipitation and irrigation amounts divided by days during the sam-
pling period. The published data from graphs were extracted using 
GetData software (http://getda​ta-graph​-digit​izer.com).

2.2  |  Data analysis

The random effects model was used to explore variables that might 
explain the response of NO3

− leaching to NT by calculating the 
weighted effect size for each variable. The numerical factors (e.g., 
NT duration, nitrogen input, water input, and SOC) were categorized 
according to previous studies (Table 1). In this study, the response 
ratio (RR) was calculated as the ratio between the outcome (e.g., 
area-scaled NO3

− leaching) of treatment (NT) and that of the control 
(inversion-tillage, non-inversion tillage, or both). The RR of individual 
observations was natural logarithm transformed (lnRR) to ensure 
normality and treat deviations in the numerator and denominator 
more equally (Hedges et al., 1999):

where lnRRi is the effect size of the corresponding parameters from ith 
comparisons, and � t

i
 and �c

i
 the ith means of corresponding parameters 

(1)lnRRi = ln
�
t

i

�
c

i

= ln
(

�
t

i

)

− ln
(

�
c

i

)

TA B L E  1  Categorical variables in the meta-analysis and the levels within each variable that define the groups.

Variable Levels Parameters References or comments

Tillage type Inversion tillage Moldboard plough, plough, and rotary tillage Briones and Schmidt (2017)

Non-inversion tillage Chisel plough, strip tillage, and ridge tillage

SOC content Low <1% Kallenbach and Grandy (2011); 
0–30 cmMedium 1%–3%

High >3%

Soil texture Fine Clay, sandy clay, and silty clay Omondi et al. (2016); 0–30 cm

Medium Silt, silt loam, silty clay loam, loam, sandy clay 
loam, and clay loam

Coarse Sand, loamy sand, and sandy loam

NT duration Short term <5 years Briones and Schmidt (2017)

Mid term 5–10 years

Long term >10 years

Water input Low <2 mm day−1 Classification is made to ensure 
similar sample size of area-
scaled NO3

− leaching for each 
group

Medium 2–3 mm day−1

High >3 mm day−1

Nitrogen input Low 0–100 kg ha−1 Kallenbach and Grandy (2011)

Medium 100–200 kg ha−1

High >200 kg ha−1

Crop type Grain Wheat, barley Maize was separated from grain as 
it has high water and nitrogen 
demand

Maize Maize

Soybean Soybean

Others Fallow, ley, forage rape, cotton, etc.
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    |  2175LI et al.

in the treatment (NT) and control (reference) group (inversion tillage, 
non-inversion tillage, or both), respectively.

We calculated the weighted effect sizes from individual lnRRi by 
giving greater weight to observations with higher accuracy (smaller 
variance [vi] of lnRRi). The weighted effect sizes were calculated as:

where m is the number of comparisons in the group, wi the weight of 
corresponding comparisons, which was calculated as the reciprocal of 
the variance (vi) of lnRRi, written as:

where SDt

i
 (or SDc

i
) and nt

i
 (or nc

i
) are the standard deviation (SD) and the 

number of replicates of the ith observation for the treatment (or con-
trol) data. �2 is between-study variance and was estimated by the re-
stricted maximum likelihood method (Veroniki et al., 2016). SD values 
were computed from standard error (SE) if SD was unavailable, using:

where n is the number of replicates. The missing SDs were imputed 
using the method of Bracken (1992).

The SE (s
(

lnRR
)

) and 95% confidence interval (95%CI) of lnRR 
were computed as:

The lnRR, s
(

lnRR
)

, and 95%CI of relevant variables were calculated 
using the “rma” function of the “metafor” package in R (Viechtbauer, 
2010). The variables of interest in the treatment (i.e., NT) were defined to  
be significantly greater (>0) or less (<0) than the control (i.e., tillage) if  
the 95%CI for weighted response ratio lnRR of corresponding variables 
did not overlap with zero. To facilitate the interpretation, lnRR was  
converted to relative change (RC) in percentage (%), using:

The corresponding 95%CI of RC was computed analogously by com-
bining Equations (6) and (7). The RC reflects the difference in outcome 
(e.g., area-scaled NO3

− leaching) between the treatment (NT) and con-
trol (inversion-tillage, non-inversion tillage, or both), expressed as a 
percent of the control.

Random-forest analysis was implemented to determine the 
main factors affecting the response of area-scaled NO3

− leach-
ing to NT (Wang et al., 2021). The key factors affecting yield-scale 

NO3
− leaching were not identified because of the relatively small 

number of comparisons (n  =  99) that reported yield-scale NO3
− 

leaching data. This method assesses the importance of factors by 
calculating the increase in the prediction error (mean squared errors) 
associated with random permutations of each factor while keeping 
other factors unchanged (Liaw & Wiener, 2002). Where factor per-
mutation did not change the prediction error, the related factors 
were considered unimportant (Liaw & Wiener, 2002). The random-
forest analysis was conducted using the R packages “randomforest” 
and “rfPermute” (Archer & Archer, 2016).

The risk of area-scaled NO3
− leaching from NT relative to inver-

sion tillage was estimated globally based on the main predictors (i.e., 
soil texture, SOC, water input, and NT duration) using the best-fit 
regression model. The best-fit model was identified from the model 
selection analysis using the “rma.glmulti” function in “metafor” pack-
age (Hurvich & Tsai, 1993; Viechtbauer & Viechtbauer, 2015). In this 
model, lnRR of area-scaled NO3

− leaching was the response variable, 
and the fixed effects of main predictors were analyzed, with the 
variance (vi) being lnRRi of area-scaled NO3

− leaching. The original 
numerical factor data were used to develop a regression equation. 
The model selection analysis is widely employed in meta-analysis, 
as it generates all possible models involving these variables (Feng & 
Zhu, 2019; Su, Feng, et al., 2021). The best-fit model was selected 
based on the corrected Akaike information criterion (AICc) value 
(please refer to Text S1 and Table S1 for the details). Global maps of 
the risk of area-scaled NO3

− leaching under NT cropping were gen-
erated under various NT duration scenarios (i.e., 3, 8, and 15 years) 
based on the baseline maps of the main predictors. We used mean 
annual precipitation, soil texture (calculated from soil particle size 
distribution), and the SOC dataset as the baseline maps because the 
results of random forest analyses showed that these were the main 
factors affecting the response of NO3

− leaching to NT. The mean 
annual precipitation data were collected from WorldClim2 database 
(Fick & Hijmans, 2017) and soil particle size distribution and SOC data 
were collected from SoilGrids (Hengl et al., 2017). Prior to calcula-
tion, each map of predictors was re-sampled at a consistent resolu-
tion (please refer to Text S1 for the details). Analyses were conducted 
with ArcGIS Desktop 10.5.

3  |  RESULTS

3.1  |  Influence of tillage type

The lnRR of area-scaled and yield-scaled NO3
− leaching were both 

normally distributed (Figure  S2). On average, area-scaled NO3
− 

leaching was 4% greater (p = .13) under NT than all forms of tillage 
(i.e., both inversion and non-inversion tillage) (Figure 1a). In contrast, 
yield-scaled NO3

− leaching was 14% greater under NT than under 
tillage (Figure 1b), owing to a lower (−8%) crop yield in NT (Figure 1 e). 
The higher NO3

− leaching associated with NT was consistent with 
the greater drainage (10%) (Figure 1c), which was partially offset by 
a lower NO3

− concentration in the leachate (−6%) (Figure 1d).

(2)lnRR =

∑m

i=1
wi × lnRRi

∑m

i=1
wi

(3)wi =
1

vi

=

1
(

(SD
t

i )

2

nt
i
× (�

t

i
)

2 +

(SD
c

i )

2

nc
i
× (�

c

i
)

2 + �2

)

(4)SD = SE ×

√

n

(5)s
�

lnRR
�

=

�

1
∑m

i=1
wi

(6)95%CI = lnRR ± 1.96s
(

lnRR
)

(7)RC =

(

e
lnRR

− 1

)

× 100%
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2176  |    LI et al.

Separating data by different tillage types indicated that NO3
− leach-

ing under NT was significantly greater than under inversion tillage, but 
comparable to that of non-inversion tillage. For example, on average, NT 
had 20% greater yield-scaled NO3

− leaching than inversion-tillage, while 
the difference between NT and non-inversion tillage was not significant 
(Figure 1b). Similar results were also found for drainage (Figure 1c). It 
is notable that the differences in NO3

− leaching and drainage between 
non-inversion tillage and inversion tillage were also similar to those be-
tween NT and inversion tillage. For example, non-inversion tillage, in 
comparison to inversion tillage, resulted in 20% greater drainage and 
yield-scaled NO3

− leaching (Figure 1b,c).
Since there were no statistically significant differences in NO3

− 
leaching or drainage between NT and non-inversion tillage, subse-
quent analyses focused solely on the comparison between NT and 
inversion tillage.

3.2  |  Factors affecting NO3
− leaching under NT 

relative to inversion tillage

3.2.1  |  Influence of SOC

In soils with low SOC content (<1%), NT resulted in approximately 
50% greater area- and yield-scaled NO3

− leaching than inversion 
tillage (Figure  2a,b). The differences decreased as SOC content 
increased. In contrast, in soils with a high SOC content (>3%), NT 
resulted in slightly lower area- and yield-scaled NO3

− leaching 
than inversion tillage. Similar effects of NT on drainage (Figure 2c) 
and NO3

− concentration (Figure  2d) were observed as with 
NO3

− leaching. In contrast to the overall effects of NT on NO3
− 

concentration (Figure 1d), on average, NT resulted in a 27% higher 
NO3

− concentration than inversion tillage in low SOC soils, but a 

F I G U R E  1  Relative change in (a) area-scaled NO3
− leaching, (b) yield-scaled NO3

− leaching, (c) drainage volume, (d) NO3
− concentration of 

leachate samples, and (e) crop yield for different tillage type comparisons. NT, no tillage; NIT, non-inversion tillage; IT, inversion tillage. The 
sample size for each category is shown above the mean relative change. Error bars are 95% confidence intervals. The effects are significant 
at p < .05 where error bars do not overlap zero.

F I G U R E  2  Relative change in (a) area-scaled NO3
− leaching, (b) yield-scaled NO3

− leaching, (c) drainage volume, (d) NO3
− concentration of 

leachate samples, and (e) crop yield in no-till (NT) compared with inversion tillage, segregated by different soil organic carbon contents. The 
sample size for each category is shown above the mean relative change. Error bars are 95% confidence intervals. The effects are significant 
at p < .05 where error bars do not overlap zero.

 13652486, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16618 by L

incoln U
niversity, W

iley O
nline L

ibrary on [13/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  2177LI et al.

lower NO3
− concentration than inversion tillage in soils with SOC 

>1% (Figure 2d).

3.2.2  |  Influence of soil texture

The effects of NT on NO3
− leaching were found to vary with soil tex-

ture (Figure 3). In soils with medium texture, on average, NT produced 
greater area-scaled (17%) and yield-scaled NO3

− leaching (23%) than 
inversion tillage (Figure 3a,b). In coarse-textured soils, no significant 
effects of NT on area-scaled NO3

− leaching were observed, whereas 
yield-scaled NO3

− leaching was 25% greater with NT than with inver-
sion tillage (Figure 3a,b). While NT resulted in 34% less area-scaled 
NO3

− leaching compared with inversion tillage in fine-textured soils, 
the small sample size (n = 15) makes it difficult to draw a firm con-
clusion (Figure 3a). NT tended to produce lower drainage and NO3

− 
concentrations than inversion tillage in fine-textured soils, whereas in 
coarse-textured soils, NT resulted in greater drainage (30%) but lower 
NO3

− concentrations (−16%) in leachates than inversion tillage.

3.2.3  |  Influence of NT duration

Short duration NT (<5 years since conversion from tillage), on average, 
resulted in significantly greater area-scaled (15%) and yield-scaled 
NO3

− leaching (32%) than inversion tillage (Figure  4a,b). However, 
the effects of NT on area-scaled NO3

− leaching were not significant 
for either medium (5–10 years) or long (>10 years) duration NT 
compared with inversion tillage effects. The effect of NT on drainage 
was similar to the effect on NO3

− leaching (Figure 4c), that is, short-
term NT (<5 years) resulted in greater drainage than inversion tillage, 
while long-term NT produced slightly lower drainage than inversion 
tillage. NT over more than 5 years tended to result in 14–16% lower 

NO3
− concentrations in leachates than inversion tillage. While short-

term NT resulted in 10% lower crop yield than inversion tillage, no 
significant yield penalties were found with medium- to long-term 
use of NT.

3.2.4  |  Influence of water input

When water input was low (<2 mm day−1), NT tended to produce 
greater NO3

− leaching than inversion tillage (Figure 5a,b). For exam-
ple, on average, NT resulted in 15% greater (p = 0.07) area-scaled 
and 39% greater yield-scaled NO3

− leaching than inversion tillage 
under low water input (<2 mm day−1) (Figure 5a,b). In contrast, the 
effects of NT on NO3

− leaching were insignificant under medium 
and high water input, although the NO3

− concentration in NT lea-
chates was significantly lower (−16%) under medium water input 
(2–3 mm day−1) (Figure 5d). NT produced lower relative yields (−16%) 
than inversion tillage where water inputs were low (<2 mm day−1), 
but there were no significant differences where water inputs were 
medium (2–3 mm day−1) or high (>3 mm day−1) (Figure 5e).

3.2.5  |  Influence of nitrogen input

Overall, under both low (0–100 kg ha−1) and high (>200 kg ha−1) rates 
of N input, NT tended to result in greater NO3

− leaching than in-
version tillage (Figure 6a,b). For example, on average, NT produced 
significantly greater yield-scaled NO3

− leaching under high (39%) 
and low (29%) nitrogen inputs (Figure 6a,b). The effects of NT on 
drainage were not related to nitrogen input (Figure 6c). Moreover, 
NT resulted in significantly lower nitrate concentrations (−13%) at 
medium N application rates and lower crop yield (−20%) at low N 
application rates (Figure 6e).

F I G U R E  3  Relative change in (a) area-scaled NO3
− leaching, (b) yield-scaled NO3

− leaching, (c) drainage volume, (d) NO3
− concentration 

of leachate samples, and (e) crop yield in no-till (NT) compared with inversion tillage, segregated by soil texture. The sample size for each 
category is shown above the mean relative change. Error bars are 95% confidence intervals. The effects are significant at p < .05 where error 
bars do not overlap zero.
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3.2.6  |  Influence of crop type

While NT tended to produce greater area-scaled NO3
− leaching than 

inversion tillage for soybean (Figure 7a), NT resulted in significantly 
greater yield-scaled NO3

− leaching for most crop types except 
soybean (Figure  7b). In general, the effects of crop type on the 
response of drainage to NT were similar to those on area-scaled 
NO3

− leaching (Figure 7c).

3.3  |  Relative importance of factors affecting the 
response of area-scaled NO3

− leaching to NT

SOC was the most important factor affecting area-scaled NO3
− 

leaching under NT compared with inversion tillage (Figure  8). In 
addition, soil texture, water input, and NT duration also significantly 
affected the response of area-scaled NO3

− leaching to NT. The 

effects of crop type and nitrogen input were not statistically 
significant.

4  |  DISCUSSION

4.1  |  NT effects on NO3
− leaching and potential 

mechanisms

This study confirmed the findings of a previous study (Daryanto 
et al., 2017) that NT results in greater NO3

− leaching losses than tilled 
cropping systems. However, the present study also determined that 
the significantly greater NO3

− leaching losses associated with NT are 
restricted to comparisons with inversion tillage, and that there were 
no significant differences between NT and non-inversion tillage, in 
part due to their similar effects on soil properties (Blanco-Canqui 
& Ruis,  2018). Compared with non-inversion tillage, NT has been 

F I G U R E  4  Relative change in (a) area-scaled NO3
− leaching, (b) yield-scaled NO3

− leaching, (c) drainage volume, (d) NO3
− concentration of leachate 

samples, and (e) crop yield in no-till (NT) compared with inversion tillage segregated by NT duration. The sample size for each category is shown above 
the mean relative change. Error bars are 95% confidence intervals. The effects are significant at p < .05 where error bars do not overlap zero.

F I G U R E  5  Relative change in (a) area-scaled NO3
− leaching, (b) yield-scaled NO3

− leaching, (c) drainage volume, (d) NO3
− concentration of leachate 

samples, and (e) crop yield in no-till (NT) compared with inversion tillage segregated by water input. The sample size for each category is shown above 
the mean relative change. Error bars are 95% confidence intervals. The effects are significant at p < .05 where error bars do not overlap zero.
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    |  2179LI et al.

reported to have little effect on soil bulk density (Blanco-Canqui 
et al., 2017), aggregate stability (Abdollahi et al., 2017), macroporosity 
(Reichert et al.,  2017), or infiltration rates (de Moraes et al.,  2016). 
This also partly explains why the comparison of yield-scaled NO3

− 
leaching between NT and inversion tillage is similar to that between 
non-inversion tillage and inversion tillage (Figure  1b). The relative 
change in NO3

− leaching under NT compared with inversion tillage 
was not correlated with the absolute NO3

− leaching (Figure S3). This 
indicates that greater relative differences are not primarily associated 
with small absolute amounts of NO3

− leaching. In addition, this study 
highlighted that the greater NO3

− leaching associated with NT was 
magnified when it was normalized by yield. This was associated with 
yield penalties from NT compared with tillage, particularly in short-
term (<5 years) evaluations of NT conversions, as reported in previous 
meta-analyses (Pittelkow et al., 2015; Su, Gabrielle, & Makowski, 2021). 

In the context of eco-efficient and sustainable agriculture, the effects 
of management practices on the environment and on production 
are gaining increasing attention. Several previous studies have also 
used yield-scaled estimates of environmental impacts to compare 
the effects of NT to tilled cropping systems (Pittelkow et al., 2014; 
van Kessel et al., 2013). Our study highlights that trade-offs such as 
increased risk of NO3

− leaching must be considered, particularly in 
the initial years of NT implementation and in low-SOC soils, when 
converting cropping systems to conservation tillage practices.

NO3
− leaching is a product of drainage and the NO3

− concen-
tration in the drainage water. It has previously been suggested 
that NO3

− leaching is affected more by NO3
− concentration than 

by drainage volume because NO3
− concentration varies more be-

tween tillage systems than drainage (Spiess et al., 2020). This study, 
however, showed that the global effect of NT on NO3

− leaching 

F I G U R E  6  Relative change in (a) area-scaled NO3
− leaching, (b) yield-scaled NO3

− leaching, (c) drainage volume, (d) NO3
− concentration 

of leachate samples, and (e) crop yield in no-till (NT) compared with inversion tillage segregated by nitrogen input. The sample size for each 
category is shown above the mean relative change. Error bars are 95% confidence intervals. The effects are significant at p < .05 where error 
bars do not overlap zero.

F I G U R E  7  Relative change in (a) area-scaled NO3
− leaching, (b) yield-scaled NO3

− leaching, (c) drainage volume, (d) NO3
− concentration of 

leachate samples, and (e) crop yield in no-till (NT) compared with inversion tillage segregated by crop type. The sample size for each category 
is shown above the mean relative change. Error bars are 95% confidence intervals. The effects are significant at p < .05 where error bars do 
not overlap zero.
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2180  |    LI et al.

was primarily associated with its effect on drainage, rather than 
NO3

− concentration (Figure 1). Furthermore, the relative change 
in NO3

− leaching was more strongly correlated with drainage 
(R2  =  .46) than with NO3

− concentration (R2  =  .12) (Figure  S4). 
Therefore, globally, the effect of NT on NO3

− leaching, compared 
to inversion tillage, was mainly attributed (or more sensitive) to 
differences in drainage. This also implies that to mitigate nitrate 
leaching at the global scale more attention should be given to (i) 
reducing drainage under NT and (ii) reducing NO3

− concentration 
in drainage water under inversion tillage. The higher NO3

− concen-
trations in drainage water under inversion tillage may be partly as-
sociated with enhanced N mineralization, which may be attributed 
to faster rates of crop residue decomposition (Beare et al., 1992; 
Lupwayi et al., 2006) and the release of aggregate-protected or-
ganic matter (Beare, Hendrix, Cabrera, & Coleman,  1994; Six 
et al., 2000). Numerous strategies have been developed to miti-
gate the risk of NO3

− leaching losses by lowering soil NO3
− con-

centrations. These include, for example, growing cover crops 
(Carey et al., 2016; Nouri et al., 2022) and applying fertilizer using 
best management practices (e.g., plastic mulch, a better fertilizer 
placement, and split applications) (Ruidisch et al., 2013). Further 
research is needed to identify under which conditions NO3

− leach-
ing is more sensitive to drainage, and how to reduce NO3

− leaching 
by reducing drainage losses.

Greater drainage, and consequently NO3
− leaching, has been at-

tributed to NT's increased risk of macropore flow from bio-pores 
(Daryanto et al.,  2017; Spiess et al.,  2020). While this may be the 
case for specific studies (Miranda-Vélez et al.,  2022; Singh & 

Kanwar, 1991), it may not hold at the global scale. A recent global 
meta-analysis showed that NT typically results in higher micropo-
rosity, and lower macroporosity and saturated hydraulic conductiv-
ity than inversion tillage (Mondal & Chakraborty, 2022). Therefore, 
macropore flow may not be an important factor affecting the risk 
of NO3

− leaching in many NT cropping systems. In contrast, greater 
macropore flow under NT would be expected to result in more drain-
age water bypassing mobile soil nitrogen residing in the soil matrix, 
which would lead to reduced rather than increased NO3

− leaching in 
NT systems (Miranda-Vélez et al., 2022). It is widely reported that 
NT soils often have greater soil water content than tilled soils (De 
Vita et al., 2007; Jemai et al., 2013; Page et al., 2019). This has been 
attributed to higher water-holding capacity due to increased microp-
orosity (Mondal & Chakraborty, 2022), lower soil evaporation due to 
changes in pore size distribution (Yi et al., 2022) and higher plant res-
idue cover (De Vita et al., 2007), and lower water uptake (i.e., tran-
spiration) due to reduced crop growth and yield (Figure 1e) (Guan 
et al., 2015). Higher soil water content tends to lower the capacity of 
the soil to store additional water before triggering drainage, and this 
is likely to be the main reason for greater drainage and NO3

− leaching 
under NT relative to tillage (Lu et al., 2021; Yi et al., 2022). Therefore, 
proper management of water inputs and soil water content (e.g., re-
ducing irrigation inputs) is crucial to reducing drainage and nutrient 
leaching losses related to NT in cropping systems.

4.2  |  Factors affecting response of NO3
− leaching 

to NT

The response of NO3
− leaching to NT was most strongly affected 

by SOC. Greater NO3
− leaching loss under NT primarily occurred 

in soils with low SOC (<1%), whereas less NO3
− leaching occurred 

in soils with high SOC (>3%) (Figure 2). Interestingly, the greater 
NO3

− leaching loss under NT in low-SOC soils was associated 
with both greater drainage and higher NO3

− concentrations. The 
effects of SOC content on NO3

− concentrations under NT may be 
related to the following factors associated with SOC-rich soils: (1) 
greater aggregate-protected C and N; (2) greater immobilization of 
N due to accelerated microbial activities (Zuber & Villamil, 2016); 
and (3) higher crop N uptake. These effects are expected to be 
more pronounced under NT systems since NT generally enhances 
macroaggregates and aggregate stability (Liu, Wu, et al.,  2021), 
soil water conditions (Page et al., 2019), and carbon sequestration 
(Beare, Hendrix, & Coleman,  1994; Luo et al.,  2010). Previous 
studies have reported that, compared to tilled soils, NT soils 
have greater aggregate-protected C and N, which contributes 
to the physical protection of organic matter from microbial 
decomposition (Beare, Hendrix, Cabrera, & Coleman, 1994; Mikha 
& Rice, 2004; Oorts et al., 2007), and this effect was more obvious 
in higher SOC soils (Liu, Wu, et al., 2021). It is also evident that 
nitrogen immobilization increases with the increase in soil organic 
matter content because of a more active microbial community 
(Barrett & Burke,  2000). In addition, in contrast to low- and 

F I G U R E  8  Importance of variables for predicting the effect size 
(lnRR) of area-scaled NO3

− leaching identified by random forest 
analysis. Variable importance is the percentage increase in mean 
square error of the random forests model when the data for that 
variable were randomly permuted (ns: p > .05, *p < .05, **p < .01).
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medium-SOC soils, there is some evidence that NT may result 
in higher crop yields compared to tilled crops in high-SOC soils 
(Figure 2e) (Huang, Zhou, et al., 2015), which may be accompanied 
by an increase in crop N uptake and a decrease in residual soil 
nitrate available for leaching. Likewise, these higher crop yields 
under NT are expected to contribute to higher evapotranspiration 
and hence reduced drainage, while the opposite is true in low- 
and medium-SOC soils (<3%) (Figure  2). The results of this 
study suggest the potential for NT adoption in high-SOC soils to 
increase crop yields and mitigate NO3

− leaching risk. Note that it 
remains unclear if increasing SOC content at a given site could 
result in lower NO3

− leaching risk under NT. Future research is 
needed to verify if NO3

− leaching risk under NT can be mitigated 
by companion practices that increase SOC content, such as cover 
crops and biochar applications (Bai et al., 2019).

Our meta-analysis also revealed that greater NO3
− leaching 

losses under NT compared with inversion tillage were also asso-
ciated with medium-textured soils, short-term NT duration, and 
relative low water input agricultural production systems (relative 
dry climate). As discussed above, NT-induced increases in soil mi-
croporosity and soil water content may be the main causes for the 
greater amount of drainage and NO3

− leaching loss. For example, 
compared with tillage, NT has been shown to increase microporos-
ity in medium-textured soils more than in coarse- or fine-textured 
soils (Mondal & Chakraborty, 2022). Previous research has shown 
that NT soils have higher bulk density and soil penetration resis-
tance than tillage soils in the first few years, and that the differences 
also diminish with time (Blanco-Canqui & Ruis, 2018). The microp-
orosity of soils is typically higher in those with higher bulk density 
and greater penetration resistance (Houlbrooke & Laurenson, 2013; 
Yi et al.,  2022). This suggests that the increase in microporosity 
under NT mainly occurs in the short term, and the differences tend 
to decrease over time (Blanco-Canqui & Ruis, 2018). Although NT 
adoption in higher SOC soils is more likely to reduce the NO3

− leach-
ing risk, it remains unclear if the reduced NO3

− leaching risk under 
long-term NT is attributable to an increase in SOC content (Kan 
et al., 2021). The inconsistent effects of NT duration on the relative 
changes in SOC under NT compared to tilled soils reported in previ-
ous meta-analyses (Das et al., 2022; Kan et al., 2021; Li et al., 2020; 
Nunes et al., 2020; Peixoto et al., 2020), and the poor correlation 
between NT duration and SOC in the current study (Figure S5), sug-
gest that the influence of NT duration on the NO3

− leaching risk may 
not be associated with changes in SOC content. Greater soil water 
content under NT relative to that under tillage was more prevalent 
in drier climates (De Vita et al., 2007). The greater NO3

− leaching 
losses under NT compared with inversion tillage in areas with low 
water input, as reported in this study, is consistent with Daryanto 
et al. (2017) who reported that NT has greater NO3

− leaching risk rel-
ative to tillage mainly in dry years and dryland production systems.

Our meta-analysis also found that there was less NO3
− leaching 

under NT than under inversion tillage in fine-textured soils, which may 
be attributed in part to the higher SOC content of fine soils (Figure S6) 
(Burke et al.,  1989). The analysis also showed that NT had greater 

NO3
− leaching under low (0–100 kg ha−1) and high rates (>200 kg ha−1) 

of nitrogen application. This may have been due to poor crop es-
tablishment and low crop N uptake, as indicated by the significant 
crop yield decline at low application rates in NT systems (Figure 6e) 
(Pittelkow et al., 2015), and higher NO3

− concentration at higher ap-
plication rates (>200 kg ha−1) (Figure 6d). NT had greater area-scaled 
NO3

− leaching losses in soybean systems (Figure 7a). The reason for 
this is unclear, but the greater NO3

− leaching losses are consistent 
with greater drainage in soybean systems. Although the data from this 
study were insufficient to assess the interactions between different 
factors influencing the response of NO3

− leaching to NT, our results 
suggest the potential for important interactions between factors that 
need to be investigated further. For example, short-term NT in soils 
with low SOC resulted in relatively greater NO3

− leaching losses com-
pared with inversion tillage, whereas long-term NT was associated 
with a reduction in area-scaled NO3

− leaching in medium (RC = −24%) 
and high (RC = −22% with one sample only) SOC soils (Figure S7).

4.3  |  Risk of area-scaled NO3
− leaching from NT 

relative to inversion tillage at a global scale

The AICc index identified the best-fit regression equation for the 
effect size (lnRR) of area-scaled NO3

− leaching:

The equation shows that SOC, NT duration, water input, and soil 
texture explain 10% of total variations in the effect size (lnRR) of 
area-scaled NO3

− leaching at the global scale.
The regression equation (Equation 8) was applied to the cropping 

land at the global scale to gain a preliminary understanding of the 
risk of NO3

− leaching from the adoption of NT (Figure 9). Note that 
limited variations in effect size (or relative change) of area-scaled 
NO3

− leaching from NT explained by these variables were partly due 
to the limited number of datasets, hence relatively large estimation 
uncertainties may exist. For this reason, no changes in NO3

− leaching 
from NT are assumed when the relative changes are in the range 
of −5 to +5%; also by considering that 5% has usually been set as 
the threshold of non-significant change in geoscience (e.g., Hu & 
Si, 2014; Peterson & Wicks, 2006); and a change in NO3

− leaching 
from NT relative to intensive tillage is assumed when relative changes 
are greater than 5% or less than <−5%. More paired comparisons of 
NO3

− leaching under various tillage systems and conditions, particu-
larly over the long term, are required to create a more robust dataset 
for model development and associated predictions. However, this 
study's regression equation clearly captured that NT tends to signifi-
cantly (p < .05) decrease NO3

− leaching relative to inversion tillage in 
high-SOC soils and under long NT duration (Table S2).

In Europe and Oceania, NT is predicted to result in less NO3
− 

leaching than inversion tillage on average, while in other continents, 

(8)

lnRR=0.27−0.13×SOC−0.02×NT duration+0.03×Water input

−0.03(fine−textured soils)+0.13(medium−textured soils)

(

R
2
=10.4%

)

 13652486, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16618 by L

incoln U
niversity, W

iley O
nline L

ibrary on [13/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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NT is predicted to result in greater NO3
− leaching (Figure 9a). For 

example, our modeled predictions suggest that short-term (3 year) 
NT will result in greater area-scaled NO3

− leaching than tillage on 
63% of cropland in North America, but much less (22%) in Europe 
(Figure 9c). Correspondingly, the average relative change in area-
scaled NO3

− leaching with NT relative to inversion tillage was −13% 
(13% less) and +7% (7% more) in Europe and North America, re-
spectively (Figure  9b). Furthermore, our model also projects that 
the risk of NO3

− leaching decreases with increasing NT duration. 
It was estimated that the percentage of global cropping land with 
reduced risk of area-scaled NO3

− leaching under NT relative to in-
version tillage was 31%, 42%, and 54% under NT duration of 3, 8, 
and 15 years, respectively. While short duration NT (<3 years) in 
North America could increase area-scaled NO3

− leaching by 7%, it 
is predicted to decrease area-scaled NO3

− leaching by 16% after 
15 years. Similarly, the relative change in area-scaled NO3

− leach-
ing decreased from +15% to −10% from 3 years' NT duration to 
15 years' NT duration in South America. Therefore, the benefit of 
NT in reducing nitrate leaching relative to inversion tillage may be 
achievable in the long term. However, at this stage, the temporal 
changes in absolute NO3

− leaching under NT over the long term 
are unclear because data are lacking. Continuously improving soil 
structure and companion practices that are beneficial for reducing 
drainage and NO3

− concentration should be the key to mitigating 
NO3

− leaching.
Finally, it is important to note that the data obtained for this 

study are heavily weighted toward North American and European 

crop production systems, while suitable data from other significant 
areas of NT cropping (e.g., South America and Australia) were not 
available. These gaps need to be filled in the future to verify the 
applications of this study on a global basis.

5  |  CONCLUSIONS

Our meta-analysis confirmed that, on average, cropland recently 
converted to NT increased the risk of NO3

− leaching, but the ef-
fects were significant only where NT was compared with inver-
sion tillage. The NT effect was magnified when the NO3

− leaching 
was scaled by yield relative to area. Globally, on average, greater 
NO3

− leaching with NT was mainly attributed to greater drainage, 
rather than greater NO3

− concentration in the drainage water, 
highlighting the importance of regulating hydrological conditions 
for mitigating NO3

− leaching losses under NT systems. This study 
indicated the importance of SOC and other factors (e.g., soil tex-
ture, water input, and NT duration) in affecting the response of 
NO3

− leaching to NT relative to inversion tillage. A preliminary 
analysis using a regression equation developed from the data and 
presented in global maps showed the variations in risk of NO3

− 
leaching to NT under different NT duration scenarios. This study 
also highlighted that adopting NT in regions with high SOC soils 
could yield the greatest benefits in terms of reducing NO3

− leach-
ing losses with NT, relative to inversion tillage, especially in the 
longer term.

F I G U R E  9  (a) Global maps of the relative change of area-scaled NO3
− leaching under no-tillage (NT) relative to inversion tillage under 

three different NT duration scenarios (3, 8, and 15 years). Decrease, no change, and increase refer to relative change of NO3
− leaching in NT 

relative to inversion tillage with <−5%, −5–5%, and >5%, respectively; (b) mean value of the percentage change in area-scaled NO3
− leaching 

under NT relative to inversion tillage under three NT duration scenarios (3, 8, and 15 years) on different continents; (c) percentages of three 
different risk levels under different NT duration scenarios on different continents.
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