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Abstract
Despite the substantial impact of rivers on the global marine litter problem, riverine litter has been accorded inadequate 
consideration. Therefore, our objective was to detect riverine litter by utilizing middle-scale multispectral satellite images and 
machine learning (ML), with the Tisza River (Hungary) as a study area. The Very High Resolution (VHR) images obtained 
from the Google Earth database were employed to recognize some riverine litter spots (a blend of anthropogenic and natural 
substances). These litter spots served as the basis for training and validating five supervised machine-learning algorithms 
based on Sentinel-2 images [Artificial Neural Network (ANN), Support Vector Classifier (SVC), Random Forest (RF), Naïve 
Bays (NB) and Decision Tree (DT)]. To evaluate the generalization capability of the developed models, they were tested on 
larger unseen data under varying hydrological conditions and with different litter sizes. Besides the best-performing model 
was used to investigate the spatio-temporal variations of riverine litter in the Middel Tisza. According to the results, almost 
all the developed models showed favorable metrics based on the validation dataset (e.g., F1-score; SVC: 0.94, ANN: 0.93, 
RF: 0.91, DT: 0.90, and NB: 0.83); however, during the testing process, they showed medium (e.g., F1-score; RF:0.69, SVC: 
0.62; ANN: 0.62) to poor performance (e.g., F1-score; NB: 0.48; DT: 0.45). The capability of all models to detect litter was 
bounded to the pixel size of the Sentinel-2 images. Based on the spatio-temporal investigation, hydraulic structures (e.g., 
Kisköre Dam) are the greatest litter accumulation spots. Although the highest transport rate of litter occurs during floods, 
the largest litter spot area upstream of the Kisköre Dam was observed at low stages in summer. This study represents a pre-
liminary step in the automatic detection of riverine litter; therefore, additional research incorporating a larger dataset with 
more representative small litter spots, as well as finer spatial resolution images is necessary.
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Introduction

The rivers are the main source of marine litter, as approxi-
mately 80% of marine litter originates from inland sources 
(González et al. 2021, González et al. 2016). The term 
“riverine litter” refers to the natural and artificial materi-
als transported by a river, which are often trapped by the 

banks and hydraulic structures. The natural and artificial 
litter is mixed and drifting together in a form of litter spots. 
The litter can enter the fluvial system by run-off and direct 
input, and during its transportation, it degrades to smaller 
particles (González et al. 2016). The artificial floating mate-
rials, especially plastics, originate from public waste, land-
fill sites, agricultural fields, and industrial disposals (Van 
Emmerik et al. 2018). Rech et al. (2014) classified artificial 
litter according to its ability to float, referring to persistent 
buoyant (plastics and wood), short-time buoyant (cigarette 
stubs, paper, and textiles), and non-buoyant litter (concrete, 
metal, and glass).

The monitoring of riverine litter aims to identify its 
sources, quantity, and fluxes, which aids researchers and 
decision-makers in evaluating their environmental impacts. 
Sampling locations usually are at potential litter hotspots, 
which are close to populated areas. The sampling timing is 
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influenced by hydro-meteorological conditions (e.g., rain-
fall, flood) and human factors (e.g., operation of dams). 
Until now, there is no worldwide standardized approach for 
riverine litter monitoring. Within the observation methods 
the quantity and litter type are visually determined (Doyle 
et al. 2007, Van Emmerik et al. 2018) or automatically 
with the aid of images collected by cameras (De Giglio 
et al. 2021, Kataoka &Nihei 2020), drones (Geraeds et al. 
2019, Wolf et al. 2020) or satellites (Biermann et al. 2020, 
Jakovljević et al. 2019, Themistocleous et al. 2020). The 
collection methods depend on collecting litter using nets, 
sieves, or pumps, and the samples are analyzed in the field 
or laboratory.

The automatic monitoring of riverine litter enables con-
tinuous observation, resulting in more representative litter 
data. Though drones and fixed cameras provide very high-
resolution images, they usually cover a limited area. Mean-
while, multispectral satellites provide coarser images, but 
they cover large areas. The current development in the spa-
tial, spectral, and temporal resolutions of many earth obser-
vation systems (e.g., Landsat, Sentinel-2, Worldview, Spot) 
could be exploited to monitor riverine litter periodically. 
Therefore, this study focuses on the development of river-
ine litter detectors based on satellite images, which would 
provide more riverine litter data due to their wide coverage. 
Deriving a model to detect riverine litter is challenging, as 
the process is influenced by several factors related to water, 
atmosphere, sunlight, and the litter itself. Goddijn-Murphy 
et al. (2018) stated that the downwelling sunbeam behaves 
differently with the floating litter than with water in terms 
of reflectance, transmission into the water, and reflection 
passing through the litter, which paved the road of automatic 
detection of litter. However, the spatial and spectral resolu-
tions of the employed sensor are still questionable.

Hu (2021) studied the extent to which the various forms 
of plastic litter could be detected by the visible and near-
infrared spectral bands, concluding that microplastic detec-
tion is impossible by any present or planned optical sen-
sors; however, macro-plastics are possible. Topouzelis et al. 
(2019) investigated the capability of various remote sensing 
platforms (i.e., UAV cameras, Sentinel-1, and Sentinel-2) to 
detect artificial plastic targets, and the results revealed the 
potential of these platforms to detect plastics; however, the 
detection influenced by the sub-pixel coverage of plastic. 
Martínez-Vicente et al. (2019) studied the prerequisites for 
a satellite sensor platform that can be used to detect marine 
plastic debris and concluded that the NIR and SWIR bands 
are the most suitable for this purpose.

The remote sensing methods used to monitor litter can 
be categorized into three groups. (1) Bio-optical modeling 
method involves using a model to predict the optical prop-
erties of water, including absorption and scattering of light, 
in the presence of litter. The model is highly influenced 

by the spectral signature of litter and water, as well as the 
geometrical optics of the sensor. (2) Deep learning models 
aim to automate the detection of litter through the appli-
cation of computer vision tasks such as image classifica-
tion (Jakovljević et al. 2019), object detection (Hegde et al. 
2021), and image segmentation (Mifdal et al. 2021). (3) 
Indices method aims to develop an index that discriminates 
between litter and water based on their spectral signatures. 
For instance, the Floating Debris Index (FDI) (Biermann 
et al. 2020) was developed based on enhancing the differ-
ence between the near-infrared (NIR) band and the baseline 
reflectance of near-infrared. The Plastic Index (PI) (Themis-
tocleous et  al. 2020) detected macro-plastics in marine 
environments effectively by combining the visible (red) and 
near-infrared (NIR) bands.

Although bio-optical modelling could detect riverine lit-
ter with an elevated accuracy, few studies attempted to apply 
it due to its complexity and sensitivity to slight changes in 
the optical properties of water caused by changes in the con-
centrations of active water constituents (Moore et al. 2014). 
Goddijn-Murphy et al. (2018) proposed two structures of 
bio-optical models for detecting the fraction of the surface 
area of macro-plastic over the total surface area of water 
based on single and dual bands. The detection of the spectral 
indices usually needs further analysis since they usually mix 
between litter spots and other materials. For example, Bier-
mann et al. (2020) improved FDI identifications by using the 
Normalized Difference Vegetation Index (NDVI) to elimi-
nate false vegetation identifications and the Naive Bayes 
algorithm for separating different litter materials.

Therefore, this study focuses mainly on image classifi-
cation employing some traditional machine learning algo-
rithms to detect riverine litter due to its simplicity, high 
detection accuracy, and generalization capability (Szeliski 
2010). De Giglio et al. (2021) applied supervised (ISO-
DATA and K-means), unsupervised (Maximum likeli-
hood), and machine learning (decision tree) classification 
techniques to detect plastic litter in images collected by the 
multispectral camera from four different environments in the 
Reno River, Italy. Unsupervised classifiers lost most plastic 
samples, while supervised ones only detected pure plastic 
and misclassified iron as plastic. The decision tree had the 
best accuracy (>80%). Other research has attempted to use 
deep learning algorithms for detecting litter; however, these 
algorithms require a large amount of training data which 
is not readily available in the case of riverine litter due to 
a shortage of data. In contrast, traditional machine learn-
ing algorithms can often achieve good performance with 
limited data (Shinde &Shah 2018). A novel Conventional 
Neural Network (CNN)-based models for detecting and 
quantifying litter and macro-plastics was developed by 
Wolf et al. (2020). It consists of two parts: Plastic Litter 
Detector (PLD)-CNN (83% accuracy) classifying images 
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into categories (e.g., sand, water, plastic, and vegetation) 
and Plastic Litter Quantifier (PLQ)-CNN (71% accuracy) 
classifying macro-plastics into subcategories (e.g., bottles 
and bags). A recent study presented an automatic learning 
approach to detect riverine litter based on image segmen-
tation architectures (e.g., U-Net and DeeplabV3+) with a 
mean Intersection over Union (IoU) of 0.82 (Solé Gómez 
et al. 2022). The dataset of litter spots was created based on 
news, social media, and published articles due to the short-
age of riverine litter data.

Most of the studies were performed on seas (Biermann 
et al. 2020, Themistocleous et al. 2020), and very few in 
rivers (Jakovljević et al. 2019, Solé Gómez et al. 2022), 
thus more research efforts are needed to understand the 
sources, pathways, and sinks of riverine litter. The avail-
ability of litter data was a challenge for many studies; thus 
they constructed artificial litter targets (Themistocleous et al. 
2020), or collect data on litter accumulation events from 
social media or scientific reports (Biermann et al. 2020, Solé 
Gómez et al. 2022). Furthermore, there is a lack of litter 
detector models with sufficient generalization capability 
(Jia et al. 2023). Therefore, we aimed to offer an alternative 
methodological approach based on very high spatial reso-
lution images (i.e., Google Earth) as a source for riverine 
litter data to build riverine litter detectors based on Sentinel 

2 images and machine learning (ML) algorithms and test-
ing their generalization capabilities. Our goals are to (1) 
test high spatial resolution images as a source of riverine 
litter distribution data; (2) compare various ML algorithms 
(DT, NB, RF, SVM, and ANN) to detect riverine litter spots 
based on Sentinel-2 images; (3) define the areal limit of the 
litter spots that could be recognized by the Sentinel-2 images 
and testing their generalization capabilities; (4) reveal the 
spatio-temporal dynamism of the riverine litter along a 175 
km-long reach of a medium-sized river to support mitiga-
tion measures.

Study Area

The Tisza River is a main tributary of the Danube (catch-
ment area: 157,200  km2, length: 966 km; ICPDR 2008). Its 
catchment area is shared between five countries (Romania: 
46.2%, Hungary: 29.4%, Slovakia: 9.7%, Ukraine: 8.1%, 
and Serbia: 6.6%) (Figure 1), which causes environmental 
conflicts between the upstream and downstream countries. 
During floods, the river conveys a significant amount of sed-
iment and litter due to the inundation of industrial, mining, 
agricultural, and municipal waste areas. Flood waves usu-
ally develop in early spring and early summer, whereas low 

Figure 1.  A) The Tisza River springs in Ukraine, joining the Danube 
River in Serbia. At some locations (1-14), litter spots were identified 
based on the Google Earth database. B) Examples of the identified 

litter spots on Very High Resolution (VHR) images. The numbers (3, 
5, and 8) refer to the number of litter spots shown in A
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stages are typical in the second half of the year (Amissah 
et al. 2018). The flow conditions, and thus the litter trans-
port and accumulation, are influenced by three dams. The 
channel of the Tisza (mean width: 164 m) is sinuous with 
highly meandering sections, where the bank erosion rate is 
1.7 m/y (Kiss et al. 2019), thus at these sections, organic 
debris frequently gets into the river. The mean channel depth 
is 14.1 m; thus, the woody debris is easily transported away 
and rarely stranded.

The greatest waste producer in the catchment is Ukraine 
(12 million tons/year), while the least is produced in Slova-
kia (2.4 million tons/year). In Serbia and Ukraine, only ca. 
1% of the waste is recycled, and the situation is best in Hun-
gary (36%) and Slovakia (38%) (Cewep 2021). To gain an 
insight into the quantity of transported riverine litter in the 
Tisza, the Hungarian authorities remove 90 to 10,000 tons 
of floating litter annually from the river, most of which (ca. 
67%) are from the Hungarian Upper Tisza (Idex.hu 2019, 
Siklósi 2017). The litter removed from the Middle Tisza at 
Kisköre Dam (Katona 2019) contains woody debris (9%), 
communal waste (12%), and other organic material (79%) 
(e.g., leaves, branches, and grass) (Figure 2), thus the ratio of 
the natural to anthropogenic litter is 88:12. Interestingly, the 
highest flood waves (between 2007 and 2017) were accom-
panied by the greatest volumes of riverine litter that was 
lifted (e.g., in 2010, 2015, and 2017) (Katona 2019), indicat-
ing the significant role of floods on litter transport.

Material and Methods

The VHR images provided by the Google Earth database 
were utilized to identify litter spots along the Tisza River 
(Hungary), and they were employed to train, validate and 
test five ML algorithms classifying Sentinel-2 images (Fig-
ure 3). The best-performing model was employed to map 

the spatio-temporal distribution of riverine litter along a 175 
km-long section of the Middle Tisza.

Remote sensing data

Very High spatial Resolution (VHR) images

Sentinel-2 images could provide a reliable and recurring 
monitoring option for riverine litter as a result of their 
free availability, the high temporal resolution of 3-5 days, 
and their wide spectral range of 13 bands. However, their 
medium spatial resolution (10-60 m) increases the chances 
of false detection of riverine litter manually. In contrast, the 
VHR images from the Google Earth database could pro-
vide data about litter accumulation spots in rivers due to 
their high spatial resolution (< 1m), making it possible to 
recognize fine details. Therefore, the lower altitude orbit-
ing sensors of the Google Earth database which provides 
VHR images (e.g., Airbus constellation: Pléiades Neo and 
Pléiades: 50 cm; Maxar constellation: Worldviews 3: 31cm; 
GeoEye: 41 cm) were employed to search for litter accumu-
lation spots along the Tisza River, Hungary, between July 
2015 and May 2021 (Figure 1A and B). Altogether 13 VHR 
images containing litter spots were employed including 3 
images from Maxar and 10 images from Airbus constella-
tions. Due to the limited number of available VHR images, 
historical Sentinel-2 images were also explored focusing 
on the identified spots in the VHR images to increase the 
dataset size. Besides, we concentrated mainly on the large 
and temporally static litter spots (e.g., upstream of hydrau-
lic structures) to avoid the labeling errors of litter spots in 
Sentinel-2 images. During the labeling process, only pixels 
with reflectance anomalies were considered. All the identi-
fied litter spots in the VHR and Sentinel-2 images were used 
to train, validate, and test the ML algorithms.

Figure 2.  Temporal changes of 
the removed litter at the Kisköre 
Dam, Middle Tisza (2007-2017) 
(data source; Katona 2019)
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Sentinel‑2 images

Altogether 77 Sentinel 2A-B images were acquired from the 
Copernicus Open Access Hub (ESA 2021a) (2015-2021). 
Sixteen images were used to train, validate, and test the 
ML algorithms, while 61 images were used to reveal the 
spatio-temporal distribution of the litter along the Middle 
Tisza. The 16 images were obtained from the “T34UEU”, 
“T34TDT” and “T34TDS” tiles, as they covered almost the 
whole river in Hungary; moreover, they were selected to be 
as synchronous as possible with the acquisition dates of the 
VHR images (mean difference: 2.6 days). The 61 images 
were obtained from the “T34TDT” tile.

Most of the acquired images were in level-2A; however, 
older images (e.g., 2015-2016) were available in level-1C; 
thus, they were atmospherically corrected by the Sen2Core 
255 processor in SNAP 8.0 software (ESA 2021b). All bands 
were resampled to 10 m using the nearest neighbor resam-
pling method, where each pixel value in the new band is 
replaced by the value of its closest neighbor from the original 

band based on the Euclidean distance. Then, the Normal-
ized Difference Water Index (NDWI) (McFeeters 1996) was 
applied to extract the bank lines. Three classes were identi-
fied: (a) accumulated litter spots, (b) water, and (c) man-made 
structures (dam, bridge, and ship). For each litter spot, an 
Area of Interest (AOI) was identified, and the reflectance 
values for each pixel were extracted; thus, 10 spectral reflec-
tance values representing the bands; B2 (492 nm), B3 (559 
nm), B4 (664 nm), B5 (704 nm), B6 (740 nm), B7 (782 nm), 
B8 (832 nm), B8a (864 nm), B11 (1613 nm), and B12 (2202 
nm) were extracted. As the mean width of the Tisza is 164 m, 
the river is covered by ca. 16 pixels, which makes the labeling 
process of the historical Sentinel-2 images difficult at pixel 
scale. Therefore, only the pixels which showed significant 
reflectance anomalies were considered as litter, thus the pix-
els located on the peripheries of the large litter spots were 
discarded. For the water and obstruction classes, the same 
number of pixels as the litter class was identified.

The Plastic Index (PI), Floating Debris Index (FDI), 
NDWI, and Normalized Difference Vegetation Index 

Figure 3.  Flowchart summa-
rizing the methodology of the 
study
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(NDVI) (Rouse et al. 1974) in Equations 1-4 were integrated 
into the training process of the models. Thus, they and the 
spectral bands were considered as independent variables. 
The range of the PI (0-1) is consistent with the reflectance 
of the bands; however, the FDI, NDWI, and NDVI range 
between -1 and +1, therefore they were normalized using 
the Min-Max Normalization technique (Yu et al. 2009) in 
Equation 5.

Where RNIR, RRED, RRE2, RSWIR1 and RGREEN are the reflec-
tance of the near-infrared (NIR), red (RED), red edge 2 
(RE2), shortwave infrared 1 (SWIR1) and green (GREEN) 
bands of the Sentinel-2 images; λNIR, λRED, and λSWIR1 are the 
central wavelength of the NIR, RED, and SWIR1 bands; X 
is the original pixel value, X` is the normalized pixel value, 
and min(X) and max(X) are the minimum and maximum 
values of X.

Training, validation, and testing of the applied 
algorithms

Our goal was to detect only riverine litter and differenti-
ate it from the background (water and obstructions), which 
were considered less important classes in our study. To 
achieve this, the three-pixel classes (litter spot, water, and 
obstruction) were transformed into binary classes: litter (lit-
ter spots) and non-litter (water and obstruction). This con-
version would simplify and accelerate the training process 
while improving performance with algorithms specifically 
designed for binary classification, such as SVC (Chih-Wei 
& Chih-Jen 2002). All pixels were divided into training, 
validation, and testing datasets. Three litter spots with vari-
ous areas (and their surrounding ≈ 1.0 km of the river) were 
selected for testing, while the rest of the data were used to 
train and validate the algorithms. The area of a pixel is 100 
 m2, therefore, we selected one small litter spot (≤1 pixel), 
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another medium spot (2-4 pixels), and one large spot (≥4 
pixels) for testing the derived algorithms. The selected small 
and medium spots were located upstream of the Tiszalök 
Dam, while the large spot was upstream of the Kisköre 
Dam (Figure 1). The estimated area of the three spots by 
the derived models was compared with the area determined 
based on the VHR image. On the other hand, the rest of the 
pixels (1974 pixels) were used for training and validation. 
The Python scikit-learn library was used to split these pixels 
randomly to 80% for training and 20% for validation.

Five supervised ML algorithms, such as Decision Tree 
(DT), Naïve Bays (NB), Support Vector Classifier (SVC), 
Random Forest (RF), and Artificial Neural Network (ANN), 
were applied to build binary classification models to identify 
litter spots. All applied settings and parameters were cho-
sen after fine-tuning to get the best available classification 
results. The fine-tuning was performed manually by defining 
a bounded domain for every hyperparameter and selecting 
random values until reaching the best classification accu-
racy. The SHapley Additive exPlanations (SHAP) (Lundberg 
&Lee 2017) was used to explain the contribution of each 
feature (i.e., bands and spectral indices) in the overall accu-
racy of the five models. The contribution of each feature to 
the overall accuracy of the model is calculated by assuming 
the accuracy in the case of all features included on one hand, 
and all but the specific feature included on the other hand. 
Thus, the contribution of this feature could be identified. 
The contribution of each feature is represented in a SHAP 
value, which is defined as the average of the marginal con-
tributions across all permutations. The summary plot was 
adopted to represent the results of the SHAP analysis which 
shows not only the features sorted in descending order but 
also how they are affecting either positively or negatively. 
As this study applied five machine learning algorithms (i.e., 
DT, NB, SVC, RF, and ANN) with different structures, the 
three explainers (i.e., tree, kernel, and deep explainers) 
were applied. The tree explainer was used for the DT and 
RF models, the deep explainer with ANN, and the kernel 
explainer with the NB and SVC.

The Decision Tree (DT) is a non-parametric supervised 
ML algorithm. It splits the nodes on all entered features; 
then, the algorithm decides the further splits based on the 
homogeneity of the resulting sub-nodes. As several DT 
algorithms control the splitting of nodes (Rokach &Mai-
mon 2005), in this study, the CART algorithm integrated 
into the scikit-learn library was applied to build the model. 
The “Gini” criterion was applied to measure the quality of 
the split; moreover, the “best” splitter method was applied.

The Naïve Bays (NB) is a probabilistic supervised classi-
fier developed based on Bayes' theorem and Naïve assump-
tion (Friedman et al. 1997). The scikit-learn library was 
applied to build an NB model to identify litter spots. The 
library has three NB algorithms; we applied the Gaussian 
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NB, assuming that the features follow a normal distribution 
(Biermann et al. 2020). For each pixel, the algorithm cal-
culated its probability to be litter or non-litter, based on the 
reflectance and the spectral indices values; afterward, the 
algorithm assigned this pixel to the highest probability class.

The Support Vector Machine (SVM) aims to draw a 
hyperplane in “n” dimensions, with the maximum margin 
separating the data into classes distinctly (Cortes &Vapnik 
1995). The maximization of margin distance provides some 
sort of guarantee that the future predicted point would be 
classified accurately. The Support Vector Classifier (SVC) 
algorithm in the scikit-learn library was applied. The SVC 
has several kernels (i.e., linear, polynomial, sigmoid, and 
Radial Basis Function-RBF) used based on the nature of 
the designated data. These kernels were tested; finally, the 
RBF was applied, as it produced the highest accuracy. The 
regularization parameter (c) was set to 1000.

The Random Forest (RF) is based mainly on the deci-
sion tree algorithm (Breiman 2001). The input data are ran-
domly divided into subsets through bagging or bootstrap 
aggregating to form small decision trees. Every decision tree 
contains a certain number of features, and it produces its 
decision based on these features and the selected input. The 
final decision of the RF is based on the average or major-
ity voting of the resulting decisions from the subsets. The 
RF classifier in the scikit-learn library was applied. After 
testing, the accuracy did not improve significantly after 150 
trees, thus the number of trees was set to 150.

The Artificial Neural Network (ANN) consists of a set 
of cells (neurons) connected to each other (McCulloch and 
Pitts 1943). The ANN is organized into three layers (input, 
hidden, and output). The neurons are connected by randomly 
initiated weights, then, they were updated during the train-
ing process. The output of the weighted sum of inputs is 
controlled by the activation function, then it is fed to the sub-
sequent neuron. We applied the sequential model in Tensor 
Flow`s Keras API to build the litter model. The constructed 
model has one input layer consisting of 14 neurons, three 
hidden layers with 14, 12, and 8 neurons, and one output 
layer with one neuron. The ReLU was selected as the activa-
tion function for the hidden layers, while the sigmoid func-
tion was applied for the output layer. A dropout layer with a 
rate of 0.5 was added to avoid overfitting. The “binary cross-
entropy” loss function and the “adam” optimizer functions 
were applied. The batch size was set to 32 and epochs to 400.

To validate the derived ML models, 20% of pixels were 
used. The classification report and the Cohen kappa score 
metrics in the scikit-learn library were applied to calculate 
the overall accuracy, precision, recall, F1-score, and Cohen 
kappa score (K-hat) for the validation and testing datasets 
(Equations 6-10; Congalton 1991). These metrics are calcu-
lated based on four sets of scores: True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN). 

Additionally, random classifications of the same size as the 
testing dataset were generated and compared to the accuracy 
of the models to ensure that they were thoroughly trained. 
The overall accuracy, precision, recall, and f1-score range 
from 0 to 1 with the best results being closer to 1; mean-
while, the Cohen kappa score (K-hat) ranges from -1 to 1 
with values close to 1 indicating strong agreement between 
the predicted and ground truth data.

The spatio-temporal dynamism of the litter spots was 
analyzed in the Middle Tisza by applying the best-derived 
algorithm to all available images (61 Sentinel-2 images: 
2015-2021). The seasonal Mann-Kendall trend analysis test 
(Kendall 1975, Mann 1945) was applied to the time series 
of the area of litter spot No. 8 (Figure 1) to reveal the tem-
poral trend in litter accumulation. As the river behaves dif-
ferently during the low and high stages, the seasonal Mann-
Kendall test was employed considering two seasons: flood 
(March-April & June-July) and non-flood (August-February) 
seasons.

Results

Litter spots and spectral signature

Based on the visual interpretation of the VHR images, 14 
litter spots were detected along the Hungarian section of 
the Tisza River (Table 1., Figure 1). Some were identified 
only once at most locations; however, upstream of hydrau-
lic structures, the accumulation spots appeared repeatedly 

(6)Overall accuracy =
TP + TN

TP + TN + FP + FN

(7)Precision
(

user�s accuracy
)

=
TP

TP + FP

(8)Recall
(

producer
�

s accuracy
)

=
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TP + FN

(9)F1 − score = 2 ∗
Recall ∗ Precision

Recall + Precision

(10)

K − hat =
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and expected agreement =
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(e.g., at the Kisköre Dam, Figure 1). Within the investigated 
period (2015-2021) the most spots appeared in 2020. Within 
a year, usually they appear in March, June, and August. The 
size of the spots ranges from 25  m2 (<1 pixel) to 9,600  m2 
(96 pixels).

The spectral signatures of litter, water, and obstruction 
based on the Sentinel-2 bands were depicted (Figure 4). 
Generally, the litter showed the highest reflectance along 
the spectrum. The water pixels showed high reflectance in 

the visible bands (especially in green: 560 nm); however, 
they dropped significantly in the near-infrared (NIR) and 
shortwave-infrared (SWIR) bands (705-2190 nm). The spec-
tral signature of the litter was very similar to the obstruc-
tion, as they have high reflectance at the SWIR bands (1610 
and 2190 nm) and significant reflectance at the NIR bands 
(740-865 nm); however, they showed low reflectance in the 
visible bands, especially in blue (490 nm) and red (665 nm). 
Thus, the NIR and SWIR bands are the most suitable to 

Table 1.  Characteristics of the 
identified litter spots (Figure 1) 
acquired by the Very High 
Resolution (VHR) images and 
the Sentinel-2 images. The 
three spots used for testing are 
indicated in bold

ID Latitude Longitude Date (VHR) Date (S2) Area  (m2) (pixels)

1 48°22'26"N 22°15'24"E 31/3/2019 23/3/2019 88 (<1)
2 48°23'13"N 22°08'02"E 31/3/2019 23/3/2019 75 (<1)
3/A 48°15'59"N 21°57'36"E - 23/3/2019 140 (≈1)
3/B 5/4/2019 2/4/2019 130 (≈1)
3/C 28/6/2019 26/6/2019 130 (≈1)
4 48°11'20"N 21°43'38"E 3/6/2017 4/6/2017 267 (≈3)
5/A 48°01'33"N 21°18'30"E 1/6/2019 1/6/2019 345 (≈3)
5/B 1/6/2019 1/6/2019 25 (<1)
6 47°52'06"N 21°03'58"E 20/3/2020 20/3/2020 40 (<1)
7 47°49'17"N 21°01'17"E 20/3/2020 20/3/2020 520 (≈5)
8/A 47°29'37.4"N 20°30'53.8"E 27/6/2017 24/6/2017 3405 (≈34)
8/B - 3/8/2017 4000 (40)
8/C - 24/4/2020 4300 (43)
8/D - 28/7/2020 9500 (95)
8/E 1/8/2020 2/8/2020 9474 (≈95)
8/F - 12/8/2020 9000 (90)
8/G - 22/8/2020 9600 (96)
9 47°22'14.54"N 20°26'7.66"E 29/7/2020 28/7/2020 204 (≈2)
10 47°15'11.18"N 20°23'51.50"E 9/8/2020 12/8/2020 220 (≈2)
11 47° 2'35.30"N 20°16'20.18"E 14/8/2017 8/8/2017 266 (≈3)
12 47° 2'35.30"N 20°16'20.18"E 9/8/2020 12/8/2020 181 (≈2)
13 46°57'1.78"N 20° 6'10.71"E 2/4/2020 4/4/2020 67 (<1)
14 46°14'40"N 20°09'02"E 3/3/2021 7/3/2021 90 (<1)

Figure 4.  Average reflectance 
of the riverine litter, obstruc-
tions, and water of the identified 
pixels on the Sentinel-2 images



Environmental Science and Pollution Research 

1 3

discriminate the litter and obstructions from water. The dis-
crimination between litter and obstructions is challenging; 
however, they could be differentiated by the 842 nm and 
1610 nm wavelengths, where the reflectance of the obstruc-
tion pixels slightly drops, whereas the reflectance of the litter 
pixels reaches its peak.

Validation of algorithms

The SVC achieved the highest classification metrics, while 
the NB achieved the lowest (Table 2.). The performance 
of the DT, SVC, RF, and ANN on the validation dataset 
was remarkable and comparable; for instance, the overall 
accuracy ranged from 0.93 (DT) to 0.96 (SCV). Due to the 
tradeoff between precision and recall, it is difficult to pro-
duce a very high precision and recall algorithm together. The 
ANN gave the best precision (0.98), but its recall was 0.89. 
The SVC gave the best recall (0.99), but with lower preci-
sion (0.9). The F1-score and K-hat demonstrated a similar 
pattern as accuracy in terms of the performance ordering of 
the five models. The accuracy of the random classification 
was significantly lower than its counterpart in the models, 

indicating that the models effectively learned the underlying 
patterns in the features and did not provide random predic-
tions. Although the metrics of the five tested algorithms are 
relatively high, it is worth noting that the validation dataset 
size is relatively small due to a shortage of riverine litter 
data; hence, the models' performance may vary with a larger 
dataset. Therefore, the next section tested the performance 
of all models to determine their generalization capability 
and the smallest size of litter spots that could be detected 
by each model, utilizing three litter spots of varying sizes 
(small, medium, and large spots).

To understand the contribution of each independent 
feature (i.e., bands and spectral index) in the prediction 
process, a SHAP summary plot was produced (Figure 5). 
On the vertical axis, the various features are sorted in 
descending order according to their contribution to the 
model predictions, while the SHAP sign on the horizon-
tal axis refers to the affection way of every independent 
feature in the model prediction. Based on the SHAP plots 
of the five models the SWIR (B11 and B12), NIR (B7 and 
B8), and spectral indices (PI, NDWI, and NDVI) were the 
most important features influencing the models. The most 

Table 2.  Validation metrics for the five applied algorithms based on the validation dataset

The values bold emphasized show other context of the data, or these are higher numbers as the results regarding to the other result number

Algorithm Overall accu-
racy

Precision Recall F1-score K-hat Random classification
Overall accuracy

Decision Tree (DT) 0.93 0.89 0.92 0.90 0.77 0.5
Naïve Bayes (NB) 0.89 0.86 0.80 0.83 0.58 0.55
Support Vector Classification (SVC) 0.96 0.9 0.99 0.94 0.85 0.42
Random Forest (RF) 0.94 0.88 0.95 0.91 0.84 0.45
Artificial Neural Network (ANN) 0.95 0.98 0.89 0.93 0.82 0.43

Figure 5.  On the SHAP plots the importance of each input feature is expressed. Here the best-performing models (SVC and ANN) are presented



 Environmental Science and Pollution Research

1 3

important contributing features for the DT were B11, PI, 
NDVI, and, B12; for the NB were B11, B12, B8, and 
NDWI; for the SVC were B11, B12, B8, and B7; for the 
RF were PI, B11, NDVI, and NDWI; and for the ANN 
were B11, B8, B12, and NDVI. The B11 was the highest 
contributing independent feature for four models (except 
for RF), followed by B12 and B8. The spectral indices, 
especially the PI, NDWI, and NDVI showed also high 
contributions, while the FDI was the least contributing 
index in all models.

Testing the algorithms

To assess the generalization capability of the developed 
models, they were tested on a larger dataset (Table 3., Fig-
ure 6-7). Besides, the actual area of the three testing litter 
spots ( Figure 1, Table 1.) was compared to their estimated 
areas by the five models (Table 4, Figure 6-7). The devel-
oped models exhibited varying degrees of generalization 
capability, ranging from a medium in the case of SVC, RF, 
and ANN (F1-score range: 0.62-0.69) to poor in the case of 

Table 3.  Evaluation metrics for 
the five developed models based 
on the testing dataset

Algorithm Overall 
accuracy

Precision Recall F1-score K-hat

Decision Tree (DT) 0.89 0.30 0.9 0.45 0.44
Naïve Bayes (NB) 0.92 0.32 0.98 0.48 0.48
Support Vector Classification (SVC) 0.97 0.51 0.8 0.62 0.62
Random Forest (RF) 0.96 0.56 0.9 0.69 0.68
Artificial Neural Network (ANN) 0.97 0.51 0.8 0.62 0.62

Figure 6.  A) A large litter spot 
upstream of the Kisköre Dam 
was identified on the VHR 
image (12/08/2020). The area 
of the same litter spot was 
identified differently by the 
algorithms. B: Decision Tree 
(DT), C: Naïve Bayes (NB), 
D: Support Vector Classifica-
tion (SVC), E: Random Forest 
(RF), and F: Artificial Neural 
Network (ANN). Background: 
Sentinel-2 (RGB 432)
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DT and NB (F1-score: 0.45-0.48). The models demonstrated 
high recall (0.8-0.98) in identifying litter pixels, especially 
the large spot; however, they struggled to avoid false detec-
tion of non-litter pixels, particularly for DT and NB, result-
ing in a precision range of 0.3-0.56. It is worth noting that 
the overall accuracy (0.89-0.97) of the models was relatively 
higher than F1-score (0.45-0.69) due to their high perfor-
mance in the majority class (water and obstructions), which 

overshadowed their poor-medium performance in the minor-
ity class (litter).

The largest spot upstream of the Kisköre Dam (9474  m2; 
95 pixels) was detected by all models with good accuracy; 
however, most of them slightly overestimated its area (Fig-
ure 6, Table 4). The DT and RF provided the greatest over 
estimated area, 3926  m2 (ca. 40 pixels) and 2526  m2 (26 
pixels), respectively. However, these algorithms correctly 

Figure 7.  A) The area of the 
medium and small litter spots 
upstream of the Tiszalök 
Dam on the VHR image 
(01/06/2019). The area of the 
same litter spot was identified 
variously by the algorithms. 
B: Decision Tree (DT), C: 
Naïve Bayes (NB), D: Support 
Vector Classification (SVC), 
E: Random Forest (RF), and 
F: Artificial Neural Network 
(ANN). Background: Sentinel-2 
(RGB 432)

Table 4  The applied models 
resulted in different areas  (m2, 
pixels) for the same selected 
litter spots with various sizes

The text and values bold emphasized show other context of the data, or these are higher numbers as the 
results regarding to the other result number

Method Large spot  m2 (pixels) Medium spot 
 m2 (pixels)

Small spot 
 m2 (pixels)

Kisköre Dam (02/08/2020) Tiszalök Dam (01/06/2019)

VHR images from GE (Reference data) 9474 (95) 345 (4) 25 (<1)
Decision tree (DT) 13400 (134) 400 (4) 0.0 (0)
Naïve Bays (NB) 10100 (101) 400 (4) 100 (1)
Support Vector Classifier (SVC) 11500 (115) 200 (2) 0.0 (0)
Random Forest (RF) 12000 (120) 400 (4) 0.0 (0)
Artificial Neural Network (ANN) 11200 (112) 400 (4) 0.0 (0)
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classified most of the dam body and water as non-litter tar-
gets. The NB gave also a good areal estimation, as it mis-
classified only an area of 626  m2 (≈6 pixels) as litter; but it 
misclassified almost the entire dam as litter. The ANN and 
SVC provided the best detection accuracy, as the ANN mis-
classified only 1726  m2 (≈18 pixels), and the SVC misclassi-
fied 2026  m2 (≈21 pixels); besides, they correctly classified 
the dam and water.

The algorithms identified the medium spot (345  m2) with 
various accuracies, but only the NB could identify the small 
spot (25  m2, <1 pixel), though, with low accuracy (Figure 7, 
Table 4). Although the DT identified the four pixels of the 
medium spot, it misclassified a significant area of the water 
as litter, but it correctly classified most of the dam as non-
litter. The NB was the only algorithm that detected both 
medium and small spots. However, it also misclassified the 
dam as litter. Despite the SVC having the highest accuracy 
and F1-score, it underestimated the area of the medium tar-
gets (2 pixels only were identified); however, its advantage 
is the low misclassification of water and dam pixels. The RF 
and ANN had similar results, as both detected the four pixels 
of the medium spot, but none of them detected the small 
spot. Both had a very low number of misclassified water 
and dam pixels; therefore, they could be considered the best 
estimators for medium spots.

Spatiotemporal dynamism of litter spots

The 175 km-long section of the Middle Tisza was ana-
lyzed in detail, by applying the SVC on Sentinel-2 images 
(2015-2021). The spatial distribution of litter spots during 
subsequent hydrological situations (e.g., bankfull flood, 

small flood, and low stage) were depicted as examples 
(Figure 8). The largest litter spot (2300-28,000  m2 or 
23-288 pixels) developed upstream of the Kisköre Dam, 
though several small to medium spots were identified 
along the reach. Their total area varied between 36,900 
and 99,000  m2 (369-990 pixels), and most of them were 
along the riverbanks, consistently with the identified spots 
on VHR images. However, the density of these spots was 
greater than what was observed in the VHR images. Prob-
ably because some pixels were misclassified as litter due to 
the shadow of trees and banks, or the bent and fallen trees 
were misclassified as litter. Some spots were observed 
around docks; but no accumulation was detected at bridge 
piers, consistently with the VHR images. The density of 
the identified litter spots was greater downstream of the 
Kisköre Dam (1.2-1.6 spot/km) than upstream of it (0.85-1 
spot/km) during all presented hydrological situations (Fig-
ure 8). As the litter from the upstream section is trapped by 
the dam, probably the litter downstream originated from 
the banks. Litter spots were rarely identified along straight 
or low sinuosity sections, as they usually were found at 
meanders with retreating banks and falling trees.

The location and size of the litter spots changed tem-
porally among the subsequent hydrological situations (Fig-
ure 8). The area of the litter spot at Kisköre Dam after small 
flood-waves was greater than after the bankfull spring floods 
(Figure 8A, B), referring to the importance of gradual fluxes. 
During low stages, the area of this litter spot decreased (Fig-
ure 8C) as it was lifted by the authorities. Focusing on the lit-
ter spot upstream of the Kisköre Dam, the mean area almost 
doubled between 2015 (10,300  m2 or 103 pixels) and 2019 
(18,367  m2 or 184 pixels) (Figure 9), but later it dropped by 

Figure 8.  The identified litter 
spots along the 175 km-long 
section of the Middle Tisza, by 
applying the Support Vector 
Classifier (SVC) on Sentinel-2 
images. A) bankfull flood 
(31/03/2019); B) small flood 
(09/06/2019); and C) low stage 
(22/09/2019)
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30% in 2020; however, a slight increase (12%) was observed 
in 2021. An overall increasing trend was confirmed by the 
seasonal Mann-Kendall test (p-value=0.001; Mann-Kend-
all Statistic S=120; Kendall's Tau=1). This increasing area 
could be explained by the lack of large floods.

Discussion

The five tested algorithms showed promising results in terms 
of riverine litter detection, especially the SVC and ANN as 
they can deal with continuous datasets, non-linear, and high 
dimensional classification problems. The presented binary 
nature of the classification problem also gave an advantage 
to SVC over DT and RF which are commonly used with 
multiclass problems. The SVC usually predicts the binary 
classes with high accuracies due to the formation of hyper-
plane and support vectors which separate the two classes 
distinctly. The NB gave the least prediction accuracy, as 
the bands and spectral indices used for prediction are cor-
related, thus the Bayes` assumption of independent condition 
was not satisfied. As the obstruction and water pixels were 
combined into one class the classification dataset became 
imbalanced; however, the imbalance ratio (non-litter: litter 
class=67:33) was considered as low, thus it did not affect the 
potential of the ML algorithms to detect the minority class 
(Zou et al. 2016).

The classification metrics in our study were compara-
ble to the literature. For instance, Biermann et al. (2020) 
detected macro-plastics in marine litter using the NB clas-
sifier with an overall accuracy of 0.86, which is very close 
to our classification accuracy by the NB (0.89). However, 
it is worth noting that they tackled a multiclass problem, 
which might explain the slightly lower classification accu-
racy than ours. They also indicated that their main chal-
lenge stems from the limited availability of images depicting 

macro-plastics, leading to occasions where the classifier 
confuses macro-plastics with either seawater and/or sea 
foam. Our study also encountered similar misclassification 
issues with the NB classifier, particularly in regard to distin-
guishing between riverine litter and obstructions. The ANN 
detected the riverine litter in the Drina River, Bosnia and 
Herzegovina with an overall accuracy of 0.97 (Jakovljević 
et al. 2019), which is slightly higher than our classification 
accuracy by the ANN (0.95). However, the authors reported 
that the developed ANN model often underestimates the 
presence of litter, due to the misclassification of mixed pix-
els (pixels covered by both water and litter) or pixels covered 
by water as a non-litter class. Besides, the presence of opti-
cally active water constituents, mainly suspended sediment, 
might also affect the classification accuracy; however, in our 
study, water pixels were labeled under various hydrological 
conditions, covering a wide range of suspended sediment 
concentrations to overcome this issue.

Based on the SHAP summary plots, the B11, B12, and B8 
bands highly contributed to all models, thus they could be 
employed to produce a litter spectral index in future studies. 
This could be interpreted by the spectral signature graph 
(Figure 4). The water has very low reflectance at these wave-
lengths, contrary to litter, thus they could be separated eas-
ily. The spectral signature of obstructions was very similar to 
the litter, therefore discrimination between them is challeng-
ing, but at these bands, the obstruction signatures are slightly 
to significantly lower than litter signatures. The integration 
of the various indices (especially PI, NDWI, and NDVI) 
in litter detection models was very useful, as they enhance 
the spectral feature of litter by minimizing the effects of 
illumination.

The tests on litter spot-sizes demonstrated that the clas-
sification of the SVC, ANN, and RF outweigh the DT and 
NB. Although the DT and NB models produced relatively 
high classification metrics in Table 2., they performed 

Figure 9.  A) Temporal changes in the area of the largest litter spot at the Kisköre Dam applying the Support Vector Classifier (SVC) on 61 Sen-
tinel-2 images (2015-2021). B) Annual average area of the litter spots
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poorly during testing. This might be attributed to the 
limited validation dataset (395 pixels) compared to the 
more extensive and diverse testing dataset, which includes 
varying hydrological conditions and litter sizes. The main 
disadvantage of the DT and NB was the misclassification 
of water and obstructions as litter respectively. Although 
the imbalance ratio of the dataset used in this study has a 
slight impact on the applied algorithms, their impact on 
simple algorithm e.g., DT could be larger. Therefore, the 
DT tends to classify litter pixels (minority class) as non-
litter to achieve the highest possible accuracy. The spectral 
signature of obstructions seems to be very close to litter, 
thus the NB failed to distinguish litter from the obstruc-
tion. Turbidity affects the spectral signature of water, espe-
cially in the red band, therefore the water pixels used for 
training and validation were collected at different hydro-
logical conditions considering low and high suspended 
sediment concentrations. Therefore, most algorithms cor-
rectly classified water pixels except the DT which misclas-
sified high turbidity water as litter.

The large and medium-sized litter spots were detected 
by the five algorithms correctly; however, the identifica-
tion of small litter spots was challenging for almost all 
algorithms except for the NB. However, as the NB has 
problems separating obstructions and litter, this sub-pixel 
size detection is not certain. The good performance of the 
algorithms in identifying large and medium spots could be 
explained by that large number of litter pixels have more 
effective reflectance into the sensor; meanwhile, the area 
of the small litter spot is not large enough to affect the 
reflectance. Similar results were reached by Topouzelis 
et al. (2019), who concluded that a spot with an area of 
10×10 m is an essential prerequisite to be detected on 
Sentinel-2 images.

Remote sensing of litter is always associated with the 
appearance of spatial reflectance anomaly (i.e., the lit-
ter pixel arises from the background pixels by its blink-
ing reflectance). The discrimination between the various 
litter materials is related to the similarity and dissimi-
larity of their spectral signature, which depends on the 
Signal to Noise Ratio (SNR) of the sensor and band 
settings. The Multi-Spectral Imaging (MSI) sensor of 
Sentinel-2 has 13 spectral bands covering a wide range 
of the spectrum (including the NIR and SWIR) offer-
ing a good chance for litter detection. In addition, the 
very short revisit time of Sentinel-2 (3-5 days) could also 
be employed to monitor the temporal change of litter. 
On the other hand, the relatively low SNR (mean of all 
bands=116.5) and the difference in the spatial resolution 
of the bands (10 to 60 m) make the sub-pixel scale iden-
tification challenging. Although Hu (2021) reported that 
the minimum percentage coverage of a pixel for detection 

(based on a single band) or discrimination (based on 
combined bands) for the MSI sensor are 0.8% and 1% 
respectively, these thresholds did not apply to our study. 
As these values were calculated assuming that the image 
noise originates only from the sensor, while practically 
it could be affected by other sensor`s artifacts (e.g., pep-
per noise and hardware parallax impacts in push-broom). 
However, the sub-pixel detection of riverine litter needs 
further research, as the percentage of litter pixels hav-
ing an area of less than one pixel in our training and 
validation dataset was just 1%, thus it was significantly 
underrepresented. Therefore, the ML models tend to mis-
classify them as non-litter, as their reflectance could be 
very close to water pixels.

The spatio-temporal distribution of riverine litter is 
very complex due to several factors affecting its trans-
port. Along the Tisza, the largest and most persistent lit-
ter spots were observed upstream of dams. It agrees with 
studies that investigated plastic transport in rivers (Zhang 
et al. 2015). Besides, some litter spots were observed 
along the riverbanks, as there the flow velocity is low, 
and the natural (e.g., riparian trees) and artificial (e.g., 
docks) obstructions can trap debris. Extreme events (e.g., 
stormy winds, heavy rains, floods) control the temporal 
input of the litter in rivers, as they (re)mobilize the litter 
in the fluvial system. Usually, a high litter transport rate 
was observed during floods (Van Emmerik et al. 2019), 
similar to our observations in the Tisza River. However, 
we noticed a time-lag between the flood-waves and the 
formation of the largest spot area, which refers to the 
gradual transport and accumulation of litter during small 
flood-waves until reaching the greatest litter area at the 
end of the flood waves. For instance, the largest litter 
spot area in 2017 (178 pixels), 2018 (225 pixels), 2019 
(288 pixels), and 2020 (231 pixels) were recorded in 
August, October, August, and July respectively, as these 
periods are featured with low stages after the completion 
of the flood waves.

This study is an initial attempt at the automatic detection 
of riverine litter using satellite images. Although, it provided 
promising results on the automatic detection of large and 
medium litter spots on Sentinel-2 images, the detection of 
small spots is still questionable. Though it was proved, that 
even a low abundance of litter spots could be detected, more 
research is needed considering larger datasets, with more rep-
resentative small spots. Besides, a larger dataset would improve 
the models` performance and consequently their generalization 
capability. The Tisza River is considered as a medium-sized 
river (mean width: 164 m), thus it is covered by just 16 pixels 
of Sentinel-2 images, therefore applying this approach to finer 
spatial resolution images is suggested on medium-sized rivers 
to increase the chance of small litter detection.
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Conclusion

Organic litter on rivers is a natural phenomenon; however, 
since it is mixed with plastic waste it has become a world-
wide problem. The catchment of the Tisza River (Central 
Europe) is shared by five countries, where the communal 
waste production is relatively high (average: 340 kg/cap-
ita) but its recycling is moderate or low. Therefore, a huge 
amount of plastic waste is mixed in the natural litter and 
transported downstream. For the successful prediction and 
mitigation of waste transported with the drifting litter, this 
study aimed to combine satellite images with ML algorithms 
to detect riverine litter and investigate its spatio-temporal 
dynamism.

The combination between Sentinel-2 images and machine 
learning algorithms (DT, NB, SVC, RF, and ANN), and the 
application of the Very High Resolution (VHR) images 
(Google Earth) proved their ability to support the identi-
fication of riverine litter. However, due to the 10 m spatial 
resolution of the Sentinel-2 images, most of the small litter 
spots (<100  m2) were missed, thus, the produced models are 
useful just to detect medium and large litter spots. However, 
special consideration should be given to the false detection 
of the non-litter pixel as litter, given that the models had 
moderate to poor precision. Based on the validation and test-
ing results of the five tested algorithms, the SVC, RF, and 
ANN are highly recommended for further studies, as they 
showed the best performance. The proposed methodology 
was very helpful to analyze the spatio-temporal dynamism 
of the medium and large litter spots on a medium-sized river. 
However, applying the same methodology on finer spatial 
resolution satellite images (e.g., WorldView-3 and SPOT 
5) would be very useful for investing the spatio-temporal 
dynamism of small litter spots.

On a deep river like the Tisza, litter spots accumulated 
upstream of dams and along riverbanks. They are mobilized 
during floods, but they are trapped during small flood-waves 
or low stages. We suggest that the litter removal campaigns 
should be held at the end of these periods when the litter 
spots are more likely to be accumulated at well-defined 
locations. Although promising results were obtained by the 
proposed methodology on a middle-sized Tisza River, prob-
ably better performance could be reached on larger rivers. 
Remote sensing with its large-scale coverage and frequent 
capturing can be employed as a good monitoring tool for the 
spatio-temporal distribution of riverine litter, understanding 
its sources, hotspots, transport routes, and sinks.
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