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Photoionisation of rubidium in strong laser fields?
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Abstract. The photoionisation of rubidium in strong infra-red laser fields based on ab initio calculations
was investigated. The bound and the continuum states are described with Slater orbitals and Coulomb wave
packets, respectively. The bound state spectra were calculated with the variational method and we found it
reproduced the experimental data within a few percent accuracy. Using the similar approach, ionisation of
Rb was also successfully investigated. The effects of the shape and the parameters of the pulse to the pho-
toionisation probabilities and the energy spectrum of the ionised electron are shown. These calculations may
provide a valuable contribution at the design of laser and plasma based novel accelerators, the CERN
AWAKE experiment.

1 Introduction

The study of the ultrafast dynamics of electrons in intense
short laser pulses is a hot topic nowadays [1]. Multipho-
ton ionisation of one-, two- or many-electron atoms in
intense laser fields has been extensively studied by var-
ious non-perturbative quantum mechanical methods by
different groups in the last decades [2–6]. One of them is
the time-dependent close coupling (TDCC) method orig-
inally developed by Bray. The details can be found in the
review of Bray et al. [7]. Another successful approach,
the time-dependent close coupling method on a two-
dimensional finite lattice was introduced by Pindzola and
Robicheaux [8]. Various R-Matrix matrix methods are also
feasible to perform ab initio photoionisation calculations
[9,10].

As basis set expansions there are two popular ways. The
first is the application of b-Splines by Bachau [11] and the
other is the Sturmian basis set [12].

The problem of rubidium photoionizaton is almost
ninety years old. The first experiment was performed
by Lawrence [13] where the wavelength of the applied
light was in the range of 220–313 nm. Multiphoton ion-
izaton of Rb atoms was also studied with the help
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of a tunable dye-laser over the wavelength of 460–
650 nm by Collins [14]. Tamura and his group [15]
were the first who measured the two-step selective pho-
toionizatinon of Rb with Ti:sapphire solid state laser.
Experimental determinaton of the photoelectron angu-
lar distribution of rubidium atoms in linearly and ellip-
tically polarized lights were investigated by Wang and
Elliott [16]. Courtade et al. calculated two-photon ioniza-
tion of cold Rb atoms with a near resonant intermediate
state [17].

Here we study the ionizaton of Rb atom problem with
two different methods: full-fledged ab initio quantum
mechanical method and classical trajectory Monte Carlo
(CTMC) method. In the former one, computationally we
realized a time-dependent coupled-channel method where
the wave functions of the channels are constructed with
Slater orbitals and regular Coulomb wave packets with
equidistant finite widths in energy. This basis set was orig-
inally introduced to study heavy-ion and He atom colli-
sion in 2002 by Barna [18] later become sophisticated and
culminated to describe the angular distribution in two-
photon double ionisation of helium by intense attosecond
soft-x-ray pulses [19].

In this work we apply both TDCC and CTMC
method to calculate the photoionisation probability of
Rb interacting with strong laser field. We analyze how
the photoionisation probabilities depend on the pulse
parameters. We also calculate the photoelectron energy
spectrum at different laser intensities with the TDCC
method. Atomic units are used throughout the paper if
not stated otherwise.
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2 Theory

2.1 Ab initio calculations

In our calculations we studied the photoionisation phe-
nomena of rubidium via ab initio calculations. The rubid-
ium atom was modelled with a one active electron model
with a frozen atomic core. Considering the time-dependent
Schrödinger-equation (TDSE):

i∂t |Ψ(t, r)〉 = Ĥ |Ψ(t, r)〉 . (1)

The Hamiltonian operator has the form of

Ĥ = ĤRb + V̂I (2)

where ĤRb and V̂I describe the free rubidium atom and
the interaction with the external laser field, respectively.
There are many approaches to model the free rubidium
atom, or in more general, an alkali atom within the con-
fines of the one active electron approach [20–22]. When
choosing such a model potential, the most important crite-
rion is if the potential reproduces the experimental energy
spectrum of the free atom. The Hellmmann pseudopoten-
tial, i.e. the second term of (3) fulfils this criterion and
also has the advantage that many matrix elements can be
calculated fully analytically. It also provides a graphical
point of view to our physical approach: the inner shell elec-
trons shield the electric charge of the atomic core, hence
the valence electron feels a reduced charge from the core:

ĤRb = −1
2
∇2 − 1

r
(1− be−dr). (3)

The shielding parameters depend on the structure of a
specific alkali atom. Reference [23] lists the parameters b
and d for every alkali atoms. For rubidium, b = 4.5 and
d = 1.09993.

The solution of the time dependent Schrödinger equa-
tion can be expanded in terms of the eigenstates of the
time-independent Schrödinger equation:

ĤRb |Φj(r)〉 = Ej |Φj(r)〉 . (4)

We apply the following Ansatz for the TDSE:

|Ψ(t, r)〉 =
N∑
j=1

aj(t) |Φj(r)〉 e−iEjt. (5)

Inserting (5) into (1), using (4), we get:

i
N∑
j=1

ȧj(t) |Φj(r)〉 e−iEjt =
N∑
j=1

V̂Iaj(t) |Φj(r)〉 e−iEjt.

(6)
Multiply the above equation by 〈Φk(r)| eiEkt. We get

the following system of equations for the aj(t) coefficients:

ȧk(t) = −i
N∑
j=1

VkjeiEkjtaj(t) (k = 1 . . . N). (7)

In (7), Ekj := Ek−Ej and Vkj := 〈Φk(r)| V̂I |Φj(r)〉 is
the couplings matrix.

The (highly) oscillatory term can be transformed out
by introducing

ãk(t) := ak(t)e−iEkt. (8)

Inserting (8) into (7), we get:

i ˙̃ak(t) =
N∑
j=1

Vkj ãj(t) + Ekãk(t). (9)

In our calculations the initial conditions have been set
up such that the valence electron is in the ground state:

ak (t→ −∞) =
{

1 k = 1
0 k 6= 1.

(10)

We should note, however, that this is not a general
requirement. Any mixed state could be specified as well.
Integrating this system of ordinary differential equations
on the time interval of the interaction, we get the wave
function of the final state. Relevant physical quantities,
e.g. the occupation probabilities of either the bound or
the continuum states can be calculated from this wave
function:

Pk(t→∞) = |ak(t→∞)|2 (11)

with Pk denoting the occupation probability of the k-th
state. The energy spectrum is defined by

∂P

∂E
=
∑
l

∣∣〈ΦlE(r)|Ψ(t = T, r)
〉∣∣2 (12)

with ΦlE(r) being an arbitrary continuum state with
energy E and azimuthal quantum number l and Ψ(t =
T, r) being the final state wave function i.e. the (numeri-
cal) solution of (9).

2.1.1 Description of the bound and the continuum states

As stated above, the wavefunction of the valence electron
is expanded on the basis of the eigenfunctions of the free
Hamiltonian operator.

It depends on the problem which basis is a sufficiently
good choice. We describe the bound and the continuum
states of the valence electron with Slater-type orbitals (13)
and Coulomb wavepackets (15), respectively [18]:

χn,l,m,κ(r) = C(n, κ)rn−1e−κrYl,m(θ, ϕ) (13)

with n, l,m being the principal, azimuthal and magnetic
quantum numbers, respectively, and κ the screening con-
stant, which is, in our case, a variational parameter that
specifies the energy of a bound state. The Slater orbitals
form a normed, but not orthogonal basis, with the nor-
malization factor

C (n, κ) =
(2κ)n+1/2√

(2n)!
· (14)
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The Coulomb wave packets discretize the continuum via
integrating the Coulomb wave functions (17) on a finite
energy (momentum) interval. Therefore, they form the
probability amplitude of an electron being in the state
with its energy lying between E −∆E and E +∆E. The
energy and the width of such a state is given by the inte-
gration limits, i.e. k and ∆k.

ϕk,l,m,Z̃(r) = N(k,∆k)

k+∆k/2∫
k−∆k/2

Fl,Z̃(k′, r)dk′Yl,m(θ, ϕ)

(15)
with k and ∆k being the center and the width of the cov-
ered momentum range, l and m the azimuthal and mag-
netic quantum numbers, respectively, and Z̃ the charge of
the ion, Z̃ = 1 for a singly ionized atom. The Coulomb
wave packets form an orthonormal basis such that if their
corresponding energy ranges do not overlap, then their
overlap integral is zero. The normalization factor reads:

N(k,∆k) =
1√
k∆k

· (16)

Finally, the Coulomb wave function has the form of

Fl,Z̃(k, r) =

√
2k
π

exp

(
πZ̃

2k

)
(2kr)l

(2l + 1)!
exp (−ikr)

×
∣∣∣Γ (l + 1− iZ̃/k)

∣∣∣
× 1F1(1 + l + iZ̃/k, 2l + 2, 2ikr). (17)

For further details about the Coulomb wavefunctions,
consult [24].

Sometimes, as it is in our case, it is more natural to
specify the Coulomb wave packets with their energy range
instead of the corresponding momentum range. There is a
simple connection between the parameters of the momen-
tum and the corresponding energy range:

k =
1√
2

[(
E +

∆E

2

)1/2

+
(
E − ∆E

2

)1/2
]
, (18a)

∆k =
√

2

[(
E +

∆E

2

)1/2

−
(
E − ∆E

2

)1/2
]
. (18b)

We chose the parameters of the Coulomb wave packets
such that they subdivide the total energy range equidis-
tantly.

2.1.2 Final formula for the energy spectra

Determining the energy spectrum of the bound states
leads to a variational problem. In general, the basis func-
tions describing the bound states should contain at least
one free parameter. In our case, every Slater orbital has
a free parameter, the κ screening constant, which will be
determined via minimizing the energy functional corre-
sponding to our physical system. By doing so, one gets a
generalized eigenvalue problem:

Hc = ESc (19)

with
Hij =

〈
ψj

∣∣∣Ĥ∣∣∣ψi〉 (20)

and
Sij = 〈ψj |ψi〉 (21)

being the Hamiltonian and the overlap matrices and E the
energy of a bound state, which is a generalized eigenvalue
and c denotes a generalized eigenvector. Here ψj can refer
either to a Slater-function or to a Coulomb wave packet.
Having M states, an energy eigenstate of the free Hamil-
tonian operator with energy E can be expanded on the
chosen basis, the expansion coefficients being the compo-
nents of the corresponding generalized eigenvector:

|Φj(r)〉 =
M∑
p=1

cj,p |ψp(r)〉 . (22)

2.1.3 Interaction with the external laser field

In the configuration-interaction approach, introduced at
the beginning of this section, every interaction with the
external environment is incorporated into the couplings
matrix. Its exact shape depends on the kind of the inter-
action, in our case, on the shape of the external laser field.
Considering electromagnetic interaction, it is easy to show
that the couplings matrix is proportional to the dipole
matrix:

Vkj = e
〈

Φj(r)
∣∣∣V̂I ∣∣∣Φk(r)

〉
. (23)

In length gauge, the interaction operator has the form
of

V̂I = r ·E(t, r). (24)

Since in the present study we are investigating the inter-
action of a single atom and the external laser field, it is
clear that the distances characterizing an atom are much
smaller than the wavelength of the laser field. Therefore,
the dipole approximation is valid. The electric field has
the form of

E(t) = εE0f(t) (25)

with ε being the polarization vector, E0 the amplitude and
f(t) an arbitrary function that is feasible for modelling a
laser pulse. The dipole matrix elements are therefore:

Dkj = e 〈Φj(r) |rεεε|Φk(r)〉. (26)

Let d denote the dipole matrices corresponding to the
basis functions:

dpq := e 〈ψq(r) |rεεε|ψp(r)〉 . (27)

Using this notation, we get a compact formula for the
dipole matrix elements:

Dkj = Tr
[(

c∗j ◦ ck
)
d
]
. (28)

We chose the electric field such that it is polarized into
the z direction and has a sine-square envelope. The most
common choice for the envelope is a Gaussian function,

https://www.epjd.epj.org
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however, the sine-square envelope has a slight advantage
at numerical calculations: such a pulse results in a function
with compact support:

E(t) = ezE0 sin2

(
t

T

)
sin (ωLt) (29)

with T being the pulse duration and ωL being the laser
angular frequency.

2.2 Classical trajectory Monte Carlo method

A classical trajectory Monte-Carlo method is used to cal-
culate the ionisation probabilities of Rb in intense laser
fields. The Rb atom is characterised as two body system
with an active electron and the remaining core. The inter-
action between the active electron and the target core is
described either by a simple Coulomb potential as in the
conventional CTMC method (model 1) or with the model
potential (model 2). In both versions of the present CTMC
approach, Newton’s classical non-relativistic equations of
motions for a two-body system are solved numerically for
a statistically large number of trajectories for given ini-
tial parameters. The equations of motion were integrated
with respect to time as an independent variable by the
standard Runge–Kutta method. In this calculation, the
total number of recorded trajectories was 1× 105.

2.2.1 Model 1

The CTMC method is applicable to hydrogen-like target
atoms (i.e., A(z−1)+ ions, in general) in a natural manner.
An extension to this picture requires an effective charge
Zeff of the target nucleus as seen by the active electron:

V (r) = −Zeff

r
· (30)

The effective charge of 2.2 and corresponding binding
energy of 0.154 a.u. were used for Rb(5s).

2.2.2 Model 2

The potential of the Rb ion is represented by a central
model potential developed by Green [20] which was based
on Hartree–Fock calculations:

V (r) = − (Z − 1)Ω (r) + 1
r

(31)

where Z is the nuclear charge and

Ω (r) =
[
Hd

(
er/d − 1

)
+ 1
]−1

. (32)

Using the energy minimization, Garvey et al. [22]
obtained the following parameters for Rb: H = 4.494 a.u.
and d = 0.777 a.u. The initialization parameters of Rb
were selected as described by Reinhold and Falcon [25]

developed for non-Coulombic systems. The potential from
equation (31) is used to describe the interaction between
the projectile and the target electron with the Rb ion core.
The initial state of the target is characterized by a micro-
canonical ensemble, which is constrained to an initial bind-
ing energy of 0.154 a.u., at a relatively large distance from
the collision center, choosing the initial parameters ran-
domly. The distance between the projectile and the target
was large enough that the interaction with the target was
negligible.

3 Results

In our calculations we modeled the rubidium atom by
including the first 35 bound states. According to our
theoretical model we approximated the experimental
energy levels by solving the corresponding variational
problem that ended up in a generalized eigenvalue prob-
lem. By finding the proper values of the screening con-
stants, the generalized eigenvalues of the Hamiltonian
matrix corresponding to the bound states provide a suf-
ficiently good approximation of the experimental energy
levels. We managed to solve this optimization prob-
lem by using genetic algorithm (see e.g. Ref. [26]). For
the corresponding linear algebraic calculations we used
the Armadillo library [27]. The calculated energy lev-
els of the bound states, compared with the experimen-
tal are listed in Tables 1–4, respectively. The experimen-
tal data has been taken from [28]. Eexp and Ecalc denote
the experimental and the calculated energy eigenvalues,
respectively.

Then, we defined an energy range in the continuum.
We chose 0−15 eV and subdivided it into 400 parts. The
Coulomb packets with different azimuthal quantum num-
bers have been constructed to all energy levels accord-
ingly, the azimuthal quantum numbers lying in the range
l = 0−3 with m = 0. Since we included 35 bound states
and there are 400 energy levels for every azimuthal quan-
tum number in the continuum, we have a total of 1635
states in our model. For the first glance the energy reso-
lution of the continuum spectra may seem to be too fine.
However, during our calculations we saw that this is the
resolution where the spectra converge to the same peak
structures even at high intensities. That is, less fine reso-
lution would have resulted in spectra with high numerical
noise, whereas higher resolution would have been redun-
dant. At this point we mention that choosing the proper
energy resolution is a crucial point in similar calcula-
tions as the runtime of a single simulation grows rapidly
as the intensity of the applied laser field grows. On the
other hand, the runtime scales with N2 with N denot-
ing the total number of states. At the highest applied
intensity, using 20 processor cores took for almost two
months.

We also took care of solving the coupled channel equa-
tions with the least numerical noise as possible. Since the
pulse length is quite long, we decided not to apply the
common fourth order Runge–Kutta method when integrat-
ing our ODE system. Instead, we applied the Bulirsch–
Stoer method with an eighth order embedded Runge–Kutta

https://www.epjd.epj.org
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Table 1. Energy spectrum of the bound states for l = 0.

State Eexp (a.u.) Ecalc (a.u.)

5s –0.153507 –0.148578
6s –0.0617762 –0.0649904
7s –0.0336229 –0.0370498
8s –0.0211596 –0.0236445
9s –0.0145428 –0.0161758
10s –0.0106093 –0.011617
11s –0.00808107 –0.00856655
12s –0.00636018 –0.00653549

Notes. The experimental values have been taken from refer-
ence [28].

Table 2. Energy spectrum of the bound states for l = 1.

State Eexp (a.u.) Ecalc (a.u.)

5p –0.0961927 –0.102753
6p –0.0454528 –0.0500378
7p –0.0266809 –0.0293907
8p –0.0175686 –0.0191912
9p –0.0124475 –0.0134602
10p –0.00928107 –0.00994177
11p –0.00718653 –0.00763469
12p –0.00572873 –0.00604301
13p –0.0046738 –0.00489973
14p –0.0038856 –0.00405129
15p –0.00328125 –0.00340454
16p –0.00280771 –0.00290064
17p –0.00242976 –0.00250062
18p –0.00212316 –0.00217684
19p –0.0018712 –0.00190818

Notes. The experimental values have been taken from refer-
ence [28].

Table 3. Energy spectrum of the bound states for l = 2.

State Eexp (a.u.) Ecalc (a.u.)

4d –0.0653178 –0.0544901
5d –0.0364064 –0.0307153
6d –0.0227985 –0.019709
7d –0.0155403 –0.0137109
8d –0.0112513 –0.0100841
9d –0.00851559 –0.0077216
10d –0.00666683 –0.00608392

Notes. The experimental values have been taken from refer-
ence [28].

method as controller method. We set both the absolute and
relative error tolerances to 10−8. This was sufficient – and
also required – to preserve the unity norm of the wave func-
tion, i.e. to not to numerically violate the unitarity. In our
calculations the difference of the norm of the wave function
from unity was less than 10−5.

After theses preparations, the spectrum and other quan-
tities have been calculated such that the intensities lie
in the range 1012 W cm−2 ≤ I < 1014 W cm−2 with
λ = 800 nm wavelength and τ = 120 fs pulse duration.
The parameters have been chosen such that they fit to the

Table 4. Energy spectrum of the bound states for l = 3.

State Eexp (a.u.) Ecalc (a.u.)

4f –0.0314329 –0.031225
5f –0.0201073 –0.0199783
6f –0.0139554 –0.0138734
7f –0.0102476 –0.0101937
8f –0.00784234 –0.00780359

Notes. The experimental values have been taken from refer-
ence [28].

Fig. 1. Stabilization of the potassium atom in a superatomic
field: survival probability vs. laser intensity for a 800 nm, 65 fs
laser pulse. For details, see reference [30].

CERN-AWAKE experiment [29]. Note that the Keldysh-
parameter runs from 0.5916 to 5.916 if the intensities lie
between 1014 W cm−2 and 1012 W cm−2.

According to Morales et al. [30], stabilisation of the total
ionisation probability is expected (see Fig. 1). This means
that as the laser intensity increases, the total ionisation
probability does not grow steadily, but instead, it either sat-
urates at a given level (Fig. 1), or reaches its maximum at a
critical point, then drops slightly and remains constant at
higher intensities (Fig. 2). The critical point in the latter
case is also referred as the bottom of the “Death Valley”.

Figure 2 shows the photoionisation probabilities at dif-
ferent intensities with λ = 800 nm and τ = 120 fs. The
blue line corresponds to the ab initio calculations, the
orange and the green to CTMC simulations with a classi-
cal Coulomb potential with Slater screening and Garvey
model potential, respectively. According to the classical
suppression [31,32], the CTMC simulations predict lower
ionisation probabilities at lower intensities, but they also
predict that the ionisation probability is going to be sat-
urated as the laser intensity is growing. However, the dis-
crepancy between the classical and quantum mechanical
calculations is greater than expected. This difference could
be corrected by fine-tuning the model potential used in the
CTMC simulations. The ab initio calculations suggest that
the ionisation probability has been already saturated even
at low intensities. This is a pleasant result since at the

https://www.epjd.epj.org
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Fig. 2. Total ionisation probabilities as a function of the laser
intensity. λ = 800 nm, τ = 120 fs. The blue line corresponds
to the ab initio calculations, the orange and the green to CTMC
simulations with the model potentials (30) and (31), respectively.

intensities planned to be applied in the CERN-AWAKE
experiment practically fully ionisation occurs. This is a
necessary condition for the experiment to work properly.

On Figure 2 one can see that the classical suppression
is larger than expected. Our idea is that this difference
could be decreased by choosing a better model potential
in the CTMC simulations

When should also note that in our case the stabili-
sation occurs at a much lower intensity than for potas-
sium, even though the ionisation potentials of rubidium
and potassium are quite similar (4.177 eV and 4.341 eV,
respectively). The reason behind this that, in our model,
the length of the laser pulse (τ = 120 fs) is almost the
double of the one used in reference [30] (τ = 65 fs). There-
fore, the photon absorption is more “efficient” both in
the bound states and the continuum states, resulting in a
lower saturation intensity.

Photoelectron energy spectra have been calculated as
well, see Figure 3. Note that at relatively low intensi-
ties there is a strong peak near 0 eV. This means that
at 1012 W cm−2 most of the electrons have relative low
kinetic energy, that suggests that the plasma applied in
the CERN-AWAKE experiment can have uniform electron
density. At higher intensities none of the peaks is dom-
inant, but all the spectra have a mutual characteristic.
The difference between the abscissae of two neighbouring
peaks is approximately 1.55 eV, i.e. one photon energy at
λ = 800 eV wavelength. This is a fingerprint of above-
threshold ionisation (ATI) at these intensities. The width
of these peaks originates from the non-resonant excitation
during the ionisation process. Reference [33] provides an
excellent review about this phenomenon.

4 Conclusion

In our work photoionisation of rubidium with strong
laser pulses has been studied. We applied two different
techniques: time-dependent close coupling and classical
trajectory Monte Carlo method. In the former one, the
continuum states have been described with Slater-type
orbitals and the continuum states have been approximated
with Coulomb wave packets. First we reconstructed the
eigenfunctions of the free Hamiltonian operator on our

2 4 6 8 10 12 14
Electron energy eV

0.05

0.10

0.15

0.20

P

E
1

Fig. 3. Energy spectrum of the continuum electron. The blue,
orange and green lines are for I = 1012, 2.5 × 1013 and 8.1 ×
1013 W cm−2, respectively.

basis set and found that the generalized energy eigenvalues
of the Hamiltonian operator are in a good agreement with
the experimental values. Then we investigated the depen-
dence of the photoionisation probability and the photo-
electron energy spectrum on the laser intensity. We chose
the laser parameters such that they are similar to the cor-
responding ones in the CERN-AWAKE experiment. Since
this parameter range is very specific, we could not directly
compare our calculations with experimental data. How-
ever, our calculations reproduced the expected saturation
of the photoionisation probability as a function of laser
intensity. The ab initio calculations predicted that statu-
ration occurs at moderate intensities, near 1012 W cm−2,
whilst CTMC simulation predicted this phenomena only
near 1014 W cm−2. Both methods agree qualitatively with
each other and also with the presented simulation of
Morales et al. [30]. We also calculated the photoelectron
energy spectrum at different laser intensities. The ATI
peaks are clearly visible and it can also be seen that the
average kinetic energy of the continuum electron grows
monotonically with the laser intensity.

For a better understanding of the physics of photoionisa-
tion of Rb further work is in progress. We plan to calculate
photoelectron angular distributions and to investigate the
additional effects regarding the variation of additional laser
parameters like pulse duration or wavelength. We also plan
to study the phenomena related to non-zero chirp.
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2. D.G. Arbó, J.E. Miraglia, M.S. Gravielle, K. Schiessl,
E. Persson, J. Burgdörfer, Phys. Rev. A 77, 013401 (2008)

3. J. Hofbrucker, A.V. Volotka, S. Fritzsche, Phys. Rev. A
96, 013409 (2017)

4. T. Sato, K.L. Ishikawa, I. Březinová, F. Lackner, S. Nagele,
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