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Abstract: We report the application of the time gated ion microscopy technique in accessing 
online the position of the source of harmonics generated in atomic gas media. This is 
achieved by mapping the spatial extreme-ultraviolet (XUV)-intensity distribution of the 
harmonic source onto a spatial ion distribution, produced in a separate focal volume of the 
generated XUV beam through single photon ionization of atoms. It is found that the position 
of the harmonic source depends on the relative position of the harmonic generation gas 
medium and the focus of the driving infrared (IR) beam. In particular, by translating the gas 
medium with respect to the IR beam focus different “virtual” source positions are obtained 
online. Access to such online source positioning allows better control and provides increased 
possibilities in experiments where selection of electron trajectory is important. The present 
study gives also access to quantitative information which is connected to the divergence, the 
coherence properties and the photon flux of the harmonics. Finally, it constitutes a precise 
direct method for providing complementary experimental info to different attosecond 
metrology techniques. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Time gated ion microscopy [1–4] has been successfully employed in recent years for (a) the 
in situ focus diagnostics [1,2,4], (b) quantitative studies of linear and non-linear ionization 
processes both in the infrared (IR) and the extreme ultraviolet (XUV) regimes [1,4], and 
proposed for single-shot XUV-pump-XUV-probe studies as well as for single-shot 2nd-order 
XUV autocorrelation measurements [4,5]. The approach is based on the measurement of a 
spatial ion distribution resulting from the interaction of the radiation with gas phase media. 
High Harmonic Generation (HHG) [6] results routinely from the interaction of intense 
focused fs IR laser pulses with gases, solid targets and recently with nanostructures [7–12]. In 
atomic gases, it is well understood that in the strong field regime there are two electron 
trajectories within each laser half cycle, called the long (L) and the short (S), with different 
excursion times in the continuum which contribute to emission at each harmonic frequency. It 
turns out that the different continuum excursion times manifest in different phase 
contributions to the L and S electron trajectories leading to distinctive features. Harmonic 
radiation which is generated mainly by the L trajectories present higher divergence than this 
generated mainly from the S one [13–15]. Furthermore, their relative contribution to the 
outgoing from the medium harmonic beam can be controlled by the appropriate focusing 
geometry [14]. In spite of the knowledge acquired over the last two decades on the role of the 
electron trajectories on the spatial properties of the generated harmonic beam, in the majority 
of the experiments it is considered that the image of the XUV source is unaffected by the 
geometrical conditions in the HHG area. In particular, the influence of the relative position of 
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the IR focus and the gas jet on the “virtual” position of the harmonic source has never been 
directly demonstrated experimentally. Thus, this work constitutes a simple, direct 
manifestation of a phenomenon underlying previous works [13–17]. The aim of the present 
work is to study the dependence of the “virtual” position of the harmonic source on the laser 
focusing geometry using an Ion-Microscope (I-M) imaging detector. By “virtual” position 
here we mean the position at which the source has to be considered being placed in order to 
produce the measured image after refocusing of the XUV beam. I-M allows the recording of 
the spatial distribution of the ionization products produced by a (usually focused) beam and 
consequently the spatial intensity distribution of the ionizing XUV radiation. When ionization 
occurs at the focus of the XUV radiation, the spatial ion distribution is an image of the 
radiation source itself, which in our case is the area where the XUV beam is generated. The 
operational principle of I-M can be found elsewhere [4]. Taking advantage of the high spatial 
resolution of the I-M we have been able to study the variation of the XUV focus position as a 
function of the relative position of the gas medium and the IR focus. This is realized by 
varying the position of the gas medium and recording the spatial ion distribution of Ar 
produced by a single-XUV-photon ionization process at the focus of the XUV beam keeping 
the position of the IR focus constant. The present study allows the precise direct measurement 
of the XUV beam divergence generated in gas phase media. In addition, it can provide 
quantitative information during the coherent synthesis of sequentially positioned high 
harmonic sources when different phase matching and quasi-phase matching approaches are 
employed [18]. These approaches are directly connected to the improvement of the coherence 
properties and the photon flux of the attosecond pulses. Finally, it gives access to 
supplementary experimental info which is linked to different, recently proposed and 
implemented, attosecond metrology techniques like [19–22]. 

2. Experimental set-up 

The experiment is performed utilizing a 10 Hz Ti:Sapphire laser system delivering 25 fs long 
laser pulses with central wavelength 800 nm and energy ≈15 mJ/pulse. The experimental set 
up is shown in Fig. 1(a). The laser beam is focused with a f = 3m lens (L) into a pulsed gas jet 
(P-GJ) with a rectangular orifice with dimensions 0.3 mm x 1 mm, filled with Ar gas. The gas 
jet is mounted on a translation stage allowing the variation of the position of the jet with 
respect to the IR focus. The IR radiation is eliminated after the XUV generation by a 
combination of a reflection on a silicon plate (Si) placed at the Brewster angle of the IR beam, 
a 5-mm diameter aperture (A) and a 150 nm thick Sn filter which transmits the harmonics (q) 
from 11th to 15th. Subsequently, the XUV radiation is focused into the target gas jet (T-GJ) 
filled with Ar by a spherical gold mirror (SM) of 5 cm focal length. Care has been taken to fix 
the angle of incidence of the XUV beam on the gold mirror at ≈0°. The SM is placed 4.5 m 
downstream the P-GJ. The images are monitored by the transversely placed I-M which 
records the spatial distribution of Ar ions as described above (Fig. 1(b)). 
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