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Abstract
Identifying key actors or nodes in a network is a relevant task regarding many applications. In general, the real-valued func-
tion that evaluates the nodes is called node centrality measure. Performing a relevance-based ranking on the list of nodes 
is also of high practical importance, since the most central nodes by a measure usually provide the highest contribution in 
explaining the behavior of the whole network. Stability of centrality measures against graph perturbation is an important 
concept, especially in the analysis of real world—often noise contaminated—datasets from different domains. In this paper, 
with the utilization of the formal definition of stability introduced by Segarra and Ribeiro (IEEE Trans Signal Process 
64(3):543–555, 2015), we discuss three main perturbation categories and experimentally analyze the stability of several 
node centrality measures.

1 Introduction

Given a complex network, being biological (e.g., neu-
ral interactions), technological (e.g., IoT systems), social 
(e.g., online social media platforms) or transportation 
related (e.g., scheduled flights), the topology of the under-
lying graph can easily indicate node importance (Ghoshal 
et al. 2014). Peripheral nodes generally do not have major 
impact, whereas nodes positioned in the epicenter of the 
topology can effectively control several structural and func-
tional behaviors of the network. Thus, identifying the most 
important nodes in a network brings us closer to understand 
network dynamics’ complexity from multiple aspects. Node 
centrality measures are the metrics developed in order to 
determine these important nodes. Since node importance 
can be interpreted in plenty of disparate ways, many coex-
isting centrality measures have been introduced and applied 

effectively in various domains (Zweig 2016; Das et al. 2018). 
Depending on the interpretation of node importance, these 
differently calculated measures can represent local (i.e., 
neighborhood based) or global information, as well as static 
and dynamic properties of the network, thus providing rel-
evant metrics for a diverse set of applications. The most 
commonly known and used centrality measures are degree 
(Shaw 1954; Nieminen 1973), closeness (Beauchamp 1965; 
Sabidussi 1966), eigenvector (Bonacich 1972), betweenness 
(Freeman 1977) and PageRank (Brin and Page 1998).

Several studies focused on investigating the stability of 
node centrality measures in an empirical way. Recently, a 
formal definition for the stability of node centrality measures 
has been given by Segarra and Ribeiro (2015), proving that 
degree, closeness and eigenvector centrality measures are 
stable, as opposed to the betweenness centrality. In our work, 
three distinct perturbation procedures are being studied and 
the stability of the above-mentioned centrality measures is 
experimentally investigated on several real-world and syn-
thetic datasets.

This paper is organized as follows. In Sect. 2, we will 
discuss the related works regarding the stability of network 
centrality measures. In Sect. 3, we will describe the defini-
tion of stability for centrality measures and for the main 
notations used in the paper. In Sect. 5, we will discuss the 
three perturbation processes, outline the datasets used in 
our experiments, and present the results of our numerical 
experiments. In Sect. 6, we will discuss our findings in detail 
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and also give insights into the future work possibilities. In 
Sect. 7, we will conclude our work.

2  Related works

Although the concept of node centrality measures’ stability 
has been investigated in the literature of complex networks 
and centrality measures (Costenbader and Valente 2003; 
Zemljič and Hlebec 2005; Borgatti et al. 2006; Boldi et al. 
2013; Iyer et al. 2013; Niu et al. 2015; Segarra and Ribeiro 
2015; Sarkar et al. 2018), one can find considerably less 
papers that discuss more than one graph perturbation method 
at a time. In the cited papers, empirical experiments were 
performed by comparing the initial graph or network with 
a modified version of the original one with respect to some 
randomization processes. Graph sampling, edge weight per-
turbation, removing or adding new edges are considered as 
perturbation methods in these studies.

Borgatti et al. (2006) and Sarkar et al. (2018) both inves-
tigated the robustness of centrality measures under condi-
tions of imperfect data and incomplete networks. Sarkar 
et al. (2018) studied the effect of noise in complex networks 
and performed sensitivity, robustness, and reliability-related 
analyses. Borgatti et al. (2006) added random error to differ-
ent networks with varying sizes and densities. To simulate 
the random error occurrence in the networks, four types of 
graph manipulation methods (edge deletion, node deletion, 
edge addition and node addition) were performed. Their 
research aimed at examining the accuracy of centrality 
measures in case of incomplete data on random networks, 
generated by the method of Erdős and Rényi (1959). The 
work was restricted to degree, closeness, betweenness and 
eigenvector centrality measures. Centrality robustness was 
calculated based on the ranking of the most central nodes 
in the original graph compared to the ones in the perturbed 
graphs besides other notions of robustness like the square of 
Pearson correlation between the measures.

Boldi et  al. (2013) also experimented with network 
robustness against node removal, like Borgatti et al. (2006) 
by analyzing both web graphs and social graphs of various 
sizes and characteristics. Their main focus was on the altera-
tions of the distance distribution on these networks under 
different node removal concepts.

Costenbader and Valente (2003) discussed a graph sam-
pling-related approach in their work. They emphasized the 
relevance of the given problem by introducing the issues 
of centrality stability for social network analysis. In their 
study, a bootstrap sampling method was used to determine 
how it would affect the stability of 11 network centrality 
measures. The performance of centrality measures was com-
pared in various networks at decreasing sampling levels. The 
simulation procedures consisted of an initial stage, where 

the centrality measures were calculated followed by taking 
repeated random samples of the network at each of eight dif-
ferent sampling proportions: starting at 80%, decrementing 
by 10%, down to 10%. At each sampling level, the values 
calculated on the sample were correlated with the original 
measures 25 times and then took their average.

Zemljič and Hlebec (2005) also experimented with social 
networks and, like Costenbader and Valente (2003), were 
focusing on high school students. In their work, the reliabil-
ity of measures of centrality and prominence is discussed 
by presenting eight experiments. Reliability of in- and out-
degree, in- and out-closeness as well as betweenness and 
flow betweenness was estimated by the Pearson correlation 
coefficient.

Attack robustness was investigated by Iyer et al. (2013). 
In their study, they raise a fundamental issue affecting com-
plex networks, being the robustness of the overall system 
to the failure of its constituent parts. They propose that 
the ability of a system to function when degraded mostly 
depends on the integrity of the underlying network. During 
their percolation-related experiments, they targeted some 
vertices by a wider range of non-local measures of potential 
importance. In their study degree, eigenvector, closeness 
and betweenness centrality measures were analyzed using 
undirected simple networks. For any network under consid-
eration, they determined the importance of the vertices by 
calculating the above-mentioned centrality measures. Then, 
they computed the effect on the size of the largest connected 
component of the network, after removing a given fraction 
of the vertices by their rank.

A similar network manipulation was proposed by Niu 
et al. (2015) and amended with some new ones. In their 
work, they focused on the robustness of classic centrality 
measures (degree, betweenness, closeness, eigenvector and 
k-shell) against network manipulation. Both artificial and 
real networks were used in their experiments. The intro-
duced network manipulation techniques were addition, 
removal and rewiring of links in both random and biased 
ways. To assess the effect of manipulation on a node’s cen-
trality measure, they calculated the Spearman correlation 
coefficient between the measures on the original graph and 
on the perturbed graph.

The above-listed studies interpreted the robustness or 
stability of centrality measures strongly related to correla-
tion and ranking by the measures. A new stability concept 
was introduced by Segarra and Ribeiro (2015) which will 
be elaborated in Sect. 3.2. Their numerical experiments 
were performed with the use of randomly generated graphs 
with a given node set of size n ≥ 10 , where an undirected 
edge exists with probability q = 10∕n aiming at analyzing 
the behavior of the centrality measures. The edge weights 
were randomly picked from a uniform distribution in [0.5, 
1.5]. They also performed experiments on two real-world 
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networks, one containing information about the air traffic 
between the most popular airports in the USA, while the 
second network records interactions between sectors of the 
US economy. In their numerical experiments, two types of 
random noise were used to analyze the specified robustness 
indicators on node rankings.

Randomized, synthetic perturbation methods were used 
by Borgatti et al. (2006), Niu et al. (2015) and Segarra and 
Ribeiro (2015) to simulate imperfect data, network down-
time or noise contamination. In our paper, besides the use 
of synthetic network manipulation techniques, like sampling 
(Costenbader and Valente 2003; Rezvanian and Meybodi 
2016), we put the emphasis on selecting perturbation meth-
ods provided naturally by some real-life processes. Graphs 
or networks were constructed from large, real-world data-
sets with the usage of similarity or correlation. The selected 
real-world processes involved changes in the daily closing 
prices of stocks or in the similarity between users based 
on rated movies. On the other hand, graph growth with its 
underlying process of new nodes joining the network and 
new edges connecting already existing nodes was studied. 
Trust networks, user–user interaction-based graphs and com-
munity–community interaction-based networks were taken 
into consideration. The stability of node centrality measures 
in these real-world process-based perturbation situations was 
analyzed during empirical experiments focusing on the sta-
bility concepts introduced by Segarra and Ribeiro (2015). 
Besides performing numerical experiments with reference to 
the stability concept, we also experimented with the ordinal 
association and Jaccard similarity of the nodes. By combin-
ing the stability, correlation and node ranking-related experi-
ments on the mentioned real-world datasets, we were able 
to analyze the performance of the centrality measures in 
various circumstances.

3  Preliminaries and notations

Let us consider a network represented by a graph G = (V ,E) , 
where V is the set of nodes and E is the set of edges (i.e., 
pairs of nodes) in the network. In the present paper, we 
consider directed and undirected, as well as weighted 
and unweighted graphs. A weighted graph is defined as 
G = (V ,E,W) , where W is the set of weights defined on 
the edges of G. Edge weights can represent similarities, 
i.e., connection strength between the nodes, and also dis-
similarities, i.e., distances between the nodes depending 
on the application. The adjacency matrix A ∈ ℝ

n×n is an 
alternative representation of a graph. Two nodes, i and j, 
are adjacent if (i, j) ∈ E , moreover in case of undirected 
graphs (j, i) ∈ E whenever (i, j) ∈ E . In the case of binary 
and undirected graphs Aij = 1 if i and j are adjacent, while 

Aij = 0 otherwise, whereas in weighted graphs Aij = W(i, j) . 
Considering directed graphs, two nodes i and j are adjacent 
if there is an edge from node i to node j. An i − j path is a 
sequence of distinct adjacent vertices from vertex i to vertex 
j. The distance �(i, j) between i and j in graph G is the length 
of the shortest paths joining them when such a path exists, 
and is set to “ ∞ ” otherwise.

3.1  Studied centrality measures

Given a network represented by a graph G, centrality meas-
ures can be defined as real-valued functions CG ∶ VG → ℝ

≥0 , 
which assigns a nonnegative number to each node of G. 
The considered centrality measures, that can also be found, 
e.g., in studies by Das et al. (2018) or Segarra and Ribeiro 
(2015), are degree (Shaw 1954), closeness (Sabidussi 1966), 
betweenness (Freeman 1977), eigenvector (Bonacich 1972) 
and PageRank (Brin and Page 1998). There are two major 
categories of centrality metrics: neighborhood based and 
shortest path based. While degree, eigenvector and PageR-
ank are considered to be neighborhood based, closeness and 
betweenness are representative of the shortest path-based 
metrics.

Degree centrality is entirely restricted to using local infor-
mation, i.e., relies only on the number and strength of imme-
diate connections, whereas the other measures are calcu-
lated based on global information. The spectral eigenvector 
and PageRank calculate the importance of a node by taking 
into consideration the importance of its neighbors. The two 
shortest path-based metrics also hold global information, 
closeness calculates how fast the information can travel from 
one node to every node in the network, while betweenness 
focuses on a node’s presence on the shortest paths between 
every pair of nodes in the network.

The neighborhood-based metrics consider edge weights 
as connection strength or similarities, while in the case of 
shortest path-based measures, the edge weights represent 
distances, or dissimilarities. It is important to note that the 
rankings assigned to a weighted graph, by applying a cen-
trality measure based on dissimilarities, and another based 
on similarities are not comparable. This is the reason why in 
our numerical experiments the edge weights corresponding 
to connection strengths were converted to distances in the 
case of the above-mentioned metrics.

We have been briefly discussing several grouping options 
of centrality measures based on the information they pos-
sess, as well as their calculation method and their theoretical 
backgrounds. We have seen that closeness and betweenness 
both operate based on global shortest path-based informa-
tion. The following sections will demonstrate that another 
grouping can be established by the stability notion proposed 
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by Segarra and Ribeiro (2015) that will interestingly place 
the two measures into separated categories.

3.2  Stability of centrality measures

In our experiment, we use the notion of centrality meas-
ures’ stability defined by Segarra and Ribeiro (2015) as 
follows. A centrality measure C is said to be stable if

holds for every node x ∈ V  , where G and H are two graphs 
over the same node set V, KG is a universal constant, and 
d(⋅, ⋅) is a distance function between graphs G and H. The 
definition of stability says that a node centrality measure is 
stable, if the maximum change in the measure is bounded by 
a constant KG multiplied by the distance of the two graphs. 
The value of KG does not depend on the presence of central-
ity measure normalization. Furthermore, this value must be 
universal to any perturbed version of the original graph. The 
similarity between the stability notion and the Lipschitz con-
tinuity, applied in a discrete space, can be clearly noticed. 
A graph distance d ∶ G × H → ℝ

≥0 is specified with the 
purpose of making the stability inequality (1) meaningful 
as follows. Let

where A denotes the (weighted) adjacency matrix of graph 
G and H, respectively, and the two graphs share an identical 
node set V. When comparing the distance of graphs repre-
sented by adjacency matrices of different dimensions, we 
interpret the above (2) as the absolute value of the difference 
between the sum of the adjacency matrices. The mean stabil-
ity value for a centrality measure C is calculated as

Our numerical experiments showcase diverse methodologies 
that result in graph H from a given initial graph G. It is also 
of empirical interest how the theoretical constant KG value in 
formula (1) is affected by these perturbation methodologies.

3.3  Theoretical values in stability concepts

In their study, Segarra and Ribeiro (2015) used the sta-
bility notion (1) on the most commonly used and widely 
known centrality measures. By doing so, they proved that 
the connection strength-based degree and eigenvector 
centralities, as well as the dissimilarity-based closeness 
centrality, are stable, in contrast with betweenness central-
ity. For the latter, its unstable behavior was also proven 

(1)|CG(x) − CH(x)| ≤ KG ⋅ d(G,H)

(2)d(G,H) =
∑

i,j

|AG
ij
− AH

ij
|,

(3)
1

|V|
∑

x∈V

|CG(x) − CH(x)|.

besides showing several undesired properties during syn-
thetic graph perturbation procedures.

In addition to introducing the stability notion (1), theo-
retical KG bounds were derived for the stable node centrality 
measures. For degree centrality, the KG = 1 value can be 
applied to any weighted graph G. The constant value for 
degree centrality can be explained by the maximum distance 
of the two studied adjacency matrices, which is at least the 
maximum difference of the degree centrality value. Moreo-
ver, the theoretical value for a given undirected weighted 
graph G can be reduced to 1/2 due to the symmetry of the 
adjacency matrices. It is an interesting aspect concerning 
degree centrality that the theoretical bound of KG = 1 can 
be reached with the smallest overall change in the directed 
graph. In case of in- and out-degree, this means that only 
one node’s connections are affected, and hence this will 
modify one single row and column, respectively, in the 
adjacency matrix. Thus, the maximal change in centrality 
will be equal to the distance of the original and perturbed 
adjacency matrix.

In their paper, they worked with the decentrality version 
of the closeness centrality (Freeman 1978), where lower 
value corresponds to more central nodes and showed that 
for closeness centrality the theoretical bound KG is equal to 
the number of nodes; hence, it is not a universal constant. 
It is also immediate that the ranking stability of closeness 
centrality and the decentrality version is equivalent. The 
constant KG value for the stable eigenvector centrality is 
computed as 4∕(�1 − �2) , where �1 and �2 are the greatest 
and second greatest eigenvalue of the adjacency matrix of 
graph G, respectively.

Although the theoretical results for the constant KG were 
given by Segarra and Ribeiro (2015), it would still be inter-
esting to analyze its actual value in real networks under natu-
ral perturbation scenarios. By selecting the stable degree, 
the eigenvector and the closeness measures, the interesting 
gap between the theoretically worst possible option and the 
general behavior of the studied networks could be investi-
gated. In the numerical experiments, the KG values were far 
lower than their theoretical bounds for the stable measures. 
Furthermore, we wanted to answer the question whether a 
theoretically proven unstable measure could provide any 
useful insights when applied on various datasets. Numerical 
experiments confirmed that in spite of the unstable behavior 
of betweenness centrality, it can still contribute to give an 
insight into overall network dynamics.

3.4  Similarity and correlation

Cosine similarity (Han et al. 2011) is a measure of similar-
ity between two nonzero vectors of an inner product space 
that measures the cosine of the angle between them. It is 
mainly used in positive space for information retrieval and 
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text mining. The outcome of the cosine similarity ranges 
from −1 meaning exactly the opposite, to 1 meaning exactly 
the same, with 0 indicating orthogonality or decorrelation, 
while in-between values indicate intermediate similarity or 
dissimilarity.

The Kendall’s tau rank correlation coefficient (Kendall 
1938) is used to measure the ordinal association between 
two measured quantities. The coefficient results in high 
value when observations have a similar rank (i.e., relative 
position label of the observations within the variable: 1st, 
2nd, 3rd, etc.) between the two variables.

4  Datasets and methods

In anticipation of analyzing the stability of centrality meas-
ures, three scenarios have been considered. In this section, 
we will discuss the motivation behind these perturbation 
scenarios by describing the real-world and synthetic datasets 
that naturally involve some of the mentioned perturbations. 
Moreover, we will also give an algorithmic approach of the 
used methods.

4.1  Edge weight perturbation

The first perturbation method relies on the changing edge 
weights on fixed node and edge sets of graphs representing 
real-life processes.

S&P 500 and Mutual Funds Firstly, the well-known 
S&P 500 financial dataset was (Lamoureux and Wansley 
1987) selected. By using stock data as the input for our 
experiments, the graph perturbation method was obtained 
directly from real-life processes. The daily closing prices of 
330 leading US companies were collected from the Yahoo 
Finance portal, and the experiments were performed in the 
time period of 01/01/1995–31/12/2018. The companies 
selected from the S&P 500 list having complete data on the 
considered interval. A rolling time window of 200 days was 
used to construct correlation matrices from stock return time 
series with starting points T0 = 01∕01∕1995 , Tk = T0 + kΔT  
with ΔT = 50 , k = 1, 2,… , S . In every graph in this consec-
utive network list, edge weights represent the Pearson corre-
lation coefficient between the nodes (representing assets) on 
the corresponding time window. Another correlation-based 
financial graph was constructed based on the Mutual funds 
dataset (Treynor and Mazuy 1966). We performed experi-
ments on this dataset using the daily closing prices of mutual 
funds in the period of 01/10/2010–31/12/2018, including the 
assets of 49 mutual funds, and applied the method as for the 
S&P 500 graph.

MovieLens As for our second main dataset for the edge 
weight perturbation, we used the MovieLens dataset col-
lected by GroupLens Research (Harper and Konstan 

2016). By selecting the most active users ( topN = 2500 ) 
and the most actively rated movies ( topM = 2000 ), we 
received a data frame containing the ratings in the period 
of 15/09/1997–30/03/2015. In every iteration, we selected 
a block with starting point T0 = 15∕09∕1997 and a block 
length of Tk = kΔT with ΔT = 500 , k = 1, 2,… . From every 
block, we constructed a matrix M with columns represent-
ing the topN users and rows representing the topM analyzed 
movies. The Mi,j element of the matrix represents the rating 
given by the j user to the i movie. Based on the M matrix, 
we constructed an adjacency matrix A where an Aij element 
is the cosine similarity between the rating vectors of users 
i and j. Consecutive graphs were constructed based on the 
adjacency matrices, making the analysis of rating behavior 
over time available.

4.2  Graph growth

Our secondly studied scenario was the graph perturbation 
caused by new nodes and edges joining the graph, i.e., those 
processes that generate growing graphs over time. The per-
turbation underlying this approach relies on the fact that 
during these processes new nodes can connect to the initial 
graph by establishing one or more connections, and also new 
connections can occur between already existing nodes. It is 
an interesting aspect how these new connections in the graph 
affect the stability of centrality measures.

Cooper–Frieze graph process Synthetic graph growth-
related experiments were performed with the implementa-
tion of the graph process proposed by Cooper and Frieze 
(2003) which relies on the general model of web graph 
growing. The starting point of the process is an initial graph 
G0 (at time t = 0 ). In our experiments, this initial graph con-
sisted of two nodes connected with an edge. The graph pro-
cess randomly evolves by the addition of new directed edges 
between existing nodes or by connecting new vertices to 
the graph with one or more directed edges at each time step 
t = 1, 2,… , Z . With probability � ∈ [0, 1] and 1 − � a new 
node joins the network or an existing node generates edges, 
respectively. With probability p = (pi ∶ i ≥ 1) , a new node 
creates i edges. For new nodes, with probability � ∈ [0, 1] 
the terminal node of a new edge is made uniformly at ran-
dom and with 1 − � according to degree (i.e., new edges 
are preferentially attached). If an existing node generates 
an edge, where the number of edges given by probability 
q = (qi ∶ i ≥ 1) , the initial node is selected uniformly with 
probability � and proportional to its degree with 1 − � . The 
parameter � has similar role for existing nodes as � had in 
the case of new nodes. We started the centrality stability-
related measurements after the 100th iteration by block of 
10 iterations. Thus, at the end of an iteration block consisting 
of 10 time step t, a perturbed graph is produced with new 
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nodes and/or edges compared to the graph from the previous 
iteration block.

Temporal networks To perform our graph growth-related 
experiments not only on synthetic networks, we selected sev-
eral real-life temporal networks as well. The main feature, 
granted by a temporal network, is a time stamp assigned to 
the appearance of the interaction between the nodes. These 
interactions can be various user-to-user actions, like com-
menting on each other’s posts or articles, or rating each oth-
er’s behavior, which can eventually result in a trust network. 
The time-stamp-assigned temporal networks from the SNAP 
large dataset collection (Leskovec and Krevl 2014) are listed 
in Table 1, and the process of constructing and analyzing the 
graphs based on these datasets is described by Algorithm 1.

4.3  Sampling

The third analyzed perturbation method relies on the 
assumption that we are not aware of the whole network, only 
a smaller part of it is available at a time. This situation often 
happens in case of large networks due to, for example, stor-
age or bandwidth-related issues. The main question is that 
how well the properties (now centralities) of the original 
network can be approximated using only the given smaller 
parts.

Table 1  Temporal network 
properties

Dataset |V| |E| Time span (days)

WikiTalk (Leskovec et al. 2010; Paranjape et al. 2017) 1,140,149 7,833,140 2320
StackOverflow (Paranjape et al. 2017) 2,601,977 63,497,050 2774
Reddit hyperlink network (Kumar et al. 2018a) 55,863 858,490 1215
Bitcoin OTC (Kumar et al. 2016, 2018b) 5881 35,592 1904
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synthetic preferential attachment-based graph model (Albert 
and Barabási 2002) and a Facebook graph (Leskovec and 
Mcauley 2012) were used.

5  Experimental results

We developed a versatile simulation environment in order 
to perform our experiments and to handle various network 
data structures. The output of a simulation can be diverse 
plots, data tables and statistics depending on the user-defined 
parameters.1 We performed a wide range of experiments to 

Fig. 1  Stability values during the edge weight perturbation (S&P 500 graph)

Fig. 2  Empirical K values for centrality measures and the used components during the edge weight perturbation (S&P 500 graph)

1 Our simulator, together with the dataset used in this paper, is freely 
available at https ://gitla b.com/kardo sorsi /cssim .

The process of sampling is described in Algorithm 2. The 
studied sample sizes range from 20 to 90% of the nodes, 
and the sample size increases by 10% in every iteration of 
the outer cycle. It is no doubt that taking only one random 
sample for each sample size would not hold enough infor-
mation to depict a general behavior; thus, we performed 25 
uniformly at random selection of the nodes to obtain statis-
tically interpretable results, as in the study by Costenbader 
and Valente (2003). For each individual sample, we calcu-
lated the stability- and ranking-related attributes and finally 
assigned their average to the currently analyzed sample size. 
As for the two previously discussed perturbation methods, 
we performed our experiments on consecutive graphs, 
whereas during graph sampling we compared the graph 
to the initial one. For the sampling-related experiments, a 

https://gitlab.com/kardosorsi/cssim
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analyze numerically the stability of node centrality measures 
by using the three network perturbation methods described 
in Sect. 4.

5.1  Stability against edge weight perturbation

S&P 500 and mutual funds Firstly, we will discuss our 
results concerning the S&P 500 dataset. In the case of 
the correlation-based financial graph, we analyzed the 
behavior of the similarity-based measures (degree and 
eigenvector centralities) as well as the behavior of the 
dissimilarity or distance-based measures (closeness and 
betweenness centralities). To calculate distance-based 
measures, the correlation coefficients were transformed 
to distances according to Mantegna (1999) and Valle et al. 
(2018). The behavior of the KG constant value over time is 
presented in Fig. 1a on a logarithmic scale for the analyzed 
measures. Moreover, separated figures for degree, close-
ness and betweenness are shown in Fig. 2a–c for deeper 
insights. As eigenvector shows similar behavior as degree, 
our findings for degree will automatically apply to it too. 
It can also be seen that degree and closeness follow simi-
lar tendency; thus, in Fig. 2d we only listed the maximal 
degree and betweenness values along with the matrix dis-
tances over time. In Fig. 2a and b, the reported KG values 
show fewer and less radical changes than the betweenness-
related values reported in Fig. 2c. This behavior can be 

associated with the unstable behavior of the betweenness. 
Nevertheless, an interesting aspect can be applied for all 
the measures as the stability values show some greater 
changes in periods of crisis. For degree and closeness val-
ues, increases can be observed around 2004, 2008–2009, 
2010–2011 and 2013. The betweenness values on the one 
hand show a similar increase around these periods. On 
the other hand, these values can just as well indicate com-
pletely different events in finance that also took place in 
2000, 2012, 2014, 2015, 2016 and finally in 2017. Later 
on, in Sect. 6, we will give a detailed explanation for all 
the dates marked on the figures and listed here. It is a note-
worthy fact that these actual KG values are way lower than 
their theoretical bounds for the three previously analyzed 
stable centrality measures.   

The other interesting approach is the order or ranking 
by the metrics introduced in Sect. 3.4 that made possible 
to measure the ordinal association between the analyzed 
node ranking vectors during the graph perturbation proce-
dure. The values of the Kendall’s tau correlation coefficients 
are reported in Fig. 3b. In case of degree, eigenvector and 
closeness centralities, results can be noticed in the range of 
0.35–0.7, whereas the betweenness centrality values show 
less stable results in the range of 0.1–0.6 and also seemingly 
random higher values can be noticed. These higher values 
occur in times of financial crises such as between 2003 and 
2004, 2008 and 2010 and around 2013.

Fig. 3  Correlation values during the edge weight perturbation (S&P 500 graph)

Fig. 4  Jaccard similarity values during the edge weight perturbation (S&P 500 and MovieLens graphs)
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Figure 4a gives an insight into how much of the top 30 
most central (measured by the different centrality meas-
ures) stocks can keep their importance during the time. The 
reported Jaccard similarity metrics exhibit a much more sta-
ble behavior for degree, eigenvector and closeness centrality 
compared to the values of the radically changing between-
ness centrality. These results support the values reported 
in Fig. 3b. It is also an interesting finding that in the time 
period around 2009, we can notice high Jaccard similarity 
values for the three stable measures and for betweenness 
as well. However, in 2003–2004 betweenness-related val-
ues increase, while the other three of them show decreas-
ing tendency. These findings show the differences among 
betweenness centrality and the other three measures. Pear-
son correlation coefficient was calculated on the concrete 
centrality measures and is shown in Fig. 3a. Similar results 
were produced by analyzing the same centrality measures in 
case of the Mutual Funds financial network. Delpini et al. 
(2019) investigated the bipartite network of US mutual fund 
portfolios and their assets during the 2007–2008 Global 
Financial Crisis in order to have a better understanding of 
the relationship between the similarity of individual invest-
ment strategies and systematic riskiness. Their results show 
that the similarity—which can be considered as a proxy of 
vulnerability—of portfolios has decreased during the crisis. 
The peak of the systematic damage caused by the finan-
cial crisis can be spotted approximately halfway between 
the years 2007 and 2008. Our results from 06/07/2007 also 
showcase some higher KG values for degree and eigenvector 
centralities, whereas closeness and betweenness centralities 

produce lower values compared to results from the previous 
and subsequent time intervals.

MovieLens In the case of the MovieLens dataset, the 
numerical stability values tend to show a higher fluctua-
tion and values, about one magnitude higher compared to 
the S&P 500 network. Interestingly, betweenness centrality 
values are in a higher range compared to the other central-
ity measures, which tend to have quite similar values over 
time. The results reported by the Jaccard similarity applied 
on the top 30 nodes by the different measures (Fig. 4b) show 
a strongly decreasing tendency. We can also notice a more 
faster decrease in the betweenness centrality-related results 
compared to the other measures. These results suggest that 
the fluctuation of betweenness centrality is higher on the top 
ranking segment of the nodes, whereas the overall ordinal 
association is stronger than in the case of the other examined 
centrality measures.

5.2  Stability against graph growth

Directed Cooper–Frieze graph We performed experiments 
with respect to both the directed and the undirected ver-
sion of the Cooper–Frieze graph process; however, we will 
discuss our results for the directed version of it and we 
will only mention some of the differences between the 
two. In the directed case, we used the directed versions 
of betweenness and eigenvector along with in-degree, 
out-degree, in-closeness, out-closeness and PageRank. 
The empirical KG stability values of the measures are 
reported in Fig. 5d. The betweenness centrality stability 

Fig. 5  Empirical K values during the graph growth procedure (directed Cooper–Frieze graph)
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values during the graph growth process stay in the range 
of 1.65–461.93 (1.57–37.08 in the undirected case), with 
the mean values in the range of 0.28–5.6 (0.2–0.47). This 
suggests that the mean stability of the betweenness cen-
trality produces more stable values than when applied 
on an undirected graph. In the undirected version of the 

process, the stability values for eigenvector centrality show 
only slight changes, whereas seemingly radical changes of 
them over time can be noticed for the directed network. 
The empirical values range in 1.6 × 10−4 − 3 × 10−3 in the 
undirected case, while in the directed case several low 
values are shown in Fig. 5d.

Fig. 6  Stability, correlation and similarity values during the graph growth procedure (directed Cooper–Frieze graph)

Fig. 7  Empirical K values for centrality measures during the graph growth procedure (directed Cooper–Frieze graph)
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As for the Pearson correlation coefficient values and the 
Kendall’s tau rank correlation coefficient, a slightly more 
intense convergence can be noticed in Fig. 6b and c, com-
pared to the one produced by the undirected Cooper–Frieze 
network. On the other hand, in the case of the directed graph, 
the directed betweenness centrality measure has more sta-
ble values in the range of 0.6–1, although the out-close-
ness centrality produces some low values in the range of 
0.47–0.6. Comparing the directed and undirected version of 
the Cooper–Frieze graph process, we can state that directed 
betweenness centrality performs better than the undirected 
measure. When analyzing the centrality measures separately, 
a decreasing behavior can be noticed in Figs. 5c and 7c and 
d, whereas directed betweenness centrality presented in 
Fig. 5a shows a slightly increasing tendency.

Temporal networks The convergence can also be identi-
fied in case of temporal networks. Note that all four of the 
examined temporal networks are directed. For the Bitcoin 
OTC network, the results are shown in Figs. 8, 9, 10 and 
11. In the case of temporal networks, the reported results 
for betweenness centrality stability are in the range of 
45.48–1246.27 for StackOverflow, 159.39–1108.11 for Red-
dit, 28.05–523.7 for Bitcoin and 19.33–276.44 for WikiTalk 
network. The range of the stability values by the applied 
measures is quite the same for all of the examined tempo-
ral networks. Changes in the order only occur concerning 
in-closeness and out-closeness measures. For Reddit and 
StackOverflow networks, in-closeness values are higher 
than out-closeness stability values, whereas in the case of 
Bitcoin OTC and WikiTalk networks the out-degree values 

Fig. 8  Empirical K values during the graph growth procedure (Bit coin OTC network)

Fig. 9  Empirical K values during the graph growth procedure (Bitcoin OTC network)
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tend to be higher than the in-closeness ones. In the case of 
the directed Cooper–Frieze graph, the in-closeness values 
had higher values. The range of the correlation coefficient 
measures on the Bitcoin dataset is 0.47–0.9, and interest-
ingly, betweenness centrality tends to have higher values 
than the other centrality measures. In general, as for Pear-
son correlation, in-closeness and out-closeness centrality 
measures produce values in the lower ranges, compared to 
the other measured properties. A general convergence can 
be spotted too when analyzing the similarity of the top 30 
nodes. Interestingly, in the case of the Reddit, StackOverflow 
and WikiTalk networks, the lowest values are delivered by 
PageRank; the measures altogether show a monotonically 
increasing tendency. In the case of the WikiTalk network, 
except the similar increasing behavior, the PageRank values 
decrease over time. A slightly different result is obtained by 
examining the Bitcoin OTC network, where in-closeness and 

out-closeness measures have the lowest values in the range 
of 0.475–0.75.

5.3  Stability against sampling

The results for the sampling procedure are shown in Figs. 12, 
13 and 14. The numerically calculated KG values for each 
dataset support the unstable behavior of betweenness cen-
trality as shown in Figs. 12a and 13a. Major differences can 
be seen between the behavior of the centrality measures 
on the different datasets when the simulation reaches the 
smaller sample sizes.

As for the preferential attachment graph model, both Ken-
dall’s tau for node ranking and Pearson correlation coef-
ficient for the concrete centrality values have an increasing 
tendency when sample sizes become smaller. This can be 
explained by the structure of the preferential attachment 

Fig. 10  Empirical K and correlation values during the graph growth procedure (Bitcoin OTC network)

Fig. 11  Empirical correlation and similarity values during the graph growth procedure (Bitcoin OTC network)
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graph model. The above-mentioned interesting aspect is vis-
ualized in Fig. 14a and in Fig. 14b, showing the Jaccard sim-
ilarity of the top 30 nodes. In the case of the Barabási–Albert 
preferential attachment graph, the Jaccard similarity metric 
tends to become higher when sample sizes become smaller. 
On the other hand, for the real-life Facebook dataset, the 

Jaccard similarity tends to decrease when sample sizes 
become smaller.

These features do not affect the numerically calculated KG 
stability values for the two different networks, though. Only 
slight changes in the behavior of closeness centrality can be 
noted in Fig. 12a and in Fig. 13a. The stability results for 
betweenness centrality fall into the range of 22.79–115.09 

Fig. 12  Empirical K and correlation values during the graph sampling procedure (Barabási–Albert graph)

Fig. 13  Empirical K and correlation values during the graph sampling procedure (Facebook graph)
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and of 622.007–1028.36 for the Facebook graph and the 
preferential attachment graph, respectively. Differences in 
the calculated Pearson correlation coefficient can be noticed 
in Fig. 12d and in Fig. 13d. The best performing measure, 
based on Pearson correlation, is degree centrality for both 
graphs, followed by eigenvector for the Facebook graph and 
by closeness in the case of the Barabási–Albert graph.

6  Discussion

The stability of centrality measures against three perturba-
tion categories (edge weight perturbation, graph growth 
and sampling) was examined by implementing a versa-
tile simulator to calculate the KG constant values as pro-
posed by Segarra and Ribeiro (2015). The most commonly 
used centrality measures (degree, closeness, eigenvector, 
betweenness), along with their directed versions, as well as 
PageRank were used in our numerical experiments. Vari-
ous real-world datasets were selected, a web-graph-like 
Cooper–Frieze graph process was implemented, and the 
Barabási–Albert preferential attachment model was also 
used. Node rankings based on centrality measures were 
analyzed as well, besides the stability-related experiments. 
Our simulations resulted in some remarkable results. Against 
all the three perturbation methods, betweenness central-
ity showed a generally more unstable behavior compared 
to other measures, but experiments on real-world datasets 
proved the measure’s usefulness besides its characteristics. 
Further on, we will discuss some deeper insights and conclu-
sions concerning the stability properties found in the exam-
ined perturbation scenarios.

Numerical experiments on the S&P 500 correlation-
based financial graph showed that the stability of centrality 
measures can indicate changes in real-life processes, like the 
effects of crisis on stock market. Important dates identified 
during our analysis are marked in Fig. 2a–c and listed in 
Sect. 5.1. For degree and closeness values increases around 
2004, 2008–2009, 2010–2011 and 2013 can be observed. 
The increase in 2004 can be explained by the beginning of 

the Iraq war, the one between 2008 and 2009 may reflect 
the Global financial crisis and the Lehman Brothers failure, 
the rise between 2010 and 2011 can be associated with the 
Sovereign debt crisis, whereas the one in 2013 might repre-
sent the US government shutdown. The betweenness values 
show similar increases around these periods too; however, 
it can certainly indicate other events in finance taking place 
in 2000, 2012, 2014, 2015, 2016 and finally in 2017. The 
additional events that can be noted by the extreme values for 
betweenness centrality are the Dotcom stock crash (2000), 
the US housing bubble (2012), the Ebola outbreak (2014), 
Oil skidding and general lower earnings per share values 
(2015), the US Fed increase by 0.25 (2016) and the Brexit 
(2017). In the followings, we will give a detailed discussion 
on our insights and assumptions for these extreme changes. 
These higher KG values in times of distress can be important 
on their own. What is more interesting is the fact that the 
component resulting in higher values can also indicate the 
type of the crisis.

Numerical KG values were calculated by dividing the 
maximum change in centrality vectors by the distance 
between the two consecutive networks; see Formula (1). 
Thus, higher KG values can occur if the distance (denomi-
nator) decreases or the maximum change (nominator) 
increases. More importantly, the produced values can be 
categorized by the component that resulted in its increase.

• Our intuition for the nominator’s increase in (1) is that it 
can be associated with events that only affect some sec-
tors, although not the whole market. For example, the 
beginning of the Iraq war in 2003 could possibly result in 
higher centrality measures in the oil sector. However, this 
change might not affect, for example, the tech giants or 
other independent sectors. These sectorial changes only 
appear as smaller or local changes in the graph, hence do 
not produce extreme changes in the distance of the two 
consecutive graphs.

• When the distance, i.e., the denominator of (1), is the 
dominant component that produces the higher KG val-
ues, we can state that the whole market is somewhat 

Fig. 14  Jaccard similarity during the graph sampling procedure (Barabási–Albert and Facebook graphs)
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affected at that time. It is a well-known stylized fact in 
finance that assets correlation increases in times of finan-
cial distress, and if this situation remains for a longer 
period of time, it will result in lower distance values in 
the stability calculations. So we can state that a financial 
crisis affecting the whole market—like the one taking 
place in 2008—can lead to smaller distances between the 
consecutive graphs and thus in higher KG values in our 
numerical experiments.

As for the other datasets of this perturbation process, we can 
say that the Mutual Funds financial graph also shows some 
higher values in times of crisis, occasionally at important 
events for which the S&P 500 graph remains insensitive. 
About the rating-based MovieLens dataset, an interesting 
phenomenon is that the degree centrality almost reaches its 
theoretical bound, being 1.

In the case of graph growth, simulations were performed 
on a synthetic graph process and on several real-world tem-
poral networks. Pertaining the Pearson correlations and the 
Kendall’s tau rank correlations, a general convergence can 
be noted in both synthetic and real-world scenarios. The 
stability values with respect to betweenness centrality show 
an increasing tendency, whereas a decreasing behavior of 
closeness and PageRank can be noticed across all the studied 
networks. Interestingly, degree and eigenvector centralities 
have some stable values between given ranges, although in 
the case of real-world networks, their behavior indicates a 
decreasing tendency. When analyzing the graph distances 
for the Bitcoin OTC, an interesting phenomenon emerges 
due to two remarkably large values, calculated in August 
and December of 2013. For deeper insight, we analyzed the 
ratings among users (values between −10 and 10) batched 
in blocks of one-month length. The average rating was 1.01 
over the analyzed time, and the average monthly ratings were 
performed in the range of 0.9–1.7. In the aforementioned 
months, the average rating was −2.35 and −1.07 , respec-
tively, which made them the only months that produced 
negative rating average. The number of negative or puni-
tive ratings in the analyzed time period was 3, 563, from 
which 2, 413 were equal to −10 . Six hundred and seventy-
seven of them were received in 08/2013 and 187 in 12/2013. 
These punitive activities were quite frequent between the 
small and big bubble of 2013 as stated by Ilaria et al. (2018). 
Around these two months, radical changes can be noticed 
in the behavior of both in-degree and out-degree, which is 
followed by extreme changes in the centrality value vectors 
shortly after, resulting in higher KG values in that particular 
time period.

Lastly, the stability performance of centrality measures 
was studied when networks are sampled by analyzing the 
behavior of the measures on the synthetic Barabási–Albert 
graph process and the real-life Facebook friendship graphs. 

The correlation between the centrality values and also the 
ordinal association of the ranking vectors shows a decreasing 
tendency in general. In case of the preferential attachment 
graph, the correlation values become higher when sample 
sizes become smaller, compared to the values on larger sam-
ples. This can be explained by the interesting fact that the 
preferential attachment-based graph shows some features of 
the initial graph, when sample sizes are small. Note that 
this tendency cannot be observed during the analysis of the 
Facebook real-world dataset.

After discussing our perturbation method specific find-
ings, we form a general statement concerning the behavior 
of the measures that can be applied for all the three above-
mentioned scenarios. It can be stated for all the methods that 
the empirical KG values computed by our simulations are 
always smaller than the measures’ theoretical values proven 
by Segarra and Ribeiro (2015). More importantly, as for 
the real-world datasets the changes in the KG values always 
yield the presence of important phenomena and behaviors. 
Obviously, this information cannot be deduced directly only 
taking into consideration the theoretical values. By analogy 
with the big O notation, the theoretical stability constraints 
though limit the behavior of a measure, but by doing so, it 
also has a general blurring effect, whereas in our empirical 
analysis we aimed at revealing even the smallest changes 
contributing to the overall network dynamics and found out 
that there is a correlation between the changes in stabil-
ity values and real-world events in several cases. Besides 
betweenness centrality showing unstable behavior regard-
ing the real-world datasets too, it can as well be stated that 
the changes in the measure can indicate completely differ-
ent dynamics in the graph compared to the stable measures, 
which show similar behavior in many times. Thus, by reveal-
ing deeper insights, we claim that betweenness centrality can 
indeed expose useful aspects of the analyzed data, despite 
its theoretically proven unstable behavior.

Our study can surely influence further theoretical- and 
application-related research on the stability of centralities. 
Developing novel concepts of stability, or proving theoreti-
cal bounds for additional measures applied for the concept 
used in this paper can be an interesting approach. As for the 
application fields, the use of these stability concepts can be 
fundamental in practical data mining-related tasks. Before 
using one particular measure, and jumping to a conclusion 
for time series or similar datasets, one could analyze the per-
formance of the selected measure. By applying it on smaller 
examples and doing several perturbation scenarios, the cen-
trality measure suited for the exact problem could be easily 
selected by its stability values. Thus, helpful insights into 
stability could make crucial tasks, like time and resource 
allocation much easier and more efficient.
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7  Conclusion

The stability of centrality measures against various perturba-
tion methods was analyzed based on the concept proposed 
by Segarra and Ribeiro (2015). A general statement with 
respect to the change of numerical stability values yielding 
the presence of important phenomena was stated. Overall 
network dynamics could be better explained by analyzing 
even the smallest changes in the stability values that often 
showed a correlation with real-life events. The S&P 500 
financial dataset, which naturally includes edge weight per-
turbation, demonstrated that changes in stability values can 
easily indicate times of financial distresses. The possible 
usefulness of betweenness centrality despite its theoreti-
cally proven unstable behavior was revealed. Concerning the 
secondly analyzed graph growth process, effects of real-life 
conducted processes were likewise found with the analysis 
of the Bitcoin OTC dataset. Sampling-related experiments 
produced interesting results when reaching smaller sam-
ple sizes. Besides providing and discussing our numerical 
results in detail, we also depicted some possible future work 
and application-oriented aspects, by highlighting their use-
fulness pertaining data mining-related tasks and studying the 
performance of different centrality indices.
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