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Abstract: Periodic surface gratings or photonic crystals are excellent tools for diffracting light
and to collect information about the spectral intensity, if the target structure is known, or about the
diffracting object, if the light source is well defined. However, this method is less effective in the
case of extreme ultraviolet (XUV) light due to the high absorption coefficient of any material in
this frequency range. Here we propose a nanorod array target in the plasma phase as an efficient
dispersive medium for the intense XUV light which is originated from laser-plasma interactions
where various high harmonic generation processes take place. The scattering process is studied
with the help of particle-in-cell simulations and we show that the angular distribution of different
harmonics after scattering can be perfectly described by a simple interference theory.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Limited size targets exposed to intense coherent radiation constitutes a well-studied plasma
phenomenon involving linearly excited surface plasmon oscillations. Such laser-matter interac-
tions have been extensively investigated, both in metal clusters [1] and in laser-ionized rare-gas
atomic clusters [2,3]. The absorption and scattering of the incident light is well described by
the Mie theory, which predicts the existence of a resonance condition corresponding to the
multi-pole oscillation of a portion of free electrons in the target with respect to the background of
the positively charged ions. In the resonant regime, efficient excitation of plasma oscillations
can result in a considerable enhancement of the cluster’s inner and outer electric field at the
fundamental frequency. This, in turn, may significantly enhance the scattered field intensity at
large angles with respect to the original wave direction.

It is well known that intense short laser pulse can produce high harmonics during the interaction
with solid density surfaces via different surface high harmonic generation processes [4]. It was
shown that the efficiency of such process can be about 10−4 or 10−3, for instance at the ninth
harmonic [5,6]. It corresponds to a harmonic wave intensity on the order of 1014 − 1015 W/cm2,
which is already high enough to ionize a Carbon or Si nanorod, which are routinely manufactured
in many laboratories [7,8]. It is possible to achieve higher charge states if the radiation reflected
from the flat surface is not filtered and the fundamental frequency also interacts with the nanorods,
but in this case the plasma expansion may influence the scattering and reduce the efficiency.
For the present analysis we consider ionized Carbon nanorods with a charge state 4+, which
corresponds to an electron density of ≈ 2.4 × 1023 cm−3, and with 200 eV electron temperature.
For these parameters the electron collision rate is a little lower than the harmonic frequency and
our simulations show that the interaction can be considered collision-less for the above mentioned
radiation intensity.
In the case of high harmonics generated in gases the radiation intensity is at least 4 orders

of magnitudes lower [9–11], which is not enough to ionize the target and to generate a plasma
with purely imaginary refractive index. In this case a preceding pulse should be used which
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pre-ionizes the nanorods, or one can consider unionized target which has a different refractive
index [12] leading to different resonant conditions and lower scattering efficiency.

In the range ofmicrometer longwavelengths photonic crystals and gratings can bemanufactured
for guiding or diffracting the electromagnetic waves [13,14] while for x-ray radiation real crystals
can be used where the scattering centers are atoms regularly placed at distances of few nanometers
[15]. There is a gap between these very different wavelength regimes, which is called the XUV
regime, where the manipulation of light propagation could not evolve as much as for other
wavelengths. It has been shown that gas jets can serve as refractive medium for XUV pulses [16]
and diffraction at such wavelength can be achieved on metal Fresnel-zone plates [17] leading to
focusing of radiation with wavelength as short as 100 Å.
Within the present work we do focus on the possibility of directed scattering and angular

filtering of short wavelength radiation in the XUV range by scattering on suitable nanorod arrays.
The nanorods have many advantages with respect to the clusters, because the separation distance
between them as well as their radius can be well controlled. The general setup of such interaction
is shown in Fig. 1. The harmonics contained by the main pulse are emitted with different intensity
at different angles, which results in angular dependent waveform of the outgoing radiation. The
scattering by a single nanorod can be completely described in cylindrical symmetry and the
interaction can be easily modeled with the help of 2D particle in cell simulations. In particular,
we concentrate on a theoretical investigation, supported by simulations, and we point out the
applicability for experimental realisation.

Fig. 1. The geometry of the studied interaction. The plane of polarization is perpendicular
to the nanorods. The length of the nanorods is a few micrometers (longer than the attopulse
spot size) and in simulations we consider only a few horizontal rows of nanorods. The
waveforms of outgoing waves in different directions are shown for illustration, the angular
distribution of harmonics depends on the distance between the rods.

2. Basic model estimations

Let us consider a single nanorod with radius a irradiated by a short harmonic pulse with a
duration τ ≈ 20 fs and an intensity Ih ≈ 1014 W/cm2. The Drude model yields the dielectric
function of the plasma: ε(ω) = 1 − (ωpe/ω)

2/(1 + iβe), where ω is the harmonic (angular)
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frequency under consideration. ωpe = (4πe2ne/me)
1/2 is the electron plasma frequency; e is the

electron charge, me is the electron mass, ne = Zni denotes the electron number density as the
product of average ionization Z degree and ion density ni (= 6 × 1022 cm−3). βe = νe/ω and
the electron-ion collision rate is νe in the Spitzer approximation. As we are going to consider
scattering of harmonic radiation, the nanorod should have a density above the critical one for this
harmonic: nc = ω2me/4πe2. Thus for example, for 10-th harmonic of laser wavelength λL = 800
nm one obtains ne>1.4 × 1023 cm−3 and therefore one should use Z>3, which is easily achieved
in the case of Carbon.
In the case of linear interaction, Mie theory can be used for the description of elastic

electromagnetic wave scattering by arbitrary sized particles and beyond that, it allows the
description of the electric and magnetic field distribution inside and outside the scattering object
[18,19]. A main step is to solve the scalar Helmholtz Equation in an appropriate coordinate
system and gain the vector solutions. For cylindrical scatters the solution of the scalar Helmholtz
equation in this geometry can be written in the form of Bessel and Hankel functions of n-th order
[19].

We do assume an incident plane wave, which is propagating along the x-axis and is polarized
parallel to the y-axis, which can be written as: Ey = E0 exp(iωt − ikx)ey, where k = ω/c and ey
is the unit vector in y direction. Now this wave can be expanded into a series via generalized
Fourier expansion. When assuming an isotropic media the polarization is preserved and the
internal and the scattered field are of a similar form. The scattered wave Es has to be an outgoing
one, which can be written in the following form [19]:

Es = E0

∞∑
n=−∞
(−i)n+1An(ka,m)Mn(ρ, θ), (1)

where n is the mode number of harmonics obtained via the transformation from Cartesian system
to cylindrical one and m =

√
ε(ω) is the refractive index of the target. The coefficient of vector

harmonics have the form:

An(x,m) =
[
mJ ′n(x)Jn(mx) − Jn(x)J

′
n(mx)

] [
mJn(mx)H′(1)n (x) − J ′n(mx)H

(1)
n (x)

]−1
, (2)

where Jn and Hn are the Bessel and Hankel functions respectively and the prime represents their
spatial derivative. The vector function Mn has radial and azimuthal components as well:

Mn(ρ, θ) =
[
in(Zn(ρ)/ρ)er − Z ′n(ρ)eθ

]
exp(inθ), (3)

where ρ = kr is the normalized spatial coordinate, er and eθ are the unit vectors. Fields along the
rod’s axial direction are generated only in the case of S-polarization, which is not considered here.
In the above expression Zn is the generating function for the scattered fields which coincides with
the Hankel function of the first kind, also used in Eq. (2).
In the case of cylindrical symmetry one can find that the amplitude of the scattered field is

maximal for m2 = −1 in the limit of very small rod radius (ka � 1), which immediately shows
that in collision-less case the resonant density is single-valued: ne = 2nc [19]. It can be easily
found by expressing the Bessel functions with their asymptotic form, which leads to a simplified
expression of the coefficients:

An(x→ 0,m) =
(
1 + i

m2 + 1
m2 − 1

Cn

x2n

)−1
, (4)

where Cn = (2nn!)2/(nπ). For small object radius this approximated expression can be used
instead of Eq. (2), however for ka>0.1 this approximation is not valid any more, especially in the
case of higher order modes.
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The dependence of the scattering coefficient on electron density in the ionized nanorods is
shown in Fig. 2 for two values of target radius. The first important thing to be noted here is that
for larger rod radius the interval of resonance (width of the peak) is wider. This means that with
a thicker rod a wider range of electron density value can be used to excite a cylindrical mode.
It will be important in the case of higher order harmonics, for which ka is large. On the other
hand from Fig. 2 it is apparent that for a non-ionized Carbon target the amplitude of the scattered
radiation is much lower than in the ionized case. The value of the refractive index is taken from
Ref. [12]. This is the main advantage of using the plasma phase in Mie scattering and the fact
that Carbon ions with with charge state >3+ provide near-resonant electron density makes this
material very attractive.

Fig. 2. Vector function coefficients used in Eq. (1) which define the amplitude of the
scattered field for two normalized radius values: ka = 0.5 (a) and ka = 2 (b). The absolute
value of the coefficient (An) is calculated by using Eq. (2) with purely imaginary refractive
index (full lines) and with non-ionized graphite target (dashed line) for n = 1, n = 2 and
n = 3.

The resonant density increases by increasing the nanorod radius, which is shown more clearly
in Fig. 3, where the curves where obtained numerically by finding the maximum of Eq. (2). The
optimal density (for which the An coefficient is maximum) gets higher in the case higher order
modes. To obtain the resonant scattering of the harmonic with the wavelength λ9 = λL/9 = 89
nm one should take the electron density to be ne ≈ 3.5 × 1023 cm−3 (C6+ for instance) in the case
of ka ≈ 1, but with larger normalized radius higher order modes can also be efficiently excited.
For example with ka = 2 the second and third cylindrical mode of the 7th harmonic can be excited
simultaneously if the target is ionized to C4+, because in this case Zni = ne ≈ 3nc(λ7). For the
scattering of shorter wavelengths one should use different material, like Si which provides higher
electron density at the same temperature.
Within the theory of Mie scattering it is known that the field amplitude on the target surface

can be enhanced significantly. The high field amplitude in the near-field is expressed by the
vector functionMn in Eq. (3). This is plotted in Fig. 3(b) as a function of radius. It shows that
higher order modes have larger amplitude for small radius (n = 2), but in Fig. 2 it can be seen
that this high amplitude is preserved for a narrow range of the refractive index. For example a
nanorod with normalized radius of ka = 0.03 can amplify the local field by 100 times in the first
mode and by 5000 times in the second mode. It means that the amplitude of modes with large n
number is higher, but it requires very precise value of m (see Fig. 2(a)), or electron density. Such
a strict constrain can be weakened by using thicker nanorods. However, for larger ka values the
value ofMn at the target surface is not so high, therefore field amplification factor larger than 100
is practically not possible.
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Fig. 3. (a) Normalized target density for which An (βe = 0) is maximal versus the target
radius for different mode numbers. (b) The absolute values of the vector harmonics are
plotted (Eq. (3) with θ = 0). At the rod surface the field enhancement corresponds to r = a
in this figure.

3. Particle-in-cell simulations

In our study we use the EPOCH 2D particle-in-cell code [?] for the investigation of the complex
electron dynamics and light emission from the cylindrical finite size targets considered here.
The typical oscillation amplitude of the electrons near the plasma surface for our parameters is
about 0.5 nm, therefore these simulations require very high resolution and are computationally
demanding. The used grid size in all simulations is always smaller than 1 nm, which ensures also
the realistic representation of the circular boundaries even in the case of 20 nm thick nanorods.
The plasma is represented by 200 particles in each cell occupied by the target.

3.1. Scattering of a single harmonic wave

Here we consider the interaction of a single frequency (9th harmonic) with infinitely long
cylindrical object, which is a nano-rod. The field intensity is Ih = 1013 W/cm2. The spatial
distribution of energy density is shown in Fig. 4, upper row, where the electron density is set
according to the resonant modes indicated in the pictures and collisions are not included. The
fields presented here are calculated by subtracting the field of the incoming planewave from the
output of the simulation, which contains the incoming and scattered fields together. This simple
method basically give us the fields emitted by the target electrons during the interaction.
In the lower row of Fig. 4 the results of analytical theory are shown, using the equations

presented in the previous section, which are in good agreement with the simulations. Here mode
numbers up to n = 9 are present and m is set to the resonant value of one selected mode. We have
performed the same simulations with collisions switched on and the difference was negligible,
which confirms that the relevant collision rates are much smaller than the harmonic frequency.
The observed good agreement confirms that particle-in-cell simulation is a suitable tool to
reproduce the Mie scattering in collision-less plasma (or in the case of low βe parameters). It is
worth to mention that within the laser focal spot size dL>a, a plane wave is a good approximation.

The angular distribution of the scattered field is basically defined by the vector functionMn,
which gives a very simple dependence on angle: the first mode is always symmetric (forward and
backward emission is the same) and the angular distribution of higher order modes is defined by
the mode number, i.e. the radiation in 2π is divided to 2n parts, each having different phase. It
means that the non-symmetric scattering pattern is a consequence of the interference of different
cylindrical modes excited at the target surface. The angular distribution can be manipulated by
changing the density of the target, since each mode has a peak amplitude at different refractive
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Fig. 4. 2D distribution of the scattered field (normalized to the incoming wave amplitude
and only the 9th harmonic is present) from collision-less simulations (upper row) and from
analyitical theory (lower row). The plane-wave propagates from right to the left and the
white arrow shows the positive direction of θ angle.

index values. In Fig. 4, for ka = 0.7 the resonant densities of the first three modes are: 2.316nc,
2.206nc and 2.068nc, while for ka = 1.7 these values are: 1.325nc, 3.096nc, 2.66nc and for the
forth mode 2.266nc.

The most intense radiation is expected at θ = 0 (in the direction of the incoming wave), because
at this angle (see Eq. (3)) the modes are in phase and positive interference occurs. However, if
the density is set very precisely, close to the resonant values for the higher order modes, then
scattering at larger angles can also be achieved. The interference of such components can result
in complicated patterns, but at least 10 % of the radiation can be directed along a well defined
angle. This is shown in Fig. 4 for two target radii and for different resonant densities.
In reality the resonance of a single mode is not possible to achieve as precisely as in the

simulation. However, even if the electron density slightly changes in time the coefficient A
remains close to one if the normalized radius is large enough, i.e. ka>1 (see Fig. 2). It is worth to
mention that at θ = 90◦ the radiation is almost zero and most of the scattered radiation is emitted
in forward and backward directions in a limited cone angle. This has an important consequence
on the diffraction, because the scattered energy is not uniform, but most of the radiation will
remain close to the incoming wave axis. In the following we set the electron density to a fixed
value and investigate the effects of target properties.

The diffraction patterns obtained from simulations with many nanorods are presented in Fig. 5
for different nanorod thicknesses. The target is more realistic in this case because it consists of
partially ionized Carbon (C4+) and electrons at 200 eV temperature with realistic number density,
which means ne = 2.4 × 1023 cm−3 ≈ 6nc(λ5) ≈ 3nc(λ7) ≈ 1.7nc(λ9). The laser wavelength
and peak intensity is the same as in Fig. 4, but here we consider Gaussian envelopes in the
longitudinal and transverse directions. The separation between nanorods is the same in the x
and y directions: Dx = Dy = 3λ9 for the thicker nanorods and Dx = Dy = 2λ9 for the thinner
nanorods. In Fig. 5(a,c) the transmission is higher due to the small thickness of the rods, while the
incoming radiation is scattered more efficiently in Fig. 5(b,d), where thicker nanorods are used.
The transmission can be decreased by reducing the distance between nanorods or by increasing
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their thickness. The angular distribution of the scattered wave is the same as in the case of a
wave packet, which is presented in the next section.

Fig. 5. Diffraction pattern of the normalized energy density for a = 9 nm (a,c) and for
a = 30 nm (b,d) rod radius and for separation distance Dx = Dy = 3λ9 in (b,d), while
Dx = Dy = 2λ9 in (a,c). The number of nanorod array columns is also varied: 1 in (a,b)
and 3 in (c,d). The 15 fs long pulse propagates from the lower left corner towards the upper
right corner and the white dashed line shows the axis of propagation. The incidence angle is
θ0 = 30◦.

3.2. Scattering of wave packet

First let us consider the scattering by a single nanorod. The harmonic radiation consists of many
frequencies with well defined phases, which depends on the nature of the emitting medium.
Here from the third up to the 15th harmonics are included, thus the nanorods interact with a
train of attopulses. Now for each harmonic scattering conditions will be different, because the
normalized quantities define the scattered field pattern.
In the case of many wavelengths it is better to analyse the scattered field in the frequency

domain by applying the Fourier transformation. The results are presented in Fig. 6 for two values
of normalized rod radius. One can see that in the case of thinner rod the 9th and 7th harmonics
are scattered more efficiently (Fig. 6(a)), because for this frequency the dimensionless quantity
ne/nc is still in the range of resonance, as it is shown in Fig. 2(a). For longer wavelengths the
normalized density gets higher, but the coefficient of the first mode decays slowly with increasing
density which allows for efficient scattering. For larger radius the higher order modes also appear
with significant amplitude, which is seen in Fig. 6(b). This can be explained by the wide peaks of
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An shown in Fig. 2(b). The maximum value of A1 is shifted towards lower normalized densities
(see Fig. 3(a)) which also leads to stronger scattering of higher harmonics.

Fig. 6. Distribution of the scattered radiation in the Fourier space for two different values
of radius: a = 9 nm (a) and a = 30 nm (b). The change in the amplitudes of the harmonics
is also shown (c).

It is important to distinguish between scattered and absorbed energy. Via the electron
oscillations induced during the interactions the ions are slightly accelerated by the charge
separation field, in this way the field energy is absorbed. The surface field amplitude is stronger
for smaller ka, which means that the absorption, and the reduction in amplitude, is more
pronounced in the case of the 7th harmonic. The electron density is closer to the resonance of the
9th harmonic which also loses energy via scattering at large angles. This is confirmed in Fig. 6(c),
where the transmitted (going in the x direction or at θ = 0◦) normalized energy density values are
shown for all frequencies. In general for absorption the thinner nanorods while for scattering the
thicker nanorods are more appropriate as long as the electron density is close to the resonant one.
When more nanorods are used the interference between scattered waves start to play an

important role. From Fig. 5 it is difficult to identify the angles of scattered light, but in the Fourier
space it is possible to extract well defined angles. The intensity distribution of the scattered
radiation in the (kx, ky) space is shown in Fig. 7, where along the dashed circular line we can find
the intensity distribution of the 9th harmonic. One important feature of the scattering for these
parameters is that the signal in the specular direction (θ = 150◦) is very weak. Instead there is
strong backward reflection. The transmission is strong in all cases except the case of thicker rods
with 3 array arrangement, as it is seen in Fig. 5(d) as well.

The spectral distribution of the transmitted radiation in the original direction of the laser pulse
is shown in Fig. 8. The trivial output of the scattering is visible here as well: the higher number
and larger radius of nanorods reduces the intensity of transmitted waves. The outcome of these
results is in agreement also with 6 where the 7th harmonic is absorbed the most efficiently. In
the case of the 5th harmonic the parameter ka is even smaller, but the ratio ne/nc is far from the
resonant value.
The angular distribution of transmitted fields after scattering can be understood by the von

Laue formula which states the condition for constructive interference: D · (k − k′) = 2πN, where
D is the vector connecting two neighboring nanorods and k, k′ are the incoming and reflected
wave number vectors, respectively, and N is an integer, also called as the order of interference.
The angles with respect to kx, where positive interference can be expected in the transmitted
radiation, are then expressed with the following formula:

θt = arcsin(sin(θ0) − Nλh/D) (5)

and for the reflected radiation:

θr = π − arcsin(sin(θ0) − Nλh/D). (6)

In the case of a single rod array there is only one orientation in the y direction, which is shifted



Research Article Vol. 28, No. 4 / 17 February 2020 / Optics Express 5363

Fig. 7. (a,b,c,d) Intensity distribution from simulation in the k space corresponding to the
same simulations as Fig. 5, but with multiple harmonic frequencies. The white arrow shows
the direction in which the θ angle is measured. (e,f) Additional simulations showing that
changing the rod thickness does not affect the scattered field pattern, only the scattered
intensity. In all pictures the color code represents log10[|FFT(Bz/B0)|2].

Fig. 8. Spectral intensity distribution of transmitted radiation in the direction of the incident
pulse (θt = 30◦, N = 0).
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by 90◦ with respect to the kx axis. In the case of D = 2λ by using Eq. (5) one can easily obtain
the angles corresponding to the red dots along the dashed line in Fig. 7(a). Beside the zero order
diffraction (30◦) there is radiation propagating in the 0◦ and 90◦ directions, corresponding to
N = 1 and N = −1. The negative first order is not well visible in our simulation, because the
forward scattering by a single harmonic is limited in angle to ±40◦ (See Fig. 4). For larger D
value (see Fig. 7(b)) additional angles also appear which are θt = 9.6◦ and θt = 56.4◦ according
to Eq. (5) and several other negative angles corresponding to higher order diffraction.
In the case of multiple frequencies the scattering angles are also predictable by Eqs. (5) and

(6), only the wavelength has to be replaced with the harmonics wavelengths. One important
consequence of the shorter wavelengths is the increase of the order of diffraction (N) visible
in the scattered light, because Nmax ∼ D/λh, according to the diffraction theory. With other

Fig. 9. Intensity distribution from theory in the k space corresponding to D = 2λ9 (left)
and D = 3λ9 (right). The blue dots are calculated by Eq. (5) and the red dots by Eq. (6). All
parameters are the same as in Fig. 7.

Fig. 10. Theoretical prediction for the angular distribution of the transmitted and reflected
harmonics as a function of incidence angle for two configurations: D = 90 nm (left) and
D = 180 nm (right). The shaded areas indicate the regions where low intensity radiation is
expected. The colors correspond to harmonic numbers: h = 5 (red), h = 7 (orange), h = 9
(green), h = 11 (blue), h = 13 (purple).
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words the angle difference between diffraction orders becomes less: ∼ arcsin(λh/D) [18]. The
intensity distributions of scattered light in the Fourier space are very similar for 1 (Fig. 7(a,b))
and for 3 (Fig. 7(c,d)) nanorod arrays, therefore the size of our nano-forest target does not modify
significantly the scattering. More important is the distance between the nanorods.
The results of Eqs. (5) and (6) are shown in Fig. 9, which are in perfect agreement with the

simulations. Having a reliable theory we can perform a parameter-scan over different incidence
angles and for different distances between the nanorods. Two examples are shown in Fig. 10,
where the gray areas indicate the angles where the scattered light intensity is low. This is a
consequence of the P-polarization and it has been shown in Fig. 4, where the scattered light is
expected in the forward and backward direction within a half cone angle of ≈ 50◦.

4. Waveform synthesis of XUV pulses

The change in the waveforms at different angles has been already illustrated in Fig. 1, which
now can be understood by the applied theory. In Fig. 10 we can see the difference between the
transmitted and reflected (in the direction opposite of the laser propagation indicated by the black
line) radiation. In the forward direction higher frequencies are scattered, while in the backward
mostly lower frequencies appear. If the value of D is small enough (here D = 90 nm in Fig. 10)
the scattering of transmitted radiation can be fully eliminated and high-order harmonics can be
transported at θr = 200◦ for a wide range of incidence angles. The scattered radiation is more
rich in frequencies at smaller incidence angles and in the case of larger D values. In principle it
is possible to obtain the expected angle of one or several harmonics for any value of θ0.
In principle the spectrum of the scattered radiation at a desired angle can be manipulated by

tuning the rod radius or ionization level in the target. The amplitude of the far-field is defined
by the function An(ka,

√
1 − ne/nc). For each harmonic, which can be found at a given θ angle

(according to Eqs. (5) and (6)) the total amplitude can be calculated using Eq. (1). The intensity
obtained in this way us further modulated by the intensity function used in the diffraction theory
[18] and in the far-field the following expression can be given for the scattered harmonic intensity:

Ish =
[
sin(khDp/2)
khDp/2

]2 [∑
n

An(kha,mh) cos(nθt(r) − nθ0 + nπ/2)

]2
, (7)

where p = sin(θt(r)) − sin(θ0), kh = 2π/λh and mh =
√
1 − ne/nc(λh). Due to the different values

of ka and ne/nc each harmonics will have different amplitudes, which now can be calculated. The
first term in the right hand side of Eq. (7) defines the angular interval of intense scattering and the
maximum order of diffraction. This effect can be seen also in Fig. 7, where Nmax is increasing
with the harmonic order. It can be seen that two or more harmonic frequencies can propagate at
nearly the same angle and they may overlap. In this way the XUV pulse synthesis is possible
for harmonics with characteristics curves laying very close to each other in the angle-diagram,
shown in Fig. 10.

5. Conclusion

Ionized nanorod (or nanowire) arrays with periodic structures are found to be suitable scattering
devices in the XUV regime. When the ionization level is such that the electron density in the
target is close to the resonant density the scattering and extinction efficiency increases and
reaches the few percent level in the case of a single nanorod. In the case of multiple nanorods the
efficiency increases linearly with the number of nanorods and the energy scattered in a given
direction can reach the level of 10s percents of the incoming radiation energy. The scattering
pattern generated with a well-defined two-dimensional array is well described by the classical
Laue formula. We chose C4+ as target material and prove the flexibility and simplicity of such
diffraction devices with the help of Particle-in-Cell simulations.
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Beside efficient scattering of selected wavelengths at selected angles the nanorod array proposed
here behaves as a filtering device in the direction of the incident laser pulse. One harmonic
frequency can be completely removed from the incoming radiation and the intensity of nearby
harmonics is also reduced during transmission. The frequency which is filtered out can be chosen
by tuning the electron density in the target or by changing the target material.
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