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Abstract: Copy number variation (CNV) is a form of structural variation in the human genome that
provides medical insight into complex human diseases; while whole-genome sequencing is becoming
more affordable, whole-exome sequencing (WES) remains an important tool in clinical diagnostics.
Because of its discontinuous nature and unique characteristics of sparse target-enrichment-based
WES data, the analysis and detection of CNV peaks remain difficult tasks. The Savitzky–Golay
(SG) smoothing is well known as a fast and efficient smoothing method. However, no study has
documented the use of this technique for CNV peak detection. It is well known that the effectiveness
of the classical SG filter depends on the proper selection of the window length and polynomial degree,
which should correspond with the scale of the peak because, in the case of peaks with a high rate
of change, the effectiveness of the filter could be restricted. Based on the Savitzky–Golay algorithm,
this paper introduces a novel adaptive method to smooth irregular peak distributions. The proposed
method ensures high-precision noise reduction by dynamically modifying the results of the prior
smoothing to automatically adjust parameters. Our method offers an additional feature extraction
technique based on density and Euclidean distance. In comparison to classical Savitzky–Golay
filtering and other peer filtering methods, the performance evaluation demonstrates that adaptive
Savitzky–Golay filtering performs better. According to experimental results, our method effectively
detects CNV peaks across all genomic segments for both short and long tags, with minimal peak
height fidelity values (i.e., low estimation bias). As a result, we clearly demonstrate how well the
adaptive Savitzky–Golay filtering method works and how its use in the detection of CNV peaks can
complement the existing techniques used in CNV peak analysis.

Keywords: copy number variation; read depth; adaptive Savitzky–Golay

1. Introduction

Copy number variation (CNV), which includes DNA segments longer than one kilo-
base pair being amplified or lost, is a significant class of DNA structural variants [1]. The
mutation rate of CNV loci is significantly higher than that of SNPs across the entire genome,
making CNV an important pathogenic factor causing human complex diseases [2]. The
three main technology types that can generate data sets for the detection of CNVs are array
comparative genomic hybridization (aCGH), SNP array, and next-generation sequencing
(NGS). NGS can perform target capture sequencing such as whole-exome sequencing (WES).
This is one of the techniques widely used to extract genomic information from a specific
exome region of interest using customized probes in clinical diagnosis [3]. This technique is
cost-effective and provides much higher coverage than whole-genome sequencing (WGS)
for the identification of rare variants and can provide exceptional prospects for researchers
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and patients [4]. However, some of the limitations of this technique include the following:
first the information is not continuous (i.e., not every position is covered such as intergenic
regions, large introns, promoters they are ≈99% of the genome, WES only covers ≈1%);
secondly, targeted genomic coordinates (exonic and coding sequences) of different kits
equivalent the precise positions of the designed hybridization oligos; third, multiple combi-
nations of oligos exist that could capture the same target region by different kit design based
on the position and shape of the coverage profile of sequence data resulting from these kits
and only loosely corresponds with the genome coordinates of targeted regions [4,5]. Lastly,
the exact position of the hybridization oligos is unknown, hence they could only be inferred
from the experimental NGS sequence data [6]. Thus, due to the unique features of NGS, the
CNV detection methods involving targeted NGS data could be divided into four categories,
notably, split-read-, de novo assembly-, pair-end-mapping- and read depth (RD)-based
approaches [7,8]. The read depth-based approach is more robust in detecting CNVs of any
sizes other among three categories. This method’s main tenet is to detect CNVs based on
the variation of read depths a cross the genome to be investigated [9]. Currently, there
are several techniques for detecting CNVs using RD values; however, these techniques
frequently have unique characteristics and limitations [10,11]. The analysis of CNVs peaks
with small amplitudes is still challenging due to factors such limited coverage depth and
GC content bias, despite the techniques’ considerably strong performance [12]. Therefore,
an appropriate filtering method is necessary to filter the CNVs peaks. Several filtering
methods have been proposing for peak processing, including spline smoothing [13], Stein’s
unbiased risk estimate (SURE) [14], Fourier transform [15], Gaussian Kernel filtering [16],
Epanechnikov Kernel [17], Lowess [18], Savitzky–Golay [19] and discrete wavelet trans-
form [20]. Some of those filtering methods experience computational challenges when
handling highly corrupted signals. Savitzky–Golay has been widely used in biomedical
electrocardiogram (ECG) signal processing due to its ability to achieve high signal-to-noise
ratio and retains the original shape of the signal [21]. Though this method has been widely
used for signal processing, no study has reported its application in CNV peak detection and
analysis. Currently, some of popular methods for detecting and analyzing CNVs include,
but is not limited to, CNVkit [22], Control-FREEC [23], iCopyDAV [24], PEcnv [25] and
CNV_IFTV [26]. Each of these methods has its own characteristics and advantages. For
example, CNVkit uses both the targeted reads and the nonspecifically captured off-target
reads to infer copy number evenly across the genome to identify copy number changes
based on we evaluation of three sources of bias in the sequencing read depth: GC content,
target footprint size and spacing, and repetitive sequences [27]. Control-FREEC most effec-
tively utlizes GC-content to normalize the read count profile so as to find out CNV regions,
and iCopyDAV chooses an appropriate bin size and uses thresholds for RD values to declare
CNVs. Although much effectiveness has been achieved by these methods, limited coverage
depth and GC-content bias still pose a big challenge to the detection of CNVs with small
amplitudes. Therefore, it would be necessary and meaningful to seek for new methods
that can grasp the essential characteristics of sequencing data associated with CNVs. In
this study, we proposed an adaptive Savitzky–Golay filtering method for the detection
and analysis of CNV peaks obtained from WES data. The motivation for the underlying
axiom of our novel approach is as follows: it uses the existing concepts of local polynomial
regression (LPR) and least squares criterion (LSC) to model the peak distribution function.
It provides a generic framework for an adaptive Savitzky–Golay that automatically chooses
the polynomial order and window length based on the peak distribution, allowing for
accurate smoothing of peaks with high rates of change as well. It consider peak positions
in each segment by calculating local density and minimum distance in order to extract
two related features from the CNV peaks profile. Finally, using a multivariate Gaussian
distribution, It calculate the associated p-value for the CNV peak from the feature values.
We conducted numerous simulation studies to evaluate and compare our approach to peer
methods. The experimental findings show the effectiveness of the method.
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The rest of this article is organized as follows: In Section 2, we provide a model
equation of peak distribution function, then we present a mathematical formulation of the
classical Savitzky–Golay filter and adaptive Savitzky–Golay filter with respect to CNVs
peak function; next, we describe a new formulation of feature extraction for CNV peak
detection and analysis. In Section 3, we present the results of model performance evaluation
and its application to real WES data generated for germline mutation analysis. In Section 4,
we summarize the discussion of the proposed method’s and genetic implication with
respect to CNV peak detection and analysis. In Section 5, we conclude and outline our
plans for future work.

2. Materials and Methods
2.1. Peak Distribution Function

Generally, peak distribution tends to be asymmetrical in nature; therefore, it is im-
portant to develop a function that is applied to a wide class of the peak distribution. Let
us consider the existing concept of local polynomial regression (LPR) [28] and the least
squares criterion (LSC) [29]; thus, the peak distribution function is given by equation

f (Si) = f0(Si) + w(Si), i = 1, . . . n, (1)

where f (Si) is the main peak, f0(Si) is the noisy peak and w(Si) is identically distributed
(iid) additive white Gaussian noise of mean zero and variance σ2, S is the segment. To keep
things simple, we will represent a peak f0 at ith segment by fi , f (Si) and w at ith segment
by wi , w(Si).

2.2. Classical Savitizky–Golay Filtering

In this subsection, we provide a summary of the mathematical formulation of classical
Savitizky–Golay filtering, based on the work of [30]. We first perform the polynomial fit
to obtain the filtered output value by computing the polynomial coefficients at the central
index of the approximation window. We then consider a symmetrical window length
M = 2m + 1, i = −m, . . . , λ, . . . , m with data point x at a reconstruction point λ represents
the index of the middle point at 0. Thus, the kth order of the polynomial P is calculated by

P = f0 + f1(x− xλ) + f2(x− xλ)
2 + · · ·+ fk(x− xλ)

k, (2)

The aim is to fit a polynomial of order P =
N
∑

k=0
fk(Si)

k in a least square manner by

minimizing the cost function using equation

εN =
M

∑
i=−M

(P− xλ)
2 =

M

∑
i=−M

(
N

∑
k=0

fk(Si)
k − xλ

)2

, (3)

To obtain data point at the central index 0 with zeroth polynomial coefficient as
y0 = P0 = f0, we calculate an optimal polynomial coefficient by differentiating εN in
Equation (2) with respect to N + 1 unknown coefficients and setting the derivatives to zero
to obtain the following sets of equations

∂εN
∂ fi

=
M

∑
i=−M

2(S)i

(
N

∑
k=0

fk(S)
k − x[xλ]

)
= 0, (4)

so, by interchanging the order of the summation, the set of N + 1 equations in N + 1
unknown is given by
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N

∑
k=0

(
M

∑
i=−M

(S)i+k

)
fk =

M

∑
i=−M

(S)i[xλ], (5)

Therefore, we can write Equation (5) in matrix form by defining the design matrix
A = {αλ,i} i.e., (2M + 1) × (N + 1) for the polynomial approximation. The transpose
of A as AT = {αi,λ} and the product matrix B = ATA as (N + 1) × (N + 1)symmetric
matrix. Then, polynomial coefficient vector is given by f = [ f0, f1, . . . , fk]

T and input
samples vector by x = [xλ−m, . . . , xλ−m, xλ, xλ+m, . . . , xλ+m]

T where, xλ = x = 0. Hence
the desired matrix form of normal equation is expressed as Bf = ATAf = ATx and solution

for the polynomial coefficient is expressed as f =
(

ATA
)−1

ATx = Hx, where H matrix is
independent of the input samples (it depends only on M and N). Therefore, the output
sample can be computed by the convolution equation

fλ−m =
M

∑
m=−M

hmxλ−m =
λ+M

∑
m=λ−M

hλ−mxλ, (6)

where h−m = h0,m = p̃(n) −M ≤ m ≤ M, and hi,n is the element of the (N + 1)× (2M + 1)
matrix H and h0,m is the element of the 0th row.

2.3. Adaptive Savitizky–Golay Filtering

In this subsection, we describe our proposed Adaptive Savitizky–Golay filter as an
improvement of the existing classical Savitizky–Golay filter. Classical Savitizky–Golay
filtering is often used to separate the noisy peak in a given peak distribution pattern with
assumption that only the corrupted peaks are available and the aim to identify those peaks.
First we consider window length (M) and degree of the polynomial (k) to be arbitrary.
Thus, we express the coordinates of the local minimum and maximum points of the initial
smoothing in the following order

C =

(
x1 x2 · · · xu
y1 y2 · · · yu

)
, (7)

We introduce d to be the distance vector containing the number of samples between
two neighboring points of local minima and maxima to be

d = (δ1δ2 · · · δu−1), (8)

Let S = [s1, . . . , s1] be the number of peak with same amplitude in a given segment of
peak distribution. Thus, variance neighboring peak points between the δ local extrema are
determined step-wise by equation

σ(d) =
1

(u− 1)
u−1
∑

i=1
δ2

i − δ̄2
, (9)

The actual variance calculated above based on the previous values >> ε1. This forms
the first segment of the next part; however, the window must match the spread peak
distribution while the polynomial degree must vary depending on the frame-size and peak
distribution. Thus, each segment consisting of peaks with similar peak height (amplitude)
we applied window length (M) and polynomial degree (k) based on fuzzy relation given
by equation

F
(
dmax � d̄S

)
=

1

1 + e−(dmax−d̄S)
∈ [0, 1], (10)

where d̄S is the average length of the segments in the current S parts of the peak distri-
bution, while δmax = max(d) is the observed peak. If f

(
dmax, d̄S

)
= 1 is the peak with
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highest amplitude in that particular segment. Hence, once we have the coordinates of
the local minimum and maximum peak points and the vector d, we assign the k and M
values to each S segment using some fuzzy rules, then we apply multi-round linear ap-
proximation method according previous work [31] for parameter update. The purpose
is to identify the imprecision or inflexion points after the first adaptive Savitizky–Golay
smoothing; thus, correction processes enable the introduction of new cutting points for the
next adaptive smoothing.

2.4. Feature Extraction

To extract feature statistics from the filtered peak we denote peak segment by S; thus,
S = {s1, s2, s3, . . . , sn}, where n denotes the total number of segments obtained. Hence,
based on set of S, we extract feature statistic for each segment of CNVs by calculating
the local density (ρ) and minimum distance (δ) to obtain the corresponding values of
the neighboring peaks in each segments. With the consideration of that regions with
changed copy numbers are inherently different from those of normal copy numbers and
only account for a small part of the whole genome, we transfer the problem of detecting
CNVs to the issue of identifying outliers from the set of segments with features of (ρ)
and (δ). Accordingly, each segment can be regarded as an object or a point in the two
dimensional space of (ρ) and (δ). In the following text, we provide a detailed description
to these two features and the calculation approach. Before we describe the two features (ρ)
and (δ), we introduce the Euclidean distance between two segment si and sj. Given two
segment si and sj with equal length l, we can obtain an Euclidean distance matrix Ml×l to
measure the distance between each element (dij) using the Euclidean distance formula

dij =
√(

si(ρi)− sj
(
ρj
))2

+
(
si(δi)− sj

(
δj
))2, (11)

where ρi and δi are the feature values of a given genomic segment si and sj, same apply to
ρj and δj. Again, using distance matrix Ml×l , we calculate the number peaks adjacent to
the peaks in segment si by equation

ρi =
n

∑
j 6=i

χ
(
dij − γ

)
, (12)

where χ(x) = 1 if x < 0, otherwise χ(x) = 0, ρi is the local density, γ is adjustable distance
threshold. Next, we calculate the minimum distance between the peaks with higher density
values in segment si to rest of peaks by equation

δi = min
j:ρi<ρj

(
dij
)

(13)

where δi is the minimum distance defined as the minimum value among the distances
between the peaks in segment si and those peaks with higher density than segment si.
Similarly, we can calculate the maximum distance between the peak with highest density
in segment S by equation

δi = max
j

(
dij
)

if ρi ≥ ρj
j 6=i

, (14)

where δi is the maximum distance defined as the maximum distance between the peak in
segment si and the rest of peaks in the set S. Lastly, if we assume the smoothed peaks have
normal distribution, using multivariate Gaussian distribution function [32], we can extract
the feature statistic for each segment using equation

f (x, µ, K) =
1

(2π)|K|
1
2

exp
(
−1

2
(x− µ)TK(x− µ)

)
, (15)
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where µ is the two-dimensional vector corresponding to the mean values of local density
and minimum distance, i.e., µ = [ρ, δ], and K is the covariance matrix of the two features.

3. Results
3.1. Effect of Window Length on Smoothing Performance

We evaluate the smoothing performance of both classical Savitzky–Golay filter
Section 2.2 and adaptive Savitzky–Golay filter Section 2.3 using sharpening concept, a
technique based on standard window function convolution [33]. First we consider the
corrupted peak f (Si) by a noise with σ = 1. We then show the effect of standard window
function convolution on overlapping noisy peaks filtered by classical Savitzky–Golay and
adaptive Savitzky–Golay at different polynomial order k and window lengths as shown
in Figure 1 and Figure 2, respectively. From the results we observe that at short window
length (m1 = 53), classical Savitzky–Golay has a low bias and high variance in compared
larger window length (i.e., m3 = 153, m2 = 201 and m1 = 253). On the other hand,
adaptive Savitzky–Golay shows low bias and high variance in larger window length (see
red solid line in Figure 1). According the analysis, for classical Savitzky–Golay filter an
increase in window length leads to an increase in smoothing bias and decrease in variance.
However, adaptive Savitzky–Golay an increase in window length have minimal or no effect
on smoothing bias and variance (see red solid line in Figure 2); this is because the method
automatically selects the polynomial order (k) and window length M based on the peak
distribution, allowing peaks with a high rate of change to be smoothed accurately.

According Figure 3, the outcome of the subsequent adaptive SG-smoothing. It is clear
that the soft cambers are tracked and the shape of the peak distribution is preserved with
proper noise component removal. In the case of an asymmetric peak distribution, this
iterative method of smoothing and correction performs well. To accomplish this, we first
conduct a quick and easy calculation of the coefficients, after which we conduct a high-
speed resampling of the peaks to align with the smaller running window. Next, we use
straightforward nearest neighbor interpolation to replace the missing values. Furthermore,
we investigated the relationship of window function convolution and stopband attenuation
for two overlapping noisy peaks based on the calculation of the near-boundary values to
find local minima and maxima peaks (i.e., we simply use the polynomial fit over the 2m + 1
neighborhood closest to the boundary). We assume that the noisy peak and the filtered
peaks are at or near the boundary with each other and calculate the peak height fidelity
based on local minima and maxima values.

The results of identified local minima and maxima values at different window length
by the proposed adaptive Savitzky–Golay filterig are shown in Figure 4. The blue stars
are the detected local minima and maxima peak values. From these results, we observe
that adaptive Savitzky–Golay filter would reduce the peaks to ≈5% of their original height
since the algorithm uses a linear approximation of the peaks for precise smoothing. The
optimal signal resolution is determined by the local extrema points. The method performs
adaptive smoothing and correction iteratively, allowing the shape of fast-varying peaks to
be precisely detected.
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Figure 1. Smoothing performance of Classical Savitzky–Golay. (A): Original peak corrupted with
noise; (B): SG filter k1 = 2, m1 = 253. (C): SG filter k2 = 3, m2 = 201. (D): SG filter k3 = 4, m3 = 153.
(E): SG filter k4 = 5, m4 = 51. The dotted black line is the original peak and solid red line is the
smoothed peak.
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Figure 2. Smoothing performance of Adaptive Savitzky–Golay. (A): Original peak corrupted with
noise; (B): SG filter k1 = 2, m1 = 253. (C): SG filter k2 = 3, m2 = 201; (D): SG filter k3 = 4, m3 = 153.
(E): SG filter k4 = 5, m4 = 51. The dotted black line is the original peak and solid red line is the
smoothed peak.
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Figure 3. Smoothing performance of Adaptive Savitzky–Golay after correction. Adaptive SG filtering
before correction; (A): SG filter k1 = 2, m1 = 253. (B): SG filter k2 = 3, m2 = 201; (C): SG filter k3 = 4,
m3 = 153. (D): SG filter k4 = 5, m4 = 51. Adaptive SG filtering after correction: (A): SG filter (B): SG
filter k1 = 2, m1 = 315. (C): SG filter k2 = 3, m2 = 281; (C): SG filter k3 = 4, m3 = 193. (D): SG filter
k4 = 5, m4 = 81. The dotted black line is the original peak and the dotted red-and-blue line is the SG
smoothed before and after correction, respectively.
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Figure 4. Detection of local minima and maxima peak heights with Adaptive Savitzky–Golay. (A): SG
filter k1 = 2, m1 = 253. (B): SG filter k2 = 3, m2 = 201; (C): SG filter k3 = 4, m3 = 153. (D): SG filter
k4 = 5, m4 = 51. Solid red line is the smoothed peak and blue stars are local minima and maxima.

3.2. Evaluation of Filter Order on Smoothing Performance

We evaluate the effect of filter order on smoothing performance by calculation of the
minimum mean squared error (MMSE) using equation

MMSE = rkσ2k f (Si)
1
2k , (16)

where ri is noise coefficient, σ is the noise power, f (Si) is the peak distribution function
and k is the filter order. In our simulation, the original peaks were first corrupted the by
Gaussian noise with zero mean and two noise power values, i.e., we introduce low noise
power (σ = 0.05) and high noise power (σ = 1) at different window to measure minimum
MSE. The goal was to check the effect of filter order on estimation error. Simulation results
in Table 1 show the effect of different filter order on the estimation error. When we perform
the adaptive multi-round filter at different polynomial orders, we observed a relatively
high MMSE at low filter order (k1 = 2) and low MMSE at higher filter order. This implies
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that MMSE is dependent on polynomial order as result leads to computational burden
due to least square (LS) fitting. Since the proposed Adaptive Savitzky–Golay filters select
the polynomial order automatically, the peaks with a high rate of change are properly
smoothed, thus the computational burden associated with higher polynomial order and
window length is reduced.

Table 1. Effect of filter order on the estimation error.

k1 = 2 k2 = 3 k3 = 4 k4 = 5
Peak σ m1 MMSE m2 MMSE m3 MMSE m4 MMSE

f (S1)
0.050 11 0.00010 21 0.00006 31 0.00005 41 0.00003
1.000 33 0.00551 63 0.00326 93 0.00216 123 0.00116

f (S2)
0.050 11 0.00008 21 0.00007 31 0.00006 41 0.00004
1.000 33 0.00672 63 0.00421 93 0.00321 123 0.00213

f (S3)
0.050 11 0.00009 21 0.00008 31 0.00007 41 0.00001
1.000 33 0.00841 63 0.00554 93 0.00414 123 0.00394

σ, noise power, k filter order, m window length, MMSE minimum mean square error.

3.3. Comparison of Adaptive Savitzky–Golay Filtering with Peer Methods

We compared the adaptive Savitzky–Golay filters performance with the other peer
filtering methods including: Fourier transform [15], Gaussian Kernel filtering [16], Epanech-
nikov Kernel [17], Lowess [18] smoothing algorithms. In analysis, we use moving average
optimal window length approach to compare the smoothing performance. We first cor-
rupted the peaks by adding noise power (σ2) to the original peaks. The noise power, i.e.,
the ratio between the output and input root-mean-square noise, were calculated for white
noise. Figure 5A, shows the comparison results of noise suppression. We can observe a
non-linear relationship between the noise power and window length, that is an increase
in noise power leads to an increase in window length this implies that adaptive Savitzky–
Golay have better performance in optimal window length estimation compared to other
peer methods. All smoothing methods produce comparable results, with the adaptive
Savitzky–Golay filters outperforming the others in terms of noise power. With increasing
window length, Fourier smoothing offers slightly less noise suppression than Lowless,
Gaussian, and Epanechnikov Kernel. As a result of the more gradual cutoff in the frequency
domain, noise suppression of k1 = 2 filters is slightly weaker than that of higher degrees
k filters. In addition, we compared adaptive Savitzky–Golay peak height fidelity to that
of other peer filtering methods. In this case, we measure the fwhm peak with 90% peak
height fidelity. We measure the white noise gain and define the noise bandwidth as the
integral over the kernel’s power spectrum, with the full bandwidth corresponding to the
peak function. The gain of the white noise is then proportional to the square root of the
bandwidth. Increasing the bandwidth causes less attenuation of a peak with a given full
width at half maximum (fwhm); sharper peaks (lower fwhm) require more bandwidth. We
can plot the peak height fidelity as a function of the product of the noise bandwidth and
the fwhm, which is largely independent of the specific bandwidth or fwhm value.

The merits of the various filters are then shown in Figure 5B. If a specific peak height
fidelity (e.g., ≈90% of the original peak height) is required, the curve with the lowest
noise bandwidth for white noise—that is, it best suppresses the noise. Convolution with a
Gaussian kernel performs the worst, according to the results (except when the peaks are
strongly attenuated to less than ≈40% of their original height). The adaptive Savitzky–
Golay filters, Lowess, and Fouier filters are nearly equal and best (the difference is less
than the line width in), and the Epanechnikov Kernel comes close. The Gaussian kernel
filter performs worse than our filters due to poor high-frequency noise attenuation (see
Figure 5B). Increasing the bandwidth of Adaptive Savitzky–Golay filtering provides an
improve peak height fidelity from ≈63% to ≈90%. In addition, we compare the RMSE of
adaptive Savitzky–Golay filters with peer filtering methods. According to Figure 5C, we
found that all methods produce similar results; however, adaptive Savitzky–Golay filters
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recorded a low Root Mean Squared Error (RMSE) due minimal estimation bias (see more
additional result in Figure A1, Appendix A.)

Figure 5. Comparison of performance of Adaptive Savitzky–Golay filtering with peer filtering
methods. (A): Comparison based on noise power; (B): Comparison based on peak height fidelity;
(C): Comparison based on smoothing bias.

3.4. Application in CNVs Peak Analysis

Note that our proposed adaptive Savitzky–Golay filtering is a data smoothing and
feature extraction tool for CNVs peak profile analysis. Therefore, in our analysis we focus
on following aspects: (1) to smooth CNVs and segment the observed RD peak profile, so
that adjacent bins with similar peak amplitudes can be merged into the same region and the
bins showing a local variation is unmasked; (2) to extract meaningful feature statistic from
peak profile data an accurate distinction between mutated and normal genomic regions.
(3) to provide a reasonable model for visualising the extracted features to perform a suitable
analysis of the features to determine CNVs.

3.4.1. Data Preparation

In this study, experimental WES data generated for germline mutation analysis using
the Illumina DNA exome kit were used. For the experimental simulation data, we generated
two data sets. We used the coverage depth profile of individual samples (LONG tag) that
was based on all reads of the given sample. Furthermore, we generated a validation data set
(SHORT) based on the short reads (length ≤ 80 base pairs) of a large cohort of samples. We
use “samtools depth” command with the “-a”/output to identify all positions (including
zero depth)/and “-b segments.bed” options to query the read depth of interests from our
BAM (binary sequence alignment map files).

3.4.2. Simulation Studies

Simulation studies are usually regarded as an appropriate and feasible way to assess
the performance of existing and newly developed methods [34]. This is because the
ground truth CNVs embedded in the simulated data sets could be used for an exact
calculation of sensitivity and precision for the methods. CNV peak distribution are often
asymmetrically in nature due to variation in depth coverage attributed to the GC bias
during the hybridization process. The CNV peak generation often depends on the read
depths coverage of the target region and the oligo capture baits within those regions
which results into asymmetrical peak distribution. This poses a great challenge smoothing
such peaks; thus, it is important to model a peak function that applied to a wide class of
the peak distribution patterns obtained from different genomic segments. With a careful
consideration of the problems described above, we filtered all CNV peaks for each genomic
segments using the proposed adaptive Savitzky–Golay filtering method. For optimal CNV
peak filtering, we apply the concept described in Section 2.3. Using Equation (15), the
filter order and optimal window length values are automatically computed by adaptive
Savitzky–Golay filters. The feature values of CNV peak in each genomic segment were
then extracted using Equations (12) and (13). The statistical significance for each peak at
given genomic segments was then calculated using Equation (15). According to the results
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shown in Figure 6, there was significant level of feature extraction for all the genomic
segments evaluated for CNV peak (i.e., both long and short tag peaks—also see results in
Figures A2 and A3).

Figure 6. Show CNV peaks from different genomic segment filtered using Adaptive Savitzky–Golay
filters. Green and red solid lines are the original short- and long-tag CNV peaks , respectively; cyan
and blue solid lines are the smoothed the short- and long-tag CNV peaks, respectively.
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4. Discussion

Although several filtering algorithm exists, most of them require the characterization
and model parameter tuning for efficient filtering and smoothing of the peaks or signal
data [18,35–37]. Savitzky–Golay method was originally developed to make discernible the
relative widths and heights of spectral lines. The Savitzky–Golay filters are widely used in
many fields of data processing, ranging from spectra in analytical chemistry to geosciences
and medicine [38]. The SG method was originally developed to make discernible the
relative widths and heights of spectral lines. It equally smooths the noise and the signal
components, as it leads to bias and a reduction in resolution. For denoising peaks with
a large spectral dynamic or with a high rate of change, the classical SG filtering is an
unsuitable method [39]. In addition, efficiency depends on the appropriate selection of the
polynomial order and the window length, which should match the intrinsic scale of the
input peaks. However, the SG-filters provide excellent results while preserving simplicity
and speed, but most of the applications require the users to arbitrarily select the polynomial
order and size of the sliding window. In general, the SG filters perform well when we
apply a low-order polynomial with long window length or low degree with short window
and repeated smoothing. It has also been shown that the smoothing effect decreases by
applying low-order polynomial on higher frequencies or high-order polynomials on lower
frequency parts of the peaks. With this in mind, in this study we introduced an adaptive
filtering method based on SG filtering and feature extraction algorithm, which provides
good performance independent of the type of noise in the CNV peaks. The proposed
technique ensures high-precision noise reduction by iterative multi-round smoothing and
correction. In each round, the parameters are dynamically changed due to the results of
the previous smoothing. Our approach provides additional support for data compression
based on optimal resolution of the peak with linear approximation as well as density and
Euclidean-distance-based function for feature extraction as an option to preprocessing CNV
peaks. The classical SG-filter depends on the appropriate setting of the window length
and the polynomial degree, which should match the scale of the signal, since in the case of
signals with high rate of change, the performance of the filter may be limited [19]. Here,
simulation results validate the applicability of our approach in the analysis of CNV peak
in whole exome sequencing data. Meanwhile, we demonstrated the difference and the
robustness of adaptive Savitzky–Golay and its application with other peer filter methods
(Fourier [35], Epanechnikov Kernel [36], Gaussian Kernel [37] and Lowess [18]).

Our findings demonstrate the relationship between the adaptive Savitzky–Golay
window lengths and filter order (polynomial degree). We discovered that noise suppression
is effective when the filter order and window length are set to optimal values. We noted that
it is critical to compute the derivative and set an optimal window length before applying the
adaptive Savitzky–Golay algorithm to noisy peaks. We have seen, for example, that there is
high estimation bias with weak smoothing (e.g., to preserve peak patterns a window length
of m2 = 201 and a filter order of k2 = 3 is necessary). For strong smoothing, however, the
difference between differentiation first and smoothing first grows. As a result of insufficient
noise suppression near the boundaries, the “derivative first, then smoothing” is ineffective
for strong smoothing. In a broad sense, this shows that adaptive Savitzky–Golay is more
effective at noise suppression when the window size is small and the filter order is high
(see Figure 1). We also noticed that when comparing different smoothing methods, the
trade-off between window size and noise suppression does not always apply. The Gaussian
Kernel, on the other hand, has the worst noise suppression at the boundaries in all cases,
and its filtered peaks exhibit more estimation bias. As a result, other methods perform
better when smoothing near-boundary data in terms of artifacts and noise suppression (see
Figure 2). In addition, we found a non-linear relationship between noise power, RMSE,
and window size (see Figure 3). Figure 3A shows that Savitzky–Golay has a higher noise
power than other peer filtering methods. However, we discovered that adaptive Savitzky–
Golayhas has a lower RMSE and performs better. In general, the Fourier, Epanechnikov
Kernel, and Gaussian Kernel filters performed noticeably worse in terms of estimation
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error (RMSE) when compared to the Lowess filtering method, which provided slightly
better noise suppression though not effective than adaptive Savitzky–Golay.

Using our proposed peak detection and analysis, we demonstrated the functionality
of the adaptive Savitzky–Golay filter for peak smoothing and density-based peak detection
methods for the statistical feature extraction of smoothed peaks in each genomic segments.
According to the results, we observed that, after filtering WES, we obtained the short- and
long-tag CNV peaks in all genomic segments with roughly the same count position when
filtering at optimal window size (m1 = 51) and filter order (k4 = 51). We also noted that
adaptive Savitzky–Golay completely suppressed noise at the boundaries of short- and
long-tag CNV peaks (see Figure 4). We also discovered that increasing the window size at
the fix filter order results in low suppression noise at the boundaries of short- and long-tag
CNV peaks, resulting in high peak height fidelity due to under-fitting (high estimation bias).
Furthermore, visual inspection reveals that noise suppression at high filter order is nearly
as good as convolution with small window length (see Figure A1). Generally, the average
read size (220–270 base pair) was larger than the 80bp oligo capture bait size and also that
any oligo capture bait could be designed in any position, including partially overlapping
positions or gaps less than the peak width we used two approaches to identify the sub
peaks corresponding to the designed oligo capture baits in the genomic segments. As the
readily available approach, first we used all reads of the samples and for the individual
coverage profiles of each samples we tried to infer the position of the sub peaks. In the
second approach, we used the fact that average fragment size in a sample is a distribution
of randomly broken DNA fragments that includes a small fraction (usually less than 1–2%
of all reads in our samples) of reads with comparable length of the oligo capture baits
(80 base pairs in the used kit). In cases where we have a high number of samples, we can
filter all short reads with comparable size with the oligo capture baits, as this would be a
much better approach to identify the exact genome positions of the design. However, since
such sort reads are usually only 1–2% of the whole sequence in practice, 80–100 samples are
not always available. Therefore, we wanted to explore whether the bulk of the data could
be used to infer these positions. As we mentioned in Section 3.4.1, we used experimental
WES data using the Illumina DNA exome kit. However, from the experimental data,
we generated two data sets. We used the coverage depth profile of individual samples
(LONG tag) that was based on all reads of the given sample. Furthermore, we generated
a validation data set (SHORT) based on the short reads (length ≈ 80 bp) of a large cohort
of samples.

Furthermore, we discovered that there is an optimal DNA fragment size in each
hybridization based on the WES kit that produces the maximum coverage result. This
fragment size is higher than the probe size (≈80 bp) since it is optimized for Paired-End
Sequencing, so the kit-specific 100 or 150 base pair Paired-End Sequencing does not overlap
too much. This suggests that the bulk of the reads are less than or equal to the probe
size, and it is unclear which region of the fragment was precisely hybridizing to the oligo
capture bait, leading to more spread and superimposed peaks (see Figures A1 and A2).
Surprisingly, there were statistically some smaller DNA fragments in one sample, but
in such low amounts that most of our hybridisation oligo captured no DNA fragments.
However, if we collected all the short reads from many samples, we could use these data to
find the individual subpeaks that are superimposed on each other when two oligo capture
baits are closer to each other than the average DNA fragment size (minus the bait size). As a
result, we used a large cohort of data to locate the exact sub peak positions using short reads.
These data can be used to assess the performance of the CNV peak detection algorithms by
evaluating whether the same peak centers can be detected from a single sample.

From a clinical point of view, targeted resequencing is used to sequence a smaller
portion of the human genome. Usually, these are the coding regions of genes (WES) or
just a smaller thematic gene panel, but the region of interest could also be UTR regions,
non-coding RNA, deep intronic varoations associated with disease, etc.Targeted RefSeq is
cost effective, as far fewer sequences (reads) are needed to achieve higher genome coverage.
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However, since the target region is not randomly covered by reads like at WGS but depends
on the oligo capture baits, detecting the genome coverage peaks is important to perform
CNV analysis in targeted reseq. data.

5. Conclusions

In this study, we proposed adaptive Savitzky–Golay filtering. In order to effectively
smooth peaks with high amplitudes, our proposed technique automatically chooses the
polynomial order and window length based on the peak distribution. The algorithm uses a
linear approximation of the peaks for accurate and consistent smoothing. The local extrema
points serve as the foundation for the optimum peak smoothing. The method applies
adaptive smoothing and correction iteratively, making it possible to detect the shape even
of rapidly varying peaks. In addition to the complete removal of the noise components, the
significant peak features are, however, preserved, irrespective of the nature of the noise
process. Furthermore, a decomposition of the peaks in this sense with linear approximation
enables practical data compression. The results of the simulations have demonstrated
that the proposed technique enables excellent performance. Our approach outperforms
other peer smoothing techniques and is a definite improvement of existing approaches.
The application of read depth (RD) profiles of WES data to real-world experimental data
showed low peak height fidelity (low estimation bias) and the significant detection of
short- and long-tag CNV peaks in all genomic segments. Therefore, we demonstrated the
efficiency of the adaptive Savitzky–Golay filtering method and its applications in CNVs
peak detection, which could be useful as a supplement to existing methods in the field of
CNV analysis.
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Appendix A

Figure A1, is supplementary result showing noise suppression of different peaks by
Adaptive Savitzky–Golay filters and other peer filtering methods (Fourier, Epanechnikov
Kernel, Gaussian Kernel and Lowess).

https://github.com/peter26jumaochieng
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Figure A1. Show comparison of noise suppression of different peaks using our proposed Adaptive
Savitzky–Golay filters and other peer filtering methods. (A): peak1, m1 = 51. (B): peak2, m2 = 51;
(C): peak3, m3 = 51. (D): peak4, m4 = 51.

Appendix B

Figures A2 and A3 is additional comparison results CNVs peak detection at using
Adaptive Savitzky–Golay filtering before and after correction (i.e., adjustment of poly-
nomial order and window length). Both Figures A2 and A3, the right hand side show
smoothing before Adaptive Savitzky–Golay correction and Left hand side show smoothing
after Adaptive Savitzky–Golay correction. For each genomic segment, we use Equation (9)
described in Section 2.3 to calculate the statistical significant for segment. The aim is to
demonstrate the smoothing performance of adaptive Savitzky–Golay filtering before and
after correction by linear approximation.
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Figure A2. Show Adaptive Savitzky–Golay filtering of CNV peaks for segment 1 to 5 before and after
correction. Green and red solid line are the original short and long tag CNV peaks , respectively;
cyan and blue solid lines are the smoothed the short and long tags CNV peaks, respectively.



Information 2023, 14, 128 19 of 21

Figure A3. Show Adaptive Savitzky–Golay filtering of CNV peaks for segment 6 to 10 before and
after correction. Green and red solid line are the original short and long tag CNV peaks , respectively;
cyan and blue solid lines are the smoothed the short and long tags CNV peaks, respectively.
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12. Kuśmirek, W.; Nowak, R. CNVind: An open source cloud-based pipeline for rare CNVs detection in whole exome sequencing
data based on the depth of coverage. BMC Bioinform. 2022, 23, 85. [CrossRef] [PubMed]

13. Meng, C.; Yu, J.; Chen, Y.; Zhong, W.; Ma, P. Smoothing splines approximation using Hilbert curve basis selection. J. Comput.
Graph. Stat. 2022, 31, 802–812. [CrossRef] [PubMed]

14. Virta, J.; Lietzen, N.; Nyberg, H. Robust signal dimension estimation via SURE. arXiv 2022, arXiv:2203.16233.
15. Cięszczyk, S.; Skorupski, K.; Panas, P. Single-and Double-Comb Tilted Fibre Bragg Grating Refractive Index Demodulation

Methods with Fourier Transform Pre-Processing. Sensors 2022, 22, 2344. [CrossRef]
16. Piretzidis, D.; Sideris, M.G. Expressions for the calculation of isotropic Gaussian filter kernels in the spherical harmonic domain.

Stud. Geophys. Geod. 2022, 66, 1–22. [CrossRef]
17. Lia, N. Estimasi Model Regresi Nonparametrik Menggunakan Estimator Nadaraya-Watson Dengan Fungsi Kernel Epanechnikov.

Ph.D. Thesis, Universitas Hasanuddin, Makassar, Indonesia 2022.
18. Dai, Y.; Wang, Y.; Leng, M.; Yang, X.; Zhou, Q. LOWESS smoothing and Random Forest based GRU model: A short-term

photovoltaic power generation forecasting method. Energy 2022, 256, 124661. [CrossRef]
19. Schmid, M.; Rath, D.; Diebold, U. Why and How Savitzky–Golay Filters Should Be Replaced. ACS Meas. Sci. Au 2022, 2, 185–196.

[CrossRef]
20. Pouyani, M.F.; Vali, M.; Ghasemi, M.A. Lung sound signal denoising using discrete wavelet transform and artificial neural

network. Biomed. Signal Process. Control 2022, 72, 103329. [CrossRef]
21. Kose, M.R.; Ahirwal, M.K.; Atulkar, M. A Review on Biomedical Signals with Fundamentals of Digital Signal Processing. In

Artificial Intelligence Applications for Health Care; CRC Press: Boca Raton, FL, USA, 2022; pp. 23–48.
22. Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: genome-wide copy number detection and visualization from targeted

DNA sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [CrossRef] [PubMed]
23. Boeva, V.; Popova, T.; Bleakley, K.; Chiche, P.; Cappo, J.; Schleiermacher, G.; Janoueix-Lerosey, I.; Delattre, O.; Barillot, E.

Control-FREEC: A tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 2012,
28, 423–425. [CrossRef] [PubMed]

24. Dharanipragada, P.; Vogeti, S.; Parekh, N. iCopyDAV: Integrated platform for copy number variations—Detection, annotation
and visualization. PLoS ONE 2018, 13, e0195334. [CrossRef] [PubMed]

25. Wang, X.; Xu, Y.; Liu, R.; Lai, X.; Liu, Y.; Wang, S.; Zhang, X.; Wang, J. PEcnv: Accurate and efficient detection of copy number
variations of various lengths. Briefings Bioinform. 2022, 23, bbac375. [CrossRef]

26. Yuan, X.; Yu, J.; Xi, J.; Yang, L.; Shang, J.; Li, Z.; Duan, J. CNV_IFTV: An isolation forest and total variation-based detection of
CNVs from short-read sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 18, 539–549. [CrossRef]

27. Zhao, L.; Liu, H.; Yuan, X.; Gao, K.; Duan, J. Comparative study of whole exome sequencing-based copy number variation
detection tools. BMC Bioinform. 2020, 21, 97. [CrossRef]

http://doi.org/10.1371/journal.pcbi.1007069
http://dx.doi.org/10.1002/mds.28353
http://www.ncbi.nlm.nih.gov/pubmed/33150996
http://dx.doi.org/10.1101/2022.04.29.490004
http://dx.doi.org/10.1038/s41467-022-28648-3
http://www.ncbi.nlm.nih.gov/pubmed/35246524
http://dx.doi.org/10.1007/s10529-022-03295-2
http://www.ncbi.nlm.nih.gov/pubmed/36029395
http://dx.doi.org/10.1371/journal.pone.0059128
http://www.ncbi.nlm.nih.gov/pubmed/23527109
http://dx.doi.org/10.4143/crt.2021.107
http://www.ncbi.nlm.nih.gov/pubmed/33940787
http://dx.doi.org/10.1002/humu.23237
http://dx.doi.org/10.1038/s41559-022-01813-z
http://dx.doi.org/10.1093/bib/bbab452
http://dx.doi.org/10.1111/mec.16435
http://www.ncbi.nlm.nih.gov/pubmed/35313056
http://dx.doi.org/10.1186/s12859-022-04617-x
http://www.ncbi.nlm.nih.gov/pubmed/35247967
http://dx.doi.org/10.1080/10618600.2021.2002161
http://www.ncbi.nlm.nih.gov/pubmed/36407675
http://dx.doi.org/10.3390/s22062344
http://dx.doi.org/10.1007/s11200-021-0272-9
http://dx.doi.org/10.1016/j.energy.2022.124661
http://dx.doi.org/10.1021/acsmeasuresciau.1c00054
http://dx.doi.org/10.1016/j.bspc.2021.103329
http://dx.doi.org/10.1371/journal.pcbi.1004873
http://www.ncbi.nlm.nih.gov/pubmed/27100738
http://dx.doi.org/10.1093/bioinformatics/btr670
http://www.ncbi.nlm.nih.gov/pubmed/22155870
http://dx.doi.org/10.1371/journal.pone.0195334
http://www.ncbi.nlm.nih.gov/pubmed/29621297
http://dx.doi.org/10.1093/bib/bbac375
http://dx.doi.org/10.1109/TCBB.2019.2920889
http://dx.doi.org/10.1186/s12859-020-3421-1


Information 2023, 14, 128 21 of 21

28. Pei, Z.; Lee, D.S.; Card, D.; Weber, A. Local polynomial order in regression discontinuity designs. J. Bus. Econ. Stat. 2022,
40, 1259–1267. [CrossRef]

29. Zhang, M.; Wang, Y.; Tu, X.; Qu, F.; Zhao, H. Recursive least squares-algorithm-based normalized adaptive minimum symbol
error rate equalizer. IEEE Commun. Lett. 2022, 27, 317–321. [CrossRef]

30. Savitzky, A.; Golay, M. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem 1964,
36, 1627–1639. [CrossRef]

31. Dombi, J.; Dineva, A. Adaptive Savitzky-Golay filtering and its applications. Int. J. Adv. Intell. Paradig. 2020, 16, 145–156.
[CrossRef]

32. Mathai, A.M.; Provost, S.B.; Haubold, H.J. The Multivariate Gaussian and Related Distributions. In Multivariate Statistical Analysis
in the Real and Complex Domains; Springer: Berlin/Heidelberg, Germany, 2022; pp. 129–215.

33. Sun, Y.; Xin, J. Lorentzian peak sharpening and sparse blind source separation for NMR spectroscopy. Signal, Image Video Process.
2022, 16, 633–641. [CrossRef]

34. Yuan, X.; Miller, D.J.; Zhang, J.; Herrington, D.; Wang, Y. An overview of population genetic data simulation. J. Comput. Biol.
2012, 19, 42–54. [CrossRef] [PubMed]

35. Wahab, M.F.; Gritti, F.; O’Haver, T.C. Discrete Fourier transform techniques for noise reduction and digital enhancement of
analytical signals. TrAC Trends Anal. Chem. 2021, 143, 116354. [CrossRef]

36. Kus, V.; Jaruskova, K. Divergence decision tree classification with Kolmogorov kernel smoothing in high energy physics. J. Phys.
Conf. Ser. IOP Publ. 2021, 1730, 012060. [CrossRef]

37. Zhang, Y.; Chen, Y.C. Kernel smoothing, mean shift, and their learning theory with directional data. J. Mach. Learn. Res. 2021, 22.
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