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Generation and collective 
interaction of giant magnetic 
dipoles in laser cluster plasma
A. Andreev1,2,3, K. Platonov4, Zs. Lécz1* & N. Hafz1,5,6

Interaction of circularly polarized laser pulses with spherical nano-droplets generates nanometer-
size magnets with lifetime on the order of hundreds of femtoseconds. Such magnetic dipoles are 
close enough in a cluster target and magnetic interaction takes place. We investigate such system of 
several magnetic dipoles and describe their rotation in the framework of Lagrangian formalism. The 
semi-analytical results are compared to particle-in-cell simulations, which confirm the theoretically 
obtained terrahertz frequency of the dipole oscillation.

Intense magnetic-field amplitude up to (sub)kilo-tesla has been developed (see Fig. 1) in conventional devices, 
as superconductive magnets1–3, for applied physics, fundamental particle physics and astrophysics4. Higher 
magnetic fields were achieved in Z-pinch experiments5 and destructive devices6. Recently, owing to the develop-
ment of high-power lasers, new Z-pinching methods have been investigated in nanowire array targets, which 
could provide even higher magnetic field amplitudes with micrometer scale lengths7,8. Big azimuthal magnetic 
fields are relatively easy to produce by intense laser pulses on a flat target surface9–12. Longitudinal magnetic 
fields are commonly produced by circularly polarized laser pulses via the effect of inverse Faraday rotation13,14. 
In underdense plasma spatially shaped laser pulses with screw-shaped intensity distribution have been proposed 
for the generation of near MT axial magnetic field15. On the macroscopic level, nanosecond-long pulses with 
kJ energy have been applied to generate kT magnetic field with a capacitor-coil configuration16,17 in a submil-
limeter spatial domain.

From Fig. 1 one can conclude that for the generation of maximum magnetic field it is better to investigate the 
case with a relatively short driver pulse and therefore magnetic field lifetime. Such short and strong fields can be 
interesting in basic science and different applications (see for example18).

In the previous publications19–21, we proposed a method for generating large-amplitude magnetic-dipole 
moment based on the electron inertia in cluster rare-gas targets irradiated by circularly polarized ultrashort laser 
pulses. This magnetic field is stable and remains nearly constant over the timescale of modern short laser pulses 
(femtosecond durations). In contrast with the uniform density of gaseous underdense plasma, in our method, 
magnetic dipoles are well-localized at the positions of the overdense clusters (with sizes > 30 nm), and their 
number equals the number of clusters (~ 105) inside the laser focal volume. A unique feature of this nanoscale 
magnet is the toroidal current surrounding the cluster. The magnetic field (~ kT) decreases slowly after the laser-
cluster interaction, due to the expansion of the ion core, and the decay rate is proportional to the laser electric 
field and inversely proportional to the cluster mass. It is worth mentioning that in this scheme laser pulses with 
∼ mJ energy are sufficient, therefore, magnetization of a material at kHz repetition rate is possible, thanks to the 
currently available multi-mJ kHz laser systems22. The interaction of such clusters through its common magnetic 
field is similar to that occurring in the area of “magnonics”, which is an emerging field of modern magnetism, and 
is attracting more and more researchers from various sub-fields of magnetism, materials science and beyond4. 
In this paper we consider different spatial configurations of strong magnetic fields (see Fig. 1) of laser-cluster 
plasma and investigate its dynamics.
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Analytical model of magnetic moment dynamics in cluster laser plasma
Cluster dynamics.  Let us consider the case when a circularly polarized laser pulse with a vector-potential 
and electric field �EL = −∂ �AL/∂ct , of duration τL , wavelength � , (frequency ω ) and intensity I = cE2L/4π irradi-
ates the clusters. We suppose that clusters during interaction were partly ionized and their electrons as a spheri-
cal shell (charge −Q = eNe ) surround the cluster ion cores (radius R0 and charge Q ) and are rotated by the cir-
cularly polarized laser pulse and the cluster’s own electric fields. The characteristic radius p of the cluster’s 
electron shell is determined as the distance between the center of the cluster and the point where electron density 
equals the critical value: ne(p) = ncr . This radius determines the square of the absorption spot, the laser energy 
absorbed by the cluster Eabs = ηIπp2τL and the impulse momentum: Jabs = Eabs/ω , where the absorption coef-
ficient is η ≈ 0.1÷ 0.54. It is worth noting that p > R0  because the initial electron density is ne ∼ 100 ncr . There-
fore, even if all electrons were heated and their cloud expanded, we would get p ≤ R0(ne/ncr)

1/3 ≈ 4.6 R0 
1 < p/R0 < 4.6 . In general, p = p(R0, I) , when not all electrons are removed, but at an increased laser intensity 
p → 4.6R0 . The electron shell thickness is p− R0 ≈ p , for clusters of small radii or high laser intensities. The 
mechanical moment of a cluster Jabs = ηIπp2τL/ω  and the electron mechanical moment γmep

2ω ≈ ηIπp2τL/Neω  
give us the number of electrons in the shell:Ne ≈ ηIπτL/γmeω

2  and the total cluster charge Q = eNe . The total 
magnetic moment of a single electron is determined as5: µ ≈ e

8meωγL
ηE2Lp

2τL , where γL =
√
1+ a2 and 

a = eEL/meωc . Outside of cluster: �H(�r) ≃ µ

(

−�ex/|�r|3 + 3x�r/|�r|5
)

 . The maximum value of the cluster’s quasi-
stationary magnetic field is estimated as the field on the magnetic dipole axis (x-axis): 
Hmax = �ex �H(p�ex) = 2µ

p3
= eηE2LτL

4meωγLp
, Hmax

EL
= eηELτL

4meωγLp
= η a√

1+a2
cτL
4p  . By comparing it with the numerical 

results of2 we found a good agreement. It must be noted that this formula is correct when a ≤ atr = 2Ze2niR�/3mec
2  

( ni is initial ion cluster density) and there is no Coulomb explosion in the cluster. The average magnetic field in 

the laser focal volume with cluster density ncl  can be estimated as: �H� ≈ Hmax

(

p/n
−1/3
cl

)3
= Hmaxnclp

3, nclp
3 < 1 

. This field exists during the cluster’s lifetime τcl  and triggers interaction between the dipoles of many clusters, 
which we consider below.

The Lagrange function of the shell electrons of the separated “i” cluster in the cylindrical coordinate system 
with the x-axis directed along the circularly polarized laser beam can be written as follows:

where γ = 1/
√

1− β2 ≈ γL , Rk—is the radius vector of the cluster center of the number «k».
Here the scalar potential ϕ of the electrostatic field of the cluster electron shell is determined as 

ϕ(r, x) = Q
(r2+x2)1/2

− Q(r2+x2+p2)

2p3
, R0 ≤ (r2 + x2)1/2 ≤ p ; �A(�r)  is determined as the vector potential of the 

(1)
L = −mc2/γ + e

c

�̇r
c

(�A(�r)+ �AL(�r)
)

−eϕ(�r)+e

Ncl
∑

k = 1,
i �= k

(

�̇r
c
�A
(

�r + �Ri − �Rk
)

− ϕ
(

�r + �Ri − �Rk
)

)

Figure 1.   Maximum amplitude of magnetic fields (the number of the triangle is the number in the reference 
list) its characteristic spatial distribution (in brackets, in μm) and lifetimes obtained recently in real and 
numerical experiments. The rectangular area corresponds to the range of parameters of the magnetic field 
generated by the laser cluster plasma studied in our work.
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electron shell (with Q charge and p− R0 thickness) rotating around the x-axis with angular velocity of  α̇ ≈ ω  
as:

Outside the cluster, (r2 + x2)1/2 > p , the vector potential of the cluster’s magnetic field coincides with the 
magnetic dipole potential of the magnetic moment µ = Qα̇p2/5c . The last term of the formula (1) describes the 
impact of neighboring clusters. We suppose that the electron shells do not touch and do not change their shape. 
In3,5 electron dynamics was investigated without the last term in Eq. (1), therefore our approach is more general.

The distance between any two clusters 
∣

∣�Rik
∣

∣ =
∣

∣�Ri − �Rk
∣

∣ >> 2p (here �Ri is the radius vec-
tor of the center of the i-cluster), thus the electrostatic interaction of the nearest clusters is small: 
( ϕ
(

�r + �Ri − �Rk
)

∼
(

Q/p
)

exp
(

−
∣

∣�r + �Ri − �Rk
∣

∣/rD
)

 at 
∣

∣�r + �Ri − �Rk
∣

∣ > rD , where rD  is the Debye radius of the 
shell electrons and rD ≈ p (if R0 << � ), Q << neR

3
0 ). From Eq. (2) it follows that 

∣

∣�A
∣

∣ ∼ |�r|−2 , thus the cluster 
interaction is mainly magnetic. It is worth noting that in the simulations of many clusters2 when the distance 
between the cluster centres is decreased from 500 to 200 nm (cluster of R0 = 50 nm from Xe+20), the electrons 
start moving from one cluster to another, and eventually the electron shells merge. The condition for that follows 
from23 and can be written as: (γ − 1)mec

2 > 2eQ/R12 , where R12 ≈ n
−1/3
cl  is the distance between two clusters. 

Taking into account the finiteness of the electron orbits: (γ − 1)mec
2 − eQ/p < 0 , one can rewrite this condi-

tion as R12 < 2p or 1+a2−
√
1+a2

a2
< ηcτLn

1/3
cl /2 . The merging of electron clouds is considered in Supplementary 

for two clusters with different magnetic moments.
Taking into account 2p ≪

∣

∣�Rik
∣

∣∀i �= k , the vector potential of the electrons of the i-cluster �A
(

�r + �Ri − �Rk
)

 
(with the radius vector �ri = �r + �Ri ) in Eq. (1) can be expanded into a series, and as a result one obtains the fol-
lowing Lagrange function after interaction with laser pulse:

In the cluster’s own fields ~ �A,ϕ it’s the electrons rotate around the x-axis and conserve their momentum. 
The electrons’ interaction with the nearest clusters (see the last term in Eq. (3)) gives us the following Lagrange 
equation for the electron momentum:

By multiplying Eq. (4) with the number of cluster electrons Ne and e/2γimec , one can get the equation of 
motion of the total magnetic momentum of the cluster: �µi = eNe

[

�r × �pi
]

/2γimec , where γi ≈ γL and | �µi| ≈ µ . 
Its directionality changes in respect to the x-axis. Let us introduce the unit vector �ni(t) ( �µi(t) = �ni(t)µ ) in the 
direction of the magnetic moment of the i-cluster. The magnetic field of the cluster system �H

(�Rik
)

 outside the 
cluster ion core is the sum of the fields of the separated dipoles, thus the equation of motion of the separated 
dipole “i” following from (4) is:

The last term added to the right side of Eq. (5) describes relaxation of the cluster’s magnetic momentum due 
to cluster expansion. This term was obtained by assuming that the cluster fields’ have azimuthal symmetry and 
Jabs is conserved. The latter is considered as an adiabatic invariant when p slowly changes. But the cluster’s mag-
netic moment µi depends on time because electron energy changes µi(t) = eJabs/2γi(t)mec during the expansion 
of the cluster. The magnetic field of the rotating and expanding electron cloud ( p >> R0 ) is determined by the 
magnetic moment in a unit volume in which the electron density decreases during expansion. Consequently, 
one can write the following dependence of the maximum magnetic field on time after the laser pulse leaves the 
cluster: Hmax(t) ≈ Hmax

ne(t)γL
ne(τL)γ (t)

, t > τL , where ne(τL) ≈ Ne/(4π/3)p
3 , p(t) = p+ cst , and the characteristic 

velocity cs  of the cluster ion (with A atomic weight and Z charge) was estimated to be cs ≈
√

Zmec2(γL − 1)/Amp , 
then ne(t)/ne(τL) = (p/p(t))3 and in the case of adiabatic expansion (γ (t)− 1)/(γL − 1) = (p/p(t))2 . From 
these estimations one can get Hmax(t) = Hmax/(1+ cst/p) , taking into account electron relativism during expan-
sion. The ratio p/cs ≈ τcl is the estimation of cluster lifetime.

Therefore, the above estimations of the magnetic moment and cluster magnetic field 
are  correct  at  τL < τcl  .  The der ivat ive d(Hmax(t)/Hmax)/dt = −τcl/(t + τcl)

2 ,  as  a  relaxa-
tion term, was added in Eq.  (5). It must be noted that at t < τcl  there is no significant 

(2)
�A(r, x) = −Qα̇r

2cp

(

1− 3(r2 + x2)

5p2

)

�eα , R0 ≤ (r2 + x2)1/2 ≤ p

�A(r, x) = −Qα̇p2r/5c
(

r2 + x2
)3/2�eα , (r2 + x2)1/2 ≥ p

(3)
L ≈ −mec

2/γi +
e

c
�vi �A(�r)− eϕ(�r)+ e

2γimec
[�r × γime�v]

Ncl
∑

k = 1,
i �= k

�H
(�Rik

)

(4)
d[�r × γime�vi]

dt
= e

2γimec

Ncl
∑

k = 1,
i �= k

[r × γimevi]×H
(

Rik

)

(5)
d�ni(t)
dt

= eHmaxp
3

4γmec

Ncl
∑

k=1
k �=i

(

−�ni × �nk
R3
ik

+ 3�ni × �eik(�nk�eik)
R3
ik

)

− �ni(0)τcl
(t + τcl)

2
, �eki = �Rki/Rki
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difference between the power and exponential functions of the field, which describes its dependence on time: 
Hmax(t) = Hmax/(1+cst/p) ≈ Hmax(1−cst/p); Hmax(t) = Hmax exp(−cst/p) ≈ Hmax(1−cst/p) ,  and the 
relaxation term in (5) can be written as −�ni/τcl . The simulations have shown that clusters of small radii (tens 
of nm) demonstrate power law ( ∼ t−1 ), but for larger clusters the exponential time dependence is more appro-
priate ( ∼ exp(−cst/p) ). The analytical and numerical solutions of system (5) for two clusters can be found in 
Supplementary.

Magnonic modes of the oscillations of dipole magnetic moments of laser‑cluster 
plasma.  Despite the arbitrary position of dipoles in the focal volume, the characteristic distance between the 
next dipoles Ri i+1 ≈ n

−1/3
cl  is determined precisely enough, therefore, the characteristic rotation frequency of 

the dipoles in (5) is determined accurately as:

The above equation gives the electron Larmor frequency in the average magnetic field: < H >= Hmaxnclp
3 . 

It is worth noting that at the rotation and oscillation of the magnetic moment is only related to the motion of the 
electron shell. The period of the dipole turn in Eq. (6) is �t ≈ �−1 , thus the condition of the rotation of dipoles 
during cluster lifetime is �τcl > 1 or

To produce magnonic oscillations (waves) for clusters in laser focal volume, besides the condition described 
in Eq. (7), the following additional three circumstances must also be fulfilled:

From the above, one can construct the following interval of the possible pulse durations:

For a > 1 the double inequality can be fulfilled if 8
πη

a�R312
p4

Zme
Amp

< 1 or taking into account R12 ≥ 2p it can be 

written as p
�
> a 64

πη
Zme
Amp

 . Because p ≈ 4R0 one has R0
�

> a 16
πη

Zme
Amp

 or a <
333Aη
Z

R0
�

 . The absence of Coulomb 

explosion limits vector potential: a < 2πZni
3ncr

R0
�
≈ 130Z R0

�
 ( ni/ncr ≈ 60 ), but for heavy clusters (for example Xe+20, 

Au+30) it fulfills automatically at the conditions of the double inequality. At the maximal a = 333Aη
Z

R0
�

 both limits 

of inequality coincide and determine laser pulse duration as: cτL
�

= NL ≈ 30
π

√

R0
η�

 thus it is only one point on 

the plane (cτL/�; a) . If now laser field amplitude decreases a <
333Aη
Z

R0
�

 , then laser pulse duration falls in the 
following interval of the double inequality:

From (8), one can draw the area in the plane (cτL/�, a) , where the effect of dipole rotation is realized:
If η, Z are the functions of a, τL, R0 , then the shapes of the blue and red lines will change, but the shape of 

the curvilinear “triangle” will be similar. It is true at maximum cluster density, when R12 = n
−1/3
cl = 2p = 8R0 , 

but if density decreases, this “triangle” shifts to the right side and transforms into a “trapezoid” after the Coulomb 
limit atr  is reached.

At some conditions, Eq. (5) has solution in the form of waves as: ns(t) ∼ sin(sχ −�t) . Let us consider a 
chain of Ncl clusters located on the x-axis at b distance from one another. In the initial state, the dipoles are in a 
stable equilibrium and the right-hand sides of Eq. (5) are equal to zero. The direction of a linear chain is paral-
lel to the dipole orientation. Let us consider a small perturbation of magnetic moment of the s-th cluster in a 
chain:�ns(t) = �ex + δ�ns(t), t ≤ τcl . Such a variant can be realized if the angle between laser beam and cluster flux 
is small. System (5), in this case, transforms into the linear system of the ordinary differential equations:

(6)� ≈ eHmaxp
3ncl/4γmec,

�

ω
≈ ηa2cτL

16p(1+ a2)
(p3ncl)

(7)
ηa2

16(1+ a2)

ωτLp
3

R123
√

(
√
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√

Amp

Zme
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√

Zme(
√
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(
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)

;
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2
(
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)

.
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ηa2
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√

(
√
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ωp3

√
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√
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√
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√
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From (9) it can be seen that the selected cluster mainly interacts with the nearest clusters and 
δns x(t) ∼ exp(−t/τcl) . We search for a solution of (9) in the form of a travelling dissipating wave: 
δ�ns(t) = δ�n · exp(i(χ/b)sb− i�t − t/τcl) , where sb is the coordinate of the s-th cluster, and χ/b is the wave 
vector of magnonic oscillations. For the wave amplitude δ�n  from (9) one can get the following system of homo-
geneous equations:

The determinant of system (10) gives us the dispersion equation of magnonic oscillation

and the dispersion law of magnonic oscillations:

At small values of χ Eq. (12) is quadratic:�(χ) ≈ �̃χ2(3/2− ln(χ))− iτ−1
cl , χ → 0 . The magnon can have 

left or right circular polarization: −iδny ± δnz = 0 , δ�ns(t) = δny
(

ey ± iez
)

exp(iχs − i�t − t/τcl).
If the boundary conditions are δn0(t) = δnNcl+1(t) = 0 (fixed clusters at the ends of the chain), then the 

travelling waves form a standing wave: δ�ns(t) = δny sin(χs)(ey cos(�(χ)t + ψ)± ez sin(�(χ)t + ψ)) , and 
the set of magnonic wave vectors becomes discrete χl = π l/(Ncl + 1), l = 1, 2...Ncl . The general solution in 
this case is a set of standing magnonic waves with the different wave vectors:

where �l = �(χl) . In the case of the chain from two clusters: Ncl = 2, χ1 = π/3, χ2 = 2π/3, �1 = �2 = 3�̃a , 
the solution of Eq. (13), as shown in Supplementary, will be correct for the perturbation of arbitrary amplitude. 
A change in the boundary conditions, for example, the ring with a big radius, n1(t) = δnNcl+1(t) modifies the 
discrete values of the wave vectors: χl = 2π l/Ncl , l = 0, 1...Ncl − 1 with the conservation of the form of the 
solution of Eq. (13).

To demonstrate the effect of the dipole rotation and check analytical model, we provide numerical simulations 
for the interaction of a laser beam with cluster media using the 3D PIC code in the next section.

Simulation results of magnetic dipole interaction
Simulations of the interaction of a laser pulse with several clusters (nano‑droplets).  The simu-
lation tool we use is the 3D EPOCH particle-in-cell code24. We assume an already-ionized spherical target (clus-
ter) with an initial radius R0 . First, we consider Xe clusters with an ion charge state of Z = 20 (from tunnel ioniza-
tion) and a number density of n0 = 1022 cm−3. The corresponding electron density in the target is 2 × 1023 cm−3, 
which is equivalent to ne = 182ncr for �L = 1 μm laser wavelength. The incoming laser pulse is a circularly polar-
ized plane wave (the simulation domain is smaller than the laser focal spot size) having a Gaussian temporal 
field profile, I(t) = ILexp

[

−(t − tL)
2/t2L

]

.The peak intensity of the circularly polarized Gaussian laser pulse is 
IL = 2 × 1018 W/cm2 and its duration is varied during the simulations. The simulation domain has a volume of 
1.5 × 1 × 1 μm3 represented by 600 × 400 × 400 grid cells, and the target plasma is represented by 10 ion and 100 
electron macroparticles per cell. At such high resolution, one pseudo-electron contains only ∼10 real electrons 
and the total number of macroparticles used to represent the target plasma is 107. Since the radius of the elec-
tron trajectory quickly exceeds the width of the simulation box, we use absorbing boundaries for electrons and 
open boundaries for electromagnetic waves. We have tested the periodic boundary conditions in the transverse 
direction too. The result is approximately the same: the only difference is a small fluctuation in the temporal 
evolution of the magnetic field, which is attributed to several energetic electrons crossing the simulation box in 
a transversal plane in the case of the periodic boundary.

The laser pulse duration is 6 fs. The simulations were performed for four Xe+20 clusters (spheres with a radius 
of 40 nm). The coordinates of the four droplet (cluster) centres in the simulation domain 1 × 1 × 1.5  μm  are 
as the following: Droplet 1: x = 260 nm, y = − 60 nm, z = 0; Droplet 2: x = 340 nm, y = 60 nm , z = 0; Droplet 3: 
x = 300 nm, y = 0, z = 60 nm; Droplet 4: x = 300 nm, y = 0, z = − 60 nm. Laser pulse propagates along the x-axis. 
The cluster location in the simulation box is shown in Fig. 3.

Figure 4 shows the dynamics of the magnetic field components of clusters no. 1 and 4 (simulated maximum 
values in the cluster centers) and the analytical dependence of the same components on time, as calculated from 
Eq. (5): �Hi(t) = Hmax�ni(t).

In contrast with a single cluster19,21, when the X component of the magnetic field is higher than the 
other components, in the system of closely located clusters the magnetic field components are significant 

(10)
−i(�+ iτ−1

cl )δ�n = −4�̃

(

sin2(χ/2)+ 1

8
sin2(χ)+ 1

27
sin2(3χ/2)+ · · ·

)

δ�n× �ex

δ�n = (0; δny; δnz)

(11)(�+ iτcl
−1)2 + 16�̃2(sin2(χ/2)+ 1

8
sin2(χ)+ 1

27
sin2(3χ/2)+ · · · )2 = 0

(12)

�(χ) = 4�̃(sin2(χ/2)+ 1

8
sin2(χ)+ 1

27
sin2(3χ/2)+ ...)− iτ−1

cl

= −2�̃

χ
∫

0

(χ − ξ) ln(2 sin(ξ/2))dξ − iτ−1
cl

(13)δ�ns(t) =
Ncl
∑

l=1

δnly sin(χl s)(ey cos(�l t + ψl)± ez sin(�l t + ψl)),
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in the directions perpendicular to laser the axis, which is caused by the interaction of the dipole electron 
shells. The relaxation time in Fig. 3 is τcl ≈ 20 fs, therefore this is the main term in Eq. (5) and the solution 
is: ni(t) ≈ ni(0)/(1+ t/τcl) i = 1, 2 . . . 4 . The initial values of �ni(0) are taken from the simulations, but if 
ni y,z(0) = 0, ni x(0) = 1, i = 1, 2 . . . 4 , no transversal (y, z) field components appear during the ~ 60 fs time 
window. The above simulations do not show magnonic oscillations ( �τcl ≈ 0.4 ), because the simulation param-
eters do not satisfy the conditions (8) and the parameter set fall outside the characteristic triangle of Fig. 2 for 
this case. In Fig. 3 such parameters of calculation coexist to appearance and disappearance of black solid arrows, 
which denote cluster magnetic moments. There is no rotation of magnetic moments (dash arrows in Fig. 3) in this 
case. To confirm the effect of magnetic dipole rotation (the appearance of dash arrows in Fig. 3 ), we simulated 
Au+30 clusters of 100 nm radius (bigger τcl ) at a higher laser intensity of 5.6 × 1020 W/cm2 (bigger � ) and 6 fs pulse 
duration and a super-Gaussian shape (see black dot in Fig. 2). This time the simulation box was bigger: 3 × 3 × 3 

Figure 2.   The range (Eq. 8, grey area) of laser parameters where magnonic oscillations of cluster plasma can be 
realized. Here Z = 30, A = 196, η = 0.2, R0 = 100 nm, � = 1000 nm , and p = 4R0  . The distance between 
the nearest clusters is R12 = 2p = 800 nm . The black dot shows the laser pulse of 6 fs and 5.6 × 1020 W/cm2, 
used in our PIC simulations.

Figure 3.   The positions of the four clusters in the simulation box. The X, Y and Z coordinates are given in 
nanometers. The laser pulse is circularly polarized and propagates along the x-axis. Pulse positions during 
interaction are shown by gray solid arrow and after by dash arrow. The solid arrows show the directionalities of 
cluster magnetic moments during laser pulse action. The dash arrows show the directions of magnetic moment 
rotation because magneto-dipole interaction after finishing of laser pulse.
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Figure 4.   The time dependence of the magnetic field components for the Xe+20 cluster irradiated by a laser 
pulse having an intensity of IL = 2 × 1018 W/cm2 and 6 fs duration, obtained by PIC simulations (modulated lines) 
and analytically (smooth lines of the same colours) (a) Cluster #1, (b) Cluster #4 .
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Figure 5.   The time dependence of the magnetic field components for Au+30 4-x clusters irradiated by a laser 
pulse of IL = 5.6 × 1020 W/cm2 intensity and 6 fs duration, obtained by PIC simulations (modulated lines) and 
analytically (smooth lines of the same colors).
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μm3. The cluster locations in the box are the following: R1 = (510, − 490, 0), R2 = (1490, 490, 0), R3 = (1000, 0, 400), 
R4 = (1000, 0, − 400) nm. The model calculations used exponential damping and initial conditions taken from the 
simulations when the laser pulse ends. The model parameters ( p = 4.2R0 ) were chosen to show the best agree-
ment between the model and simulation curves of Fig. 4. The results of the simulations and the analytical model 
show that the evolution of the magnetic field components is not only relaxation, but clear oscillations of the Y 
and Z components (even during one period) prove magnetic interaction of the clusters. In Fig. 3 by dash arrows 
are shown the rotation directions of cluster magnetic moments, which coexist to PIC simulation results of Fig. 5.

From Fig. 5 one can conclude that the developed analytical model agrees well with the PIC simulations 
qualitatively, but the amplitudes and times of the changing field components are different.

To confirm the multi-oscillations of the magnetic field, which in Fig. 5 are damped by relaxation, special 
simulations were done with immobile ions where the collisionless relaxation time was sufficiently long. Supple-
mentary shows that in this case the magnetic field components oscillate clearly, suggesting the mutual rotation 
of the cluster’s magnetic moments and the realization of standing waves, i. e. magnons.

Period T of the oscillations of the projections of the cluster’s magnetic moments in Supplementary and in 
Fig. 5 corresponds to the THz range of frequencies. Therefore, the system of clusters radiates secondary transver-
sal electromagnetic waves in the THz range3. This secondary THz radiation can be coherent in terms of cluster 
number if the focal area is shorter than the wavelength of THz radiation. We plan to investigate plural oscillations 
of the cluster’s magnetic moments with mobile ions by increasing the radii of clusters in a subsequent publication.

Conclusion
The generation, interaction and dissipation of the giant magnetic moments of clusters in laser- plasma interaction 
was demonstrated in the focal volume of circularly polarized relativistic intense laser pulses, interacting with the 
clusters of radii from tens up to hundreds of nanometers. It is shown that at a laser intensity of about 1020 W/cm2, 
one can get a magnetic field of up to 0.5 MegaTesla at lifetime of hundreds femtoseconds. The generated super 
strong magnetic field in a configuration of a magnetic trap can slow down thermal expansion of a thermonu-
clear target and increase burning time of nuclear fuel. Beside such ultra-strong magnetic field the intense THz 
oscillations of magnetic moments of clusters (magnons) can be generated inside focal volume at cluster density 
above 1011 cm−3. For the first time we determined the dispersion relations of these magnonic waves of cluster 
plasma. We have shown that the discovered waves appear at specific laser-plasma parameters, partly because its 
duration must be high enough to convert the absorbed impulse momentum into cluster electron one, but not 
exceed cluster plasma lifetime, thus the optimum conditions for the realization of these effects are enough large 
diameter heavy clusters. From the current results, it is anticipated that the rotation of electron cloud around the 
ion core will result in intense synchrotron emission with small angular spread perpendicular to laser axis. It is 
worth mentioning that in this scheme circular polarized laser pulses with ∼ mJ energy are sufficient to produce 
strong magnetic field (~ few kT) decreases slowly after the laser-cluster interaction, therefore, magnetization 
of a material at kHz repetition rate is possible, thanks to the currently available multi-mJ kHz laser systems. 
The interaction of such clusters through its common magnetic field is similar to that occurring in the area of 
“magnonics”, which is an emerging field of modern physics, and is attracting more and more researchers from 
various sub-fields of magnetism, materials science and beyond.
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