
Citation: Bikov, D.; Bouyukliev, I.;

Dzhumalieva-Steova, M. BoolSPLG:

A Library with Parallel Algorithms

for Boolean Functions and S-Boxes

for GPU. Mathematics 2023, 11, 1864.

https://doi.org/10.3390/

math11081864

Academic Editor: Ximeng Liu

Received: 15 March 2023

Revised: 10 April 2023

Accepted: 12 April 2023

Published: 14 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

BooLSPLG: A Library with Parallel Algorithms for Boolean
Functions and S-Boxes for GPU
Dushan Bikov 1 , Iliya Bouyukliev 2,∗ and Mariya Dzhumalieva-Stoeva 3

1 Faculty of Computer Science, Goce Delchev University, 2000 Stip, North Macedonia;
dusan.bikov@ugd.edu.mk

2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
3 Faculty of Mathematics and Informatics, University of Veliko Turnovo, 5003 Veliko Tarnovo, Bulgaria;

m.dzhumalieva@ts.uni-vt.bg
* Correspondence: iliyab@math.bas.bg;

Abstract: In this paper, we present a library with sequential and parallel functions for computing
some of the most important cryptographic characteristics of Boolean and vectorial Boolean functions.
The library implements algorithms to calculate the nonlinearity, algebraic degree, autocorrelation,
differential uniformity and related tables of vectorial Boolean functions. For the sake of completeness,
we provide the mathematical basis of these algorithms. Furthermore, we compare the performance
of the parallel functions from the developed software with the corresponding sequential functions
and with analogous functions from the well-known SageMath and SET packages. Functions from
BooLSPLG can be used to develop efficient algorithms for constructing Boolean and vectorial Boolean
functions with good cryptographic properties. The parallel part of the library is implemented using
a CUDA parallel programming model for recent NVIDIA GPU architectures. BooLSPLG is an
open-source software library written in CUDA C/C++ with explicit documentation, test examples,
and detailed input and output descriptions of all functions, both sequential and parallel, and it is
available online.

Keywords: mathematical software; CUDA C; CUDA library; GPU; butterfly algorithms; cryptographic
properties; vectorial Boolean function

MSC: 94D10; 90-04; 68W10

1. Introduction

The main subjects which we consider in this paper are Boolean and vectorial Boolean
functions (S-boxes) with good cryptographic properties. There is a substantial body of
research on S-boxes with eight or fewer variables that are embedded in the most popular
ciphers [1], but not much is known about larger S-boxes, despite the interest in them [2–4].
One of the reasons for this is the computationally difficult evaluation of their cryptographic
properties. The construction of such types of objects is very important, but in most cases it
is also a computationally expensive issue.

Some of the construction methods are based on checking for proper parameters be-
tween huge amounts of candidates [5]. The cryptographic parameters which we investigate
in this paper are nonlinearity, algebraic degree, autocorrelation, and differential uniformity.
The computation of these parameters is related to Fourier-type transforms such as Walsh–
Hadamard and Möbius (Reed-Muller) transforms [6,7]. The algorithms, known as butterfly
algorithms, that implement these fast, discrete transforms are very efficient [8]. Moreover,
these algorithms are suitable for parallelization in SIMD (single instruction, multiple data)
computer architectures.

For this type of parallelization, using modern graphics processing units (GPUs) to-
gether with CUDA (compute unified device architecture) [9] is natural and very effective.

Mathematics 2023, 11, 1864. https://doi.org/10.3390/math11081864 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081864
https://doi.org/10.3390/math11081864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5145-5297
https://orcid.org/0009-0008-2832-9672
https://doi.org/10.3390/math11081864
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081864?type=check_update&version=1

Mathematics 2023, 11, 1864 2 of 16

GPUs are usually specialized for manipulating high-resolution computer graphics, but their
structure makes them suitable for processing large amounts of data. This feature of GPUs is
a great advantage for deep learning [10], neural systems [11], molecular modeling [12], etc.

For this paper, we developed a library BOOLSPLG with C/C++ functions. It can be
used to study important cryptographic properties of Boolean functions with n variables
and bijective n× n S-boxes for n ≤ 20. BoolSPLG computes the following cryptographic
parameters of the Boolean and vectorial Boolean functions: the Walsh spectrum of a Boolean
function, the linearity of a Boolean function, the Walsh Spectrum of an S-box, the linear
approximation table of an S-box, the linearity of an S-box, the autocorrelation spectrum of
a Boolean function, the autocorrelation of a Boolean function, the autocorrelation spectrum
of an S-box, the autocorrelation of an S-box, the algebraic normal form of a Boolean
function, the algebraic normal form of an S-box, the algebraic degree of a Boolean function,
the algebraic degree of an S-box, the difference distribution table of an S-box, and the
differential uniformity of an S-box and a component function of an S-box. All of the basic
functions have two versions—sequential and parallel. All these features can be used for
project development by anyone who knows the C/C++ programming language but is not
so familiar with CUDA C.

The effectiveness of the developed library is based on the optimal use of the capabilities
of the GPU architecture and on the properties of the CUDA platform as well. Building an
optimized and portable parallel library requires various strategies so that it can be used
not only for computing the properties of Boolean and vector Boolean functions, but also
for implementation in another software. We will focus on some of the basic features for
building the library.

First, developing a parallel library requires an efficient consecutive algorithm which
is suitable for parallel implementation. Our research is focused on the cryptographic
properties of vector Boolean functions. These are mainly calculated by butterfly algorithms,
and such methods are appropriate for parallelization.

Second, GPUs and the CUDA platform have a great advantage—they possess huge
computing power for large amounts of data. However, implementing optimized software
is a complex task. One of the main problems is related to the transfer of data from the main
memory to the GPU memory and vice versa. This is a time-consuming process, sometimes
commensurate with the calculation time. Therefore, each of the functions is tailored to this
fact. If the algorithm consists of several parallel steps, data transfer is conducted only at
the beginning and the end of the function. The other technique that shortens the transfer
time is compressing the data to bitwise representation.

Another peculiarity in the implementation of the library functions is using the fast
memories of the GPU. The CUDA platform provides access to the global memory of the
graphic card and also to the much faster shared and local memories. In order to perform
calculations on variables located on the shared or local memory, additional steps are
necessary to move the data from variables located on global memory. However, due to
the throughput-oriented organization of the CUDA API, this turns out to be much more
efficient than directly using global memory variables for calculations.

The functions of the library are adapted to the size of the processed data. In the case of
S-boxes of fewer variables, simultaneous parallel computations are made on all component
functions defined by the considered S-box. For larger parameters, component functions are
processed separately.

Many of the library’s features also use the cutting-edge techniques of the ever-updating
CUDA interface. A good example of this are the shuffle operations, which allow for the
direct passing of the values of local variables from one thread to another. The use of
bitwise calculations, where possible, provides another degree of parallelism and further
optimization of the library functions.

In addition, BOOLSPLG can be used for training research, to view the characteristics
of the video card, and to compare parallel and sequential performance. For example, we

Mathematics 2023, 11, 1864 3 of 16

used it to study bijective S-boxes with n ≤ 18 variables and good cryptographic properties
which were derived from linear codes with quasi-cyclic structures in Ref. [13].

There are many libraries and mathematical software for computing the cryptographic
properties of Boolean and vectorial Boolean functions developed for sequential CPU com-
putation. As examples, we point out SAGEMATH [14], MATLAB [15], VBF LIBRARY [16],
PEIGEN [17], or SET (S-box Evaluation Tool) [18]. A detailed review of the software related
to the cryptographic characteristics of the S-boxes is made in [16]. This software is good
for training purposes and basic calculations but is not as fast as parallel implementation,
especially for large (n ≥ 8) S-boxes.

In terms of linear algebra GPU tools, we can mention cuBLAS [19] and cuSPARSE [20].
There are GPU libraries for butterfly algorithms, such as BPLG [21], NVIDIA’s cuFFT [22],
but most of them are for signal processing (fast Fourier transform, Hartley transform, etc.)
and not for vector Boolean functions. Examples of parallel software related to cryptography
include Eval16BitSbox and the algorithms in Refs. [23,24]. Ref. [24] discusses only the linear
approximation tables (LAT) of S-boxes and offers a different approach to their calculation.
In addition, the authors evaluate and compare their work with other known software in
this area. The implementation of Ref. [24] is in CUDA, which allows us to compare it with
our software library BoolSPLG. We would like to point out that the computation time for
LAT of 16× 16 S-boxes in Ref. [24] is close (comparable) to the computation time with a
function of our library and is much less than the other presented software.

The paper is organized as follows. The main definitions connected to Boolean and vec-
torial Boolean functions are given in Section 2. In Section 3, we present some advantages of
the CUDA programming platform. Basic facts and information about the data organization
and the algorithms used is provided in Section 4. Section 5 presents some experimental
results as well as a comparison of the calculation times of the considered library to Sage-
Math and SET packages. A short conclusion and directions for future improvements to the
presented library are given in Section 6.

2. Main Definitions and Preliminaries

In this section, we present the terminology and definitions we follow (see Refs. [8,25,26]).
Let α0, α1 . . . α2n−1 be the vectors of the n-dimensional vector space Fn

2 over the field
F2 = {0, 1} in lexicographic order. There is a one-to-one correspondence between the
vectors of Fn

2 and integers in [0; 2n − 1], which allows us to switch from a vector to an
integer and vice versa. The Hamming weight wH(v) of a vector v is the number of its
nonzero coordinates.

A Boolean function f of n variables is a mapping from Fn
2 into F2. The Hamming

distance dH(f , g) between two Boolean functions f and g is the number of function values
in which they differ. Two natural representations of a Boolean function are its truth table
TT(f) and its algebraic normal form ANF(f). Any Boolean function f of n variables is
uniquely determined by its truth table TT(f) = (f (α0), f (α1) . . . f (α2n−1)). Another way
of uniquely representing a Boolean function f is by means of a polynomial with n variables,
called its algebraic normal form (ANF), whose monomials have the form xi1 xi2 · · · xik ,
1 ≤ i1 < i2 < · · · < ik ≤ n, 0 ≤ k ≤ n [8].

Denote by xu the monomial xu1
1 xu2

2 . . . xun
n , where u ∈ Z, 0 ≤ u ≤ 2n − 1,

u = (u1, u2, . . . , un) ∈ Fn
2 . Then the algebraic normal form of f is a polynomial

f (x) = f (x1, x2, . . . , xn) =
2n−1⊕
u=0

anxu. (1)

The degree of ANF(f) is called the algebraic degree deg(f) of the Boolean function f , and
it is equal to the maximum number of variables of the terms xu, or

deg(f) = max{wH(u)|au = 1}, where f (x) =
2n−1⊕
u=0

anxu.

Mathematics 2023, 11, 1864 4 of 16

The Boolean functions a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn = a0 ⊕ la(x) of algebraic degree at
most 1 play a special role in our investigations, and they are called affine, while la(x) are
called linear.

Obviously, ANF(f) can be associated with the binary (2n-dimensional) vector f ANF ∈ F2n

2
whose coordinates are the coefficients in (1) following the lexicographical order [27].

Associated with the Boolean function f is the function f̂ = (−1) f = 1− 2 f whose
function values belong to the set {−1; 1}. The corresponding vector that contains the
function’s values of f̂ is called the polarity truth table (PTT) of the function f .

Definition 1. Walsh (Hadamard, Walsh–Hadamard, Walsh–Fourier) transform f W of the
Boolean function f is the integer-valued function f W : Fn

2 → Z, defined by

f W(a) = ∑
x∈Fn

2

(−1) f (x)⊕la(x) = ∑
x∈Fn

2

f̂ (x)l̂a(x) = 2n − 2dH(f , la),

where a = (a1, . . . , an) ∈ Fn
2 .

The function f̂ (x) can be recovered by the inverse Walsh transform:

f̂ (x) = 2−n ∑
a∈Fn

2

(f W)(a)(−1)a·x.

The values of f W are called Walsh coefficients of the Boolean function f . For any Boolean
function f and any vector a ∈ Fn

2 , we have −2n ≤ f W(a) ≤ 2n. The functions la(x) and
l̄a(x) = la(x)⊕ 1 have the maximal and minimal Walsh coefficients, namely lW

a (a) = 2n

and l̄W
a (a) = −2n.
The vector W f = (f W(α0), f W(α1) . . . f W(α2n−1)) is called the Walsh spectrum of the

Boolean function and is denoted by W f . The Walsh spectrum measures the distance to the
linear and affine functions.

The linearity of a Boolean function f is the maximum absolute value of a Walsh coeffi-
cient of f : Lin(f) = max{| f W(a)| | a ∈ Fn

2}. The Parseval’s Equality ∑a∈Fn
2
(f W(a))2 = 22n

gives that Lin(f) ≥ 2n/2 [8]. Functions attaining this lower bound are called bent functions.
Another important parameter which is closely connected with linearity is nonlinearity.
Nonlinearity nl(f) of the Boolean function f is the minimum Hamming distance from

f to the nearest affine function:

nl(f) = min{dH(f , g) | g − affine function}.

The relation between the linearity and nonlinearity of the Boolean function f is given
by the equality Lin(f) = 2n − 2nl(f) [8]. Obviously, minimum linearity corresponds to
maximum nonlinearity.

Definition 2. Autocorrelation function of the Boolean function f (auto-correlation of f with
a shift w) is the function r f : Fn

2 → Z defined by:

r f (w) = ∑
x∈Fn

2

(−1) f (x)⊕ f (x⊕w),

where w ∈ Fn
2 .

The expression of the autocorrelation values r f (w) for all w ∈ Fn
2 in terms of the Walsh

coefficients [6] is equal to

r f (w) = 2−n ∑
u∈Fn

2

(f W(u))2(−1)u·w.

Mathematics 2023, 11, 1864 5 of 16

For any Boolean function f and any vector w ∈ Fn
2 we have −2n ≤ r f (w) ≤ 2n and

r f (0) = 2n. The vector of the autocorrelation values r f (w) is referred to as its autocorrelation
spectrum of the function f .

The absolute indicator of a Boolean function f of n variable, denoted by AC(f), is the maximum
absolute value of an autocorrelation value and is defined by AC(f) = max{|r f (w)| | w ∈ Fn

2}.
The Sylvester–Hadamard matrix (or Walsh–Hadamard matrix) of order 2n, denoted

by Hn, is generated by the recursive relation:

H0 = 1, H1 =

(
1 1
1 −1

)
, Hn =

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
= H1 ⊗ Hn−1 f or n > 1,

where ⊗ denotes the Kronecker product. The i-th row (column) of Hn is a PTT of the linear
function li. So Wt

f = Hn.PTT(f)t and PTT(f)t = 2−n HnWt
f .

Fast Walsh transform (FWT) is usually used to calculate the Walsh spectrum. It is based
on matrix vector multiplication and can be given by a butterfly diagram. The theoretical
base of the FWT is given by Good [28] and it follows from a suitable factorization of Hn.

A similar approach can be used to calculate the fast Möbius transform (FMT). This
transform gives the coefficients of ANF(f) from the truth table of the Boolean function f
and vice versa. It is based on the following matrices:

A0 = 1, A1 =

(
1 0
1 1

)
An =

(
An−1 0
An−1 An−1

)
= A1 ⊗ An−1 f or n > 1.

Actually, the i-th column of An is the truth table of the monomial mi = xαi . Using these
matrices, we have (f ANF)t = An.(TT(f))t and TT(f)t = An.(f ANF)t. The complexity of
the algorithms for both fast Walsh and Möbius transforms is O(n2n), and they require
O(2n) memory units.

A vectorial Boolean function S : Fn
2 → Fm

2 (also called (n, m) S-box or shortly S-box)
can be represented by the vector (f1, f2, . . . , fm), where fi are Boolean functions of n vari-
ables, i = 1, 2, . . . , m. The functions fi are called the coordinate functions of the S-box. Then
the m× 2n matrix

GS =

 TT(f1)
...

TT(fm)

represents the considered S-box, where TT(fi) is the truth table of the Boolean function fi,
i = 1, . . . , m. An S-box is bijective if n = m and S is an invertible function.

In order to study the cryptographic properties of a vectorial Boolean function f related
to linearity, algebraic degree, and autocorrelation, we need to consider all non-zero linear
combinations of the coordinate functions of the S-box, denoted by

Sb = b · GS = b1 f1 ⊕ · · · ⊕ bm fm,

where b = (b1, . . . , bm) ∈ Fm
2 . These are the component functions of the S-box S.

The Walsh spectrum of S is defined as the collection of all of the Walsh spectra of the
component functions of S. The linearity and nonlinearity of the vectorial Boolean function
are defined as

Lin(S) = max
b∈Fm

2 \{0}
Lin(Sb), nl(S) = min

b∈Fm
2 \{0}

nl(Sb).

In order to obtain the important parameters of an S-box, we use four tables, namely
a linear approximation table (LAT), a difference distribution table (DDT), an autocorrela-
tion table (ACT), and a table with the algebraic degrees (ADT) of the monomials in the
component Boolean functions of the considered S-box. We define these tables below.

Mathematics 2023, 11, 1864 6 of 16

The 2n × 2m table whose entries are defined by

La,b = |{x ∈ Fn
2 : Sb(x) = a · x− 2n−1}|, a ∈ Fn

2 , b ∈ Fm
2 ,

is called its linear approximation table and is also denoted by LAT(S). The elements of LAT(S)
show the relationship between the inputs and outputs of the S-box. Since SW

b (a) = 2La,b,
the Walsh spectrum and the linear approximation table of an S-box are closely related, and
by computing one of these parameters, we obtain the other. Therefore, we actually compute
the Walsh spectrum instead of the LAT(S) in order to find the linearity and nonlinearity
of S.

Another important parameter related to an S-box S is its algebraic degree. We de-
fine this as the maximum among all degrees of the component functions, or
deg(S) = maxb∈Fm

2 \{0} deg(Sb). The minimum degree is also important regarding alge-
braic attacks. Therefore, we define the maximal and the minimal algebraic degree of the
vectorial Boolean function S as

max deg(S) = max
b∈Fm

2 \{0}
deg(Sb), min deg(S) = min

b∈Fm
2 \{0}

deg(Sb).

Autocorrelation spectrum ACT of the vectorial Boolean function S is defined as the
collection of all autocorrelation spectra of its component functions. In fact, we consider
ACT(S) as a 2n × 2m autocorrelation matrix, whose columns represent the autocorrelation
functions of all component Boolean functions of S. The autocorrelation (or the maximal
absolute autocorrelation value) AC(S) is defined as:

AC(S) = max
b∈Fm

2 \{0}
|r(Sb)|.

The difference distribution table (DDT) is a 2n × 2m table whose entries are defined as

DDT(S)α,β = |{x ∈ Fn
2 , α ∈ Fn

2\{0}, β ∈ Fm
2 |S(x)⊕ S(x⊕ α) = β}|. (2)

The differential uniformity denoted by δ(S) is defined as the largest value in its difference
distribution table not counting the first entry in the first row, or

δ(S) = max
α 6=0,β

DDT(S)α,β.

We are looking for S-boxes that have a differential uniformity as low as possible. It
is well known that δ(S) takes only even values in the interval [2n−m, 2n]. The smallest
possible value of δ in the case of bijective S-boxes (n = m) is 2.

3. GPU and CUDA

One way to understand the difference between CPU and GPU is to compare the ways
they process tasks. Usually, CPU consists of a few cores optimized for sequential serial
processing. They have powerful ALU, large caches, and sophisticated control. Modern
NVIDIA GPUs have their own memory, a massively parallel architecture consisting of
thousands of smaller cores and designed for handling multiple tasks simultaneously. These
cores have a throughput-oriented design with small caches, simple control, and energy-
efficient ALUs, and they require a massive number of threads to tolerate latency. A GPU
is very convenient when manipulating large data or using a high number of threads in
single-instruction multiple-data (SIMD) programming model [29].

The CUDA programming platform allows programmers to interact directly with GPUs
and run parallel parts of programs using the advantages of GPU architecture [9]. CUDA
C is a programming language close to C by syntax, but conceptually and semantically it
is quite different from C. The source code for CUDA applications consists of a mixture of
conventional C/C++ host code and GPU device functions.

Mathematics 2023, 11, 1864 7 of 16

The processing of the data flow has several steps. At the highest level, we have a
master process which runs on the CPU and performs the following steps: prepares data
for manipulation, allocates memory on GPU, copies data from the host (CPU) to the GPU
global memory, launches multiple instances of the execution “kernel” on GPU, copies data
from the GPU memory to the host, deallocates all memory, and terminates. In a program, a
parallel GPU part can be activated many times with different data and manipulations.

Functions for parallel execution on GPU are written in units called kernels. Syntacti-
cally, a kernel is a function of a programming language that is very similar to the C/C++
language functions. However, semantically, it is used by several directions. Its header
initiates a grid of threads that practically performs the parallel execution of the calculations.
The definition of a kernel header, which contains the type of grid, is given as follows:

kernel_name <<< grid blocks, threads per block >>> (. . .),

where ”kernel_name” is a usual name (identifier) and ’grid blocks’ and ’threads per block’
are positive integers. After the header, each kernel consists of a program code that refers
to the single thread of the grid. Any thread has its own number in the grid of threads.
According to this number, it is determined which part of the data will be calculated by the
particular thread. Kernels are executed over the stream of data by many threads on a device
in parallel. Thread is a process that performs series of programming instructions and it is a
single instance of the kernel. Threads are organized into blocks, which are sets of threads
that can communicate and synchronize their execution. Maximum 1024 threads per block
can be launched. Multiple blocks can be executed simultaneously. First, a configuration of
the kernel (number of blocks and number of threads per block inside) has to be made in
order to launch it. Blocks and threads per block form a grid. All threads run the same code.

The threads are executed in groups of 32 threads called “wraps”. Usually, all of the
threads in the wrap execute the same instruction at the same time. The difference is only
input data, which depends on the unique number of any thread in block and any block in
a grid.

The memory model has the following features. Each thread has access to the slowest
global memory, but threads from different blocks can communicate with it. Each block has
its own memory called shared which serves the communication between all of the threads
in one block and is much faster than the global one. Each thread uses a small amount of
fast local memory. The variables in the global memory, unlike the others, are preserved
even after the terminating execution of each kernel.

We would like to mention some features of the CUDA model that are especially
important for the efficiency of GPU calculations. Creating and destroying threads takes a
negligible amount of time but only states which resources will be needed, so they do not
affect performance. The time required to transfer data from the main memory to the global
GPU memory and vice versa in many cases turns out to significantly lengthen the duration
of calculations. Therefore, the master process has to manage the overall performance by
running different kernels sequentially (if possible) without intermediate data transfer and
only returning the final result.

4. Strategies in Algorithms and Data Organization

In order to discuss the implemented strategies and how the data is organized in the
memory, it is necessary to show the model of the library BoolSPLG. Its structure is presented
in Figure 1.

Mathematics 2023, 11, 1864 8 of 16

Figure 1. Classification and module dependencies of the building blocks involved in the library.

4.1. Data Organization

One way to represent the n× n vectorial Boolean function S that we use is through
the truth tables of its coordinate functions. Therefore, an n × 2n matrix is needed. For
convenience, we use the integers corresponding to the binary representation of the columns
of this matrix, so S is defined by the integer vector (s0, s1, . . . , s2n−1). This representation
has several advantages: data from the main memory is transferred to the GPU memory
much faster, and the value of the function S for the input vector v ∈ Fn

2 corresponds to the
v-th coordinate of the array.

Any vector a ∈ Fn
2 defines the component function Sa as a linear combination of rows

of the matrix corresponding to S. The truth table of the component function Sa can be
calculated in the following way:

TT(Sa) = (a · s0, a · s1, . . . , a · s2n−1).

4.2. Strategies in Algorithms

Effective sequential algorithms serve as a basis for parallel implementation. An in-
depth examination of such algorithms, in some cases with different approaches, has been
conducted in Ref. [30]. For the relationship between the different linear and differential
characteristics, see Ref. [31]. The time complexity of the fast Walsh and Möbius transforms
of a Boolean function is O(n2n), and the required memory is O(2n).

The fast Walsh Transform (FWT) is the main tool (part) of the functions in the library
related to the linear characteristics of the the vectorial Boolean functions. In order to apply
the fast Walsh transform to a Boolean function with n variables, we consider its truth tables
as an integer array of length 2n. The algorithm requires n steps. In the i-th step, the sum
and the difference of the integers from the jth and rth cells (depending on i) of the current
tuple must be written in the jth and rth cells of the new tuple. Therefore, the same array
and variables can be used for the result of the calculations of all of its steps. Each thread
can calculate the values of two elements without communicating with other threads. When
using shared memory, it is convenient to calculate several steps of FWT on one thread on a
given part of the array. A detailed description is presented in Ref. [32].

When calculating the linearity, nonlinearity, or LAT of a vectorial Boolean function S,
we need all of its components’ functions (not only the coordinate functions). For small n,
we list all of the component functions in an array of size 22n. After the first n steps of the
fast Walsh transform are applied to this array, we obtain the Walsh spectrum of S. This is
enough to find the linearity (nonlinearity) of the vectorial Boolean function. The result is

Mathematics 2023, 11, 1864 9 of 16

obtained by finding the minimum element in the set of absolute values of the coordinates
of the obtained vector (by reduction). For larger values of n (when the hardware resource
of the GPU is insufficient), in order to determine the linearity of the vector Boolean function
S, the Walsh transform of each component Boolean function has to be calculated separately
(see Algorithm 1).

Algorithm 1: Linearity of an S-box.

Input: An S-box S_box
Output: The linearity Lin(S_box)
sequential copy S_box (as it is represented) to GPU memory
sequential Lin(S_box) = 0
sequential for all component Boolean functions of S_box do

{
parallel get TT of current component function f
parallel calculate W f (the Walsh spectrum of f)
parallel compute the linearity of f
parallel update the value of Lin(S_box) // using one thread

}
sequential copy linearity of S-box in RAM memory

For the autocorrelation properties of S-boxes with n > 10, we use the following
Algorithm 2.

Algorithm 2: The autocorrelation of an S-box.

Input: An S-box S_box
Output: AC(S_box)
sequential copy S_box to GPU memory
sequential current autocorrelation value AC(S_box) = 0
sequential for all component Boolean functions of S_box do

{
parallel get TT of current component function f
parallel calculate W f and g = (W f)2

parallel compute 2−nWg

parallel update the value of AC(S_box)
}

sequential copy AC(S_box) in RAM memory

We would like to note the following points in the calculation of the algebraic degree of
a Boolean function. Since ANF(f) can also be computed via a fast Möbius transform from
the truth table of a Boolean function, this can be achieved using only bitwise operations.
Compared to Walsh transform, this is a very significant advantage and allows us to use
bitwise representation of the truth tables. Note that the i-th coordinate of the vector of
ANF(f) corresponds to the monomial xi, and the degree of this monomial is equal to
the Hamming weight of i. This can easily be calculated from a single thread. A detailed
description of the corresponding parallel butterfly algorithms is given in Ref. [33].

From the definition of DDT for a vectorial Boolean function, we can directly derive a
basic algorithm. We enumerate all of the values of the input difference ∆. For each possible
difference, we initialize to zero an array DDT∆(S) of 2n cells, one for each possible output
difference. Then, for each pair (x, x⊕ ∆) with the prescribed input difference, its output
difference S(x) ⊕ S(x ⊕ ∆) is computed and the corresponding counter in DDT∆(S) is
incremented. The runtime for sequential implementation is O(22n).

In our parallel implementation, each thread calculates only one output difference
S(x)⊕ S(x⊕ ∆). The second part, increasing the value of the corresponding DDT cell, is
more difficult. More than one thread can yield the same value for the output difference.
Therefore, they have to write the results in the same time, and to avoid "race conditions",
we use so-called atomic operators.

Mathematics 2023, 11, 1864 10 of 16

For S-boxes of less than 15 variables, all of the tables that we used are generated and
accessible through the functions of the library.

In this case, the DDT for all of the input differences is generated in parallel. For S-boxes
of more than 14 variables, the rows for each of the tables are generated sequentially (see
Algorithm 3), but the elements of one row are generated in parallel.

Algorithm 3: The differential uniformity of an S-box

Input: An S-box S_box
Output: δ(S_box)
sequential copy S_box to GPU memory
sequential δ(S_box) = 2n

sequential for all ∆ ∈ Fn
2 do

{
parallel compute DDT∆(S_box)
parallel find current δ(S_box)

}
sequential copy δ(S_box) in RAM memory

5. Experimental Results

A server with two different GPU devices was used to evaluate the efficiency of the
implemented library. Their parameters are listed in Table 1. One of the GPUs, presented as
Device 0, is much more powerful than the other (Device 1).

The average times for calculating the considered cryptographic parameters per 100
randomly generated invertible S-boxes with n variables for any n = 8, 9, . . . , 20 were
obtained. The results for the different parameters were systematized in Tables 2–5. The
first column in each table shows the size of the considered S-box. The second column
contains the average time required to find the parameter with a sequential program using
a single CPU core. The next column shows the time required to find the corresponding
parameter using Device 0. Then, the speedup found between the sequential and parallel
implementation methods is given by the formula

Sp =
T0(n)
Tp(n)

,

where n is the number of variables in the S-box, T0(n) is the execution time of the fastest
known sequential algorithm, and Tp(n) is the execution time of the parallel algorithm. The
speedup of the parallel algorithm is given in the columns CPU vs. Dev0 and CPU vs. Dev1,
respectively. For example, the linearity of an S-box of size 28 is calculated for 0.863 ms by
the CPU, while Device 0 performs the calculation for about 0.223 ms. This means it gives a
3.86-times better executing time, written in the table as ×3.86.

It should be noted that the time required for parallel implementation includes the time
used for data transfer from RAM to device memory and vice versa. The next two columns
provide the execution time of Device 2 and the corresponding acceleration. The test results
show the following: Using parallel implementation is much more efficient for S-boxes
with larger parameters. In parallel implementation, the algebraic degree is calculated the
fastest and the DDT is calculated the slowest. Device 0 gives much better acceleration in
most cases.

As can be seen, for S-boxes with particular sizes, the speedup drops. This occurs due
to the CUDA memory hierarchy model. The functions in the library generate the following
tables related to S-boxes: a linear approximation table LAT(S), an autocorrelation table
ACT(S), a table with the algebraic degrees of the monomials in the component Boolean
functions ADT(S), and a difference distribution table (DDT). In the case of S-boxes with
less than 11 variables, all component functions are calculated simultaneously (LAT, ACT,
and ADT). The necessary transformations of the functions to one vector saved in the global
memory are also performed simultaneously. For S-boxes with 11 or more variables, the

Mathematics 2023, 11, 1864 11 of 16

component functions are generated one after the other. Further, in the case of S-boxes with
more than 14 variables, the rows of the DDT table are generated sequentially, and this takes
more time as well.

Table 1. Description of the used CPU and GPU devices.

Environment: Platform

CPU Intel Xeon E5-2640, 2.50 GHz
Memory 48 GB DDR3 1333 MHz
OS Windows 7, 64-bit
IDE/Compiler MSVC 2019
CUDA SDK 10.2
GPU Driver V 471.96

GPU Nvidia TITAN X (Pascal) GeForce GTX TITAN

Device 0 Device 1
Architecture Pascal Kepler
CUDA Cores 3584 2688
Boost Clock 1531 MHz 876 MHz
Memory Speed 10 Gbps 6 Gbps
Global Memory 12 GB GDDR5X 6 GB GDDR5
Memory Bandwidth 480 (GB/sec) 288.38 (GB/sec)

One million randomly generated invertible 16-bit S-boxes have been studied. Table 6
provides information on the best S-boxes in terms of the considered cryptographic parame-
ters. For comparison, the table also presents the parameters of one S-box generated in a
different way from a quasi-cyclic code.

Table 2. Computing linearity

Size CPU (ms) Device 0 (ms) CPU vs. Dev 0 Device 1 (ms) CPU vs. Dev 1

28 (256) 0.863 0.223 ×3.86 0.14336 ×6

29 (512) 7.654 0.340 ×22.51 0.3576 ×21.4

210 (1024) 15.855 0.318 ×49.85 1.1442 ×13.8

211 (2048) 68.343 62.774 ×1 72 ×1

212 (4096) 314.927 149.562 ×2.1 186.106 ×1.68

213 (8192) 1257.97 287.688 ×4.83 347.72 ×3.6

214 (16,384) 5686.84 622.29 ×9.13 759.53 ×7.5

215 (32,768) 24,083.8 1239.54 ×19.42 2141.55 ×11.2

216 (65,536) 99,800.3 2446.03 ×40.8 6289.8 ×15.86

217 (131,072) 442,678 6165.59 ×71.8 22,772 ×19.43

218 (262,144) 1,677,921 22,029.27 ×76.1 90,089 ×18.62

219 (524,288) 7,562,247 90,786.66 ×83.29 375,519 ×20.13

220 (1,048,576) 29,638,868 418,942 ×70.7 1,618,402 ×18.3

Mathematics 2023, 11, 1864 12 of 16

Table 3. Computing autocorrelation

Size CPU (ms) Device 0 (ms) CPU vs. Dev 0 Device 1 (ms) CPU vs. Dev 1

28 (256) 2.020 0.206 ×9.8 0.319 ×6.3

29 (512) 14.212 0.435 ×32.67 0.393 ×36.13

210 (1024) 37.940 0.463 ×81.94 1.462 ×25.95

211 (2048) 185.673 132.284 ×1.4 144.06 ×1.28

212 (4096) 771.527 209.130 ×3.68 253.18 ×3

213 (8192) 3142.98 503.77 ×6.23 418.54 ×7.5

214 (16,384) 13,555.2 866.02 ×15.65 1094.63 ×12.3

215 (32,768) 57,324.5 1931.21 ×29.68 3189.85 ×18

216 (65,536) 238,216.4 3813.45 ×62.46 9621.8 ×24.76

217 (131,072) 1,060,294 9396.38 ×112.84 34,810.46 ×30.45

218 (262,144) 3,832,308 33,814.94 ×113.33 133,629.15 ×28.67

219 (524,288) 16,860,299 138,108.15 ×122.1 566,914 ×29.7

220 (1,048,576) 68,227,870 629,515 ×108.38 2,411,828 ×28.2

Table 4. Computing differential uniformity

Size CPU (ms) Device 0 (ms) CPU vs. Dev 0 Device 1 (ms) CPU vs. Dev 1

28 (256) 0.282 0.208 ×1 0.136 ×2

29 (512) 1.908 0.432 ×4.416 0.351 ×5.4

210 (1024) 3.591 0.366 ×9.811 1.053 ×3.4

211 (2048) 14.269 0.705 ×20.23 1.313 ×10.8

212 (4096) 69.932 1.710 ×40.89 2.914 ×24

213 (8192) 245.719 5.773 ×42.56 11.27 ×22

214 (16,384) 998.174 21.022 ×47.48 37.64 ×27

215 (32,768) 4059.71 990.88 ×4.1 1497.6 ×2.7

216 (65,536) 18,307.9 1924.91 ×9.5 4345 ×4.2

217 (131,072) 86,983.9 4206.78 ×20.68 14,988.47 ×5.8

218 (262,144) 453,136 14,319.73 ×31.64 55,269.61 ×8.2

219 (524,288) 1,925,444 61,572 ×31.27 283,692 ×6.7

220 (1,048,576) 9,312,785 730,660 ×12.7 1,531,534 ×6

Table 5. Computing degree—deg(S)–deg_ bitwise (S)

Size CPU (ms) Device 0 Device 0 CPU vs. Dev0 CPU vs. Dev0 Device 1 Device 1 CPU vs. Dev1 CPU vs. Dev1
Base (ms) Bitwise Base Bitwise Base (ms) Bitwise Base Bitwise

28 1.127 0.122 0.115 ×9.23 ×9.8 0.3193 0.2692 ×3.5 ×14.1

29 10.099 0.201 0.202 ×49.9 ×49 0.7321 0.3087 ×13.6 ×32.46

210 20.396 0.318 0.142 ×64.1 ×143.6 1.1814 0.7277 ×17.2 ×28

211 102.390 76.042 12.447 ×1.3 ×8.2 78.66 23.71 ×1.3 ×4.3

212 369.589 162.987 28.963 ×2.2 ×12.7 220.58 42.9 ×1.6 ×8.6

213 1754.26 307.870 54.385 ×5.69 ×32.2 366 65.68 ×4.8 ×26.9

214 6822.06 720.525 279.5 ×9.4 ×24.45 822.66 767.35 ×8.3 ×8.9

215 28,395.3 1410.75 489.42 ×20.1 ×58 2221 2658.13 ×12.78 ×10.6

216 117,070.8 2961.87 1593.99 ×39.5 ×73.5 6400 9964 ×18.29 ×11.74

217 492,150.2 6421.09 6470 ×76.6 ×76 22,974 26,110 ×21.42 ×18.84

218 1,699,950 22,824.7 12,011.3 ×74.48 ×141.53 84,706 56,085 ×20 ×30.1

219 7,327,083 90,603.8 32,384.5 ×80.87 ×226.2 356,180 122,500 ×20.5 ×59.8

220 29,481,099 416,376 83,943 ×70.8 ×351.2 1,530,321 478,612 ×19.2 ×61.59

Mathematics 2023, 11, 1864 13 of 16

Table 6. Test evaluation between bijective 16-bit QCS-boxes and randomly generated 16-bit S-boxes

S-Boxes Lin nl δ deg(S) (max) AC(S) Number

QCS-boxes, n = 16
C2, M1, m = 13,107, r = 5 512 32,512 4 15 512 5

S-boxes, random 1532 32,002 22 15 2344, 2248 2
n = 16 1532 32,002 20 15 2568–2208 34

1532 32,002 18 15 2432–2224 39

S-boxes, random 1528 32,004 20 15 2504–2232 23
n = 16 1528 32,004 18 15 2416–2264 17

S-boxes, random 1524 32,006 20 15 2512–2240 8
n = 16 1524 32,006 18 15 2392–2216 7

S-boxes, random 1520 32,008 20 15 2288, 2280, 2184 3
n = 16 1520 32,008 18 15 2352–2264 5

S-boxes, random 1516 32,010 20 15 2280 1
n = 16 1516 32,010 18 15 2312 1

In addition, we compared the parallel version of the presented library with the pack-
ages SageMath v9.8 and SET. In Table 7 are given the calculation times of the following
cryptographic parameters of the S-boxes: linearity, differential uniformity, algebraic aegree,
and autocorrelation. The computing environment for BoolSPLG and SET is presented
in Table 1, while for SageMath we used SageMathCell. Computing the linearity and the
differential uniformity of S-boxes of sizes bigger than 212 is not possible in SageMath. The
calculation of autocorrelation is also not included in this package.

Table 7. Calculation times of BoolSPLG, Sage, and SET

Lin δ deg AC

Size Sage SET BoolSPLG Sage SET BoolSPLG Sage SET BoolSPLG SET BoolSPLG

28 0.66 s 2 ms 0.22 ms 0.096 s 0.4 ms 0.2 ms 0.12 s 3 ms 0.1 ms 2 ms 0.2 ms

29 1.94 s 5 ms 0.34 ms 0.35 s 2 ms 0.4 ms 0.14 s 18 ms 0.2 ms 7 ms 0.4 ms

210 7.2 s 39 ms 0.32 ms 1.44 s 8 ms 0.3 ms 0.18 s 52 ms 0.1 ms 48 ms 0.4 ms

211 26.3 s 246 ms 62 ms 6.2 s 83 ms 0.7 ms 0.22 s 374 ms 12 ms 0.4 s 132 ms

212 99 s 1.5 s 149 ms 29 s 0.5 s 1.7 ms 0.39 s 2.3 s 28 ms 2.7 s 209 ms

213 N/A 7.9 s 284 ms N/A 2.1 s 5.7 ms 1 s 12.4 s 54 ms 14 s 503 ms

214 N/A 66 s 662 ms N/A 9.9 s 21 ms 1.6 s 91 s 279 ms 102 s 866 ms

6. Conclusions and Future Work

In this article, a C++ library with sequential and parallel functions, implemented in
CUDA C and designed to analyze large vectorial Boolean functions from cryptographic
perspective, was presented. The parallel functions for many of the parameters are up to
60 times faster, which makes them convenient to use in ambitious research projects. The
library has several opportunities for development. One is in the direction of universality.
We plan to expand it so that it can be used for any type of vectorial Boolean function, not
just bijective.

Another direction is to present more detailed information about the studied crypto-
graphic parameters. For example, S-boxes that have the same differential uniformity but
different differential spectra can perform differently in terms of resistance against differ-
ential attacks. Thus, some design criteria impose restrictions on the differential spectra of
the S-box. The other example is related to algebraic degree. Note that, different from the
notion of algebraic degree, the minimum among all degrees of the coordinate functions
does not equal the minimum among all degrees of the component functions. Moreover, the
number of component and coordinate functions with minimum (or maximal) degree is also
important for some of the cases. In the current version, the library only calculates the value
of the smallest (or largest) degrees of the component functions.

Mathematics 2023, 11, 1864 14 of 16

In the parallel functions of the current implementation, the calculations are conducted
in two ways. One way (for smaller parameters) is to perform calculations for all of the
component functions simultaneously. The other is to perform calculations for each of
the component functions separately. In cases where the component functions are not of
sufficient size, the second method of calculation does not provide good acceleration (as can
be seen from the experimental results). In this case, it is more efficient to make calculations
on appropriate groups of component functions.

Author Contributions: Conceptualization, D.B. and I.B.; methodology, D.B. and I.B.; software, D.B.;
validation, D.B.; formal analysis, D.B. and I.B.; investigation, D.B., I.B. and M.D.-S.; resources, D.B.,
I.B. and M.D.-S.; data curation, D.B.; writing—original draft preparation, D.B, I.B. and M.D.-S.;
writing—review and editing, M.D.-S.; visualization, M.D.-S.; supervision, D.B., I.B. and M.D.-S.;
project administration, I.B.; funding acquisition, M.D.-S. All authors have read and agreed to the
published version of the manuscript.

Funding: The research of Dushan Bikov and Iliya Bouyukliev is partially supported by the Bulgar-
ian National Science Fund under contract no. KP-06-N62/2/13.12.2022. The research of Mariya
Dzhumalieva-Stoeva was supported, in part, by a Bulgarian NSF contract KP-06-N32/2-2019.

Data Availability Statement: The library BoolSPLG, as well as the user manual and documentation,
is available at https://github.com/BoolSPLG/BoolSPLG-v0.3 and https://doi.org/10.5281/zenodo.
7825493, accessed on 15 March 2023. There are also detailed descriptions of each function of the
library and test examples. A Cmake file is provided for easy compilation.

Acknowledgments: We gratefully acknowledge the support of the NVIDIA Corporation with the
donation of the Titan X Pascal GPU used for this research.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

BoolSPLG Boolean functions and S-box Parallel Library for GPU
SIMD Single Instruction, Multiple Data
CUDA Compute Unified Device Architecture
GPU Graphic Processing Unit
CPU Central Processing Unit
ALU Arithmetic-Logic Unit
LAT Linear Approximation Table
TT Truth Table
PTT Polarity Truth Table
ANF Algebraic Normal Form
FWT Fast Walsh Transform
FMT Fast Möbius Transform
DDT Difference Distribution Table
ACT Autocorrelation Table
ADT Algebraic Degree Table

References
1. Shetty, V.S.; Anusha, R.; Dileep Kumar, M.J.; Hegde, P. A survey on performance analysis of block cipher algorithms.

In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India,
26–28 February 2020; pp. 167–174.

2. Kelly, M.; Kaminsky, A.; Kurdziel, M.; Łukowiak, M.; Radziszowski, S. Customizable sponge-based authenticated encryption
using 16-bit s-boxes. In Proceedings of the MILCOM 2015-2015 IEEE Military Communications Conference, Tampa, FL, USA,
26–28 October 2015; pp. 43–48.

https://github.com/BoolSPLG/BoolSPLG-v0.3
https://doi.org/10.5281/zenodo.7825493
https://doi.org/10.5281/zenodo.7825493

Mathematics 2023, 11, 1864 15 of 16

3. Canteaut, A.; Duval, S.; Leurent, G.; Naya-Plasencia, M.; Perrin, L.; Pornin, T.; Schrottenloher, A. Saturnin: A suite of lightweight
symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryptol. 2020, 2020, 160–207. [CrossRef]

4. Matsui, M. New block encryption algorithm MISTY. In Proceedings of the International Workshop on Fast Software Encryption;
Springer: Berlin/Heidelberg, Germany, 1997; pp. 54–68.

5. Georgi, I.; Nikolay, N.; Svetla, N. Reversed Genetic Algorithms for Generation of Bijective S-boxes with Good Cryptographic
Properties. IACR Cryptol. ePrint Arch. 2014, 2014, 801.

6. Beauchamp, K. Applications of Walsh and Related Functions. With an Introduction to Sequence Theory; Microelectronics and Signal
Processing Series; Academic Press, Inc.: London, UK; Orlando, FL, USA, 1985; p. xvi+308, ISBN 0-12-084180-0.

7. Bakoev, V. A method for fast computing the algebraic degree of boolean functions. In Proceedings of the 21st International
Conference on Computer Systems and Technologies, Ruse, Bulgaria, 19–20 June 2020; pp. 141–147.

8. Carlet, C.; Crama, Y.; Hammer, P.L. Chapter Eight—Boolean Functions for Cryptography and Error-Correcting Codes. In Boolean
Models ad Methods Mathemaics, Computer Science, and Engineering; Cambridge University Press: Cambridge, UK, 2010.

9. Sanders, J.; Kandrot, E. CUDA by Example: An Introduction to General-Purpose GPU Programming; Addison-Wesley Professional:
Boston, MA, USA, 2010.

10. Jeon, W.; Ko, G.; Lee, J.; Lee, H.; Ha, D.; Ro, W.W. Chapter Six—Deep learning with GPUs. In Hardware Accelerator Systems for Arti-
ficial Intelligence and Machine Learning; Advances in Computers; Kim, S., Deka, G.C., Eds.; Elsevier: Amsterdam, The Netherlands,
2021; Volume 122, pp. 167–215. .: 10.1016/bs.adcom.2020.11.003. [CrossRef]

11. Xie, Z.; Kwak, A.S.; George, E.; Dozal, L.W.; Van, H.; Jah, M.; Furfaro, R.; Jansen, P. Extracting Space Situational Awareness Events
from News Text. arXiv 2022, arXiv:2201.05721.

12. Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Hardy, D.J.; Trabuco, L.G.; Schulten, K. Accelerating molecular modeling applications
with graphics processors. J. Comput. Chem. 2007, 28, 2618–2640. [CrossRef] [PubMed]

13. Bikov, D.; Bouyukliev, I.; Bouyuklieva, S. Bijective S-boxes of different sizes obtained from quasi-cyclic codes. J. Algebra Comb.
Discret. Struct. Appl. 2019, 6, 123–134. [CrossRef]

14. Zimmermann, P.; Casamayou, A.; Cohen, N.; Connan, G.; Dumont, T.; Fousse, L.; Maltey, F.; Meulien, M.; Mezzarobba, M.; Pernet,
C.; et al. Computational mathematics with SageMath; SIAM: Philadelphia, PA, USA, 2018.

15. Higham, D.J.; Higham, N.J. MATLAB Guide; SIAM: Philadelphia, PA, USA, 2016.
16. Álvarez-Cubero, J.A.; Zufiria, P.J. Algorithm 959: VBF: A library of C++ classes for vector Boolean functions in cryptography.

ACM Trans. Math. Softw. (TOMS) 2016, 42, 1–22. [CrossRef]
17. Sasaki, Y.; Ling, S.; Guo, J.; Bao, Z.; Bao, Z.; Guo, J.; Ling, S.; Sasaki, Y.; Commons License, C. PEIGEN—A platform for evaluation,

implementation, and generation of S-boxes. IACR Trans. Symmetric Cryptol. 2019, 2019, 330–394.
18. Picek, S.; Batina, L.; Jakobović, D.; Ege, B.; Golub, M. S-box, SET, match: A toolbox for S-box analysis. In Proceedings of the IFIP

International Workshop on Information Security Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2014; pp. 140–149.
19. Barrachina, S.; Castillo, M.; Igual, F.D.; Mayo, R.; Quintana-Orti, E.S. Evaluation and tuning of the level 3 CUBLAS for graphics

processors. In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami, FL, USA,
14–18 April 2008; pp. 1–8.

20. Naumov, M.; Chien, L.; Vandermersch, P.; Kapasi, U. Cusparse library. In Proceedings of the GPU Technology Conference, San
Jose, CA, USA, 23 September 2010.

21. Lobeiras, J.; Amor, M.; Doallo, R. BPLG: A tuned butterfly processing library for GPU architectures. Int. J. Parallel Program. 2015,
43, 1078–1102. [CrossRef]

22. Vasilache, N.; Johnson, J.; Mathieu, M.; Chintala, S.; Piantino, S.; LeCun, Y. Fast convolutional nets with fbfft: A GPU performance
evaluation. arXiv 2014, arXiv:1412.7580.

23. Khadem, B.; Ghasemi, R. Improved algorithms in parallel evaluation of large cryptographic S-boxes. Int. J. Parallel Emergent
Distrib. Syst. 2020, 35, 461–472. [CrossRef]

24. Kim, G.; Jeon, Y.; Kim, J. Speeding up LAT: Generating a Linear Approximation Table Using a Bitsliced Implementation. IEEE
Access 2022, 10, 4919–4923. [CrossRef]

25. Preneel, B.; BRAEKEN, A. Cryptographic Properties of Boolean Functions and S-Boxes; Departement elektrotechniek (ESAT): Leuven,
Belgium, 2006.

26. Chabaud, F.; Vaudenay, S. Links between differential and linear cryptanalysis. In Proceedings of the Workshop on the Theory and
Application of of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1994; pp. 356–365.

27. Bakoev, V. Fast computing the algebraic degree of Boolean functions. In Proceedings of the Algebraic Informatics: 8th International
Conference, CAI 2019, Niš, Serbia, 30 June–4 July 2019; Springer: Berlin/Heidelberg, Germany, 2019, pp. 50–63.

28. Good, I.J. The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. Ser. B (Methodological) 1958, 20, 361–372.
[CrossRef]

29. Hughes, C.J. Single-instruction multiple-data execution. Synth. Lect. Comput. Archit. 2015, 10, 1–121.
30. Joux, A. Algorithmic Cryptanalysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009.
31. Zhang, X.M.; Zheng, Y.; Imai, H. Relating differential distribution tables to other properties of of substitution boxes. Des. Codes

Cryptogr. 2000, 19, 45–63. [CrossRef]

http://doi.org/10.46586/tosc.v2020.iS1.160-207
http://dx.doi.org/10.1016/bs.adcom.2020.11.003
http://dx.doi.org/10.1002/jcc.20829
http://www.ncbi.nlm.nih.gov/pubmed/17894371
http://dx.doi.org/10.13069/jacodesmath.617232
http://dx.doi.org/10.1145/2794077
http://dx.doi.org/10.1007/s10766-014-0323-8
http://dx.doi.org/10.1080/17445760.2020.1760863
http://dx.doi.org/10.1109/ACCESS.2022.3140242
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00300.x
http://dx.doi.org/10.1023/A:1008359713877

Mathematics 2023, 11, 1864 16 of 16

32. Bikov, D.; Bouyukliev, I. Parallel fast Walsh transform algorithm and its implementation with CUDA on GPUs. Cybern. Inf.
Technol. 2018, 18, 21–43. [CrossRef]

33. Bikov, D.; Bouyukliev, I. Parallel fast Möbius (Reed-Muller) transform and its implementation with CUDA on GPUs. In
Proceedings of the International Workshop on Parallel Symbolic Computation, Kaiserslautern, Germany, 23–24 July 2017; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2478/cait-2018-0018

	Introduction
	Main Definitions and Preliminaries
	GPU and CUDA
	Strategies in Algorithms and Data Organization
	Data Organization
	Strategies in Algorithms

	Experimental Results
	Conclusions and Future Work
	References

