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W N e

Abstract: With the advent of Artificial Intelligence for healthcare, data synthesis methods present
crucial benefits in facilitating the fast development of Al models while protecting data subjects and by-
passing the need to engage with the complexity of data sharing and processing agreements. Existing
technologies focus on synthesising real-time physiological and physical records based on regular time
intervals. Real health data are, however, characterised by irregularities and multimodal variables that
are still hard to reproduce, preserving the correlation across time and different dimensions. This paper
presents two novel techniques for synthetic data generation of real-time multimodal electronic health
and physical records, (a) the Temporally Correlated Multimodal Generative Adversarial Network
and (b) the Document Sequence Generator. The paper illustrates the need and use of these techniques
through a real use case, the H2020 GATEKEEPER project of Al for healthcare. Furthermore, the paper
presents the evaluation for both individual cases and a discussion about the comparability between
techniques and their potential applications of synthetic data at the different stages of the software
development life-cycle.

Keywords: synthetic data generation; augmented data; temporally correlated generative adversarial
networks; text generative models; deep learning

1. Introduction

With the recent advancement in Artificial Intelligence (AI), there is a growing demand
for Al-driven innovation in the healthcare domain. A key step is the design and develop-
ment of data-driven models to, for instance, identify and monitor risk factors regarding
chronic conditions and to support behavioural intervention for rehabilitation or prevention.
The development of data-driven models requires, however, access to health data often
from several sources, ranging from Electronic Medical Records (EMRs) to Personal Health
Records (PHRs) from personal smartphones and smartwatches.

There are three main challenges associated with the development of Al technologies
and data-driven models in the healthcare system. The first challenge concerns the data
sharing of individuals (data subjects) at the personalised level as part of larger data sam-
ples, which have been highlighted in the General Data Protection Regulation (GDPR) [1].
The data sharing at a personalised level is regulated through procedures such as ethical
approvals, data protection impact assessments, and anonymisation protocols [2]. These
legislative procedures are time-consuming and subject to the complexity of the specific
case study, being a potential barrier to innovation. The second challenge is connected to
the availability of human subjects for prospective studies that would represent the target
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population. The third challenge regards the acquisition of data from these human subjects,
also time-consuming and susceptible to interruptions due to unforeseen events such as
pandemics, resulting in the delay or halt of the study.

The use of synthetic data mitigates the impact of these three challenges in the devel-
opment of Al models [3]. Synthetic data are an alternative way to represent the essential
characteristics, such as dependencies and distributions, of real data about real human
subjects. In addition, the use of synthetic data is also a privacy-preserving technique to
preserve patients’ privacy and mitigate the risk of re-identification.

Previous studies addressed the design and development of synthetic data generator
models for generating data under a healthcare setup (for example, electronic health records
or vital signs). However, the advent of modern assistive technologies and biosensors
such as smartwatches has introduced new challenges related to the specific characteristics
of the signals generated by this new class of devices. Firstly, the signals obtained from
wearables and biosensors are multimodal in nature. This means that variables are not
sampled regularly, and their collection is strictly dependent on human activities (e.g.,
exercise monitored during the daytime, sleep monitored during night-time). Secondly,
the acquisition of physiological biomarkers, such as the heart rate and blood pressure,
is also carried out at irregular intervals. These characteristics make multimodal data a
significantly hard case for existing methodologies developed for conventional time-based
electronic health records sampled at regular intervals.

Addressing this specific scenario, we designed, developed, and tested two approaches
for synthesising real-time multimodal physiological signals. The first is a TimeGAN-
inspired [4] Temporally Correlated Multimodal Generative Adversarial Network (TC-MultiGAN)
that generates synthetic real-time physiological signals based on physical activity, its
types (such as walking or running), and the different types of physiological biomarkers
at different moments of the day. This method addresses the limits of techniques derived
for regularly sampled data synthesis [4], addressing multimodal irregularities in the data
collection by integrating an interpolation pre-processing step, to create time series data.
The technique not only preserves the temporal correlations, but also addresses the non-
uniform distribution of multimodal physiological variables throughout the day of real
data. The second method presented is the Document Sequence Generator (DSG), which
synthesises physiological data by using a guided Text Generation approach. In contrast to
the TC-MultiGAN, the DSG works on a chain of textual events representing the physical
activity and physiological biomarkers, allowing the event occurrence at a particular time
point, as well as its impact on subsequent time points. This method is agnostic to the
occurrence of physiological events being timed at regular intervals. It considers the data
as document sequences and applies an approach from Text Generation, by proposing an
alternative mapping of the problem.

Together, these two techniques provide a viable solution to the limitations of existing
solutions, when applied to heterogeneous, irregular sources of health and wellbeing data.
The two solutions have a different complementary take on the problem, focusing on either
(a) reconstructing the correlated phenomena represented by data reflecting their best-
possible approximation through the synthetically generated data or (b) representing the
data as they are preserving both the correlation and the pattern of use. These two solutions
have different strengths that best fit different scenarios in a real-world setting.

Indeed, this work was developed considering multiple real case studies in the context
of the H2020 flagship GATEKEEPER project on Al for digital healthcare. In line with the key
issues highlighted above, the development of synthetic data generators was a contingent
measure to the COVID-19 pandemic and a mitigation measure to the due diligence and
lengthy negotiations required to set up a data-sharing agreement between healthcare
institutions and technology providers. The presented solutions will be included within a
new service for health synthetic data generation, part of the GATEKEEPER marketplace.

The rest of the paper is structured as follows. Section 2 discusses the state-of-the-art
on synthetic data generation for clinical and healthcare data. Following that, Section 3
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describes in detail our novel solutions, the TC-MultiGAN (Section 3.2) and the DSG
(Section 3.3) and their evaluation. Then, Section 4 discusses the issues of the compara-
bility between the methods and the use of synthetic data for supporting innovation within
our project. Finally, Section 5 presents our final remarks.

2. Literature

The analysis of the state-of-the-art focused on five themes: (i) mathematical trans-
formation to generate new patterns, (ii) the Synthetic Minority Oversampling TEchnique
(SMOTE), a popular oversampling method to address the class imbalance problem, (iii) prob-
abilistic models, (iv) Generative Adversarial Networks, and (v) guided Text Generation.

Random transformation methods generate new patterns through the use of specific
transformation functions. A transformation function can fall into any of the time, frequency,
and magnitude domains [5]. For instance, the magnitude-domain-based data augmentation
functions allow the modification of each value in a time series while keeping the time steps
constant. A common example added noise to the time series signal [6]. Other methods
include, for instance, rotation [5], scaling [7], magnitude warping time [8], time warping [7],
Fourier transform [9], and spectrograms [10]. However, these transformations do not
address the time dependencies we needed to preserve in synthetic data, which can be
useful for the scenario we describe. Additionally, random transformations do not preserve
cross-correlations among different time-dependent and -independent variables, also a key
requirement for the application of synthetic data in the development of Al-based models.

The Synthetic Minority Oversampling TEchnique (SMOTE) is an interpolation method
designed to oversample the minority class within supervised learning datasets. Indeed,
data imbalance is one of the most-common problems in datasets about detecting disease
patterns using classification. The SMOTE has performed well in many similar time series
applications such as wearable sensors [11] and electronic health records [12]. For time-
variant datasets, the SMOTE was used in several variations, such as with deep learning [13],
the weighted extreme learning machine [14], the furthest neighbour algorithm [15], cost
minimisation [16], and the density-based SMOTE [17]. However, the SMOTE was not
designed to perform on unlabelled datasets such as the one used in the applicative scenarios
we considered.

Probabilistic and statistical models have also been applied to synthetic data generation.
In the healthcare domain, Synthea was developed under the same principle with the
capability to transform data into the HI7 Fast Healthcare Interoperability Resource (FHIR)
model [18]. Another example is the Multivariate Imputation by Chained Equations (MICE).
MICE is a method based on the chained imputation of mean values regressed from existing
values in the dataset. It is a cyclic method that computes until all the missing values are
replaced by mean imputed regressed values [19]. These methods are computationally
fast and can scale to very large datasets, both in the number of variables and samples.
Besides, they have the ability to deal with both continuous and categorical datasets by
combining the use of, e.g., Softmax or Gaussian models for the conditional probabilities.
However, probabilistic approaches require prior knowledge of the phenomena described
by the dataset and their mutual interaction.

Generative Adversarial Network (GAN) models are an implementation of the con-
cept of structured probabilities [20]. GAN architectures include a Generator (G), used to
compute new plausible examples based on the data distribution, and a Discriminator (D)
estimating the probability of finding the generated data within the real distribution. Both
the G and D are trained iteratively, until the loss function to discriminate between real
and synthetic data is minimised. GAN models are among the most-common methods for
generating synthetic data in the healthcare space. However, their first-generation imple-
mentations did not capture the joint correlations in the data distributions. Addressing this
limitation, several GAN derivatives have been proposed. For instance, the conditional
Tabular GAN (TabGAN) uses convolutional neural networks and prediction loss to improve
the correlation among the variables [21]. The TabGAN works with mode-specific data



Electronics 2023, 12, 1989

4 0f 20

normalisation for non-Gaussian data distributions while training the Generator to deal
with imbalanced discrete columns [22]. This model was further improved in the TGAN,
preserving mutual information among health record columns [23]. Most of these GAN
models use Long Short-Term Memory (LSTM) in order to develop the Generator, which is
able to capture the record pattern based on the temporal context.

The ability to capture the local pattern and the temporal context is the key feature
required to generate the short-term synthetic data of wearables for physical and physio-
logical monitoring. Convolutional Neural Networks (CNNs) with LSTM have been used
to capture local patterns based on the temporal context. This type of architecture is also
used by DeepFake to generate simulated ECGs [24]. A comprehensive model combining
ECG with cardiovascular diseases, the SLC-GAN [25], was developed using this type of
architecture. However, these architectures do not capture the temporal correlation among
multiple variables. The existing GAN approaches for temporal data, the TimeGAN [4],
adapt the GAN architecture to the generation of regular time series.

To sum up, most of the existing GAN models require either tabular formats or signals
sampled uniformly as the input. This requirement conflicts with how wearables and biosen-
sors operate and the real-life data acquisition patterns, e.g., several times a day and bundled
in different formats based on the different scenarios of use. Real-life data are susceptible
to (a) usage patterns and (b) human routine reflected in the irregular data sampling of the
physical and health status. The large number of missing covariates at specific time points of
real data limits the applicability of existing methodologies. Differently, the two techniques
we propose were designed from the ground up on real-life data.

The rest of the paper discusses the two approaches we developed to address this gap
in existing methods for multimodal health data, specifically learning from an irregular
sampling of different variables and generating synthetic data comparable in terms of
temporal correlations between variables and irregular sampling.

3. Techniques for Real-Time Multimodal Physiological Signal Synthesis

This section describes two complementary approaches addressing the above-mentioned
issues of existing methods.

The Multimodal Generative Adversarial Network (TC-MultiGAN) adopts the TimeGAN
architecture capable of learning and preserving the temporal correlation from the irregular
sampling of different variables while generating regular synthetic data that can support the
development of Al models for health. To this end, the TC-MultiGAN has two main steps:
(1) encoding the categorical data from physical activity types at different hours of the day and
(2) estimating the absence of independent variables (e.g., physical activity variables such as
sleep and exercise) as zero and interpolating dependent physiological status (e.g., heart rate).

The Document Sequence Generator (DSG) synthesises data based on text sequencing
(such as FHIR health documents) and uses text embeddings to support flexible synthetic
data generation, preserving both the variable correlations and the irregularity of the seed to
support the development and testing of Al infrastructures. The DSG encodes sequences of
variables at different time points as characters and text. Approaches based on text sequencing
include automated summarisation of individual patient records [26], question and answer,
and clinical entity recognition [27].

Both methods can be used with health native document formats such as JSON FHIR,
instead of tabular formats, which can provide a great convenience in supporting fast
innovation in the space of Al for health.

The evaluation of these techniques used the Bilingual Evaluation Understudy (BLEU)
score [28]. BLEU score compares the machine-generated text to a set of reference translations
or texts and calculates the n-gram overlap between the two. The resulting score is between
0 (worst) and 100 (perfect). A comparable study on clinical entity recognition reported
a BLEU-4 score of 32.29 for charRNN and 77.28 for GPT-2 [27]. Other methods involve
guided Text Generation, which refers to the process of generating text with the help of
additional input or guidance. This has been in several forms, including:
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*  Conditional Text Generation [29]: This involves providing a model with some context
or information, such as a prompt or a topic, and asking it to generate text based on
that context.

e Text completion [30]: This is similar to conditional Text Generation, but instead of a
prompt, the model is provided with partially completed text and is asked to complete
the text.

As EHRs are patient-centric, we propose to combine Conditional Text Generation and
text completion in a Gated-Recurrent-Unit (GRU)-based [31] character Recurrent Network
(charRNN) framework.

3.1. Datasets

The seed dataset combines smartphones’, self-assessments’, and wearables’ data
collected in the scope of the GATEKEEPER project’s large-scale pilot. The dataset included
smartwatch-generated physiological signals such as heart rate, calories burned and exercise
activity, sleep activity (duration and type), and classic electronic medical records such as
diagnostics, collected from patient questionnaires. The dataset was provided as bundles
of JSON documents in Fast Healthcare Interoperability Resources (FHIR) [32] format.
The FHIR bundles included metadata about the type and time of observations using the
LOINC standard.

FHIR observations can be as simple as a single record or compound, combining several
observations. For example, heart rate measures are simple observations, while walking
activities are compound, including the walking duration and calories burned. Observations
in the dataset concerned biosignals (25%), activities (9%), sleep/rest (65%), and food /liquid
intake (1%). The dataset included both independent and co-dependent variables as simple
or compound observations, collected at different times of the day for a variable period of

time; see Figure 1.
Observation at ‘Observation at Observation at
Timestamp 1 Timestamp 2 Timestamp N

Dependent Variables Independent Variables
Obsevation
Categories e o )
Biosignals Activities. Sleep / Rest Intake  Miscellaneous

Caffeil ji
Heart Rate Number of steps in 24 hour Measured Deep Sleep ir:alzgi [y LT
Duration

= = hour
Number of steps in 24 hour Measured Estimated
Walking speed 24 hour mean Calculated

Walking distance 24 hour Calculated
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in Serum, Plasma or
Blood

Fluid
intake
total 24

hour

Possible

Bicycling / Running / Swimming / Walking

Systolic Blood Pressure A
\Diastolic Blood Pressure| (BEEEDLITEI

Calories Burned

Floors Climbed

Figure 1. Structure of the seed dataset.

The dataset represented 86 unique patients and a variety of observations collected in
periods that ranged from a few days to six months. As anticipated in Section 3, the dataset
did not present the regularity required for applying the existing approaches to synthetic
data generation. Indeed, each patient’s data collection followed a unique pattern in terms
of type, frequency, and gaps in the data points. For instance, the patient data collection in
Figure 2 showcases the high variability in the data collection of real patients. Specifically,
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the patient in Figure 2 alternated periods of high- and low-volume recording and periods
of regular use with gaps of days.

Zo0T

70
60
250
k)
§ 40
2
o
° 30
£
220
10
0 —— F X —_ N — - ~
1 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 25 26 30 31 32 33 34 35 36 37 39 40 41 42 43 44 45 46 47 48 49 53
Day
——Blood pressure/Diastolic blood pressure ——Blood pressure/Systolic blood pressure
———Body height Exercise activity/Walking/Calories burned
——Exercise activity/Walking/Exercise duration ——Floors climbed
=rFluid intake total 24 hour = Glucose [Mass/volume] in Serum, Plasma or Blood
=—Heart rate ——Number of steps in 24 hour Measured/Calories burned
=—=Number of steps in 24 hour Measured/Number of steps in 24 hour Measured = Number of steps in 24 hour Measured/Walking distance 24 hour Calculated
=—=Number of steps in 24 hour Measured/Walking speed 24 hour mean Calculated Sleep duration
Figure 2. Data sample exemplifying a typical data collection pattern.

To sum up, the analysis of the dataset highlighted four types of irregularities in relation
to (1) the number of observations per patient and their type, (2) the duration of the data
collection per patient, (3) the period of continuous recording and gaps, and (4) the number
of observations per day. For instance, the number of produced observations per patient
varied greatly with 18 of 85 (21.18%) scoring above the median of 4k total observations; see
Figure 3.

9000 W Blood pressure/Diastolic blood pressure W Blood pressure/Systolic blood pressure
Body height m Caffeine intake 24 hour Estimated
= Deep sleep duration m Exercise activity/Bicycling/Calories burned
8000 W Exercise activity/Bicycling/Exercise duration mExercise activity/Running/Calories burned
= Exercise activity/Running/Exercise duration m Exercise activity/Swimming/Calories burned
B Exercise activity/Swimming/Exercise duration = Exercise activity/Walking/Calories burned
7000 Exercise activity/Walking/Exercise duration Floors climbed
Fluid intake total 24 hour W Glucose [Mass/volume] in Serum, Plasma or Blood
2 | = Heart rate mLight sleep duration 1
S 6000 u Light sleep duration 2 m Number of steps in 24 hour Measured/Calories burned
: L = mber of tops n 4 hour Messured/Wolking seed 4 hout mean Catuited | REW secp durstion 1111/ Walling dstance 28 hour Caated
-g‘ 5000 ‘\ Sleepduraﬂenp e "
.E 4000
§
§awo Wi
1000 ‘ ‘ | lIIIII IIIII I 1
(I HHRTHE LT

Patient ID

Figure 3. Total number of observations per patient and type.

In line with the EU and U.K. GDPR, the dataset has not been released as the explicit
consent of the data subjects was not collected.

3.2. TC-MultiGAN

We developed the Temporally Correlated Multimodal GAN (TC-MultiGAN), derived
from the TimeGAN [4] architecture, to synthesise irregularly sampled physical and elec-
tronic health records based on encoded hours and activity types while training temporal
probabilities of individual variables and conditional probabilities among dependent and in-
dependent variables (Figure 4). The TC-MultiGAN objective formulation for data synthesis
was designed for variable intensities and a joint temporal distribution at irregular intervals.
Firstly, we defined the dependent (biosignals) and independent (sleep /rest, activity type,
and intake) variables’ spaces acquired from the seed. Secondly, we performed categorical
encoding of the time based on different times of the day and week as the activity types
would be different at different times of the day. Thirdly, we performed interpolation on
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dependent biosignals to derive the optimisation functions in correlation with irregularly
sampled activity types. Fourthly, we derived the embedding function to represent the
temporal dynamics to a lower feature space followed by reconstruction and generator
functions to convert random noise to synthetic data based on the formulated objective.
The generated data would be compared with the seed via a discriminative function. This
was an iterative procedure, which continued till the values from the loss functions reached
below the threshold level. The details are illustrated in Figure 4.

Reconstructed
Sequences(R)

Discriminator Loss

P( X J:T, ns Xm AT, )
1 sy my 2.1,

vy

EmbeddingLoss

ﬁ(anl,tlxnlz,t: Xml,l:tfl))

L. ReconstructionLoss —,

[Tow. [ T2
t t

Input (Noise)

Figure 4. Temporally Correlated Multimodal Generative Adversarial Network model.

3.2.1. Data Pre-Processing

Let Y € mq, m; be the seed for training the probabilistic distribution and dependencies.
Each variable v present in m; and m; has the distinguished sampling rate s.

Considering that biosignals are dependent on the activity types, intake, and sleep /rest
(see Figure 1), we assigned symbol m; to the independent variables (activity types, in-
take, sleep /rest, and encoded time) and m; to the dependent biosignals (vital signs, heart
rate, blood pressure, etc.). Both m; and m; have variable time stamps T; with sampling
rate s for each variable v. Furthermore, we performed categorical encoding of the time
so as to represent different times of the day, as well as to include in m;. The temporal
probabilistic distributions of both 17 and m; from the real data seed were trained along
with their temporal dependencies for the generation of synthetic data closer to the real
seed distribution (see Figure 4). The data from the wearables were converted into the
FHIR format, with each value of the variable having a separate timestamp in a JSON
structure. The JSON was converted into a tabular format required to train the GAN, which
included numerous null values. To address the excess of null values, we performed linear
interpolation on the heart rate values due to their continuous nature, whereas we assigned
0 to null values in m1 and calories burned due to their fixed intervals.

3.2.2. TC-MultiGAN Objective Formulation

Let XeZ be the random noise vector, which can be instantiated with specific values.

. Mq,Mp,N

We considered tuples of the form D = {Xml,l:T,;v,m T sz,lzTSvm2 Ty }mlllm;unzy
is the total number of variables, s is the sample number of variable v in the m; and m;p
categories, and 7 is the time of the sample taken. There were two objectives to generate the

synthetic data:

where m
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Matching the joint distribution of random data with the seed at the global level:
This can be achieved by learning the density p(meliTsv,ml Tr Xy 11T, oy .1,) that can best
approximate p(Xml,l:Tm1 T, sz,l:Tsz:Tn) from the real data. This can be prevented by
minimising the distance D among two probabilities as follows:

mﬁin D(p(Ximy 1:Tey py, Tar Ximg 1:Tey T )| [P (K 175, s Ximy 1.1, T,)) @
Note that m; and m; are two temporal variables whose conditional probability needs to
be compared.

Matching the joint distribution at the local temporal level: This can be achieved by
minimising the distance between two conditional probabilities for any time ¢. This can be
represented as follows:

Xml,t/ sz,l:t—l) ‘ ‘ﬁ(Xert

mﬁin D(p(sz,t Xml,t/ sz,lzt—1)> (2)

3.2.3. TC-MultiGAN'’s Networks

For the TC-MultiGAN, we derived four networks to transform the random noise into
synthetic data. This is an iterative procedure that requires four networks:

i The Embedding Network allows irregular temporal mappings from the seed feature
space to the latent space.

ii The Generator Network converts random values with the total dimensions of 11
and m; in the seed feature space to the embedding space.

iii The Discriminator Network receives the output from the embedding space and
performs differentiation between the reconstructed data and the seed.

iv The Reconstruction Network transforms the latent space back to the feature space to

provide the final synthesised output.

The workflow involving the four networks is represented in Figure 4. Firstly, we define

the Embedding Network, where H,,, and H,,, denote the latent space corresponding to 1,

and my. The Embedding Network e : [Tmy x [Tmy — [T Hm, X [1Hm, takes temporal
t t t t

features from both m; and m; and converts them into their embeddings. Considering the
conditional dependencies of m; over m at irregular time intervals, we used time encoding
and interpolation to parameterise the latent space of m;, (biosignals) according to the latent
space of m; (activity type and time encoding). We implemented the embeddings using a
3-layer forward directional Long Short-Term Memory (LSTM) with the total number of
hidden neurons defined as equal to the total number of samples in the temporal sequence
(N). LSTM can be described as

Ry = etmy (Xt ) 3)

ht,m2 - et,mz (ht,mlr ht*l,’rflz/ xt,mz) (4)

For the Generator Network, we define random sequences via a Gaussian distribution as Z,,
and Z,,, for both variable types, respectively. We implemented the Generator Network
8 : 11 Zmy ¥ 11t Zmy — T1t Hiny X I1f Hm, with Zy,,, dependent on Z,,,. The embedding
space of random sequences can be represented as follows:

]tlt,ml - gml (Zt,m1> (5)

Ijlt,mz = gmz (flt,ml 7 I:lt—l,le Zi,mz) (6)
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The Discriminator Network receives the output from the embedding network and returns the
classification among individual variables v, in both my and my as d: [T; Hm, X 1 Hmp, —
[1:[0,1] x 1[0, 1]. They are represented by the following equations:

oy = dy (i) )
gt,mz - dﬂ’lz (E/ ?t) (8)

Note that 7,& = ?mz (’I:lt,mllflt,mzl 715,1) and 7t = <FmZ(flt,ml,fltlmz, 7,5,1) denotes the
sequences of hidden states in both the forward and backward directions; ?mz, %mz are
LSTM functions; dy,,, d, are output classification functions. Finally, the Reconstruction
Network was implemented as r : Hy, X Hip, — [T m1 X [Ty my.

ft,ml - rml (ht,ml) (9)

Xt,my = rmz(ht,mz) (10)

3.2.4. Optimisation Functions

While performing sequence embedding and generating synthetic data, we developed
loss functions that jointly iterate along embedding, reconstruction and generation functions
to update random sequences with respect to the real seed probabilistic distribution. Firstly,
the reconstruction loss function Lg minimises the probabilistic distance between the real
seed and the synthetic data generated, described as follows:

Lr = Eml,l:anmZ,lzTnNP[Z | |xl‘,m1 = Xt,m | |2 + Z | |xt,mz - ft,msz] (11)
t t

The second loss function minimises the loss for the likelihood of the classification of the
synthetic data’s individual variable distribution in both m; and m; in order to generate the
synthetic variable in the future space. This can be represented as follows:

Ly :Eml,lzTn M2 1Ty, ~P [Z log Yemy + Z log yt,m2]
t t

. N (12)
+ Eml,lzTn M 1., ~P [2 log(l - yf,ml) + Zlog(l - yf,mz)]
t t

The purpose of having the loss function L is to minimise the conditional probabilities
between the real seed and the synthetic data generated at the temporal level, described as

LS = Emu:Tn M 1Ty, ~P [| |ht,11’l] - ng (flt,m] ’ flt—l,MZI Zt,m2 | |2] (13)

3.2.5. Experimental Results

Evaluation Metrics We assessed the performance of the TC-MultiGAN using the
following evaluation measures:

e The Wasserstein distance [33] is the distance function defined between probability
distributions on a given metric space M. This can be represented as

wi(,0) = [ |U(x) = V()] (14
where U(x) and V(x) are Cumulative Distribution Functions of U of size mand V of
size .
¢ The Kolmogorov-Smirnov (KS) Test [34] defines a 2-sample nonparametric test of
the equality of probability distributions. It can be represented as
ksyn(u,v) = max |U(x) — V(x)|. (15)

X
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The Jensen-Shannon distance [35] computes the distance between two probability
arrays. This can be defined as

js(u,v) = /2UCI + DIVETIm) "

where D is the Kullback-Leibler divergence and m is the pointwise mean of U(x)
and V(x).

The Distance Pairwise Correlation [36], in contrast to the previous metrics, measures
differences in pairwise correlations among variables. This can be stated as

DC(U,V) = %Zkorr(u)i —corr(V)] (17)

where n represents the number of variables.

Statistical Evaluation We performed a statistical evaluation of the TC-MultiGAN in

three steps. Firstly, we performed a descriptive analysis and a comparison between the
real and synthetic datasets. The comparison was performed across different physiological
variables (e.g., heart rate, sleep activity, physical activity, etc.) across 24 h. The results are
presented in Table 1 and Figure 5. The table and the figure show a significant similarity
between the real data and the synthetic data generated while preserving the temporal
correlation across different times and spaces. Both the figure and the table show a higher
heartbeat during daytime and high physical activity, whereas a lower heartbeat during
sleep activity and the night-time .

Table 1. Hourly comparison of the mean and standard deviation of different physiological variables

in (a) the real dataset and (b) the synthetic dataset .

Exercise Duration

Heart Rate (bpm) (sec x 104 Calories Burnt (kcal) Sleep Duration (min)
Hour Real Synthetic Real Synthetic Real Synthetic Real Synthetic
0 66.49 + 8.89 65.42 +10.4 0.0 +0.61 0.38 + 1.51 0.01 +1.07 2.71 +£9.84 12.09 + 38.93 1143 +17.96
1 65.28 + 9.09 65.62 + 12.32 0.01 £ 0.85 0.38 +2.38 0.02 +1.32 1.82 +11.69 10.63 + 29.26 10.14 + 16.47
2 64.64 +9.14 66.02 + 13.04 0.01 + 0.88 0.62 + 3.8 0.01 £ 0.94 2.56 + 15.86 9.49 + 25.23 6.26 +12.71
3 63.92 +9.07 70.93 +12.9 0.01 +0.7 1.03 £5.19 0.01 +0.61 4.02 +20.82 7.96 +17.51 47 +115
4 64.14 + 9.85 75.17 + 10.56 0.13 + 4.09 20+7.75 0.14 + 6.01 7.41 £29.24 7.39 + 15.08 4.1+11.49
5 65.09 = 10.0 76.78 + 8.47 0.62 + 10.35 2.69 +8.72 0.54 + 10.79 9.58 + 31.17 6.21 + 13.38 3.18 £ 10.39
6 69.97 + 11.61 77.03 £7.19 5.85 + 4247 294 +9.18 5.75 +49.11 10.37 £ 32.23 3.4 +18.66 2.35 + 8.79
7 76.9 + 6.07 3.12+9.14 11.1+ 322 2.25 + 8.55
8 77.03 + 10.78 76.11 £5.73 10.76 + 41.65 2.86 + 8.66 10.03 + 42.17 10.57 + 31.46 1.01 +8.7 2.04+7.72
9 77.95 +9.78 74.66 + 5.66 12.1 +43.65 223 +7.35 10.9 + 42.32 8.85 + 28.38 1.04 +10.1 1.16 +5.74
10 77.89 +9.84 74.02 + 5.88 11.06 + 42.56 2.29 + 6.99 9.67 +41.16 10.05 + 30.72 0.99 +9.07 1.51+7.0
11 77.35 £9.43 73.2 £ 6.05 5.6 +31.5 1.72 +5.48 5.06 + 30.39 8.1 £25.6 4.79 + 30.46 1.89 +7.86
12 75.76 +9.19 7248 + 6.04 2.04 +16.99 1.17 £ 3.99 1.9 +16.29 5.6 + 19.06 9.53 + 28.62 1.87 +7.52
13 74.47 + 9.56 7241 +£591 1.93 + 18.63 0.81 +2.83 1.79+ 179 3.81 +13.15 799 £223 3.34 +10.54
14 72.33 +5.77 0.61 +£2.24 2.75 +10.06 41+11.72
15 76.06 + 10.07 71.48 +5.8 4.09 +23.91 0.45 +1.61 3.87 +24.01 1.7 +6.48 3.68 + 12.85 2.71+9.75
16 775+ 10.5 70.51 £ 5.77 9.64 + 42.06 0.38 + 1.51 8.93 + 41.59 1.26 + 5.67 217 £17.71 1.87 +8.22
17 77.55 +10.18 69.49 +5.72 8.43 + 36.72 041+1.6 7.86 + 38.53 1.11+55 2.38 +42.33 141 +7.37
18 77.07 £ 9.66 67.98 + 5.85 7.18 +30.31 0.29 +1.25 6.32 + 31.32 0.75 + 3.48 5.93 + 50.26 1.45+7.72
19 74.98 + 9.65 66.29 + 5.84 4.23 +26.07 0.13 £0.72 3.72 £23.92 044 £2.49 15.35 + 76.75 1.26 + 6.84
20 72.83 + 9.66 64.45 + 5.43 1.67 +13.93 0.05 +0.3 1.45+12.84 0.22 +1.32 41.72 + 125.81 0.96 +5.15
21 71.54 +9.59 63.11 £5.13 044 +7.6 0.05 + 0.29 04+7.62 0.24 +1.34 46.34 + 121.8 0.73 + 3.69
22 70.51 £ 9.23 64.22 +5.62 0.07 +3.46 0.04 +0.24 0.05 +2.82 0.23 +1.26 30.43 + 89.71 0.34 £241
23 68.75 + 8.93 0.02 + 1.66 0.01 +1.15 18.73 + 60.97
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Figure 5. Comparison of the real and synthetic dataset in terms of the normalised average values of
multimodal variables with (a) the real dataset and (b) the synthetic dataset.

In the second step, we performed a statistical comparison based on the evaluation
metrics described in Section 3.2.5 while synthesising a different number of users via the TC-
MultiGAN. The results are presented in Table 2, which shows consistency in the differences
between the real and synthetic data while generating a different number of users ranging
from 10 to 200.

Table 2. TC-MultiGAN’s performance for generating different numbers of subjects.

Number of Subjects \]/)V'asserstein KS Test ]e'nsen—Shannon Distance: Pairwise
istance Distance Correlation

10 0.28 0.20 0.31 0.14

50 0.28 0.21 0.31 0.14

100 0.29 0.21 0.31 0.13

200 0.28 0.21 0.31 0.14

In the third and last step, we performed a state-of-the-art comparison of the TC-
MultiGAN with existing approaches (Table 3). The results showed that the TC-MultiGAN
outperformed all the existing approaches that are based on the probabilistic distribution of
the individual variables only. This showed that encoding and training the temporal correla-
tion was the key to synthesising real-time physiological signals close to the real dataset.

Table 3. Statistical comparison of the TC-MultiGAN with state-of-the-art approaches for generating

100 subjects.
Methods Wasserstem KS Test ]e.nsen—Shannon Dlstance. Pairwise
Distance Distance Correlation
CGAN [23] 0.42 0.33 0.44 0.13
Gaussian Copula [37]  0.41 0.22 0.32 0.13
Dragan GAN [38] 0.55 047 0.61 0.25
Cramer GAN [39] 0.62 0.40 0.74 0.11
TC-MultiGAN 0.29 0.21 0.31 0.12

3.3. Document Sequence Generator

The DSG considers the training data as sequences of characters and documents,
rather than time series, for instance an observation about a heart condition followed by
observations about physical activities such as step counts. As such, the developed solution
uses Recurrent Neural Networks, as described in the rest of this section.

3.3.1. RNNs

Recurrent Neural Networks (RNNs) [40] allow training of any sequential data patterns,
ranging from temporal data to text (sequences of characters). The TC-MultiGAN model just
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presented requires the interpolation of missing values in a tabular format: an assumption
about what is not described by the seed. Differently, the DSG makes no assumptions about
the gaps in the data collection and could best fit the application scenarios whether the
phenomena at hand cannot be reasonably interpolated, such as social activities and events
that would suddenly emerge (no-trend-based). As such, the DSG treats the seed data
sequences as textual sequences.

3.3.2. Approach and Rationale

The problem was approached using the SEQ2SEQ technique [41] to train the observa-
tions using a character-level approach. Each observation in the seed was split into a number
of characters, representing the input sequences. The corresponding targets contained the
same number of characters, but shifted one character to the right. The targets represent the
output sequence. The model architecture was initialised with random data. We trained our
model such that we could learn the relationship between the input and output sequences.

The model needs to address two questions concerning time and activities:

1.  Given a timestamp and observation activity, what is the next timestamp and activity?
2. Given a timestamp and observation activity, what is the value associated with that activity?

The developed solution focuses on the latter as preliminary experiments failed to
identify a model for the first question. However, we found a workaround by adapting a
guided Text Generation approach. We trained the model using irregular time intervals and
observation codes as contextual information. This solution considered the observations of
each patient as a whole document. It reframed the goal of a single model as the ability to
create either part of or a whole full document, with a similar probability distribution as the
seed. The input for each observation was part of the synthetic patient data that the model
was attempting to generate.

The process in Figure 6 is iterative and articulated into (1) pre-processing, (2) model
training, (3) Text Generation, and (4) evaluation, as described in the following sections. The
results were evaluated at the end of each cycle; the model hyper-parameters were updated,
and the model was retrained until evaluation reached a target BLEU score [42] and an
overall acceptable 2-sample Kolmogorov-Smirnov test (KS test) [34] result.

Y =) i

UONRISUSS) AL

™ & [ &= ==

Figure 6. The iterative training cycle of the document generation process.

3.3.3. Pre-Processing

The pre-processing step converts the text into a numerical representation (Figure 7).
However, to give the model the best chance of learning the signals, the pre-processing
performed the compression of the notation of the FHIR format. Indeed, the FHIR observa-
tion included metadata fields that were not significant for the purpose of synthetic data
generation, which would negatively impact the computational resources required and the
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size of the model. The compression shortened verbose identifiers (see Table 4) and removed

all repeated and redundant references, for example:

"resourceType": "observation";

"status": "preliminary"

Table 4. Mappings between long standard values, such as identifiers, with shorter versions.

Long Text Description Short Text
LOINC URI <URI_loinc>
Units of measure URI <URI_UOM>
Glucose URI <URI_SAMBG>
GateKeeper CodeSystem URI <URI_CSGK>
Observation CodeSystem URI <URI_CSOC>
Number of steps in 24-h Measured STEPS 24
Walking speed 24-h mean Calculated WALK SPEED 24
Walking distance 24-h Calculated WAILK 24
Value of effectiveDateTime <EDT>
Value of effectiveTiming <ET>
Value of valuePeriod <D>

The values of effectiveDateTime, effectiveTiming, and valuePeriod encode the
time of the observation. Before the optimisation steps described above, these values were
stored in a time index t;p y recording the patient’s unique identifier ID, the observation
number N, and the elapsed time in seconds t. ID N t;p y was then attached at the head of
the stringified JSON representation.

Finally, the JSON strings were tokenised, breaking the text into individual characters.
For example, the word “{"code: ” would be tokenised into the following characters: <{",
“sc??, 027, @, ‘“e’, ¢ »’. The characters were then converted into a numerical vector
used as the input for training the model. An example of the pre-processing is shown below

(Figure 7).

"category™: [
{

“coding": [

1.
"text™: "Vital Signs"
}

1

"code": {

“coding": [
{

"display”: "Heart rate”,
"system": "http:/loinc.org"
}
1

b
"effectiveDateTime": "2022-11-21T00:04:17+00:00"
"status": "preliminary”,
"subject": {
“display": "abc@example.com”,
“reference": "Xxx"

"valueQuantity": {
"code": "/min",
"system": "http:/iunitsofmeasure.org",
"unit": "beatsiminute",
"value": 80

"resourceType": "Observation™

{
"category": [
{

"display": "Vi
"system": "<URI_CSOC>"
}

1
“text": "Vital Signs"
}
1
"code": {
"coding™ [

"code": "8867-4",
"display™: "Heart rate",
"system": "<URI_loin¢>"
}
1
L
"effectiveDate Time": "<EDT>",
"valueQuantity": {
- Y min®,
: "<URI_UOM>",
"beats/minute",
"value": 80

%Patient/10011 0 {“category™: [{"coding": [{ “code":
"vital-signs", "display”: "Vital Signs", "system™: "

<URI_CSOC>"}], "text
| {"coding™ [{ "code™ "88674", "display": "Heart

te”, "system

“effectiveDate
{"code": "/min”,
“beatsiminute”, "value": 80}};

al Signs"}], “code":

RI_loinc>"}]},
e": "<EDT>", "valueQuantity"™:
system"”: "<URI_UOM>", “unit":

4

Figure 7. From FHIR data to vector.

[48359 7 11 412 744182020185205......]

The final pre-processing step (tokenisation) used the TextVectorization layer in Tensor-
flow Keras (Tensorflow library https:/ /www.tensorflow.org/, accessed on 1 December 2022) on
a cloud infrastructure. As such, the data ingested in this last step should be carefully considered
as the meta-data of the vectorised data become part of the model pipeline.


https://www.tensorflow.org/
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3.3.4. Model Training

Similarly, the execution of the model training was implemented in Python using the
Tensorflow Keras library. The model architecture consisted of three hidden layers: an
Embedding Layer and two GRU layers (see Figure 8). The sparse categorical loss
function was used to minimise the loss. The output from the training of the model was the
Tensorflow logits [—oo,4-00], which were used to generate the predictions. The model
was designed to retain up to 187 characters at each step. If the observations were less than
187 characters, the sequence was padded with zeros in the tokenisation step.

¥ Model
input: | [(5, None)]
N InputLayer
Observations output: | [(5, None)]
Source Observations Vectors
I"J‘nPﬂtienUI(]m 10 ... l
||43359 711 412 744182020185205 ... I
I%Patienﬁwm 11 .. nput 5, None)
. : ,
|[4a 3597 11412 744162020185 185...... 0] I Embedding
output: | (5, None, 256)
Target Observations Vectors l
||359 711 412 7144182020185205 ... 47] I input: | (5, None, 256)
Y GRU
Source Observations |[35 97 11 412 T4 152020185185 . AT 0] I output: | (5, None, 1024)
I%Pﬂtientﬂﬂm [ I X l

I"J‘nPatienU10m11 I input: | (5, None, 1024)

l GRU
Tokenizer Layer output: | (5, None, 1024)
Target Observations

IPatienuwm T ; I A
input: | (5, None, 1024)

output: (5, None, 74)

IPatientﬁ [ ; I Dense

Figure 8. Recurrent Neural Network architecture.

In our experiments, the final sparse categorical loss recorded was 0.096 after 50 epochs
of training. The model with the final weights and the Tokeniser Layer were saved to be deployed
as a module of the synthetic data generation infrastructure.

3.3.5. Text Generation

Text was generated using the prediction method of the model, as shown in Figure 9.
Text Generation is also an iterative process: each round trip produces an array of Tensorflow
logits corresponding to a character in our vocabulary. The randomness of the predictions
was controlled by scaling the temperature of the logits bef