
PHYSICAL REVIEW E 107, 054303 (2023)

Belief propagation on networks with cliques and chordless cycles
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It is well known that tree-based theories can describe the properties of undirected clustered networks with
extremely accurate results [S. Melnik et al., Phys. Rev. E 83, 036112 (2011)]. It is reasonable to suggest that
a motif-based theory would be superior to a tree one, since additional neighbor correlations are encapsulated
in the motif structure. In this paper, we examine bond percolation on random and real world networks using
belief propagation in conjunction with edge-disjoint motif covers. We derive exact message passing expressions
for cliques and chordless cycles of finite size. Our theoretical model gives good agreement with Monte Carlo
simulation and offers a simple, yet substantial improvement on traditional message passing, showing that this
approach is suitable to study the properties of random and empirical networks.
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I. INTRODUCTION

Belief propagation, also known as message passing, is
an algorithm that is fundamental to many different disci-
plines including physics, computer science, epidemiology,
and statistics [1–8]. The belief propagation algorithm, which
relies on the Bethe-Peierls approximation [9–11], is valid only
for large and sparse treelike networks, becoming exact when
the network is a tree. This is because the removal of a vertex
i and its edges from a tree isolates its neighbors from one
another; the only path connecting them has vanished and so
too do interneighbor correlations. Such a graph is called the
cavity graph of vertex i and allows a message passing system
of self-consistent equations to be written for the vertices of the
network. Loops in networks introduce correlations between
vertices that invalidate the Bethe-Peierls approximation as
there is still a path between the neighbors in the cavity graph
of a given vertex. Despite this drawback, belief propagation
has a proven ability to analytically describe the structural
properties of many real world networks, which are known to
contain loops [12]. Belief propagation on clustered networks
has been studied previously [1,3,4,7,8,13–23] and an immense
literature exists that tackles the problem in a variety of differ-
ent manners.

Recently, Cantwell, Newman, and Kirkley solved the belief
propagation model for networks with arbitrary loop struc-
ture [3,4]. They achieved this by considering messages from
a collective local neighborhood, of variable distance, about
each vertex, rather than a partition into recognized motifs. In
their framework, it is assumed that all intervertex correlations
due to short range loops are encapsulated within the neigh-
borhood. For a given configuration of edges, the probability
of the size of the component to which a vertex belongs is
calculated before being averaged over the probability of each
edge configuration for the neighborhood. The neighborhood
calculation is computationally expensive and so the authors
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introduced a Monte Carlo algorithm to sample the set of
connected graphs.

It is not unreasonable, however, to desire a model of an em-
pirical network on which to carry out further experimentation.
For instance, suppose that the empirical network represents a
data set that is too small to apply some statistical or machine
learning algorithm. If we had a model of the network, perhaps
we could understand how to grow the network, adding new
vertices and edges, while keeping the inherent topology and
statistical properties fixed.

One way to obtain a model is to cover the network in
motifs; specifically, a set of edge-disjoint motifs, such that a
given edge belongs to only one motif. The simplest cover is to
simply assume each edge is a 2-clique [12], and this approx-
imation certainly works well in some cases. However, given
the large body of knowledge for random clustered networks
[17,24–33], it is tempting to apply covers with larger and
more complicated motifs in the hope to obtain more accurate
models. For sparse random graphs, this technique works well
and the success lies in the locally treelike nature of the factor
graph of the covered network. The factor graph is a bipartite
graph that has two different sets of vertices. One set represents
the vertices of the substrate network, while the other repre-
sents the motifs to which they belong. Edges connect vertices
in the original graph to the vertices representing the motifs to
which they belong; see Fig. 1. If the factor graph is locally
treelike, then all of the short range loops in the network are
encapsulated within the motif cover.

Unfortunately, naive motif covers of empirical networks
often do not create representative models. Kirkley et al. sum-
marize that “these techniques are not generally applicable to
real world networks” [4]. In fact, it is sometimes the case
that tree-based theories give the closest match to the empir-
ical network [34]. This is despite a cover with larger motifs
necessarily having a more treelike factor graph than a cover
comprised of only 2-cliques. This indicates the presence of
an additional driving force for a suitable motif cover beyond
simply decreasing the number of loops in the factor graph.
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In this paper, we introduce exact expressions for belief
propagation on networks that are composed of edge-disjoint
chordless cycles and cliques of finite size. These networks
can be obtained by covering an empirical network with mo-
tifs or constructively using the configuration model [24,31].
We then study message passing on empirical clique covered
networks. We find that our model exhibits excellent agreement
with Monte Carlo simulation beyond the results obtained from
ordinary belief propagation [12] due to the arbitrarily large
clique sizes that we can analytically include in our model.
We offer insight into why naive motif covers often fail to
capture the properties of real world networks by considering
the statistical bias introduced by the breaking of symmetry in
certain covers. Finally, we relate our method to the general-
ized configuration model, which is shown to be the ensemble
average of the message passing model.

This work may lead to significant advances in the applica-
tion of the theory of clustered graphs to the study of empirical
networks. We hope that additional studies will be conducted
with dynamics other than bond percolation to further these
results.

II. THEORETICAL

Let G = (N, E ) be a graph and ω : E → {0, 1} be an edge
configuration on the graph that maps each edge to a value
of either 0 or 1 with probabilities 1 − φ and φ, respec-
tively, for φ ∈ [0, 1]. An edge is occupied if ω(e) = 1 for
e ∈ E , and unoccupied if ω(e) = 0; as φ is increased, a giant

FIG. 1. Top: A network is covered with edge-disjoint chordless
cycles and cliques. Bottom: The factor graph of the network. This
figure is inspired by Fig. 1 of [18]. Such networks can have a
high local density of loops that encapsulate the neighbor correlation,
becoming increasingly sparse and treelike at long ranges.

connected component of occupied edges emerges through a
phase transition. The state space of the model is � = {0, 1}E ,
such that ω ∈ � are E -dimensional vectors. Let η(ω) = {e ∈
E : ω(e) = 1} denote the set of occupied edges. For a given
network G, the probability measure of an edge configuration
is

μ(ω|G) = 1

Z

∏
e∈E

φω(e)(1 − φ)ω(e), (1)

where Z is the partition function,

Z =
∑
ω∈�

∏
e∈E

φω(e)(1 − φ)ω(e). (2)

This summation is over all possible edge configurations of
a given graph, weighted by their probabilities and, therefore,
equal to one. When φ is small, the graph is composed of many
small clusters of occupied vertices and there is no long range
connectivity. As φ is increased, a giant percolating cluster
emerges which incorporates a finite fraction of the vertices
O(N ).

We now derive the belief propagation formulation [35] for
motif covered networks. Our model also applies to random
configuration model networks that are composed of cliques
or chordless cycles, such as those described in Sec. I. Similar
expressions appear in [3] and [17]; however, these frameworks
correspond to neighborhood decomposed networks and for
the Ising model on motif covered networks, respectively. Let
us select a vertex i at random from the equilibrium of the
percolation process and suppose that i is the corner of a set
of motifs τ i. The probability πi(s) is the probability that i
belongs to a nonpercolating component of size s. This can be
written in terms of the probability πi← j that a neighbor of i,
vertex j, which is in motif τ together with i, leads to s j vertices
if we were to follow all of its edges, other than those that point
back to motif τ ,

πi(s) =
∑

{s j : j∈∂τ (i), τ∈τ i}

⎡
⎣∏

τ∈τi

∏
j∈∂τ (i)

πi← j (s j )

⎤
⎦

× δ

⎛
⎝s − 1,

∑
τ∈τ i

∑
j∈∂τ (i)

s j

⎞
⎠, (3)

where τ is a motif belonging to τ i, ∂τ (i) is the set of edges
vertex i has within motif τ , and δ(x, y) is the Kronecker
delta. This expression averages over every combination of
the total number of reachable vertices s j along each edge
j of each motif τ in the set of motifs τ i that i belongs
to. This summation is then filtered by the Kronecker δ to
retain only those terms that collectively sum to s − 1, to
which we add 1 for vertex i itself to yield the compo-
nent of overall size s. We can generate this probability by
defining

Gi(z) =
∞∑

s=1

πi(s)zs, (4)
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such that

Gi(z) =
∞∑

s=1

zs
∑

{s j : j∈∂τ (i), τ∈τi}

⎡
⎣∏

τ∈τi

∏
j∈∂τ (i)

πi← j (s j )

⎤
⎦

× δ

⎛
⎝s − 1,

∑
τ∈τi

∑
j∈∂τ (i)

s j

⎞
⎠. (5)

With the following manipulation:

∞∑
s=1

zs = z
∞∑

s=1

zs−1 δ= z
∞∑

s=1

z

∑
τ

∑
j∈∂τ (i)

s j = z
∏
τ∈τi

∏
j∈∂τ (i)

∞∑
s j=0

zs j ,

(6)
we obtain

Gi(z) = z
∏
τ∈τi

∏
j∈∂τ (i)

∞∑
s j=0

πi← j (s j )z
s j . (7)

The summation limits over s j are 0 → ∞ since the original
summation is over s ∈ [1,∞] and so s − 1 is s j ∈ [0,∞]. For
each neighbor j, we can write a generating function for the
probability that the number of vertices that can be reached,
other than through the motif itself, is s j as

Hi← j (z) =
∞∑

s j=0

πi← j (s j )z
s j . (8)

The probability for the total number of vertices that can be
reached via motif τ is simply the product

Hi←τ (z) =
∏

j∈∂τ (i)

Hi← j (z). (9)

Inserting these expressions in Eq. (7), we find

Gi(z) = z
∏
τ∈τ i

Hi←τ (z). (10)

This expression is a general result and holds for arbitrary
motif topologies. If we had knowledge of each Hi←τ (z), this
generating function would yield the distribution of component
sizes that vertex i belongs to. From this, for instance, we can
find the size of the percolating component S as one minus the
probability that all vertices i ∈ N belong to finite components,

S = 1 − 1

N

∑
i

∏
τ∈τi

Hi←τ (1). (11)

The average size of the finite components 〈si〉 is given by

〈si〉 =
∑

s
sπi(s)∑

s
πi(s)

= G′
i(1)

Gi(1)
, (12)

where we have used Eq. (4). Inserting Eq. (10), we have

〈si〉 = 1 +
∑
τ∈τi

H ′
i←τ (1)

Hi←τ (1)
, (13)

FIG. 2. The seven edge configurations C that a focal vertex i (bot-
tom) can encounter when it belongs to a triangle with vertices j (top
left vertex) and k (top right vertex). Solid lines represent occupied
edges, while dashed lines are unoccupied. Solid vertices belong to the
same component as i, while unfilled vertices are not connected to i.
When both of i′s edges are unoccupied (top left triangle), the state of
the edge between the neighbors is inconsequential to the percolation
properties of i.

where we have used

d

dz

[∏
τ

Hi←τ (z)

]
=

∑
τ

⎧⎨
⎩

[
d

dz
Hi←τ (z)

] ∏
ν 	=τ

Hi←ν (z)

⎫⎬
⎭

=
[∏

τ

Hi←τ (z)

](∑
τ

H ′
i←τ (z)

Hi←τ (z)

)
. (14)

To progress, we require the derivative of Hi←τ (z). However,
the functional form of Hi←τ (z), crucial to enumerating Gi(z),
depends on the structure of the motif and the configuration of
its edges among the occupied and unoccupied states. We will
now examine Hi←τ (z) for ordinary edges, chordless cycles of
arbitrary length, and cliques of arbitrary size.

A. Calculating Hi←τ for ordinary edges

Let us for a moment assume that the network contains only
2-cliques—ordinary edges—which was previously studied by
Karrer et al. [12]. In this case, Eq. (10) reduces to

Gi(z) = z
∏

j

Hi← j (z), (15)

where the product over j accounts for each distinct 2-clique
to which i belongs. Because there is only a single edge in

FIG. 3. The probability that triangle τ connects vertex i to sτ

vertices, when both j and k belong to the same component as i, is
equal to the probability that the number of neighboring vertices of
j and k, apart from those in τ itself, collectively connect to sτ − 2
vertices; see Eq. (22).
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a 2-clique, this index equivalently runs over the neighbor
vertices Hi←τ (z) = Hi← j (z). If the edge is unoccupied with
probability 1 − φ, then πi← j (s) is zero. In this case, the edge
does not contribute to the component size of i and so s = 0.
If the edge is occupied with probability φ, then πi← j (s � 1)
is nonzero. Therefore, the summation in Eq. (8) has the zero
term πi← j (0) = 1 − φ extracted and, for s � 1, we have

πi← j (s) =φ
∑

{sk :k∈∂ν ( j)\i}

⎡
⎣ ∏

k∈∂ ( j)\i

π j←k (sk )

⎤
⎦

× δ

⎛
⎝s − 1,

∑
k∈∂ ( j)\i

sk

⎞
⎠, (16)

where the notation ∂ ( j)\i denotes the set of edges to which
vertex j belongs to excluding the one connecting it to i.
Substituting this expression into Eq. (8), we have

Hi← j (z) =1 − φ + φ

∞∑
s=1

zs
∑

{sk :k∈∂ ( j)\i}

⎡
⎣ ∏

k∈∂ ( j)\i

π j←k (sk )

⎤
⎦

× δ

⎛
⎝s − 1,

∑
k∈∂ ( j)\i

sk

⎞
⎠. (17)

Application of the Kronecker δ yields

Hi← j (z) = (1 − φ) + φz
∏

k∈∂ ( j)\i

∞∑
sk=0

π j←k (sk )zsk . (18)

Noticing that the final summation is the generating function
of π j←k [Eq. (8)], we have a self-consistent expression for
Hi← j (z),

Hi← j (z) = (1 − φ) + φz
∏

k∈∂ ( j)\i

Hj←k (z). (19)

This expression can be solved for all edges by fixed point
iteration from a suitable starting point and substituted into
Eq. (10) to find Gi(z). The distribution for πi(s) can then be
found by differentiating the series.

To evaluate the finite components, we require the derivative
of Hi← j (z) with respect to z. Following [12], we find

H ′
i← j (1) = φ

⎡
⎣1 +

∑
k∈∂ ( j)\i

H ′
j←k (1)

Hj←k (1)

⎤
⎦ ∏

k∈∂ ( j)\i

Hj←k (1). (20)

To find the average size of the finite components, we solve
Eqs. (19) and (20) and insert them into Eq. (13).

B. Calculating Hi←τ for 3-cliques

Let us now examine the case where vertices belong to triangles as well as ordinary edges. Each triangle τ that vertex i belongs
to connects it to vertices j and k, and our aim is to calculate the generating function Hi←τ (z) for the probability πi←τ (sτ ) that
the number of vertices that are reachable from vertex i due to its membership in triangle τ is sτ . However, unlike ordinary edges,
which contain just one edge, a triangle has three edges. Each of these edges may be occupied ω(e) = 1 or unoccupied ω(e) = 0
and there are seven distinct edge configurations C for a given triangle that have an impact on the connectivity of vertex i; see
Fig. 2.

The probability that the triangle connects i to sτ vertices is dependent on the edge configuration that the triangle is in.
Therefore, in order to compute πi←τ (sτ ), we must calculate conditional probabilities πi←τ (sτ |C) of leading to sτ vertices for a
given edge configuration C. We find

(21a)

, (21b)

, (21c)

where the notation ν j\τ in Eq. (21b) denotes the set of motifs that vertex j belongs to excluding τ ; and similarly for ϕk\τ
in Eq. (21c). When the focal vertex is connected to both j and k in τ via occupied edges, we must average over both sets of
neighbors; see Fig. 3.

(22)
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The total probability that triangle τ leads to sτ vertices is found by summing each conditional probability with the probability of
each edge configuration [24,26,29],

. (23)

Extracting the sτ = 0 term, we generate this expression as

Hi←τ (z) = (1 − φ)2 +
∞∑

sτ =1

zsτ πi←τ (sτ ). (24)

Summing over sτ , expressions (21b) and (21c) follow similar manipulations to Eq. (6), while Eq. (22) becomes

. (25)

The Kronecker δ evaluates as follows:
∞∑

sτ =1

zsτ
δ= z2

∞∑
s=1

z

∑
ν∈ν j \τ

∑
�∈∂ν ( j)

s�

z

∑
ϕ∈ϕk \τ

∑
r∈∂ϕ (k)

sr

= z2
∏

ν∈ν j\τ

∏
�∈∂ν ( j)

∞∑
s�=0

∏
ϕ∈ϕk\τ

∏
r∈∂ϕ (k)

∞∑
sr=0

zs�+sr . (26)

We find

=
[

z
∏

ν∈ν j\τ
Hj←ν (z)

][
z

∏
ϕ∈ϕk\τ

Hk←ϕ (z)

]
. (27)

Inserting this result into Eq. (24) together with the other expressions in Eqs. (21b) and (21c), we have

Hi←τ (z) = (1 − φ)2 + φ(1 − φ)2

[
z

∏
ν∈ν j\τ

Hj←ν (z) + z
∏

ϕ∈ϕk\τ
Hk←ϕ (z)

]

+ [3φ2(1 − φ) + φ3]

[
z

∏
ν∈ν j\τ

Hj←ν (z)

][
z

∏
ϕ∈ϕk\τ

Hk←ϕ (z)

]
. (28)

The result is a polynomial in powers of generating functions H�←σ (z), where � is a vertex in motif τ and σ is a motif that �

belongs to, other than motif τ .

C. Calculating Hi←τ for chordless cycles of size n � 3

Perhaps the simplest family of subgraphs to consider is the set of chordless cycles of increasing vertex count. In this section,
we will derive a closed-form expression for Hi←τ , where τ is a cycle of length n � 3. As with the triangle in Sec. II B, we choose
a vertex in the cycle i and calculate the probability that sτ other vertices can be reached due to membership in motif τ . We
achieve this by writing the conditional probabilities that the cycle has a given bond configuration since each bond configuration
occurs with a different probability. Let all edges of the cycle be occupied and so vertex i belongs to the same component as the
other n − 1 vertices. Without loss of generality, let us also label the vertices from 1 to n and set i = 1. In this case, we can write

πi←τ (sτ |Cn) =
∑

{s�:�∈∂ν ( j), ν∈ν j\τ, j∈τ\i}

⎡
⎣ ∏

j∈τ\i

∏
ν∈ν j\τ

∏
�∈∂ν ( j)

π j←�(s�)

⎤
⎦δ

⎛
⎝sτ − n + 1,

∑
j∈τ\i

∑
ν∈ν j\τ

∑
�∈∂ν ( j)

s�

⎞
⎠. (29)
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The set {� ∈ ∂ν ( j), ν ∈ ν j\τ, j ∈ τ\i} accounts (from left to right) for all edges � in motif ν that vertex j belongs to, for all
motifs ν that vertex j belongs to, apart from τ , and for all vertices j in motif τ apart from i. The Kronecker δ filters those terms
that do not sum to sτ − n + 1, accounting for the vertices that belong to the n-cycle other than i. If one of the edges around the
cycle was set to the unoccupied state, a path between the vertices through the cycle would still be present. Subsequent removal
of an edge from the cycle has the potential to isolate a vertex, and so all of the states with a single edge removed have been
exhausted. We can write the coefficient of this term as

P(Cn) = φn + nφn−1(1 − φ). (30)

We now examine the configuration Cn−1 where a single neighbor vertex k within the cycle belongs to a different component to
vertex i. For this to occur, both of the edges that connect this vertex to the cycle must be unoccupied with probability (1 − φ)2

and so the probability of this edge configuration is

P(Cn−1) = φn−1−1(1 − φ)2. (31)

To exclude k from the set of vertices in motif τ that contribute to the summation in Eq. (28), we simply modify the set notation
to S (k) = {� ∈ ∂ν ( j), ν ∈ ν j\τ, j ∈ τ\{i, k}}. However, given that the identity of k can be any neighbor in τ apart from i, we
must account for all possible identities by summing k from 2 to n to obtain

πi←τ (sτ |Cn−1) =
∑

k

∑
S(k)

⎡
⎣ ∏

j∈τ\{i,k}

∏
ν∈ν j\τ

∏
�∈∂ν ( j)

π j←�(s�)

⎤
⎦δ

⎛
⎝sτ − n + 2,

∑
j∈τ\{i,k}

∑
ν∈ν j\τ

∑
�∈∂ν ( j)

s�

⎞
⎠. (32)

No edges can be removed from this motif without further isolation of a vertex, indicating that this edge configuration has been
fully calculated. Consider the next term Cn−2, where the removal of another edge isolates a second vertex. Vertex i now belongs
to an induced subgraph of n − 2 vertices in τ . We cannot set an edge of our choice to be unoccupied to arrive at this state,
however. It happens that the removed edge must be one of the edges that a neighbor of k has within the component of vertex i.
If we had chosen a different edge, we would not account for all combinations for connected components of this length as we
would have isolated vertices prematurely from the chain of removed vertices. We can write

πi←τ (sτ |Cn−2) =
n−1∑
k=2

∑
S(k,τk+1 )

⎡
⎣ ∏

j∈τ\{i,k,τk+1}

∏
ν∈ν j\τ

∏
�∈∂ν ( j)

π j←�(s�)

⎤
⎦δ

⎛
⎝sτ − n + 3,

∑
j∈τ\{i,k,τk+1}

∑
ν∈ν j\τ

∑
�∈∂ν ( j)

s�

⎞
⎠, (33)

where S (k, τk+1) = {� ∈ ∂ν ( j), ν ∈ ν j\τ, j ∈ τ\{i, k, τk+1}}. To picture this, we are essentially moving a pair of connected
vertices around the motif as a sliding window. The probability of this edge configuration is

P(Cn−2) = φn−1−2(1 − φ)2. (34)

The logic behind this expression is that the chain of removed vertices must fail to connect to the same component that vertex i
belongs to, which occurs with probability (1 − φ)2. Otherwise, all edges between the vertices that are connected to i are occupied
with probability φ, of which there are n − 1 − 2.

Generalizing this process, the conditional probability that a chordless cycle with n vertices, of which r belong to a different
component to vertex i = 1, leads to sτ reachable vertices is

πi←τ (sτ |Cn−r )P(Cn−r ) = φn−1−r (1 − φ)2
n−r+1∑

k=2

∑
S([k,τk+r−1])

⎡
⎣ ∏

j∈τ\{i,[k,τk+r−1]}

∏
ν∈ν j\τ

∏
�∈∂ν ( j)

π j←�(s�)

⎤
⎦

× δ

⎡
⎣sτ − (n − 1 − r),

∑
j∈τ\{i,[k,τk+r−1]}

∑
ν∈ν j\τ

∑
�∈∂ν ( j)

s�

⎤
⎦, (35)

where there are n − 1 − r vertices in τ that are connected to i and with the notational understanding that all vertices in the range
k to τk+r−1 (inclusive) are excluded from the set in addition to vertex i, such that

S ([k, τk+r−1]) = {� ∈ ∂ν ( j), ν ∈ ν j\τ, j ∈ τ\{i, k, τk+1, . . . , τk+r−2, τk+r−1}}, (36)

and similarly for the summation in the Kronecker δ,

j ∈ τ\{i, [k, τk+r−1]} = j ∈ τ\{i, k, τk+1, . . . , τk+r−2, τk+r−1}. (37)

We can then sum Eq. (35) from r = 1 to n − 1 to account for chains of isolated vertices for all lengths. Together with the
expression for the fully connected cycle, we finalize the expression

πi←τ (sτ ) = πi←τ (sτ |Cn)P(Cn) +
n−1∑
r=1

πi←τ (sτ |Cn−r )P(Cn−r ). (38)
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This expression is then generated as

Hi←τ (z) =[φn + nφn−1(1 − φ)]
∏
j∈τ\i

⎡
⎣z

∏
ν∈ν j\τ

Hj←ν (z)

⎤
⎦ +

n−1∑
r=1

φn−1−r (1 − φ)2
n−r+1∑

k=2

∏
j∈τ\{i,[k,τk+r−1]}

⎡
⎣z

∏
ν∈ν j\τ

Hj←ν (z)

⎤
⎦. (39)

The first term in Eq. (39) accounts for the edge configuration when all vertices in the n-cycle are connected. The second term
in this expression accounts for the various edge configurations that the cycle may exhibit when a chain of r vertices is removed
from the cycle due to bond percolation. From right to left, the indices of the second term account for all motifs ν (apart from
τ ) that vertex j belongs to, for all j in the chain of vertices that are connected to i (which we enumerate by removing vertices
{i, [k, τk+r−1]} from the set of vertices in τ ), and for all possible starting points k of the r-chain, for all possible lengths r. This
expression is the main result of this section; as a consistency check, we find Eq. (28) for triangles n = 3 can be recovered.

III. CALCULATING Hi←τ FOR CLIQUES

We will now derive an exact expression for belief propagation on clique motifs, extending the ensemble expressions derived
by Mann et al. [29]. The generating function for the probability that a focal vertex i, which is member of a clique τ , can reach sτ

vertices through its membership in τ is Hi←τ (z). Following bond percolation, each edge in τ can be occupied with probability φ

or unoccupied with probability 1 − φ. Depending on the bond configuration of the clique, vertex i might not be connected to all
neighbors via occupied edges. To calculate Hi←τ (z), we must average over each possible bond configuration that the focal vertex
might observe and the various states of connectivity among the neighbors and i. The expression takes the form of a polynomial
whose terms are the powerset, denoted by 2{ j∈τ\i}, of the set of vertices in the clique apart from i, including the empty set {∅}.
For instance, consider the form of the expression when τ is a 4-clique, with vertices labeled 0 to 3, and with vertex i arbitrarily
being labeled as 0; we have

H0←τ (z) =P (∅) + P (1) + P (2) + P (3) + P (1, 2) + P (1, 3) + P (2, 3) + P (1, 2, 3). (40)

Each term P ( j, . . . , k) generates the probability that membership in τ leads to sτ reachable vertices, given i is connected to
vertices j, . . . , k (a path of occupied edges exits within the motif). Each term can be decomposed into the probability that the
neighbors collectively lead to sτ vertices (including themselves), multiplied by the probability that the bond percolation process
yielded that edge configuration P( j, . . . , k),

P ( j, . . . , k) =
∞∑

sτ =1

zsτ πi←τ (sτ | j, . . . , k)P( j, . . . , k). (41)

It happens that because of the symmetry of a clique, P( j, . . . , k) only depends on the number of vertices | j, . . . , k|, not their
identity [36] This is certainly not true for motifs whose vertices do not belong to the same site (or, more correctly, orbit). In that
case, the bond occupancy probability depends on the identity of the vertices in the connected component (see [29]). Given this
logic, we group terms that have equal numbers of connected vertices in τ and the polynomial in Eq. (40) becomes a summation
over the subsets aκ ∈ Aκ of the set of neighbors { j ∈ τ\i} of a given length κ ,

Hi←τ (z) =
|τ |−1∑
κ=0

P(κ )
∑

aκ∈Aκ

∞∑
sτ =0

zsτ πi←τ (sτ |aκ ). (42)

Concentrating on the probability πi←τ (sτ |aκ ) first, we can expand this as a sum over all sizes s�,

πi←τ (sτ |aκ ) =
∑

{s�:�∈∂ν ( j), ν∈ν j\τ, j∈aκ }

⎡
⎣∏

j∈aκ

∏
ν∈ν j\τ

∏
�∈∂ν ( j)

π j←�(s�)

⎤
⎦δ

⎛
⎝sτ − κ − 1,

∑
j∈aκ

∑
ν∈ν j\τ

∑
�∈∂ν ( j)

s�

⎞
⎠, (43)

where � is an index over the edges of the neighbors that i is connected to in τ , excluding those that point back to τ . Generating
this expression, we obtain

∞∑
sτ =0

zsτ πi←τ (sτ |aκ ) =
∏
j∈aκ

⎡
⎣z

∏
ν∈ν j\τ

Hj←ν (z)

⎤
⎦. (44)

The next step is to find the coefficient P(κ ) for each size κ component of neighbors within τ that can attach to i; see [29]. Within
this calculation, we must account for all possible connected graphs that can occur among κ + 1 vertices in τ . For a given κ , there
are 1

2 (κ + 1)κ total edges among vertices in the connected component. Letting r = |τ | − κ − 1, there are 1
2 r(r − 1) many edges

between the removed vertices (ones that are not in the component with i). Finally, there are

ω(r) =
r∑

v=1

(|τ | − v) − 1
2 r(r − 1) (45)
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edges that connect vertices that belong to the same component as i to those that do not (they interface the two components).
For instance, consider a |τ | = 6 clique that has κ = 3 neighbors that are connected to focal vertex i and therefore r = 2

vertices that do not have a path of occupied edges to i, as depicted in Fig. 4. There are 1
2 (3 + 1)3 = 6 edges among the vertices

in the same component as i and ω(2) = 8 interface edges. The bond occupancy probability of this configuration is given by
φ

1
2 (κ+1)κ (1 − φ)ω(r). However, we can remove up to 1

2κ (κ − 1) of the 1
2 (κ + 1)κ occupied edges from the component that i

belongs to and still retain connectivity among the κ + 1 vertices. Therefore, indexing the number of removed edges by m, we
have

P(κ ) =
1
2 κ (κ−1)∑

m=0

Qκ+1, 1
2 (κ+1)κ−mφ

1
2 (κ+1)κ−m(1 − φ)ω(r)+m, (46)

where Qn,k is the number of connected graphs that can be made that have n vertices and k edges; see the Appendix A. Inserting
Eqs. (44) and (46) into Eq. (42), we arrive at the main result of this section,

Hi←τ (z) =
|τ |−1∑
κ=0

1
2 κ (κ−1)∑

m=0

Qκ+1, 1
2 (κ+1)κ−mφ

1
2 (κ+1)κ−m(1 − φ)ω(r)+m

∑
aκ∈Aκ

∏
j∈aκ

⎡
⎣z

∏
ν∈ν j\τ

Hj←ν (z)

⎤
⎦, (47)

where r = |τ | − κ − 1. Unpacking this expression when τ is a 3-clique reproduces Eq. (28). When τ is a 4-clique, we obtain

Hi←τ (z) = (1 − φ)3 + zφ(1 − φ)4

⎡
⎣ ∏

ν∈ντ1 \τ
Hτ1←ν (z) +

∏
ν∈ντ2 \τ

Hτ2←ν (z) +
∏

ν∈ντ3 \τ
Hτ3←ν (z)

⎤
⎦

+ z2[φ3(1 − φ)3 + 3φ2(1 − φ)4]

⎡
⎣ ∏

ν∈ντ1 \τ
Hτ1←ν (z)

∏
ν∈ντ2 \τ

Hτ2←ν (z) +
∏

ν∈ντ1 \τ
Hτ1←ν (z)

∏
ν∈ντ3 \τ

Hτ3←ν (z)

+
∏

ν∈ντ2 \τ
Hτ2←ν (z)

∏
ν∈ντ3 \τ

Hτ3←ν (z)

⎤
⎦ + z3[φ6 + 6φ5(1 − φ) + 15φ4(1 − φ)2 + 16φ3(1 − φ)3]

×
∏

ν∈ντ1 \τ
Hτ1←ν (z)

∏
ν∈ντ2 \τ

Hτ2←ν (z)
∏

ν∈ντ3 \τ
Hτ3←ν (z). (48)

The coefficients of larger cliques are in agreement with the exact expressions previously found by [37] and [29]. The derivative
of Eq. (47) that is required for the calculation of the finite components is given by

H ′
i←τ (z) =

|τ |−1∑
κ=0

1
2 κ (κ−1)∑

m=0

Qκ+1, 1
2 (κ+1)κ−mφ

1
2 (κ+1)κ−m(1 − φ)ω(r)+m

∑
aκ∈Aκ

d

dz

⎧⎨
⎩

∏
j∈aκ

⎡
⎣z

∏
ν∈ν j\τ

Hj←ν (z)

⎤
⎦

⎫⎬
⎭, (49)

where we can apply Eq. (14) to find

d

dz

⎧⎨
⎩

∏
j

[
z
∏
ν

Hj←ν (z)

]⎫⎬
⎭ =

∏
j

[
z
∏
ν

Hj←ν (z)

]⎛
⎝∑

j

[
z
∏
ν

Hj←ν (z)

]−1

×
{∏

ν

Hj←ν (z) + z

[∏
ν

Hj←ν (z)

][∑
ν

H ′
j←ν (z)

Hj←ν (z)

]})
. (50)

The fixed point of these expressions can be found to yield the derivatives and Eq. (13) can be solved.

IV. RELATION TO THE GENERALIZED
CONFIGURATION MODEL

The message passing formulation calculates the properties
of a given graph realization G. Often, the properties of an
ensemble of networks G ∈ G with equivalent statistics are
required, rather than a single instance. An ensemble of ran-
dom networks can be created according to the generalized
configuration model algorithm [24–26,30,31]. In this model,
a set of motifs is defined and each vertex is assigned a tuple
of integers, called its joint degree that represents the number

of edge-disjoint motifs of a given topology that it belongs
to. For instance, if a vertex belongs to three ordinary edges,
one triangle, one 4-cycle, and two 5-cycles, the joint degree is
(k2, k3, k4, k5) = (3, 1, 1, 2). The distribution of joint degrees
is fixed by the joint degree distribution p(k2, k3, k4, k5), which
is the fraction of vertices with a given joint degree.

During the construction process, the configuration model
randomizes the identity of the vertices that belong to a given
motif. Therefore, for a given vertex i, the joint degree of
its neighbors can vary drastically and so the neighborhood
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beyond the nearest neighbors becomes a mean-field quantity.
To see this, consider an edge-disjoint triangle cover of a
network, with ordinary edges being present also. All of the
edges in the graph have been assigned to a motif topology
by the cover that relates to the type of motif to which they
belong. Let us now break each edge into two parts, while
retaining the topology labels and isolating each vertex. To
create the required number of ordinary edges and triangles, the
configuration model selects vertices at random and connects
their stubs together, matching the topologies. For instance, to
create a triangle, three vertices are selected at random that
have free unmatched triangle stubs and are then connected
together appropriately. In this way, each random graph that is
constructed by the configuration model belongs to an equiv-
alent set of motif topologies, but the identity of the vertices
that comprise those motifs will be different. Representing this
stochasticity by an average over all graphs in the ensemble,
the product of the average message that vertex j ∈ τ receives
from each of its other motifs ν ∈ ν j\τ can be written as an
average over the product of messages,

∏
ν∈ν j\τ

〈Hν (z)〉 �
〈

z
∏

ν∈ν j\τ
Hj←ν (z)

〉
, (51)

where we have used a version of the Chebyshev integral
inequality [35] for k monotonic functions of the same mono-
tonicity,

n∏
i=1

〈 fi(x1, . . . , xk )〉 �
〈

n∏
i=1

fi(x1, . . . , dk )

〉
. (52)

In general, the average of a product is not equal to the product
of the average. Only when the covariance between the mes-
sages is zero is this true. For any two motifs to be correlated
in the cavity graph, there must be loops in the factor graph.
However, in the limit that the number of vertices, N , becomes
infinite, the shortest short range cycles are expected to be at
least length O(ln N ). Assuming that the factor graph is locally
treelike, the messages that arrive at a cavity from independent
motifs can be treated as though they are uncorrelated with one
another; in this case, Eq. (51) becomes an equality.

FIG. 4. A bond occupancy configuration of a 6-clique in which
two vertices do not belong to the giant component (unfilled), while
the remaining 4 vertices do. Solid edges are occupied, while dashed
edges are unoccupied. The occupation state of the edge linking the
two unfilled vertices is inconsequential to the percolation properties
of the four vertices in the giant component. There are 0.5(3 + 1)3 =
6 occupied edges among the filled vertices, of which three can be set
to unoccupied and connectivity retained. There are ω(2) = 8 edges
that must be unoccupied if the two unfilled vertices are to remain
outside of the giant component.

As an example, let us partition the product over the motifs
of the neighbor into a product over its motif topologies. For
instance, for ordinary edges and triangles, we have

∏
s∈s j\τ

〈H⊥〉
∏
t∈t j

〈H�〉 =
〈

z
∏

s∈s j\τ
Hj←s

∏
t∈t j

Hj←t

〉
(53)

and

∏
s∈s j

〈H⊥〉
∏

t∈t j\τ
〈H�〉 =

∏
j∈t\i

〈
z
∏
s∈s j

Hj←s

∏
t∈t j\t

Hj←t

〉
, (54)

where s j (t j ) is the set of ordinary edges (triangles) to which
vertex j belongs. There are two expressions since motif τ

could have been an ordinary edge or a triangle and the proba-
bilities associated with each one are not equivalent in general.
However, since the average message is the same for each motif
of a given topology, we can simplify this as a power,∏

s∈s j\τ
〈H⊥〉

∏
t∈t j

〈H�〉 = 〈H⊥〉k2〈H�〉k3 , (55)

where k2 is the excess number of ordinary edges that j has
(given that τ is an ordinary edge) and k3 is the number of
triangles to which j belongs. In other words, k2 = card(s j\τ )
and k3 = card(t j ). Similarly, if τ had instead been a triangle,
we could write∏

s∈s j

〈H⊥,s〉
∏

t∈t j\τ
〈H⊥,t 〉 = 〈H⊥〉k2〈H�〉k3 , (56)

where k2 = card(s j ) is the number of ordinary edges and k3 =
card(t j\τ ) is the excess triangle degree of vertex j, respec-
tively. This expression is the product of the average messages
along ordinary edges and triangles. The excess degree distri-
butions are distributed as qτ (k2, k3) and so, averaging over the
distribution, we can write a generating function for the mes-
sage that a neighbor receives in the random graph ensemble
as

G1,τ (z) =
∑

k2

∑
k3

qτ 〈H⊥(z)〉k2〈H�(z)〉k3 . (57)

An equivalent argument can be followed to define
another fundamental generating function G0(x, y) =∑

k2

∑
k3

p(k2, k3)xk2 yk3 from Eq. (10). This logic can be
extended to all motifs that are included in the model.
With these two generating functions defined, the mapping
between the message passing formulation and the generalized
configuration model is complete.

V. DISCUSSION

The exact expressions we have derived work well for
random graph models, such as the generalized configura-
tion model (GCM) [26,30,31]. In Fig. 5, we apply these
equations to a random graph model comprising 2-, 3-, and
4-cliques that has been constructed according to the GCM al-
gorithm, observing excellent agreement between Monte Carlo
bond percolation and our theoretical model. In order to apply
our expressions to the study of real world networks, we must
find a way to cover the network in motifs. In what amounts
to community detection [38], there are perhaps a near infinite
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FIG. 5. A random GCM graph with 2-, 3-, and 4-cliques. Solid
lines are the results of the message passing calculations from Eq. (11)
with Eq. (47), and Eq. (13) with Eq. (49). The scatter points are the
average of Monte Carlo simulations of bond percolation on the same
network. Circles are the average size of the largest cluster, while
squares are the average finite component sizes.

number of ways to cover a network with motifs, and some
will inherently lead to better models of the empirical network
than others [28,32,39]. The problem of network dismantling
is closely related [40–42].

A trivial solution is to simply cover the network in 2-
cliques. In doing this, we are assuming that the network is
treelike; this would lead to the traditional belief propagation
model, which is known to suffer from statistical errors. To
progress beyond this model, the simplest loop we might add
to a cover is a triangle, and beyond this chordless cycles
and cliques of all orders. However, restricting the permissible
motifs to cliques and cycles is unlikely to lead to a locally
treelike factor graph. At the other extreme of this logic, one
might try to define motifs that contain O(N ) vertices, perhaps
the largest Eulerian cycle for instance. While this cover might
lead to a treelike factor graph, we could not hope to write
the message passing equations in closed form. Therefore, we
must find a balance between motifs that are arbitrary enough
to make the factor graph sufficiently treelike, yet are small
enough to be analytically tractable such that their message
passing equations can be calculated in reasonable time.

Let us suppose that we have defined a set of motifs, perhaps
cliques of all sizes. We now have to decide a strategy of
how to place the motifs on the network. By far, the most
simple strategy is to simply search for the presence of a
predefined set of higher-order motifs and greedily add them
to the network cover. This approach is usually stochastic if
different starting locations (and subsequent search patterns)
are chosen. Burgio et al. [32] suggest that a maximal cover
is the best strategy to retain as much higher-order structure of
the empirical networks as possible. In their heuristic, the cover
is chosen such that the fewest cliques possible are placed
on the network, minimizing the local disruption caused by
placing a motif. Mann et al. [28] showed that preferentially
including the largest cliques can be beneficial for retaining
the degree correlations among the more well-connected ver-
tices, although this approach is often not maximal. Both of
these methods can be generalized to placing motifs other than
cliques.

FIG. 6. (a) The neighborhood of a focal vertex i covered with
ordinary edges (green) and triangles (shaded). Only half of the con-
nections between the neighbors are included in the neighborhood
of i due to the edge-disjoint property of the cover. (b) When we
calculate the cavity equations Hi←τ (z) for i, the ordinary edges are
included in the product over the motifs that vertex j ∈ τ\i belongs to∏

ν Hj←ν (z), introducing bias and therefore statistical error. (c) The
factor graph contains short range loops.

Finally, we would like to highlight another concern that
should be accounted for when choosing the motif cover: sym-
metry. Consider the neighborhood of a vertex that has been
covered by 2- and 3-cliques in Fig. 6(a). Due to the edge-
disjoint property of the cover, only half of the edges between
the neighbors are included in triangles (and therefore, motifs
surrounding the focal vertex). When calculating the message
passing equations, the focal vertex only observes the effective
neighborhood depicted in Fig. 6(b). Because of the asymmetry
in how the edges between first-order neighbors are accounted
for, this cover introduces a statistical bias due to the preferen-
tial inclusion of only some of the edges between the first-order
neighbors and not others. To remove the bias, we must either
choose the 2-clique cover or choose the entire motif to be
part of the cover. This means that clique covers, which almost
always involve breaking symmetry between the neighbors,
are inferior to covering methods that account for the entire
neighborhood of a vertex [3]. Despite these drawbacks, our
model gives good results for real world networks; see Fig 7. In
Fig. 7(a), we show the size of the largest connected component
for a social network of coauthorship relations between 13 861
scientists [43] in the field of condensed-matter physics and b)
a network of 10 680 users of the PGP encryption software [44].
These networks are known to contain a high density of short
loops and, therefore, the standard message passing equations,
based on a 2-clique cover (dashed green line), fail to correctly
predict the size of the percolating cluster. To cover the net-
works in cliques, we use the motif preserving clique cover
(MPCC) [28]. This heuristic attempts to include the largest
cliques in the edge-disjoint cover in order to preserve as many
contacts among the vertices within a given motif. We find
a significant improvement over the 2-clique cover, therefore
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FIG. 7. The size of the largest cluster of (a) a coauthorship net-
work of 13 861 scientists [43] and (b) a network of 10 680 users of
the PGP encryption software [44]. The scatter points are the average
of Monte Carlo simulation of bond percolation. The dashed (green)
line is the result of the message passing equations with the 2-clique
cover, while the solid (black) line is the result for the MPCC cover
and Eq. (47).

highlighting the importance of retaining higher-order struc-
ture for the message passing theory. These networks were
previously studied by Cantwell and Newman [3] and have
been chosen for comparison of the different theoretical meth-
ods. The neighborhood method of [3] offers closer agreement
to the Monte Carlo simulation than the motif cover approach.
This is due to the edge-disjoint conditions of the covering
method. However, our model offers a vast improvement over
the traditional message passing theory. Our model, by defi-
nition, works on a representation of the underlying empirical
network in the form of a collection of motifs. This model can
then be used to garner a wide range of information regarding
the substrate network, including its relation to the ensem-
ble of joint-degree equivalent graphs. In turn, this deepens
our understanding of precisely which connective motifs are
important to a network to yield its properties. Cliques are
particularly favorable due to the wide range of algorithms and
exact theoretical results that have been developed for these
motifs, including those of Sec. III as well as other recent work
in this area [27,28,32]. We comment that finding the clique
cover and solving the message passing equations for these
networks takes just over 1 minute on a 16 GB Apple M1
Silicone, which is very fast compared to other techniques.

VI. CONCLUSION

Belief propagation on loopy networks is a topic that has
received much attention in the literature. In this paper, we
have studied a bond percolation model on networks that

contain simple cycles and cliques by deriving a message pass-
ing model. We assume that the factor graph of these networks
is locally treelike in order to reduce the correlations between
the messages each vertex observes. We examined our theo-
retical framework for random graphs constructed according
to the generalized configuration model as well as covered
empirical networks. We found excellent agreement between
Monte Carlo simulation of the average cluster size distribu-
tion and the expected size of the percolating component and
our equations. Our model offers significant advantage over
the traditional belief propagation framework when applied
to empirical networks that contain a nontrivial density of
loops.

The choice of motif cover is influential to the success of the
model and we highlighted some considerations around this.
However, it is nontrivial to derive the conditional message
probabilities for a given edge configuration of each motif in
a closed-form expression. Further investigation of the impact
of cover choice should be conducted including the choice
of permissible motifs in the model, different cover rules for
mesoscale network structures, placing large or small motifs
preferentially, the hardness of the constraints in the search
for the optimally treelike factor graph, and constraints to find
optimally symmetric neighborhood covers.

Finally, we showed how this message passing formulation
reproduces the generalized configuration model [26] when it
is averaged over all networks in an ensemble of graphs that
have an equivalent joint degree distribution.

These results give important insight into how the belief
propagation algorithm can be applied to both random and
empirical networks. Further work should be carried out to find
the critical point of models that contain chordless cycles and
cliques [12,19].
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APPENDIX: NUMBER OF CONNECTED GRAPHS Qn,k

The number of connected graphs Qn,k with n vertices and k
edges has been discussed previously in the context of evaluat-
ing the percolation formulas for cliques [29,37]. There are at
least three well-known approaches to evaluating this quantity
including an asymptotic expansion by Flajolet et al. [45], a
closed-form expression [29], and a fast recursive formula [46]
due to Harary and Palmer. The recursion is given by

Qn,k =
⎧⎨
⎩

0, k < n − 1 or k > n(n − 1)/2
nn−2, k = n − 1
Q(n, k) otherwise,

(A1)

where

Q(n, k) =
( 1

2 n(n − 1)

k

)
−

n−2∑
m=0

(
n − 1

m

) k∑
p=0

×
( 1

2 (n − 1 − m)(n − 2 − m)

p

)
Qm+1,k−p. (A2)
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This recursive formula can yield the coefficients of
cliques with size larger than 100 vertices in fractions of

a second running on a 16 GB Apple M1 Silicone using
PYTHON 3.10.
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