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driven fashion. How the modern Neural Network models can be combined with Structure from Motion (SfM) is an interesting
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2D and the paper contributes with theory for the two­view relative motion and two­circle relative structure problem. Fast solvers
are derived and experiments show good performance in both simulation and on real data.

Papers V­VII cover the task of map merging. That is, given a set of individually optimized point clouds with camera poses from
a SfM pipeline, how can the solutions be effectively merged without completely re­solving the Structure from Motion problem?
Papers V­VI introduce an effective method for merging and shows the effectiveness through experiments of real and simulated
data. Paper VII considers the matching problem for point clouds and proposes minimal solvers that allows for deformation of
each point cloud. Experiments show that the method robustly matches point clouds with drift in the SfM solution.
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If we knew what it was we were doing,
it would not be called research,

would it?

Albert Einstein





Abstract

Abstract

As the dream of autonomous vehicles moving around in our world comes closer, the prob­
lem of robust localization and mapping is essential to solve. In this inherently structured
and geometric problem we also want the agents to learn from experience in a data driven
fashion. How the modern Neural Network models can be combined with Structure from
Motion (SfM) is an interesting research question and this thesis studies some related prob­
lems in 3D reconstruction, feature detection, SfM and map merging.

In Paper I we study how a Bayesian Neural Network (BNN) performs in Semantic Scene
Completion, where the task is to predict a semantic 3D voxel grid for the Field of View of
a single RGBD image. We propose an extended task and evaluate the benefits of the BNN
when encountering new classes at inference time. It is shown that the BNN outperforms
the deterministic baseline.

Papers II­III are about detection of points, lines and planes defining a Room Layout in an
RGB image. Due to the repeated textures and homogeneous colours of indoor surfaces
it is not ideal to only use point features for Structure from Motion. The idea is to com­
plement the point features by detecting a Wireframe – a connected set of line segments –
which marks the intersection of planes in the Room Layout. Paper II concerns a task for
detecting a Semantic Room Wireframe and implements a Neural Network model utilizing
a Graph Convolutional Network module. The experiments show that the method is more
flexible than previous Room Layout Estimation methods and perform better than previous
Wireframe Parsing methods. Paper III takes the task closer to Room Layout Estimation by
detecting a connected set of semantic polygons in an RGB image. The end­to­end trainable
model is a combination of a Wireframe Parsing model and a Heterogeneous Graph Neural
Network. We show promising results by outperforming state of the art models for Room
Layout Estimation using synthetic Wireframe detections. However, the joint Wireframe
and Polygon detector requires further research to compete with the state of the art models.

In Paper IV we propose minimal solvers for SfM with parallel cylinders. The problem may
be reduced to estimating circles in 2D and the paper contributes with theory for the two­
view relative motion and two­circle relative structure problem. Fast solvers are derived and
experiments show good performance in both simulation and on real data.

Papers V­VII cover the task of map merging. That is, given a set of individually optimized
point clouds with camera poses from a SfM pipeline, how can the solutions be effectively
merged without completely re­solving the Structure from Motion problem? Papers V­VI
introduce an effective method for merging and shows the effectiveness through experiments
of real and simulated data. Paper VII considers the matching problem for point clouds and
proposes minimal solvers that allows for deformation of each point cloud. Experiments
show that the method robustly matches point clouds with drift in the SfM solution.
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Popular Summary

Popular Summary

As humans, we are capable of perceiving all three spatial dimensions (3D) of our surround­
ings through our eyes and motion alone. Even though our eyes – like cameras – only capture
a flat projection of the actual world, we have learned how to think in 3D. For example, by
moving around in a house we learn the layout and size of the rooms; by walking around a
block in the city we can build a sense of direction; through experience we can estimate the
height of a cabinet without relying on a measuring tape.

Can we teach a computer to do this? This thesis studies a set of related questions in the
field of Computer Vision. As tools we use geometrical mathematical models and neural
networks, which are complex mathematical models inspired by the human brain models
that require a large amount of data to learn from. Examples of questions are: Can we train
neural networks to reason about hidden spaces indoors, as in Figure 1? Can we train neural
networks to figure out the room layout in terms of floors, walls and ceilings from a single
photo? How can we efficiently harness motion to estimate the 3D world from photos taken
at different locations?

??

? ?

Figure 1: Quadcopter in a room seen from above. It is trying to guess what may be hidden from view behind the walls and
table.

The brain’s ability for abstract reasoning is one of many keys to our spatial awareness. To
orient ourselves we may make note of key objects – such as houses, signs, trees etc. –
that we use to track our current motion and help us find our way when we revisit the
location. Within Computer Vision, the problem of understanding the 3D environment
from photos is known as Structure from Motion (SfM). The first step is typically to identify
good key objects or pixels in the photo that we can use to relate to the other photos.

The standard solution is to use keypoints in the image, with a colour intensity variation
signature called a descriptor. The descriptor is used to find tentative matching points in other
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Figure 2: Two photos taken of the Eiffel Tower at different times from different locations. Keypoints (SIFT) are extracted from
each image and matching by appearance is attempted. We see that while some matches are accurate, a large part of
the tower has no matches and some are incorrect.
Image credit: Denys Nevozhai and Gautier Salles from unsplash.com.

images. While often sufficient, the matching methods struggles with repeated patterns like
brick walls or homogeneous surfaces such as white painted walls. Changes over time are
also difficult – for example, in Sweden a tree in winter looks very different to a tree in
summer. In Figure 2 we see keypoints extracted from two images of the Eiffel Tower, but
at different times of the day. There are only some parts of the tower that match correctly
under these differing circumstances.

To alleviate these problems this thesis shows how e.g. trees and poles can be modelled as
parallel cylinders to improve robustness and efficiency. Additionally it studies indoor scenes
and how lines and polygons may be detected to represent the room layout in terms of floors,
walls, ceilings, windows and doors as illustrated in Figure 3. This higher level of abstraction
regarding key objects also improves robustness and is essential to reach human levels of 3D
reasoning.

After key points and objects have been identified, it is time to estimate the pose (posi­
tion and orientation) of the objects and of the cameras used to capture the photos. To
find matching points or objects between image pairs, a robust matching method is needed
that is capable of ignoring incorrect matches. A common method is the Random Sample
Consensus (RANSAC) algorithm, which repeatedly solves a minimal problem for an alter­
nating small set of random points. It is important to develop fast solvers for these minimal
problems, as this makes it possible to match images in real time or in large scale. For exam­
ple, estimating relative position and orientation between two calibrated cameras requires
at least 5 corresponding points in each image. The solvers for this problem developed by
the research community requires only microseconds to execute. Therefore, it is possible to
perform thousands of RANSAC iterations in only milliseconds to find the best possible set
of points. In this work, fast solvers are presented for both matching of parallel cylinders

viii
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Popular Summary
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Figure 3: Paper II propose a wireframe representation for room layouts. The lines and points may be used for SfM and are
stable since they depend on the room structure rather than appearance of furniture and wallpapers.

and flexible matching of points.

After the matching is done it is time to optimize all positions and camera poses to minimize
the error in the map. This is called bundle adjustment and is an iterative process to reduce
the reprojection error, which is the error obtained by projecting a key point or key object
from the 3D model back to the photo and comparing the projection with the captured
point or object. If using only keypoints, then the finished map is a set of points – also
known as point cloud – which represents the surrounding structure.

Performing bundle adjustment on a large­scale problem is difficult since the computations
required do not scale proportionally to the number of images. Meaning that while we can
process the outside of a building in a few minutes on a laptop it would take days to process
a block with the same method. There are of course several ways to make it feasible, most
often by splitting the problem into smaller pieces. This thesis studies map merging, which
aims to as effectively as possible merge two or more point clouds without performing a new
bundle adjustment. Methods are developed which optimize the reprojection error and do
not require a full overlap of the points. It is useful for reducing computations but still
flexible enough to correct shapes of objects if they are incorrect.

In short, this work touches on many aspects of the Structure from Motion pipeline. From
detection of lines and polygons in images, to minimal solvers and merging of point clouds.
Hopefully, the contributions may be a useful piece in the puzzle to enable autonomous
systems and other services to understand our surroundings as we do.
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Populärvetenskaplig sammanfattning

Populärvetenskaplig sammanfattning

Som människor har vi förmågan att uppfatta alla tre spatiella dimensioner (3D) i vår om­
givning, enbart med hjälp av våra ögon samt förflyttning av kroppen genom denna om­
givning. Trots att våra ögon – liksom kameror – enbart ser en platt projektion av världen,
så har vi lärt oss att tänka på den i 3D. Till exempel, genom att gå runt i ett hus lär vi oss
hur rummen är placerade och dess storlek, genom att promenera runt ett kvarter kan vi få
en känsla för var vi är, med hjälp av erfarenhet kan vi uppskatta höjden på ett skåp utan att
ta fram måttbandet.

Kan vi lära en dator att göra detta? Detta arbete studerar närliggande frågor inom forskn­
ingsfältet datorseende. Som verktyg används geometriska matematiska modeller tillsam­
mans med neurala nätverk, som är komplexa matematiska modeller inspirerade av hjärnans
anatomi och behöver stora mängder data att lära sig ifrån. Exempel på frågor som studeras
är: Kan vi träna ett neuralt nätverk att resonera kring dolda ytor inomhus som i Figur 1?
Kan vi träna neurala nätverk att lista ut ett rums utformning i termer av golv, väggar och
tak från en bild? Hur kan vi på ett effektivt sätt utnyttja rörelse för att skatta en modell i
3D från bilder tagna på olika platser?

??

? ?

Figur 1: En drönare i ett rum sett ovanifrån. Den försöker gissa vad som kan finnas dolt bakom väggarna och bordet.

Hjärnans förmåga till abstrakt tänkande är en av många faktorer som bidrar till vår orien­
teringsförmåga. För att orientera oss kan vi notera intressanta objekt – hus, skyltar, träd
m.m. – som hjälper oss att förstå hur vi rör oss och ger oss möjlighet att hitta bättre när
vi återbesöker samma plats. Inom datorseende finns det ett relaterat problem som kallas
Structure from Motion (SfM), d.v.s. struktur från rörelse. Målet är att från bilder skapa en
3D­modell av omgivningen genom att beräkna kameras position och 3D­modellen sam­
tidigt. Det första steget är typiskt sett att hitta intressanta objekt eller punkter i bilderna
som kan användas för att relatera bilderna till varandra.
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Figur 2: Två bilder tagna på Eiffeltornet vid olika tidpunkter och på olika platser. Intressepunkter (SIFT) har hittats i varje bild
och en matchning baserad på utseendet har gjorts. Vi ser att vissa punkter matchar bra men delar av tornet saknar
matchningar och ett flertal är helt felaktiga.
Bildkälla: Denys Nevozhai och Gautier Salles från unsplash.com.

Standardlösningen är att använda intressepunkter i bilden, med en unik färgsignatur som
kallas deskriptor. Denna deskriptor används för att hitta matchande punkter i de andra
bilderna. Detta är oftast en bra lösning men den har svårt att hantera upprepande mön­
ster som tegelväggar eller blanka ytor som t.ex. vitmålade väggar. Förändringar över tid
är också svårt, till exempel så ser ett träd på vintern väldigt annorlunda ut jämfört med
ett träd på sommaren i Sverige. I Figur 2 ser vi automatiskt detekterade intressepunkter
som är matchade mellan två bilder på Eiffeltornet, tagna vid olika tidpunkter. Under dessa
förhållanden går det enbart att matcha vissa delar av tornet och många matchningar är
felaktiga.

För att hantera dessa problem studeras i denna avhandling hur t.ex. träd och stolpar kan
modelleras som parallella cylindrar för att förbättra robusthet och effektivitet. Dessutom
studeras hur linjer och polygoner kan detekteras automatiskt och användas för att repre­
sentera ett rums utformning i termer av golv, väggar, tak, fönster och dörrar som illustreras
i Figur 3. Dessa objekt har en högre abstraktionsnivå än intressepunkter och kan förbättra
robustheten i SfM, vilket är nödvändigt för att nå samma nivå av 3D­förståelse för en dator
som för en människa.

När intressepunkter eller objekt har hittats är det dags att skatta position och orientering
både av objekten samt av kamerorna som användes för att ta bilderna. För att hitta korrekta
matchningar av objekt samt punkter mellan par av bilder behövs en robust matchningsme­
tod som kan ignorera de dåliga matchningarna. En vanlig metod för detta är RANdom
SAmple Consensus (RANSAC), som löser ett minimalt problem för en mängd av slumpmäs­
sigt valda punkter, om och om igen. Det är viktigt att utveckla snabba minimallösare för
dessa minimala problem, eftersom det möjliggör matchning av bilderna i realtid och i stor
skala. Till exempel, för att skatta relativ position och orientering mellan två kalibrerade

xii
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Figur 3: Artikel II föreslår en wireframe-representation för rum. Linjerna och punkterna kan användas för SfM och är stabila
eftersom de beror på rummets utformning snarare än dess utseende gällande t.ex. möbler och tapeter.

kameror så krävs minst fem matchande punkter i varje bild. Problemet har studerats av
flertal forskare och det finns minimallösare som löser problemet på mikrosekunder. Detta
innebär att vi kan köra tusentals iterationer i RANSAC för att hitta den bästa mängden
punkter för matchning – på bara några millisekunder. I denna avhandling presenteras
minimallösare för både matchning av parallella cylindrar samt flexibel matchning av in­
tressepunkter.

När matchningen är gjord behöver position och orientering för alla punkter och kameror
optimeras för att minimera felen i 3D­modellen, som vi också benämner kartan. Detta
kallas för bundle adjustment och är en iterativ optimering som minskar återprojiceringsfelet,
vilket är felet mellan den observerade intressepunkten och den skattade 3D­punkten pro­
jicerad tillbaka till bilden. Om enbart intressepunkter används så är den färdiga kartan en
mängd av punkter i 3D – vilket kallas punktmoln – som representerar strukturen i om­
givningen.

Att utföra bundle adjustment på ett storskaligt problem är svårt eftersom de nödvändiga
beräkningarna inte skalar proportionerligt mot antalet bilder. Detta innebär att även om
vi med en kan dator processa utsidan av en byggnad på några minuter skulle det ta dagar
att modellera hela kvarteret med samma metod. Det finns förstås sätt att göra det möjligt,
oftast genom att dela upp problemet i mindre bitar. I denna avhandling studeras map merg­
ing, där frågan är hur vi på ett effektivt sätt kan slå samman två eller flera punktmoln utan
att göra nya bundle adjustments? Metoder presenteras som optimerar återprojiceringsfelet
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utan att kräva fullständigt överlapp av punktmolnen. De reducerar nödvändiga beräkningar
men är fortfarande flexibla nog att korrigera formen på de ingående punkmolnen.

Sammanfattningsvis studeras flera aspekter av SfM i denna avhandling, från detektion av
linjer och polygoner till minimallösare och sammanslagning av punktmoln. Förhoppn­
ingsvis kan dessa bidrag vara pusselbitar som bidrar till att autonoma system och andra
tjänster kan förstå vår omgivning på samma sätt som vi gör.
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Chapter 1

Introduction

As humans, we are able to use our eyes and motion to explore and understand our sur­
roundings. Even though we only perceive a projection of the world, we understand it has
three spatial dimensions (3D). When we see an object, we may from experience extrapolate
its extent and appearance in 3D. Or when we circle the object and see it from many views,
we accumulate the information and form a 3D model in our mind.

As our technology advances we push the boundary with new hardware, making cameras,
ranging, inertia and other sensors more accessible. It also enables powerful models capable
of utilizing the growing processing power available. To make useful robots and services
there is a growing need to utilize these sensors to make systems that may perceive the world
around us and act according to our goals. Within the field of Computer Vision (CV) the
research focuses on this perception problem; ”how can we make the computer see?”

The work presented in this thesis studies different parts of a 2D to 3D perception pipeline,
taking multiple RGB images and reconstructing the surroundings in 3D by simultaneously
localizing the cameras and the 3D structure. This is known as Structure from Motion (SfM)
in the CV community or Simultaneous Localization And Mapping (SLAM) in the Robotics
community. For example in Figure 1.1 pillars are positioned given two images using the
methods developed in Paper IV, where silhouette lines of the pillars are detected and then
used to solve for pillar positions and camera poses.

The first part of the SfM pipeline is to detect features that are related to the 3D structure and
may be matched between viewpoints. Typically we work with point features, for example
SIFT[36] keypoints, where each point is the center of a salient area in the image, for example
a corner with a lot of gradient information. For each keypoint we extract descriptors that are
feature vectors describing the area. We may then use these descriptors to match keypoints
across images and find correspondences. Point features are not always the best choice, for
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Figure 1.1: Left: two images with reprojected cylinder silhouettes, using the estimated solution. Right: the reconstruction
registered to an top view. Also shown are the back-projected left and right silhouette lines in cyan and red. Note
that there are no apparent image point correspondences in the two input images.

example if there is a lot of repeated structure (e.g. brick wall) or low texture environments
(e.g. white wall) we may not get enough information. As seen in Figure 1.1, silhouette lines
are sometimes a better choice. In Paper II and III we study how modern Deep Learning
methods may be used to detect domain specific line and plane features, which may later be
used to reconstruct an indoor room layout from multiple views. Figure 1.2 illustrates the
wireframe representation we strive to detect automatically in Paper II.

The next part in the SfM pipeline is to solve for the transform between cameras and struc­
ture using robust estimation. It is a tricky matching and optimization problem since many
features that look alike across images are not proper matches, known as outliers. A robust
estimation method is able to ignore the outliers. A common choice is Random Sample
Consensus (RANSAC), which solves for a large number of transforms on randomly sam­
pled subsets of the detected geometric features. Here we are in need of minimal solvers,
which are constrained to solve for a very specific transform, for example relative pose from
2 calibrated images and 5 point correspondences. The reason is that they are very fast and
allows RANSAC to perform many iterations while keeping execution times down to allow
for real time applications.

In Paper IV we use line detections in images (similar to Paper II) to reconstruct parallel
cylinders – e.g. trees, poles and columns – from multiple views. We develop theory for
related minimal problems and implement minimal solvers which can be used in a RANSAC
setting. The solvers are evaluated in both simulated experiments and on real data.

2
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Figure 1.2: Paper II propose a wireframe representation for room layouts. The lines and points may be used for SfM and are
stable since they depend on the room structure rather than appearance of furniture and wallpapers.

Given that we now have formed all 2D­to­2D and 2D­to­3D point feature matches nec­
essary for a reconstruction, the geometry is optimized using a scheme known as bundle ad­
justment, which is an iterative approach to find the best solution in terms of re­projection
error in the images. When bundle adjustment is completed, we have a 3D point cloud
representing the 3D structure in our surroundings and 3D poses for all camera capture
positions.

Since environments change we want to update our 3D structure, which we refer to as
our map, to have good localization performance in other downstream applications. Then
the question arises – if we now construct a new map, can we utilize the old information? –
which is what we study in Paper V and VI. In these papers we develop theory and algorithms
for map merging, the act of effectively merging these point clouds while minimizing the
total re­projection error, without having to run bundle adjustment on all of the images
from scratch. Due to drift, this may be difficult if the overlap between the point clouds is
small. So in Paper VII we study how we may utilize statistical deformations to create new
minimal solvers used for matching the point clouds.

With modern methods in Deep Learning we are able to utilize vast amounts of data to give
our models flexible priors (experience) on what the world looks like. Given these priors,
we may try to reconstruct a 3D representation directly from a single image. Paper I recon­
structs a local 3D semantic voxel grid from a single RGBD image, which means a normal
RGB image with added depth measurements. The task is to predict the semantic struc­
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ture for both visible and occluded voxels, which may be of help for autonomous vehicles
exploring an environment. The method is based on a Bayesian Neural Network (BNN),
which is more transparent with uncertainties in the prediction compared to a deterministic
Neural Network. To have a model with a reliable uncertainty estimate is essential for many
applications, for example in autonomous vehicles.

The contributions of this thesis span both machine learning with Neural Networks and solv­
ing geometrical problems using algebraic geometry and optimization. Chapter 2 contains
an introduction to concepts related to the Neural Network models in this work. Chapter
3 then goes into to mathematical modelling concepts of Structure from Motion and Map
Merging. Finally, the scientific papers and their contributions are presented and discussed
in Chapter 4.

4



Chapter 2

Learning with Images

Machine Learning and specifically Deep Neural Networks (DNN) has become an integral
part of today’s Computer Vision pipelines due to their superior performance in detection
and classification compared to other methods. While Neural Networks has been studied
since the 1940s [18], the real breakthrough in Computer Vision tasks came in 2012 with
the Convolutional Neural Network (CNN) named AlexNet [31]. It was trained on ImageNet
[12] for the image classification task and outperformed previous methods by a large margin.
CNNs and other DNN architectures has since then been the dominating models in the
Computer Vision research community.

Paper I­III in this thesis develop CNN and Graph Neural Network architectures for various
tasks and this chapter contains a brief overview on central concepts when it comes to these
models.

2.1 Neural Network Structure

Deep Neural Networks are built by passing the input signal through several layers that
extract features and then use these for the task at hand, often regression or classification.
The strength of the DNN is that it is a learned non­linear model that may approximate
a broad range of functions according to the Universal Approximation Theorem [25] and its
many variations. One type of DNN is the Convolutional Neural Network model, which
is illustrated in Figure 2.3. Features are extracted with hidden CNN layers and followed
by hidden Multilayer Perceptron (MLP) layers that give a final score vector used to classify
the image. The model is trained for the MNIST dataset which contains digits 0­9, hence
the output vector holds ten different scores, one for each digit. The following sections will
introduce layers commonly used in Deep Neural Networks and in the papers.

5
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Figure 2.1: An illustration of an MLP with fully connected perceptrons. The bottom box illustrates how each perceptron forms
a weighted sum passed through a non-linear activation function Θ.

2.1.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) is built by combining linear Fully Connected (FC) layers
with a non­linear Activation Function [18], as illustrated in Figure 2.1. The first layer is
called the input layer, then follows a number of hidden layers with perceptrons and finally
an output layer. A layer i may be described as a function

xi+1 = fi(xi,Wi,bi) = Wixi + bi, (2.1)

where xi is the input vector of length Ni, Wi are weights with dimension (Mi × Ni) and
bi bias with length Mi. Here, N1 is given by the input data x1 to the first layer, for the
subsequent layers we have Ni+1 = Mi. The non­linearity enters as an activation function
Θ between FC layers. The most common choice is to use Rectified Linear Unit (ReLU), but
there are many other options. Now we may build an MLP G with D layers, also referred

6



2.1. Neural Network Structure
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multiplication
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Figure 2.2: Illustrates the principle of a CNN layer with an RGB input image and one output channel. For each output pixel, a
3× 3 kernel is applied to corresponding input pixel and the cross correlation is calculated. Finally the result is passed
to a non-linear activation function and the result is stored in each kernel’s corresponding output layer.

to as depth, by stacking the functions

G(x) = Θ(fD(Θ(fD−1(....Θ(f1(x)))), (2.2)

where Mi may be unique for each layer. Hence the depth D and layer dimension Mi governs
the complexity of the model. If the goal is to perform regression we set MD equal to the
dimension of the target, while if we are solving a classification problem we set MD to the
number of classes (including background) and apply the softmax operator

softmax(x)k =
e xk∑
j e

xj
, (2.3)

where k = 1, ...,MD. The output is a score where MD elements are real and sum to one,
which means that they can be interpreted as a probability density function.

2.1.2 Convolutional Neural Network

For a deep CNN the principle of layers is the same as for the MLP. A CNN typically takes
input of 1,2 or 3 dimensions which for example could be signal over time, image or 3D voxel
grid respectively. For illustration we focus on the 2D case using RGB image of dimension
H ×W as input as shown in Figure 2.2. Now the input x1 has dimension 3 × H ×W,
where the first dimension corresponds to the number of colour channels. Each CNN layer
i has j = 1, 2, ..., Ji kernels Ki,j with dimension Ni ×Mi ×Mi. These are applied to the
input using cross correlation (convolution without flipping the kernel). Cross correlation
and convolution is essentially the same – since the network can learn the flipped kernel –
but cross correlation is chosen because it is simpler to formulate. The convolution layer i
is computed as

xi+1 = hi(xi) = bi +

[ Ni∑
c=1

Ki,1(c) ⋆ xi(c) . . .

Ni∑
c=1

Ki,Ji(c) ⋆ xi(c)

]
, (2.4)
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Figure 2.3: Illustrates the principle of a CNN architecture for image classification. An image of a digit is first put through some
hidden CNN layers alternating convolution and max pooling. Prior to the MLP layers the CNN output is flattened to
a vector and the MLP output is a vector with 10 elements indicating the likelihood of each digit.

where xi(c) denotes channel c of xi and ⋆ denotes the cross correlation operator. The bias
bi has dimension Ji = Ni+1, i.e. one scalar per kernel and therefore output channel. To
simplify notation the addition indicates that the bias scalar connected to each kernel is
added to each element of the respective output channel. These layers may now be stacked
using activation functions and pooling layers, see Section 2.1.5 and 2.1.6, respectively.
This forms a network architecture, for example as illustrated in Figure 2.3, where the output
channels for layer i is identical to the number of kernels Ji. If only using activation functions
we may form a networkH(x) of depth D as in the MLP case,

H(x) = Θ(hD(Θ(hD−1(....Θ(h1(x)))), (2.5)

by defining the number of kernels and their size for each layer.

2.1.3 Graph Convolutional Network

A Graph Convolutional Network (GCN) is a generalization of the CNN that may be applied
to graphs. GCNs may be used for different tasks, the most common being graph classifi­
cation, node classification or link prediction. For node classification each node is assigned
a separate label at inference, as illustrated in Figure 2.5, while in graph classification the

8
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Input graph Output graph

Figure 2.4: Shows the principle of a Graph Convolutional Network layer. The output feature vector y1 is created by an approx-
imate graph convolutional operation between a weight matrix W and the input features x1, ..., x4, which are the
nodes own input feature and the neighbours input features.

whole structure is assigned a label. The goal for link prediction is to predict the likelihood
of connection between nodes and is for example used in recommendation algorithms. In
this thesis, node classification is used in Paper II­III and link prediction in Paper III.

While there are many types of GCN layers [55], this section will focus on the GCN layer
used in Paper II, which is developed by Kipf and Welling [30]. Graph convolutions can
be divided into spatial and spectral methods and this model is the latter. The GCN model
makes a first order approximation of spectral convolution, resulting in each outgoing node
feature being a learned combination of the input node feature and its 1­hop neighbours as
illustrated in Figure 2.4.

Let X ∈ RN×M denote the input features for N nodes with feature vector size M. The
proposed GCN layer forms an output Y from input X as

Y = Θ
(
D̄− 1

2 ĀD̄− 1
2 XW

)
, (2.6)

where W is a learned weight matrix. The extended adjacency matrix Ā = A + I is the
adjacency matrix of the input graph with added self­connections by addition of the identity
matrix I. Finally we have D̄ =

∑
j Āi,j and Θ is a non­linear activation function, analogous

to the CNN and MLP layer.

The reasoning for this model comes from spectral graph convolutions, where a signal x ∈
RN for N nodes may be convolved with a function gθ = diag(θ) parametrised by θ ∈ RN

in the Fourier domain as
gθ ⋆ x = UgθUTx. (2.7)

Here U is a matrix of eigenvectors of the normalized graph Laplacian L = I−D− 1
2 AD− 1

2 =
UΛUT, where UTx is the graph Fourier transform of x, D =

∑
j Ai,j and Λ a diagonal

9



Chapter 2. Learning with Images
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Output Graph

Figure 2.5: Illustrates the principle of a GCN architecture for node classification. An input graph with node features is extended
with self loops and then passed through a series of GCN layers. Each node feature vector in the resulting graph is
then fed to an MLP classifier to predict the node label.

matrix of eigenvalues. The graph convolution in Equation (2.7) is expensive to compute
and may be approximated using Chebyshew polynomials Tk(x) up to the Kth order as

gθ ⋆ x ≈
K∑

k=0

θ̂kTk

(
2

λmax
L− I

)
x, (2.8)

where θ̂ are the Chebyshew coefficients and λmax the largest eigenvalue of L. The order K
here governs the size of the neighbourhood utilized during the convolution. By choosing
K = 1 and assuming λmax = 2, since the Neural Network can handle the scaling, the
approximated convolution is

gθ ⋆ x ≈ θ̂0x− θ̂1D− 1
2 AD− 1

2 x. (2.9)

The final approximation is reached by reducing the complexity further, setting θ = θ̂0 =
−θ̂1 and utilizing the re­normalization trick, resulting in

gθ ⋆ x ≈ θD̄− 1
2 ĀD̄− 1

2 x. (2.10)

The final expression in Equation (2.6) is gained by extending to a multi­channel input X.

2.1.4 Heterogeneous Graph Networks

Compared to the homogenous graphs used in the previous section, the heterogeneous graph
(HG) allows for different types of nodes and edges. For example in Figure 2.6 a polygon
is represented as a HG with node types end point, line segment and polygon centroid. To
construct a Neural Network layer the method must account for how the different node
types should be weighted against each other in the neighbourhood. In Paper III we utilize
the Heterogeneous Graph Transformer (HGT) [26], which is a type of Heterogeneous Graph
Network model using attention based message passing. Let t be the target node for which
we need to calculate a new feature Y [t], then

Y [t] = Aggregate
∀s∈N[t]

(Message(s) · Attention(s, t)) . (2.11)

10
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Figure 2.6: Illustration of how a polygon (left) may be represented with a heterogeneous graph (right) consisting of node types
end point, line and polygon centroid. In this illustration there are two types of edges, junction-line and line-plane.

Here, N[t] is the neighbourhood of t, which in most cases is the 1­hop neighbourhood, just
like for GCN in the previous section. Message(s)might just be the incoming feature X[s] for
node s, but for the HGT it is the result of a linear operation on incoming feature X[s], which
parameters depend on the node type τ(t) and edge type θ(e). The Aggregate operation may
be a sum, mean or other operation that suits the application, for the HGT it depends on
the target node t. The HGT model calculate different attention weights Attention(s, t)
based on the meta relation ⟨τ(t), θ(e), τ(s)⟩. For more details on the model, including
aggregation and message construction, see the paper by Hu et al.[26].

2.1.5 Activation Function

An essential part of the neural network models ability to approximate complex functions is
the non­linear responses to the input. To achieve this, each layer of the network typically
ends with a non­linear activation function. The most common for hidden layers is the
Rectified Linear Unit (ReLU) y = max(0, x). The downside to this function is that the
gradient may easily go to zero during back­propagation and push neuron weights to zero,
making them inactive. An alternative is to use the Softplus function y = log(1+ ex), which
is a smooth approximation of ReLU and does not go to zero as quickly. Both of these
functions are shown in see Figure 2.7 for comparison.

When is comes to the output layer we want choose different functions depending on the
task. For regression or binary classification tasks the most common choice is the Sigmoid
function y = 1

1+e−x , which maps the output to the range [0, 1]. For multi­label classifi­
cation we need a score for each class and therefore use the Softmax function yi =

e xi∑
j e xj ,
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Figure 2.7: Here we see the most common activation functions. The top shows ReLU and Softplus for inner layer activation.
The bottom shows Sigmoid for output activation.

which gives each class i a positive score yi such that
∑

i yi = 1.

To see that both may be used for binary classification – e.g. background vs foreground –
consider the following. If the network yields a single output logit x for sigmoid or the logit
vector

[
0 x

]
for softmax we get

Sigmoid(x) = ys =
1

1 + e−x , (2.12)

Softmax(
[
0 x

]
) =

[ 1
1+ex

ex
1+ex

]
=
[

e−x

1+e−x
1

1+e−x

]
=
[
1− ys ys

]
. (2.13)

Hence, if we interpret the sigmoid output ys as a probability for the foreground class, then
the probability of the background class must be 1 − ys, which is the same probabilities as
the softmax operator yields.
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Figure 2.8: Illustration of the max pooling operation. To the left is the input and to the right we have the output of a max
pooling operation with kernel size 2 and stride 2. The upper left pixel in the output correspond the the upper left
2x2 patch in the input.

2.1.6 Pooling

To allow the Neural Network to reason about the input on a higher level, i.e. over several
time steps or larger spatial area, pooling layers are frequently used. The pooling operation
exists for both CNNs and GCNs but is more straight forward in the CNN case and the
papers in the thesis do not use GCN pooling. The most common types for CNNs are
Max­, Average­ and Min­pooling and they are applied after the activation layer. For the
remainder of this section Max­pooling will be explained, but the concept is easily applied to
the other types. Much like the convolution layers we have a kernel, but this time the kernel
takes the maximum value per channel over all affected pixels. For pooling we introduce
the stride parameter, which is the step size taken when computing the next output pixel.
Hence, the if stride is larger than one, the output will have smaller dimension than the
input. For pooling the stride is typically the same as the length of the side of the kernel.
Stride can also be applied in a convolution layer. In Figure 2.8 we see an example of a 2x2
kernel which is applied with stride 2 on a 4x4 input. The output will be the maximum
value for each of the quadrants where we apply the kernel. The output size Wout of a square
image with input width Win is

Wout =

⌊
Win − kernel_size

stride
+ 1
⌋
. (2.14)
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(a) Standard (b) Bayesian

Figure 2.9: In 2.9a we see a filter bank from a standard 2D CNN, each weight is a scalar. In 2.9b we see a filter bank in a
Bayesian Variational Inference 2D CNN, here each weight represented as a distribution which is sampled from at
inference time.

2.2 Bayesian Networks

In Paper I we extend a CNN for Scene Completion to a Bayesian CNN, which is a CNN
model which predicts a distribution instead of a single output at inference time. The main
reason for doing this is that Neural Networks in their standard setting are prone to over­
fitting and easily become over­confident in their predictions, even though the input may
be well outside the domain of the training data. Using Bayesian methods to model the
network weights and regularization is one way of approaching these issues. In the paper we
use Bayes by Backprop [5, 48], which is based on Variational Inference. This section briefly
introduces the concept.

Consider a neural network as a probabilistic model P(y|x,w), where x is the input, y
output and w are network weights. To learn w from a set of N training examples D =
{(x1,y1), (x2,y2), ..., (xN,yN)} without regularization is equivalent to the Maximum
Likelihood Estimator (MLE) given by

wMLE = argmax
w

logP(D|w) = argmax
w

N∑
i=1

logP(yi|xi,w). (2.15)

We introduce regularization by placing a prior on the weights and take the Maximum a
Posteriori (MAP) estimate

wMAP = argmax
w

logP(w|D) = argmax
w

(logP(D|w) + logP(w)) , (2.16)

where we achieve L2 regularization, or weight decay, by choosing a Gaussian prior P(w).

The BNN extends the probabilistic model by estimating the posterior distribution over the
weights P(w|D). Let P(w|D) be the posterior for our Bayesian Neural Network. Given
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2.2. Bayesian Networks

the posterior we can make predictions for the output ŷ given unseen data x̂ by taking the
expectation over the posterior

P(ŷ|x̂) = EP(w|D) [P(ŷ|x̂,w)] =

∫
P(ŷ|x̂,w)P(w|D) dw. (2.17)

This is not tractable since we would need to integrate over all possible weights in the net­
work. The idea is to approximate the posterior distribution over weights by modelling
them as independent Gaussian random variables. We then use Variational Inference tools
to optimize our neural network to fit the proper distribution as well as possible. In Figure
2.9 we see an illustration of a standard CNN filter bank vs a Bayesian CNN filter bank.
Since the weights are sampled during inference we get a slightly different network for each
input. This enables robust estimations by averaging, much like an ensemble¹, while train­
ing a single model. The downside is that we have doubled the amount of parameters since
each weight is characterized by a mean and standard deviation.

We estimate the posterior using a simpler model q(w|θ)with learnable parameters θ, which
minimizes the Kullback­Leibler (KL) divergence to the true posterior, i.e.

θ∗ = argmin
θ

KL[q(w|θ)||P(w|D)] (2.18)

= argmin
θ

∫
q(w|θ) log q(w|θ)

P(w)P(D|w)
(2.19)

= argmin
θ

KL[q(w|θ)||P(w)]− Eq(w|θ)[logP(D|w)]. (2.20)

This cost function is known as variational free energy or expected lower bound. We denote
it as

F(D, θ) = KL[q(w|θ)||P(w)]− Eq(w|θ)[logP(D|w)], (2.21)

where the first part is the complexity cost as it enforces model simplicity using the prior.
The second part is the likelihood, which describes how well the model describes the data.

Using Monte Carlo sampling the cost in Equation (2.21) is approximated as

F(D, θ) ≈
n∑

i=1

β

n

[
log q(w(i)|θ)− logP(w(i))

]
− logP(D|w(i)), (2.22)

wherew(i) is a sample from the variational posterior q(w(i)|θ). This approximation enables
more priors and posteriors since a closed form solution for the first term in Equation (2.21)
is not necessary. The scale factor β

n with β as design parameter is introduced to tune the
amount of regularization from the complexity cost.

¹a set of NNs trained from different initialization weights
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Figure 2.10: Example of overfitting and underfitting a model. To the left the model is only of degree 1 and not flexible enough,
therefore underfitting the data. In the middle the degree is increased to 4, which is sufficient to approximate the
underlying function. To the right the degree is increased to 15, causing the model to overfit. The MSE is calculated
on a validation dataset (not shown here) and indicates generalization performance.

2.3 Training the Model

There are numerous ways to learn a model from data, but in this thesis we use supervised
learning. Which means that all data is annotated with the desired output of the model.
After defining the model it is time to learn from the annotated data acquired for the task at
hand. This is done by defining loss functions that will guide the model to perform the task.
The loss is minimized through an iterative optimization process where we loop through the
data. The following subsections touches on the different aspects of training a deep neural
network, for more details see Goodfellow et al.[18].

2.3.1 Split the Data

One major challenge in parameter estimation from data is overfitting. This is especially
true when it comes to complex models such as Deep Neural Networks, which are very
flexible by design. In Figure 2.10 we see an example, where a polynomial model is fitted to
samples from a cosine function. To the left the model is only of degree 1 and not flexible
enough, therefore underfitting the data. In the middle the degree is increased to 4, which
is sufficient to approximate the underlying function. To the right the degree is increased
to 15, causing the model to overfit to the data not generalizing well, meaning that the
performance between the sample points, i.e. training data, is poor.

To detect this during training it is necessary to evaluate the performance on validation data,
which is a set of the data that is withheld from training. By calculating a loss or performance
metric on this data, for example the MSE in Figure 2.10, we notice when the model starts
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2.3. Training the Model

to overfit. Other benefits of having a validation set is that we may use that for tuning of
hyperparameters that affect the training.

It is also customary to have a second hold out set called a test set. The purpose of this
dataset is to fairly compare methods. This allows researchers to tune hyper­parameters on
the validation set and then make an unbiased comparison on the test set. The split may
vary, but the training set is the largest. For example COCO [34] has a (1

2 ,
1
4 ,

1
4) split while

Structured3D [56] has (10
12 ,

1
12 ,

1
12).

While overfitting is an issue for most implementations, it has been shown [43] that DNN
models sometimes suddenly increase in validation set performance long after they stagnate
in training set performance. This behaviour is termed grokking and shows that there is still
a lot we do not understand about the training of these complex and over­parameterized
DNN models.

2.3.2 Optimization

When optimizing a DNN model, it is typically intractable to optimize directly toward the
target metric, for example Average Precision (AP) [34]. Therefore we define a cost function
J(w) over the network weights w to minimize, which we hope will also optimize the target
metric. We do this by minimizing the expected loss on the training set

J∗(w) =
1
N

N∑
i=1

L( f (xi,w),yi), (2.23)

where L is a loss function, f is the DNN model, xi is a data sample from our training data
and yi is the respective annotated target.

Stochastic Gradient Descent

A straightforward optimization method is to use a gradient descent method to iteratively
find a local minimum. Since it is a sum we may easily compute it as

∇wJ(w) =
1
N

N∑
i=1

∇wL( f (xi,w),yi). (2.24)

However, calculating this gradient for all training samples for each optimization step is not
feasible since these models require a lot of data. For example ImageNet contains more than
14 million images. So to optimize these models we use Stochastic Gradient Descent (SGD).
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For SGD we choose a sample size M << N, then take a random subset of size M – also
called a minibatch – at each gradient update step and perform the parameter update

ĝ← 1
M

M∑
i=1

∇wL( f (xi,w),yi), (2.25)

w← w − ϵlĝ, (2.26)

where ϵl is the learning rate. Each update by the optimizer it called a batch (short for
minibatch) and the training data is typically sampled without replacement until all samples
are depleted. Each pass through the training data is called an epoch and for most applications
it is not enough to loop through the data once. Instead we loop through the data until we
no longer see any gains on the validation data. To give an example of the scale, in Paper II
we train for 40 epochs and each epoch contains around 150’000 images.

The learning rate is tuned specifically for the model and the problem, often by trial and
error. The trade­off here is that a high learning rate makes for a faster training and also
adds some regularization to the solution. On the other hand it may be unstable and start
to oscillate due to the uncertainty in the gradient estimate, therefore overshooting the min­
imum. Hence, a smaller learning rate is often required to get the best performance. There
are several schemes for how to adjust the learning rate during training, the simpler ones
being either (i) linear decrease each epoch towards a target learning rate or (ii) reduction
by a factor at a fixed interval of epochs.

Momentum

A common problem with these large NN models is that the batch size M for SGD is often
small, since the model and the sample data needs to fit in GPU memory. This causes the
gradient estimate to be very noisy. A way to alleviate this problem is to use a low pass filter
to keep track of the general direction of the gradient. This is known as a momentum update
[45]. The idea is to track a general velocity of the weights, denoted v, which is updated
with the gradient just as in standard SGD. The new update rule is then

ĝ← 1
M

M∑
i=1

∇wL( f (xi,w),yi), (2.27)

v← αv − ϵlĝ, (2.28)
w← w + v, (2.29)

where α controls how dynamic the filter is. Choosing α = 0 yields the SGD again, while
a large α will adapt very slowly to changes in the gradient. Common values are 0.5, 0.9
and 0.99.
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Adam

There are several methods to adaptively adjust the learning rate during optimization. Adam
[29] is a popular method which is fairly robust when it comes to the choice of parameters.
Adam utilizes both the first and second moment of the gradient and adds a bias correction
term. The update looks as follows

ŵ← w + v, (2.30)

ĝ← 1
M

M∑
i=1

∇wL( f (xi, ŵ),yi), (2.31)

r← ρr(1− ρ)ĝ ⊙ ĝ, (2.32)

v← αv − ϵl

r
⊙ ĝ, (2.33)

w← w + v, (2.34)

where ⊙ is elementwise multiplication, α and ρ governs the update rate for the first and
second moment respectively.

2.3.3 Loss Functions

While there are many tasks for which we may adapt a NN, in this thesis the applications
are either classification or regression. This section gives a brief introduction of the concepts
and how to construct the loss functions.

Regression

In regression the task is to predict a numerical value on R, so we want to find a function
f : Rn → R. As in Section 2.2 we may use Maximum Likelihood reasoning to find a useful
loss function.

Consider a neural network as a probabilistic model P( y|x,w), where x is the input, y
output and w are network weights. To learn from a set of N training examples D =
{(x1, y1), (x2, y2), ..., (xN, yN)} we use the Maximum Likelihood estimator for the opti­
mal network weights w∗,

w∗ = argmax
w

logP(D|w) = argmax
w

N∑
i=1

logP( yi|xi,w). (2.35)
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If we assume a Gaussian prior on yi with standard deviation σi = σj we get

w∗ = argmax
w

N∑
i=1

log
1

σi
√

2π
e−

1
2

(
f (xi,w)−yi

σi

)2

= argmin
w

N∑
i=1

( yi− f (xi,w))2, (2.36)

which is the classic L2 loss suggested by Gauss. Similarly if we assume the Laplacian distri­
bution, making measurements far from the mean a bit more likely, we get

w∗ = argmax
w

N∑
i=1

log
1

2bi
e
∣∣∣ f (xi,w)−yi

bi

∣∣∣
= argmin

w

N∑
i=1

|( yi − f (xi,w))|, (2.37)

which is the L1 loss.

Classification

For classification we have a set of predetermined classes to predict. For example if an object
is background, cat or dog. We encode this as predicting a set of integers, so we seek the
function f : Rn → {1, .., k} for k classes. From the last layer of the network we get a k
dimensional vector of logits, ẑ ∈ Rk, where each element r represents how likely class r is.
Since we would like to have the probability of each class, we use the Softmax operation to
map our logits to ŷ, where each element fulfil ŷ(r) ∈ [0, 1] and

∑
r ŷ(r) = 1. The Softmax

operation is defined as

ŷ(r) =
exp(ẑ(r))∑k
s=1 exp(ẑ(s))

. (2.38)

Now each element ŷ(r) ∈ ŷ represents the likelihood of class r. For each input xi we have
a corresponding ground truth output yi equal to the integer of the correct class. So in our
example if image i depicts a dog then yi = 3 since we ordered the classes as { background,
cat or dog }. The maximum likelihood estimate for network weights w is

w∗ = argmax
w

N∑
i=1

log ŷ( yi)
i (2.39)

= argmin
w

−
N∑

i=1

log
exp(ẑ( yi)

i )∑k
s=1 exp(ẑ

(s)
i )

, (2.40)

which is known as the cross entropy loss. Since the classes in the training data often are
unbalanced, for example twice as many dogs as cats, it is common to weight each term in
the loss depending on the target class. If cats and dogs are equally likely to appear in our
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application domain then we will want an unbiased estimator. Then we get the common
cross entropy loss formulation

LCE = − 1∑N
i=1 γ

( yi)

N∑
i=1

γyi log
exp(ẑ( yi)

i )∑k
s=1 exp(ẑ

(s)
i )

, (2.41)

where γ( yi) is the loss weight for target class yi.

Regularization

A good way to handle overfitting and improve generalization is to put some regularization
on the network weights w. Once again consider our model to be a probabilistic model and
we instead of the ML estimate take the Maximum a Posteriori estimate (MAP). Then we
get

w∗ = argmax
w

logP(w|D) (2.42)

= argmax
w

logP(D|w) + logP(w), (2.43)

where P(w) is our prior on the weights. Assuming a Gaussian prior with zero mean and
standard deviation σ for all weights we get

w∗ = argmax
w

logP(D|w)−
∑

j

w2
j

σ2
√

2
(2.44)

= argmin
w

− logP(D|w) + βwTw, (2.45)

which is known as weight decay with design parameters β and puts an L2 loss on the
weights.
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Chapter 3

Computer Vision ­ Cameras and
Geometry

The research within the Computer Vision community spans a broad array of topics, many
that will not be mentioned in this chapter. Most of the contributions in this thesis relates to
Structure from Motion with sparse features, specifically points or lines. This chapter intro­
duces related key concepts, starting with feature detection and camera models, then moving
on to the mathematical 2D­to­3D relation and how a Structure from Motion pipeline is
constructed. Finally the concept of map merging – studied in paper V­VII– for point
clouds is given some background.

3.1 Image Features

Many Computer Vision applications require that we may mathematically relate one image
to another. For example when tracking an object or to reconstruct a building from mul­
tiple views. To find relative pose between images it is common to use features in terms of
geometrical primitives like points, lines, planes and ellipses. Each instance of said feature
in the image is assigned a descriptor, which typically is a vector in RN, for some N. This
descriptor hold information about the appearance of the feature so that it can be matched
between images without any prior knowledge about the geometry of the cameras or the
scene.

Some examples of point based engineered feature descriptors are SIFT [36], ORB [44],
SURF [3] and BRIEF [8]. The modern Neural Network models have also brought learned
point based feature descriptors, for example [13, 40, 49, 53]. For line detectors we have
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Figure 3.1: Two photos taken of the Eiffel Tower at different times from different locations. Keypoints (SIFT) are extracted from
each image and matching by appearance is attempted. But due to the repeated structure from both poles and the
building some matches are not correct.
Image credit: Denys Nevozhai and Gautier Salles from unsplash.com.

for example the engineered LSD [19] and EDlines [1]. Likewise there are learning based
models – like LCNN [58], HAWP [52], Paper II – which are typically without descriptors
and other examples like, SOLD2 [41] and DeepLSD [42] that are with descriptors.

Paper V­VII utilize point features to find corresponding points between images and con­
struct a point cloud map. To find matching feature points between two images X and Y
with keypoints and descriptors (xi, fi) ∈ X and (yj,gj) ∈ Y it is suggested by Lowe [36]
to consider the relative distance to neighbours in the feature descriptor space. That two
feature points (xm, fm) ∈ X and (yn,gn) ∈ Y match if

minj,j̸=n ∥fm − gj∥
∥fm − gn∥

< t, (3.1)

for some threshold t. Common choices are within the range t ∈ [0.6, 0.8]. In essence, this
requires the match to be significantly better than any other, which reduces the risk of false
matches.

An example of such a matching of SIFT­features is shown in Figure 3.1. We see that the
appearance­based matching does not yield a perfect result, there are some false matches.
In Structure from Motion these are typically called outliers and are suppressed using the
geometric constraints of the problem.

3.2 Camera Model

To calculate 3D geometry from images we need a mathematical model for the camera.
There are different models available [21] but the most common approach is to use the
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1
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Figure 3.2: The pinhole camera model where u is a projection of U in the image plane at z = 1.
Image credit: Flood [17].

pinhole camera model coupled with a non­linear function to model lens distortion.

Let Û = [X,Y,Z] ∈ R3 be a point in the 3D world and û = [x, y] ∈ R2 the projected
pixel coordinate in the camera image. We get the projection û by drawing a line from Û
to the origin C = [0, 0, 0] and taking the intersection point at the image plane placed at
Z = 1, i.e

û =

[
x
y

]
=

[
X/Z
Y/Z

]
, (3.2)

which is illustrated in Figure 3.2. To model the pose of the camera in relation to the
reference world with origin O the coordinates are rotated and translated to the camera
coordinate system by taking RÛ+ t. These parameters are called the extrinsic parameters,
see Figure 3.3. To facilitate the use of algebraic tools, it is common rewrite the coordinates
as homogeneous coordinates in projective space P. We rewrite Û and û as

U =

[
Û
1

]
∈ P3, u =

[
û
1

]
∈ P2, (3.3)

where P is the projective space for R. Using this coordinate representation we can express
the finite projection camera model used in the thesis as

λu = PU ⇔ λu = K
[
R t

]
U, (3.4)

where P is the camera matrix, λ ∈ R and

K =

μf s x0
0 f y0
0 0 1

 , (3.5)

is the intrinsic parameter matrix. Here f is the focal length, (x0, y0) is the principal point, s is
a skew factor and μ is the aspect ratio.
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Figure 3.3: Shows how the finite projection model extends the pinhole camera by adding poseR, t, principal point (x0, y0) and
focal length f.
Image credit: Flood [17].

3.3 Epipolar Geometry – Uncalibrated

Consider two cameras with camera matrices P and P̄ which observe a scene point U. If
neither camera pose nor scene point position is known, it is not possible to find an absolute
estimate of either, the best we can do is a relative estimate. In fact, if the cameras are
uncalibrated –P and P̄ are any projective transforms – the solution can only be determined
up to a projective transform H. By looking at the camera equation

λu = PU ⇔ λu = PHH−1U = λu = P∗U∗, (3.6)

it is clear that the equation holds for any projective matrix H, but alters the camera pose
and scene point.

Due to the ambiguity it is practical to use a relative parametrization of the problem by ex­
cluding the scene point. Without loss of generalization we may apply a projective transform
placing one camera in the origin, i.e.

P =
[
I 0

]
, P̄ =

[
A t

]
, (3.7)

where A ∈ R3×3. Let point u in the first image be a projection of the scene point U, then
U lies on a line drawn from the origin C and the projection point u as illustrated in Figure
3.4. Hence

U(s) =
[
u
s

]
, (3.8)

where s ∈ R governs where on the line U is. The projection of this line into the second
camera is called the epipolar line l̄, each point given by

P̄U(s) =
[
A t

] [u
s

]
= Au+ s t. (3.9)
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Figure 3.4: Illustration of the epipolar geometry model. Given the projected point u the projection into the second camera with
center C̄ must be on the epipolar line l̄. Furthermore the epipoles e and ē lies on the line between the camera
centers.
Image credit: Flood [17].

Specifically the projection of camera center C is known as the epipolar point ē = P̄C and
will always lie on the epipolar line l̄. The epipolar line may be written as l̄ = ē ×Au in
P2 and since ū will lie on this line the constraint is that

ūTl̄ = ūT[ē]xAu = ūTFu = 0, (3.10)

where F is called the fundamental matrix and [ē]x denotes the matrix which by multipli­
cation is equivalent to a cross product with ē. Using 8 corresponding points between 2
images it is possible to solve for F, this is known as the eight point algorithm [20, 35].

3.4 Epipolar Geometry – Calibrated

For the calibrated case – where K is known – each camera matrix has the form

P =
[
R t

]
(3.11)

and the solution is determined up to a similarly transform with rotation, translation and
scaling. Thus yielding 3 + 3 + 1 = 7 degrees of freedom in the solution. Without loss of
generality we write the two camera matrices as

P =
[
I 0

]
, P̄ =

[
R t

]
, (3.12)
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where R is a rotation matrix which is orthogonal with det(R) = 1. For the calibrated
case the analog to the fundamental matrix is the essential matrix E which satisfies

x̄T[t̄]xRx = x̄TEx = 0, (3.13)

where
x̄ = K−1ū, x = K−1u, (3.14)

are the calibrated image coordinates. Since E = [t̄]xR it has 3 + 3− 1 = 5 DoF, because
the translation and rotation matrix has 3 DoF each and scale is arbitrary. An effective and
common method for estimating the essential matrix is the 5 point method [39]. Except
for Equation (3.13) the additional constraints are

det(E) = 0, (3.15)

EETE− 1
2
trace(EET)E = 0, (3.16)

which are non­linear and cannot be solved with Direct Linear Transformation (DLT) as
the eight point algorithm. However, by solving the DLT for 5 points we get a basis for the
solution consisting of 4 basis matrices

E = γ1E1 + γ2E2 + γ3E3 + γ4E4. (3.17)

Since scale is arbitrary one coefficient may be fixed, for example be letting γ1 = 1. The
remaining 3 may be solved for by inserting the basis parametrization into non­linear con­
straints, forming polynomial equations in γ2, γ3, γ4. These equations may for example be
solved using a minimal solver, described in Section 3.6.

3.5 RANSAC

After a brief introduction to feature points and epipolar geometry it is clear that the theory
is there to find a relative pose between 2 cameras given at least 5 corresponding feature
points. Unfortunately the matches given by the appearance based feature descriptors are
not always correct. There may be matches that are very wrong, for example in Figure 3.1
and will yield incorrect poses for the cameras. These matches are called outliers and to get
a good estimate it is necessary to use robust methods to find and suppress them. Naturally,
the matches that are correct are called inliers.

RANdom SAmple Consesus (RANSAC) [15] is a common method for robust model esti­
mation. The idea is to find a small set of data points – in our case corresponding point pairs
– that are inliers and use them to estimate a model. That model can then be used for outlier
hypothesis testing. In Figure 3.5 the problem is illustrated for a line fitting problem. Given
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Linear regressor
RANSAC regressor
Inliers
Outliers

Figure 3.5: Illustrates the difference between using a standard linear regression and a RANSAC regressor in line fitting. Due to
the large amount of outliers that does not follow the statistical model for the linear regressor, the green line does
not fit any of the clusters. The RANSAC regressor finds the largest set of points that are consistent with the statistical
model of the linear regressor and use that to fit the line.

data points that contains both inliers (+) and outliers (×), we need to fit the best line. If all
points are used in the regression of the line parameters, the line will go between the outliers
and the inliers. While if RANSAC is used the model with best consensus is found using
the inlier points to regress the line parameters. See Algorithm 3.1 for an outline of the
algorithm. To successfully use RANSAC the most important factors are, (i) to choose the
minimal sample size since a smaller sample size increases the probability to find a sample
set with only inliers; (ii) to have a fast solver to regress the model from the sample set, since
this solver is used for every iteration. Since this is a core part of SfM, where thousands of
images need to be matched, a lot of research has gone into finding the minimal cases for
estimating camera poses under different conditions and finding fast solvers for this. These
are called minimal solvers and will be introduced in the next section.

3.6 Minimal Solvers

Since robust matching of images is essential in a SfM pipeline, it is important to develop
fast minimal solvers to be used in the RANSAC iterations. A minimal solver is an algorithm
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Algorithm 3.1: Principle of a RANSAC algorithm. Each iteration regresses a
model from a minimal sample set. The idea is that for some iteration the sample
set will be exclusively inliers and therefore that model will align with a lot of data
points and get a high inlier count.
Data: Data Points : D, Sample size : T, Iterations: K
Result: Model M∗ regressed from the largest inlier set C∗

1 C∗ ← ∅
2 for k = 1, ...,K do
3 S← samplePoints(D,T)
4 M← estimateModel(S)
5 C← calculateInliers(M,D)
6 if size(C) > size(C∗) then
7 C∗ ← C
8 end
9 end

10 M∗ ← estimateModel(C∗)

designed to solve a specific minimal problem, which is a set of polynomial equations where
the effective degree of freedom is equal to the number of variables to solve for. In this work
the papers IV and VII have minimal solvers as contributions and the SfM pipeline in paper
V and VI also utilize minimal solvers. Therefore an overview of presented in this section.
For more extensive theory, see [9, 10, 32].

Let x = {x1, x2, ..., xm} denote a set of variables and α = {α1, ...αm} denote a multi­
index vector, then

xα = xα1
1 xα2

2 ... xαm
m (3.18)

is called a monomial in x of degree |α| = α1 +α2 + ...+αm. Furthermore, a polynomial
may now be expressed as a linear combination of monomials

f(x) =
∑
α

cαxα, cα ∈ K, (3.19)

given that the sum is finite. Here K is a field. With this notation, a system of equations
can be written as 

f1(x) = 0
f2(x) = 0

...
fl(x) = 0.

(3.20)
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Since the problems in general are non­linear and multivariate they are difficult to solve fast.
Methods for solving them can be divided into two categories [32], iterative methods and
algebraic methods. However, most of the iterative methods are too slow to be used in a
RANSAC framework in a SfM pipeline. In this thesis we use the automatic generator of
elimination templates by Larsson et al.[33], which is based on a Groebner basis [9] approach.

The solver takes the structure of the system of Equations (3.20), in fact replaces the co­
efficients with random integers, and computes a Groebner basis which is utilized to find
an elimination template. The elimination template is then used to find the corresponding
action matrix [10] for the equations. By finding the eigenvalues of the action matrix, the
solutions to the system of Equations (3.20) can be recovered.

The benefit of this approach is that once the elimination template is found, it can be used
to – in practice – solve any other system of equations with the same structure, i.e. with
different coefficients. For example the 5­point relative pose problem always produce the
same structure, but the corresponding points change the coefficients of the terms. Since the
elimination template can be optimized offline it is possible to build extremely fast solvers.

3.7 The Levenberg–Marquardt Algorithm

Both the typical SfM pipeline and the map merging papers solve the non­linear least squares
problem where the error function may be written as

ϵ(x,θ) = ∥x− x̂(θ)∥22 =
∑

i

ri(θ)2 = rTr, (3.21)

where x are measurements and θ parameters to be estimated. From the parameters a model
is used to compute x̂(θ) that should be close to x. The difference between one estimate
and one measurement, i.e. the residual ri(θ), then depends on the parameters. To simplify
notation, we denote the residual vector r := r(θ).

Since there is no closed form solution we look to iterative optimization methods. The
Levenberg–Marquardt Algorithm [16, 37] briefly introduced here is one of them. Using the
step ∆θ we may approximate the error function using a Taylor expansion ϵ(x,θ+ ∆θ) ≈
ϵ(x,θ) + J∆θ, where J = ∂ϵ/∂θ is the Jacobian. Hence, each iteration is simplified to
solving

min
∆θ
∥ϵ+ J∆θ∥22, (3.22)

to find the step ∆θ in parameter space. Equation (3.22) is a linear least squares problem
and can be solved in closed form by solving the normal equations

JTJ∆θ = JTϵ, (3.23)
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which results in the Gauss­Newton method [6]. The issue with this method is that the update
is not guaranteed to reduce the error, since it is based on the Taylor expansion around θ.
If the step is too large the approximation is no longer good. The Levenberg–Marquardt
Algorithm mitigates the issue by solving the augmented normal equations(

JTJ+ μI
)
∆θ = JTϵ, (3.24)

where μ > 0 is a dampening factor that may be tuned to ensure convergence.

3.8 Structure from Motion

In Structure from Motion the task is to estimate the pose for each camera and each key
object observed in the images. For papers V­VII the objects are keypoints with feature de­
scriptors while in Paper IV they are parallel lines without descriptors. For this introduction
we consider the case of keypoints. We have so far only considered solving relative pose for
pairs of cameras. To solve the SfM problem there are two additions needed; (i) the method
must optimize pose and 3D point positions over many images and (ii) the error metric used
for finding the essential matrix is must be adjusted, since it is an algebraic error and not
rooted in the geometry.

There are many algorithms for solving the SfM problem, many of which take a sequential
approach, where pose and 3D points are first solved for an initial pair of cameras. This
initial solution is then extended one camera at a time by camera resectioning, i.e. pro­
jecting the solved 3D points into the candidate camera image. New 3D points can then
be added by triangulating corresponding points between the new camera and previously
added cameras. While simple in the approach the method is sensitive to the quality of the
initial solution and accumulating errors (drift). Therefore it is common to add a global
optimization method called bundle adjustment, which iteratively optimize the reprojection
error ∑

i,j

∥∥∥∥ui,j −
PiUj

λi,j

∥∥∥∥2

, (3.25)

for all camera matrices Pi and all 3D points Uj. The reprojection error is the squared
distance between the projected 3D point Uj and the observed 2D keypoint ui,j in camera
with index i in the image plane. This error function results in a non­linear least squares
problem, which may be solved using the Levenberg–Marquardt introduced in the previous
Section 3.7.

Examples of popular sequential SfM algorithms are COLMAP[46] and Bundler[50]. There
are also non­sequential approaches, for example [14], which are more robust since they do
not rely as heavily on the initial camera pair.
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SfM SfM SfM SfM SfM

Merge

Figure 3.6: Map merging takes a set of overlapping point clouds from e.g. a SfM pipeline and merge them to a single point
cloud, while minimizing an approximation of the reprojection error for each SfM solution.

3.9 Map Merging

Papers V­VII consider the topic of map merging, where a map consists of a 3D point
cloud. As illustrated in Figure 3.6 a set of individual point clouds are merged to a single
point cloud. For this introduction we assume that the point cloud is the result of a SfM
solution and therefore is optimized with regard to the feature point reprojection error. Two
naive approaches to merging would be to (i) take all images and perform a new bundle
adjustment or (ii) assume the maps to be perfect and align them rigidly while optimizing
on a spatial distance metric. The first approach is slow, but should be optimal. The second
approach is fast but does not consider the uncertainty in the estimated maps with respect
to the reprojection error.

This section will first describe a standard method for point cloud registration, which is
option (ii). Then follows an introduction to map merging, leaving the details to the papers.

3.9.1 Point Cloud Registration

Given two sets of point clouds, P1 = {p1, ...,pm} and P2 = {q1, ...,qn}, with pk,ql ∈
R3, the problem of Point Cloud Registration is to find the optimal transform between the
points clouds. The transform should place the point clouds as close as possible to each
other and may be performed with or without known point correspondences.
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A common method for registration without known point correspondences is the Iterative
Closest Point (ICP) algorithm [4]. Essentially it is an iterative method where correspondence
is assigned at every iteration based on the distance between points. After the assignment,
registration is done using the hypothesized association and the iterations continue until
convergence.

For known point correspondences (pki ,qli), i = 1, ...,N we want to find the similarity
transform consisting of scale s ∈ R, translation t ∈ R3 and rotation matrix R ∈ SO3

that minimizes the distance between the corresponding points in Euclidean distance, i.e.
we minimize

N∑
i=1

∥pki − (sRqli + t)∥2. (3.26)

The Procrustes method [23, 24, 47] solves this and is used for registration in Paper V and
VII. The method first calculates the centroids

p̄ =

∑N
i=1 pki

N
, q̄ =

∑N
i=1 qli
N

, (3.27)

and then centers the point clouds

p̂i = pki − p̄, q̂i = qli − q̄. (3.28)

Assuming Gaussian measurement noise the covariance can be calculated as

H =
N∑

i=1

p̂iq̂
T
i , (3.29)

and it is shown that the optimal rotation matrix R is the closest orthogonal matrix to H.
Therefore we can utilize the SVD decomposition H = UΣVT and form the rotation
matrix as

R = UVT. (3.30)

This may however yield a reflection, hence to make sure that det(R) = 1 it is calculated
as

R = U

1 0 0
0 1 0
0 0 det(UVT)

VT. (3.31)

Finally, the scale factor s and translation vector t are calculated as

s =
∑N

i=1 p̂
T
i Rq̂i∑N

i=1 ∥p̂i∥2
, t = p̄− sRq̄. (3.32)

Since we seek a similarly transform there are seven degrees of freedom (1 scale, 3 translation,
3 rotation) and each point yields three constraints. Therefore it is necessary to have three
point correspondences to solve for the transform.
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3.9.2 Merging Point Clouds

As mentioned in the introduction of Section 3.9, to actually merge point clouds it is not
enough to consider them static and find a geometric transform. The individual maps are
not perfect and therefore there will be duplicates after the registration, where corresponding
points are not perfectly aligned. Neither is it always feasible to perform a joint optimization
over all the input data that the point clouds are based upon.

The middle ground is where merging methods, as described in Paper V­VII, are interesting
solutions. Map merging has been studied previously in applications for loop closure and
collaborative SLAM [2, 54, 57]. In most cases the focus of the research is on other parts
of the system, rather than the point cloud merge. Recent reviews on map merging for
multi­robot systems [2, 7] conclude that more research is needed on the merging parts.

The papers in this thesis that focus on map merging aims at finding an efficient method of
merging, that does not require any of the input data used to estimate the individual point
clouds. To this end the parameters are divided into main parameters and auxiliary param­
eters. Where the main parameters are the focus of the merge. In a SfM solution the main
parameters could for example be all points that occurs in two or more maps, alternatively
we might know that some points are static and choose these as the main parameters. The
parameters related to the excluded points and camera matrices are handled as auxiliary pa­
rameters and their contribution to the error function is indirectly computed using Taylor
approximation. This makes the merging efficient to compute. Furthermore, the estimate is
grounded in the reprojection error and allows the maps to deform during merge according
to the uncertainties in the individual map estimates.
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Chapter 4

Research Summary and Conclusions

This work touches upon several research subjects for 2D to 3D reconstruction within Com­
puter Vision and consists of seven papers. To conclude, this chapter will summarize the
papers and their main contributions. The chapter is split into four separate sections, based
on the research topics. Paper I evaluates the gain of using Bayesian Neural Networks in 3D
reconstruction from singe view RGBD images and has its own conclusion section. Paper
II­III consider new methods for detecting points, lines and planes in RGB images. These
can be used as key objects in a SfM method, for example as developed in Paper IV, where
line detections from parallel cylinders are used to solve the SfM problem. Finally the topic
of map merging for SfM solutions is studied in Paper V­VII and also has its own section.

Paper I: In Depth Bayesian Semantic Scene Completion

This paper considers the task of Semantic Scene Completion (SSC) and the benefits of
using a Bayesian Neural Network (BNN) for the task. The SSC task aims to re­construct
the 3D geometry in a cone in front of the camera. The input given is an RGBD image
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Figure 4.1: The model for Semantic Scene Completion in Paper I takes a TSDF representation of the RGBD image and predicts
a labeled 3D voxel grid.
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which consists of a color image (RGB) and a depth image (D), which typically is measured
by round trip time of IR (Infra Red) light impulses with some form of LiDAR sensor. We
assume that the intrinsic and extrinsic camera parameters are known so the we may map
each image pixel to a 3D coordinate using the measured depth. The goal is to label a 3D
voxel grid in front of the camera from a fixed set of semantic classes as described in [51].

A common approach to volumetric reconstruction from RGBD is to use a modification of
the Signed Distance Function (SDF) [11], namely the Truncated SDF (TSDF) [28, 38], to
map the continuous depth measurement to the discrete 3D voxel representation. Each voxel
then stored the distance d to the nearest surface, where the sign dictates on which side of the
surface the voxel is. In our approach we use the flipped TSDF dflipped = sign(d)(dmax− d)
according to [51]. The resulting flipped TSDF 3D voxel grid is then used as input to our
Bayesian Neural Network model.

The first contribution is a pair of BNN models with baseline deterministic CNN models de­
veloped for the task, released online¹. See Figure 4.1 for one of the architectures. Secondly
the SSC task is extended to include neighbouring rooms within the viewing cone, the idea
being that the BNN might be better equipped to handle these areas with very weak prior
better than a deterministic CNN. Thirdly, experiments are conducted for both the SSC
task and the image classification task, where one class of objects is withheld in the training
data and later introduced at inference. These experiments show that the BNN models per­
form better in standard evaluation metrics, therefore generalizing better, while also being
better calibrated and predicting lower scores for the unseen objects in general. Lastly the
paper performs an ablation study, evaluating the use of different activation functions and
prior distributions for the network weights in the BNN models.

The main benefit of this approach is in the added robustness to unseen input, while the
major downside is that the BNN model requires twice the amount parameters as the deter­
ministic CNN, resulting in longer training time and requires more GPU memory resources
at inference. Here it may be possible to gain most of the BNN benefits by using a stan­
dard CNN as backbone and only implement the network heads as BNN models, thereby
limiting the resource problem.

Paper II­III: Indoor Wireframe and Polygon detection

Reconstructing indoor environments from monocular camera alone may be troublesome
in certain scenarios. Since the methods often rely on point features, homogeneous surfaces
like single color walls or repeated textures like wallpapers are difficult to match correctly
across images. The ideas behind Paper II­III is to detect lines and planes which give better

¹https://github.com/DavidGillsjo/bssc-net
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Figure 4.2: The proposed model in Paper II takes an image and outputs a semantic wireframe consisting of junctions and lines,
where junctions are either proper or false. The line labels indicate which type of planes the line belong to.

geometric information about the room layout. These lines and planes may then be incorpo­
rated in a SfM and 3D reconstruction framework to increase robustness and performance.
Both papers use synthetic images from digital room layouts in the dataset Structured3D
[56].

Paper II: Semantic Room Wireframe Detection from a Single View

This paper defines a modified wireframe detection task, which takes the geometric repre­
sentation of the wireframe as defined in previous work [27], but adapts it to represent the
plane intersections of a room layout [22] . So that each line segment represents for example
a floor­wall or wall­ceiling intersection, as illustrated in Figure 4.2. Furthermore we add
semantic meaning to both the line segments and the junctions, which are endpoints of the
line segments. Apart from these extensions to the task we also add windows and doors to
the room layout and finally extend the annotation to neighbouring rooms that are visible
through open doors. For this task a NN model is developed², which builds upon a previ­
ous wireframe detection model [52]. The model is extended with a Graph Convolutional
Network (GCN) [30] module to improve performance. Furthermore the annotations for
the defined task is made available online for the benefit of the research community.

While the output of this task is not as complete as the room layout estimation – which is a

²https://github.com/DavidGillsjo/SRW-Net
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Figure 4.3: The proposed model in Paper III takes an image and a wireframe to produce a set of polygons corresponding to a
Room Layout.

3D model of the layout – the major benefit is that it can handle complex layouts, e.g. detect
a room wireframe through a doorway. It is also more flexible in the sense that it always give
some information about the layout, since it may give partial output. If the output contains
extra lines or missing lines, it can be accounted for in a multi­view SfM pipeline. A room
layout model would have to estimate the full 3D model and may just skew the whole room
to get a coherent structure.

Paper III: Polygon Detection for Room Layout Estimation using Heterogenous
Graphs and Wireframes

This paper is in some sense a continuation, or complement, to Paper II. Instead of giving the
line segments and junctions semantic classes, this model considers the planes and junctions
as semantic objects. The data used is the same as for the standard room layout task, but
with added semantic classes for planes and junctions. Since the model works with planes
we evaluate and compare the model to room layout methods. The first contribution is
a novel Heterogenous Graph Neural Network model³ and a baseline polygon sampling
model for estimating room layout from line segment detections, as illustrated in Figure
4.3. The second contribution is an evaluation of these models and comparison with a state
of the art (SoTA) room layout estimation model. We show the potential of the model

³https://github.com/DavidGillsjo/polygon-HGT
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Figure 4.4: The theory developed in Paper IV considers a SfM pipeline for parallel cylinders. Which is equivalent to solving a 2D
SfM problem with circles.

by simulating line detections and also show the performance while jointly predicting line
detections. While only the simulated setup outperforms the SoTA model, it is to the best
of our knowledge the first model to predict non­cuboid room layouts in 2D in an end­
to­end fashion without heuristic post­processing. It is due to the Heterogenous Graph
Transformers ability to reason globally over the polygons that overlapping polygons are
avoided and proper room layouts are attained.

The current model is sensitive during training when jointly predicting a wireframe and
room layout polygons. Which is, in our guess, the main reason that the performance is
not as good. Future work would be to evaluate other loss terms to help the training pro­
cess along. For example adding pseudo­tasks or using static samples from the ground truth
wireframes. Due to the bottom­up nature in the approach it is sensitive to difficult occlu­
sions around the wireframe components. Future work for addressing this could be to add
a plane detector or to add a generative step where the model may add junctions and lines
to the graph using link prediction.

Paper IV: The Multi­View Geometry of Parallel Cylinders

On the topic of using an alternative to points for SfM, this paper uses silhouettes for parallel
cylinders in terms of two lines per cylinder, as illustrated in Figure 4.4. The main assump­
tion is that all observed cylinders are parallel in 3D, then the problem may be reduced to a
2D reconstruction. The contribution is a study of the SfM problem for multiple views and
multiple cylinders, including developing theory for the two­view relative motion and two­
circle relative structure problem. We derive fast solvers for the minimal problems as well
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Figure 4.5: Map merging takes a set of overlapping point clouds from e.g. a SfM pipeline and merge them to a single point
cloud, while minimizing an approximation of the reprojection error for each SfM solution.

as for the over­determined problem and use Sampson approximation for better accuracy in
the geometric error of the solution. Experiments are conducted using a full SfM pipeline
including bundle adjustment showing that the system works for both synthetic and real
data.

For this paper the line features are manually annotated, but for future work it would be
interesting to develop a fully automatic pipeline with a cylinder silhouette line detector –
similar to the one proposed in Paper II. Furthermore it could be used to augment a keypoint
based SfM pipeline to add robustness, since the cylinder shapes often are invariant to shifts
in daytime and season.

Paper V­VII: Map merging

These three papers consider the problem of map merging, where a map is a point cloud,
which could be generated by a SfM pipeline. As illustrated in Figure 4.5, Paper V­VI focus
on the theory for effective merging of maps without the need to make a new global bundle
adjustment. Paper VII considers minimal solvers which allow certain deformation of the
point clouds to enable more robust matching between point clouds. Merging can then be
done after the point correspondences are found.
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Paper V: Efficient Merging of Maps and Detection of Changes

In this paper the problem of map merging is introduced in a Sender­Receiver and Struc­
ture from Motion setting. The main contribution is a method for efficient merging of
maps optimized with bundle adjustment. The key idea is to factorize the Jacobian for each
map by separating the joint and individual information into main parameters and auxiliary
parameters, respectively. Taylor expansion is then used to get an approximation of how a
change in the main parameters affect the auxiliary parameters. The map merging may then
be expressed only in the main parameters and may be solved linearly if in the same coor­
dinate system, which is a very beneficial. The second contribution is a method for change
detection. Under the assumption that the individual maps have errors that follow a mean
zero Gaussian distribution, we show how these errors together with the merged map error
can be used to statistically determine if there has been a change in joint 3D points. For
example if an object has moved or one of the individual maps are incorrect.

The method assumes that the individual maps are already aligned to the same coordinate
system, which is not realistic since each SfM solution is only determined up to scale, rota­
tion and translation. The alignment is done in a pre­processing step using the Procrustes
method described in Section 3.9.1. Furthermore point correspondences between the indi­
vidual maps are assumed to be given, which is not a trivial problem.

Paper VI: Generic Merging of Structure fromMotion Maps with a LowMemory
Footprint

The method for map merging is further developed in this paper, taking previous restrictions
into consideration and formalizing the theory. The main contribution is a method for map
merging, which in addition to Paper V also estimates the relative transform between the
individual maps together with the 3D points and camera matrices. The transform between
the maps are assumed to be a similarity transform which makes the merge process non­
linear. Here we use a bundle adjustment procedure over the compressed residuals and
registration transforms, though no longer linear it is still much faster than doing a full
bundle adjustment over all points and cameras for the individual maps. The method is also
extended to handle non­overlapping data, i.e. that some of the joint 3D points are missing
in one or several individual maps. Finally, the change detection from Paper V is updated to
work for the new method. Just like in the previous paper, point correspondences are given.
Code for the map merging method is available online⁴.

⁴https://github.com/gabrielleflood/mapmerging
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Figure 4.6: This is a motivating example, where two point clouds with drift should be merged. To the left and in the middle we
see how a rigid matching would register the point clouds. Nt here the corridor does not align properly. To the right
we illustrate the result of a method that allow deformation of the point clouds, resulting in a proper merge.

Paper VII: Minimal Solvers for Point Cloud Matching with Statistical Deforma­
tions

This paper considers the point correspondence problem for proper registration between the
individual maps that are assumed to be given in Paper V and VI. The matching process is
analogous to the image feature point matching process in the SfM pipeline. As input there
is a set of tentative matches between the 3D point clouds, where an inlier set is found using
a RANSAC procedure. The main contribution of the paper is the minimal solvers used
in the RANSAC iterations that allow for some deformation of the point clouds. This is
important since there may be drift in any individual map, as shown in Figure 4.6. The
solvers considered are for the minimal registration problem with and without known scale.
The number of modes for variation is also varied, resulting in 4 different solvers. The second
contribution is a minimal solver for matching duplicate points withing maps, which may
be used for loop closure. Experiments are conducted where the solvers are utilized in a
RANSAC framework and the matches used for map merging according to the methods
from Paper VI. They show that the solvers perform better than the Procrustes method for
matching between maps with drift. The code for the solvers is available online⁵.

⁵https://github.com/gabrielleflood/statistical-mapmatching-minsolv
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In Depth Bayesian Semantic Scene Completion

DAvID GILLSjö AND KALLE ÅSTRöM

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract: For autonomous agents moving around in our world, mapping of the
environment is essential. This is their only perception of their surrounding, what is
not measured is unknown. Humans have learned from experience what to expect in
certain environments, for example in indoor offices or supermarkets.

This work studies Semantic Scene Completion which aims to predict a 3D se­
mantic segmentation of our surroundings, even though some areas are occluded. For
this we construct a Bayesian Convolutional Neural Network (BCNN), which is not
only able to perform the segmentation, but also predict model uncertainty. This is
an important feature not present in standard CNNs.

We show on the MNIST dataset that the Bayesian approach performs equal or
better to the standard CNN when processing digits unseen in the training phase
when looking at accuracy, precision and recall. With the added benefit of having
better calibrated scores and the ability to express model uncertainty.

We then show results for the Semantic Scene Completion task where a category
is introduced at test time on the SUNCG dataset. In this more complex task the
Bayesian approach outperforms the standard CNN. Showing better Intersection over
Union score and excels in Average Precision and separation scores.

Keywords: Scene Completion, Deep Learning, Bayesian Neural Network

1 Introduction

Semantic scene completion is a challenging task in which both visible and occluded surfaces
are labeled semantically in 3D. The problem naturally arises when aiming to predict a 3D
scene from a single view, but can also be studied for multiple views.

Predicting occluded areas can be of great help to autonomous vehicles during navigation
and exploration. Especially for UAVs (Unmanned Aerial Vehicles), which navigate a 3D
space where observations may be sparse, scene completion can be used for smoother tra­
jectories during path planning. During exploration it can help the agent understand the
likelihood of free space in occluded areas. In Figure 1 we see an illustration of the problem
where a UAV would benefit from knowing what to expect in occluded areas.
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??

? ?

Figure 1: An UAV has some occluded areas in its surrounding and would like to have an idea about what to expect.

This work introduces a system for Bayesian Semantic Scene Completion (BSSC), which
along with the prediction scores also delivers an estimation of uncertainty. This is crucial
for decision making during autonomous navigation and exploration as it can help the agent
understand when the data is new to the model and the prediction should not be trusted.
It can also be used to understand what data should be added to the training to improve
robustness.

We first test our implementation on the MNIST dataset to verify the Bayesian approach
and to understand how the output distributions look for a well modeled dataset. We then
move on to the SUNCG data for the Semantic Scene Completion task.

Our contributions include:

• An open source system for BSSC using Variational Inference released on https:
//github.com/DavidGillsjo/bssc-net.

• An extended SSC task on the SUNCG dataset which includes more occluded space.

• Experiments showing that the Bayesian approach is more robust to unseen data in
the SSC task.

• Parameter studies on both MNIST and SUNCG.

2 Related work

Semantic scene completion has been formulated for both the single view and multiple
view problem with different sensor modalities. One example is SSC­Net [1] that solves the
single view using a 3D CNN with depth data as input. Our work is heavily inspired by their
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3. Bayes by backprop

architecture and training setup. Other works [2, 3] have then extended the architecture by
utilizing the RGB information as well.

Since the solutions are similar to Semantic Scene Segmentation, the following works are
also of interest. Rather than feeding the whole input volume through the network, [4]
takes a sliding window approach to better handle large datasets. By encoding the RGB
information as features and using differentiable backprojection 3DMV [5] got impressive
results on the ScanNet dataset [6].

The best performing networks on ScanNet semantic segmentation is currently based on
point clouds [7–9] or sparse convolutions [10].

Our work will not focus on performance, but rather how to estimate uncertainty in seman­
tic scene completion using Bayesian NN.

There are several ways of modeling a Bayesian Neural Network, this work uses the Bayes by
Backpropagation [11]. Our implementation of Bayes by Backpropagation is based on [12]
which implements this for a 2D CNN using softplus and normalized softplus as activation
functions.

Both occupancy maps and semantic segmentation typically use a probabilistic representa­
tion where each class is assigned probability between 0 and 1. If the algorithm also outputs
uncertainty together with the probability score, what does that mean and how do we use
it? This is studied for Gaussian Process Occupancy Maps (GPOM) [13] in the robotics
community. GPOM yields a mean and variance per grid cell, these are then fed to a linear
classifier, which is trained to output a probability score.

Most NN classifiers does not have calibrated probabilities, this can be adjusted with for
example Platt Scaling as in [14]. Uncertainties from Bayesian NN classifier can be sim­
ilarly calibrated. In [15] the authors study calibration for different BNNs by comparing
Entropy, Mutual Information, Aleatoric uncertainty and Epistemic uncertainty under dif­
ferent perturbations of input data. They conclude that predictive entropy and Epistemic
uncertainty provide the most robust uncertainty estimates.

3 Bayes by backprop

The method introduced by [11] is based on Variational Inference. The main idea is to
let each weight in the network be sampled from a distribution, where the distribution is
learned at training time, as illustrated in Figure 2.

Let P(w|D) be the posterior for our Bayesian Neural Network. Given the posterior we
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(a) Standard (b) Bayesian

Figure 2: In 2a we see a filter bank from a standard 2D CNN, each weight is a scalar. In 2b we see a filter bank in a Bayesian
Variational Inference 2D CNN, here each weight represented as a distribution which is sampled from at inference time.

can make predictions given unseen data by taking the expectation over the posterior

P(ŷ|x̂) = EP(w|D) [P(ŷ|x̂,w)]

=

∫
P(ŷ|x̂,w)P(w|D) dw.

We estimate the posterior using a simpler model q(w|θ)with learnable parameters θ, which
minimizes the Kullback­Leibler (KL) divergence to the true posterior, i.e.

θ∗ = argmin
θ

KL[q(w|θ)||P(w|D)]

= argmin
θ

∫
q(w|θ) log q(w|θ)

P(w)P(D|w)

= argmin
θ

KL[q(w|θ)||P(w)]− Eq(w|θ)[logP(D|w)].

This cost function is known as variational free energy or expected lower bound. We denote
it as

F(D, θ) = KL[q(w|θ)||P(w)]− Eq(w|θ)[logP(D|w)]. (1)

Where the first part is the complexity cost as it enforces model simplicity using the prior.
The second part is the likelihood, which describes how well the model describes the data.

Using Monte Carlo sampling the cost in (1) is approximated as

F(D, θ) ≈
n∑

i=1

β

n

[
log q(w(i)|θ)− logP(w(i))

]
− logP(D|w(i)),

where w(i) is a sample from the variational posterior q(w(i)|θ). This approximation en­
ables more priors and posteriors since a closed for solution for the first term in (1) is not
necessary. The scale factor β

n with β as design parameter is introduced to tune the amount
of regularization from the complexity cost.
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3.1 Variational Posterior

Assuming the variational posterior q(w|θ) is a diagonal Gaussian distribution. With the
re­parametrization trick [16] the weights can be sampled from the posterior as

w = μ + log(1 + eγ)⊙ ϵ, ϵ ∼ N (0, I),

where the model parameters are θ = (μ, γ) and σ = log(1+eγ) to ensure that the standard
deviation remains positive during optimization.

3.2 Prior

For the choice of prior we tested both Gaussian (as in [12]), Cauchy and a scale mixture
of two Gaussian (as in [11]). The two latter affords more flexibility to the network and
we found they yielded the best results. We mainly worked with Cauchy since it is more
efficient to compute but have some results on the Gaussian scale mixture. As they are
centered around 0 we denote them as

Cauchy(γ) =
1

πγ
[
1 + ( x

γ )
2
]

and
GM

(σ0,σ1)
(α) = αN (0, σ2

0) + (1− α)N (0, σ2
1),

where N denotes the probability density function of the normal distribution.

3.3 Prediction & Uncertainty

The predictive mean and uncertainty is computed by sampling our variational posterior
(BCNN) at test time. An unbiased estimation of the expectation is given [12] by

Eq(w|θ) [P(ŷ|x̂,w)] =

∫
q(w|θ)P(ŷ|x̂,w(t)) dw

≈ 1
T

T∑
t=1

P(ŷ|x̂,w(t)),

where P(ŷ|x̂,w(t)) is the softmax output from forward pass t. To simplify notation we
now denote this as pt.

There are a number of choices when it comes to measuring the uncertainty [15, 17]. Com­
mon choices are predictive entropy, aleatoric uncertainty and epistemic uncertainty.
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Predictive Entropy ­ Measures the diversity of the distribution, so a higher entropy corre­
sponds to higher uncertainty. It is computed as

H = −
T∑

t=1

pt logpt.

Aleatoric Uncertainty ­Corresponds to measurement noise from the input data, so increas­
ing the size of the dataset should not reduce this uncertainty. It is computed as

σ2
a =

1
T

T∑
t=1

diag(pt)− ptp
⊤
t .

Epistemic Uncertainty ­ Corresponds to model uncertainty and will be low when input
data is similar to training data. Increasing the amount and diversity of training data should
reduce this uncertainty. This is computed as

σ2
e =

1
T

T∑
t=1

(pt − p̄t)(pt − p̄t)
⊤,

where p̄t =
1
T
∑T

t=1 pt is the predictive mean from above.

4 Network architecture

We have explored two network architectures. The first network architecture is inspired by
[1], but we have included batch normalization [18] and used dilated convolutions instead
of max pooling layers and strided convolutions. This to keep the resolution [19]. We
denote it as SSC­Net. The second architecture is a UNet [20] with max pooling and trans­
posed convolutions as up­sampling. Just as in [12] we chose softplus as activation functions
instead of relu to have more active weights in the network. This spread is beneficial for a
well calibrated uncertainty [15]. The architecture of the network is displayed in Figure 3.

5 Training

For training we use the Adam optimizer [21] with constant learning rate of 10−3. We do
not use weight decay since we regularize using KL divergence. For the weights we sample
the mean uniformly as μ ∼ U(− 1√

kd ,
1√
kd ), where k is the kernel size in one dimension and
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(c) UNet

Figure 3: Architecture of the BCNNs used for MNIST and SUNCG experiments. Conv(d, k, l) stands for a 3D convolution filter
stack of depth d and kernel size k and dilation l. ConvT(d, k) is the up sampling operation Transposed Convolution
with depth d, kernel and stride k. Batch normalization and softplus activation is performed after every Conv layer.
Softmax in the final layer.

d is the number of dimensions. The parameter σ is simply initialized as a chosen constant
σ0.

As noted in [12] it is beneficial to set σ0 larger than the variance of the prior. In our own
experiments on MNIST we see that this improves the separation in predictive entropy. See
the experiments section for details.

6 Evaluation

To measure the performance of the network we use the Intersection over Union (IoU),
which is standard for segmentation tasks. The main goal is to compare the Bayesian imple­
mentation with the deterministic and see that the score is similar. Just like [1] and most
works we don’t evaluate voxels that are outside of the camera field of view. Unlike previous
works we do evaluate on pixels outside of the room so that the network can learn to predict
a room layout e.g. even though the room in just glimpsed through a door.

To evaluate if the Bayesian approach gives us more information about model uncertainty
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Table 1: Compares Accuracy and mAP on MNIST for the deterministic and Bayesian mode of our simple network.

Mode Accuracy mAP

Bayesian, Cauchy(0.3), σ0 = 0.5 97% 0.96
Deterministic, ω = 0 98% 0.97

Deterministic, ω = 0.01 97% 0.95

we look at the scores and uncertainty metrics for true positives (TP) and false negatives
(FN) for each class or for different distances to the surfaces. If the knowledge about the
model limitations is good, there should be a good separation in scores and/or uncertainty
for TP and FN. We measure this with the Bhattacharyya coefficient (BC) [22], which is
an approximation of the amount of overlap of two distributions. The data is split into N
partitions, where in each partition we count the number of TP qi and FN pi and calculate
the BC as

BC(p,q) =
1
N

N∑
i=1

√
piqi.

Finally, we also compute the Mean Average Precision (mAP) as the area under the Precision­
Recall curve. This measures both the separation and the accuracy of the model. We use
101 thresholds T = {0, 0.01, ..., 1.0}, just as the detection challenge COCO [23]. We
follow their implementation and use interpolated precision to get a smoother curve.

7 MNIST experiments

For MNIST we created a simple 2D CNN using the same building blocks as we use in
the 3D SSC­Net. We used the same code base and tools to allow for faster debugging and
experiments. The network is trained in both Bayesian and Deterministic mode.

7.1 Baseline experiment

Here we have trained the network on the training set and evaluated on the test set. Table 1
shows the Accuracy and mAP for each mode. We see that the Deterministic CNN without
weight decay, i.e. ω = 0, performs best. Our Bayesian version is close behind with the
benefit of having built in regularization in terms of a prior. By explicitly adding regular­
ization in form of weight decay on the deterministic CNN we get the worst performance,
especially noticeable in mAP.
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7.2 Leave one out experiment

To see how well the uncertainty measurements captured model uncertainty we conducted
an experiment where digit 0 was left out from the training data and then introduced at test
time. Unless stated otherwise the Bayesian model uses Cauchy(0.3) as prior and σ0 = 0.5
as initialization.

Prior and Initialization

In Figure 4 we see how the BC and mAP changes for different priors and σ0 during training.
A larger σ0 decreases the BC score (increase separation) but require longer training times.
By binning the results on both Entropy and mean score we get the best separation, which
indicates that we can most likely train a classifier on these metrics and do better than the
mean score. This is analogous with the GPOM [13] mentioned in section 2.

Activation function

Figure 5 shows how the choice of activation function affects the result. Just as [12] we
observe that softplus in general yields better separation, both when used as layer activation
and normalized as final activation.

Output distributions

For a more in depth understanding of the output we also look at the output distributions.
As described in section 3.3 we have calculated the predictive mean p̄ti and entropy Hi
for each sample indexed by i in the dataset. As usual we get the predicted label index as
li = argmax p̄ti with corresponding score p̄ti(li) and entropy Hi(li). In Figure 6 we
form histograms of these for all samples in the test dataset categorized by their true class.
For the deterministic case we see that the regularization helps separate the true zeros from
the other predictions. However, the distributions for the other classes are much wider,
indicating that the network is more uncertain overall. In the Bayesian case we see that the
distribution for true zeros are well separated from the others, while maintaining certainty
for the other classes. The entropy also seems to be a good indicator.
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Table 2: Compares mIoU on SUNCG for the (D)eterministic and (B)ayesian versions of our CNNs.

Type Arch. Parameters mIoU mAP

B SSC­Net Cauchy(0.05), σ0=0.05, β=0.1 0.22 0.26
B UNet Cauchy(0.1), σ0=0.1, β=5 0.23 0.29

D SSC­Net ω=0 0.23 0.24
D UNet ω=0 0.21 0.21
D SSC­Net ω=0.01 0.15 0.19
D UNet ω=0.01 0.16 0.20

8 SUNCG mini experiments

SUNCG [1] is a large dataset consisting of 45,622 manually created synthetical indoor
scenes with 84 labeled categories. We’ve used a subset of 2000 training scenes and 1000
testing scenes for the experiments. As in [1] we’ve used the flipped Truncated Signed Dis­
tance Function (TSDF) as input to our network and the same 11 categories as output. We
chose the projective version since it is more realistic in a robotic setting. We’ve also chosen
a coarser grid with 0.08m resolution and 60x40x60 in size which is similar to their output
size and resolution.

8.1 Baseline experiment

In Table 2 we see the mean IoU (mIoU) over all categories for the Deterministic and
Bayesian CNN. In general they have similar mIoU but the Bayesian versions have better
mAP.

8.2 Complexity cost weight β

For the Bayesian UNet we conducted a β parameter experiment on SUNCG, which weighs
the complexity cost against the likelihood cost. As a reference, the deterministic version
with different weight decays are also included. We see in Figure 7 that β = 5 is better in
all metrics but mIoU, where β = 1 has the highest score. We also see that all Bayesian
versions are better than the deterministic in mAP and that a too large β makes the model
unable to fit the data properly, while too small will get a better fit but worse separation.
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Table 3: BC,mAP andmIoU for different network architectures when the bed class is removed from training. S=Score, E=Entropy.
We observe that Bayesian SSC-Net has the best score in most metrics.

CNN mIoU mAP: S mAP: E BC: S BC: E

SSC­Net ω=0 0.19 0.2 0.31
SSC­Net ω=0.01 0.14 0.23 0.29

UNet ω=0 0.2 0.14 0.39
UNet ω=0.01 0.15 0.21 0.28
B­SSC­Net 0.21 0.26 0.19 0.27 0.28

B­UNet 0.21 0.25 0.17 0.28 0.28

8.3 Leave one out

For the SUNCG mini dataset we removed all instances of the class bed during training
and then tested on the full dataset. The result is presented in Table 3. Here we test both
the SSC­Net and the UNet architecture in both Bayesian and Deterministic versions. We
observe that both Bayesian versions outperform the Deterministic in mIoU, mAP and BC.
For the sample based metrics the Bayesian SSC­Net outperform the Bayesian UNet, but
this might not be the case given more data.

8.4 Output distributions

In Figure 8 we see histograms for true and false predictions at different distances from the
observed surface for the Bayesian SSC­Net. We see that as the entropy (uncertainty) grows
the ratio of false to true predictions increases, this is what we would expect from a sound
measurement of uncertainty. It seems to have a better grasp of the uncertainty close to the
observed surface.

8.5 Example output

See Figure 9 for example output. More examples are available in the supplementary mate­
rial.

9 Conclusion

We’ve seen that a Bayesian CNN is clearly better at being uncertain when presented with
unseen data. This was shown with a simple CNN model on the MNIST dataset. In the
same experiment we also showed that the best separation between true and false predictions

65



Paper I

is found when combining entropy and mean score. This means that a final classifier layer
could be added to get better probability estimates.

For the Semantic Scene Completion task we show that the Bayesian CNNs outperfom the
Deterministic CNNs when faced with a category not seen at training time. This is shown
by evaluating mIoU, mAP and separation score BC. Due to the complexity of the task and
the model capacity we cannot show the same well separated output distributions as in the
MNIST experiment. We do show that entropy represents the uncertainty well, especially
close to the observed surface.

Future work will be to use an architecture better suited for sparse data and to utilize the
RGB information from the image as well. We also want to look at how the uncertainty
scores can be used in navigation.
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9. Conclusion

(a) Deterministic (b) Deterministic Regularized

(c) Bayesian Mean Score (d) Bayesian Entropy

Figure 6: Here we see true and false predictions for all digits in the test set when 0 has been left out from training. Blue bars are
number of true predictions with the binned score, while orange are false predictions. In 6a we have the deterministic
CNN which has high belief in many false 0 predictions. In 6b we have the deterministic CNN with regularization
ω = 0.01 which has a more balanced belief, but overall lower. In 6c and 6d we see lower certainty for digit 0 but still
high certainty for other classes in both score and entropy respectively.
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9. Conclusion

(a) Bayesian score (b) Bayesian Entropy

Figure 8: Here we see true and false predictions for all voxels at different distances (in meter) from observed surfaces. In 8b we
see that as the entropy (uncertainty) grows the ratio of false to true predictions increases. This hold for all areas, but
especially close to the observed surfaces.

71



Paper I

(a)
(b
)

Fig
u
re

9:
H
ere

is
one

exam
ple

output
from

the
SU

N
C
G
m
initest

set.
From

the
left

w
e
have

predicted
labels,ground

truth
and

entropy.

72



References

References

[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser, “Semantic
scene completion from a single depth image,” Proceedings of 30th IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[2] M. Garbade, Y.­T. Chen, J. Sawatzky, and J. Gall, “Two stream 3d semantic scene
completion,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2019.

[3] S. Liu, Y. HU, Y. Zeng, Q. Tang, B. Jin, Y. Han, and X. Li, “See
and think: Disentangling semantic scene completion,” in Advances in Neu­
ral Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa­Bianchi, and R. Garnett, Eds. Curran Associates,
Inc., 2018, pp. 263–274. [Online]. Available: http://papers.nips.cc/paper/
7310­see­and­think­disentangling­semantic­scene­completion.pdf

[4] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner, “Scancomplete:
Large­scale scene completion and semantic segmentation for 3d scans,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[5] A. Dai and M. Nießner, “3dmv: Joint 3d­multi­view prediction for 3d semantic scene
segmentation,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 452–468.

[6] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scan­
net: Richly­annotated 3d reconstructions of indoor scenes,” in Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE, 2017.

[7] B. Graham, M. Engelcke, and L. van der Maaten, “3d semantic segmentation with
submanifold sparse convolutional networks,” CVPR, 2018.

[8] H. Thomas, C. R. Qi, J.­E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas,
“Kpconv: Flexible and deformable convolution for point clouds,” Proceedings of the
IEEE International Conference on Computer Vision, 2019.

[9] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point
clouds,” 2018.

[10] C. Choy, J. Gwak, and S. Savarese, “4d spatio­temporal convnets: Minkowski con­
volutional neural networks,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019, pp. 3070–3079.

[11] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in
neural networks,” arXiv preprint arXiv:1505.05424, 2015.

73

http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion.pdf
http://papers.nips.cc/paper/7310-see-and-think-disentangling-semantic-scene-completion.pdf


Paper I

[12] K. Shridhar, F. Laumann, and M. Liwicki, “A comprehensive guide to bayesian con­
volutional neural network with variational inference,” 2019.

[13] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,” The Inter­
national Journal of Robotics Research, vol. 31, no. 1, pp. 42–62, 2012.

[14] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning using
calibrated regression,” arXiv preprint arXiv:1807.00263, 2018.

[15] N. Seedat and C. Kanan, “Towards calibrated and scalable uncertainty representations
for neural networks,” 2019.

[16] M. Opper and C. Archambeau, “The variational gaussian approximation revisited,”
Neural computation, vol. 21, pp. 786–92, 10 2008.

[17] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning
for computer vision?” in Advances in neural information processing systems, 2017, pp.
5574–5584.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” 2015.

[19] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for sim­
plicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U­net: Convolutional networks for
biomedical image segmentation,” 2015.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[22] A. Bhattacharyya, “On a measure of divergence between two statistical populations
defined by their probability distributions,” Bull. Calcutta Math. Soc., vol. 35, pp. 99–
109, 1943.

[23] T.­Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision –
ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer
International Publishing, 2014.

74



References

Appendix A. Output distributions SUNCG

In Figure 10 and 11 are histograms of output entropy and scores respectively for the 4
different network configurations in the SUNCG leave­one­out experiment in Section 8.3.
There are 4 different histograms per network, each bins true (TP) and false positives (FP)
with a certain distance from observed surface.

For the scores in 11 we see that in general the ratio of FP to TP grow as score decreases, at
least close to the observed surface. For entropy the ratio grow as entropy increases, which
we expect from a measurement of uncertainty.

Appendix B. Examples

In Figure 12 we show some example outputs from the Bayesian SSC­Net.

(a) Bayesian SSC-Net entropy (b) Bayesian UNet entropy

Figure 10: True and false predictions for all voxels at different distances (in meter) from observed surfaces. We see that as the
entropy (uncertainty) grows the ratio of false to true predictions increases. This hold for all areas, but especially close
to the observed surfaces.
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(a) (b)

(c) (d)
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Figure 12: Some example output from the Bayesian SSC-Net on the SUNCG dataset. From the left we have predicted labels,
ground truth and entropy.
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Semantic Room Wireframe Detection
from a Single View

DAvID GILLSjö, GABRIELLE FLOOD AND KALLE ÅSTRöM

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract: Reconstruction of indoor surfaces with limited texture information or
with repeated textures, a situation common in walls and ceilings, may be difficult
with a monocular Structure from Motion system. We propose a Semantic Room
Wireframe Detection task to predict a Semantic Wireframe from a single perspective
image. Such predictions may be used with shape priors to estimate the Room Layout
and aid reconstruction. To train and test the proposed algorithm we create a new set of
annotations from the simulated Structured3D dataset. We show qualitatively that the
SRW­Net handles complex room geometries better than previous Room Layout Esti­
mation algorithms while quantitatively out­performing the baseline in non­semantic
Wireframe Detection.
Keywords: Deep Learning, Room Layout Estimation, Line Segment Detection, Graph
Convolution Networks

1 Introduction

Reconstruction of indoor spaces is useful for many applications, e.g. Virtual Reality, Real
Estate sales and navigation for robots. Using consumer grade devices with a single camera
(and possibly IMU) is preferred since this enables the application on a larger number of
platforms. For this type of reconstruction one typically uses Structure from Motion (SfM)
or Monocular Vision SLAM (Simultaneous Localization and Mapping). These rely on
point features – points in the image with high saliency in terms of texture. This may be
problematic in indoor spaces since most walls and ceilings are without salient textures.

This has been the inspiration for research on Room Layout Estimation, which is the task of
estimating the Room Geometry in terms of planar surfaces. Often strong priors about the
relation between the surfaces are used and Room Geometries are assumed to be too simple,
see Figure 1. Furthermore the multi­view case is often handled using Panorama, which is
not always applicable.

To relax the assumptions and handle multi­view scenarios we believe that the way forward
is to develop several pipelines: semantic segmentation in the image, semantic segmentation

81



Paper II

Figure 1: The images on top show the desired results from Semantic Room Wireframe detection and below are the results from
a Room Layout estimation algorithm [1]. Lines are added between all detected planes for comparison. The algorithm
produces satisfying results on simple scenes (left) but is lacking on more complex scenes, e.g. to the right where the
wide opening is erroneously classified as part of the wall.

in 3D, image object detection, corner detection and semantic line detection. These could
then be used together – ideally in an end­to­end fashion. In this work our aim is to con­
centrate on one of these aspects and propose a Semantic Room Wireframe Detection task,
where connected semantic line segments forming a wireframe, are to be detected. Since
this is a detection task no strong assumptions are made and the detections can be used in a
larger optimization framework to handle more complex Room Geometries captured from
multiple views. Compared to previous methods we for example include labels for neigh­
bouring rooms visible through open doors and label doors and windows in addition to the
room structure.

We generate annotations, which consist of semantic line segments and semantic junctions
from the synthetic Structured3D dataset. To perform the detection we adapt HAWP [2],
which is a CNN (Convolutional Neural Network) developed for the Wireframe Detection
task, and extend it with a Graph Convolutional Network (GCN) [3] module. We call
the new network SRW­Net (Semantic Room Wireframe Network). We show qualitatively
that the SRW­Net¹ handles complex room geometries better than previous Room Layout
Estimation algorithms while quantitatively out­performing HAWP [2] and L­CNN [4] for
non­semantic Wireframe Detection. The contributions of this paper are:

• Proposal of the Semantic Room Wireframe detection task.

• New annotations for this task which we call Structured3D­SRW.
¹See https://github.com/DavidGillsjo/SRW-Net for code and data.
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• Implementation and evaluation of a Neural Net for Semantic Room Wireframe de­
tection, SRW­Net.

2 Related Work

Room Layout Estimation was studied early by Hedau et al.[5] which used the Manhattan
World assumption [6] as prior for the room shape. Early methods [7–9] used a pipeline
which first extracted handcrafted features, then did vanishing point detection and lastly hy­
pothesis generation and ranking. Recent approaches use CNNs, e.g. Mallya and Lazebnik
[10] use structured edge detection forests, and a CNN to predict edge probability masks.
Lin et al.[1] propose an end­to­end CNN with adaptive edge penalty and smoothness terms
for pixelwise segmentation of the room image. RoomNet [11] directly predicts ordered
keypoints in a room layout and DeepRoom3D [12] use an end­to­end CNN to predict a
cuboid. Most recent methods [13–16] use CNNs to predict edges and then optimize for
the Room Layout using geometric priors. The datasets mostly used are LSUN [17] and
Hedau [5].

Zhang et al.[18] advocated the use of Panorama images for increased performance in Room
Layout Estimation. This has since been an inspiration for Panoramic Room Layout Estima­
tion, which allows for better use of context and prior knowledge about camera orientation
and calibration. Algorithms are typically based on CNNs [19–21] using different image
representations and post­processing. For example CFL [22] predicts the 3D layout from
a spherical image using edge and corner maps. Despite the promising results from these
methods Room Layout Estimation from panorama does, indeed, limit the use of more con­
ventional images. Common datasets for panorama are SUN360 [23], Stanford (2D­3D­S)
[24] and Structured3D [25].

Recently, general Room Layout Estimation from a single perspective image, which does not
assume cuboid shape, has been studied. [26] solves a discrete optimization problem over
3D polygons using both RGB and Depth information. [27] use plane detection to form a
3D model over a video sequence. [28] use a combination of plane, depth and vertical line
detections to estimate a general Room Layout. Neither of these handle detections through
open doorways. Data for this task is Structured3D [25] and ScanNet [29].

There is a vast literature on the use of lines for 3D understanding, even though SfM and
SLAM are most often used in terms of points. For example understanding consistency
constraints [30], exploiting such constraints for 3D understanding and SfM methods using
only lines [31–37].

Detection of connected line segments has been studied as the task of Wireframe Estima­
tion [2, 38–40]. However, these methods do not try to use semantic understanding of
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the lines and junctions and do not exploit such semantic understanding in terms of Room
Layout Estimation. While recent works mostly form the Wireframe using junction pro­
posals some works use line predictions directly. For example in [41], a combination of
line predictions and graph networks are used. YorkUrban [42] and ShanghaiTech [43] are
common datasets. Other approaches that predict semantic information for line segments
[44] are focused around object detection rather than detection of indoor room structures.

3 Semantic Room Wireframe Detection

We define a Semantic Room Wireframe Detection task. The prediction is done from a
single perspective image and should result in a number of semantic lines in the image which
– when connected by junctions – form a wireframe marking the intersections between the
planes defining the room layout.

The task can be seen as a combination of Room Layout Estimation and Wireframe De­
tection. It is more flexible than Room Layout Estimation since no priors on the room
structure are used but also contains more information than regular Wireframe Detection.
The results can, e.g., be used to aid reconstructions, s.a. SfM and SLAM where salient tex­
tures are missing. It is also suitable for multi­view Room Layout Estimation, where it gives
more flexibility for global optimization and better information in door openings. For an
example of the desired output of a Semantic Room Wireframe Detector, see the top row
of Figure 1.

4 Structured3D­SRW

Our annotations for this task, which we call Structured3D­SRW, are generated from Struc­
tured3D [25] which is a large­scale, photo­realistic simulated dataset with 3D structure
annotations. It consists of 3500 scenes, with a total of 21’835 rooms and 196’515 frames.
Structured3D contains 3D information about the room structure and is built up from
junctions, lines and plane polygons. A junction is a point in R3 and a line is defined as the
line segment formed by two junctions. A plane polygon is defined by a set of connected
line segments and its parameters π defining the normal vector and plane equation. These
planes are labeled with semantic information, for example if the plane is a floor and part of
a kitchen.

There are both panoramic and perspective images in the dataset. For each room, there are
configurations both without furniture, with a little and with a lot of furniture. For each of
the images, there is also a depth map and a semantic mask. The data is split so there are
3000 training, 250 validation and 250 testing scenes.
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4.1 Data Analysis

Our annotations are generated by combining the 3D information, semantic masks and
perspective RGB images with full furnishing. For the images with full furnishing there
are 202 scenes missing from the training set, so that leaves us with 2’798 training scenes.
While working with the data, we identified three main issues.

Firstly, there are a few planes to which only two junctions belong. However, only two
junctions cannot uniquely define a plane. Secondly, it turns out that there are a number of
planes for which the defining junctions do not lie in the plane. We calculated the Euclidean
distance between all plane junctions and the plane according to supplied parameters and
the result can be seen in Figure 2. We see that there are around 103 planes with a maximum
distance larger than 5mm. This is problematic since the assumption is that all surfaces are
planar in this synthetic dataset. Thirdly, there is no information about whether the doors
in Structured3D are open or closed. Since one of the strengths of our proposed method is
that more complex structures can be captured, we want the method to identify open doors
to create a wireframe also in the room behind them. One example of this can be seen in
Figure 3, where the large opening in the left wall is annotated as a door. Knowing that
it is open, we can train our method to detect the structure of the second room as well, as
annotated in the image.

We have implemented the following measures to adjust for these three main issues:

(i) For the walls with only two junctions, we cannot form plane polygons to make occlusion
checks. Because of this we simply discard the scenes containing such planes.

(ii) To verify that junctions lie in the plane, we chose to estimate new plane parameters
from the junctions by solving the DLT problem

min
∥π∥2=1

∥Mπ∥2, for M =
(
p1 p2 . . . pn

)T
, (1)

pi =
(
xi yi zi 1

)T
, (2)

where pi is a junction coordinate and π are the four plane parameters s.t. a point q is in
the plane iff. qTπ = 0. With these plane parameters we get lower maximum and median
distances, compared to using the supplied parameters. Still, there are many planes that
have large distances to their junctions. We therefore remove any scene with planes that
have maximum error larger than 1mm. (i) and (ii) combined leaves us with 2’502, 218
and 205 scenes corresponding to 57’252, 5’684 and 5’085 images for training, validation
and testing, respectively.

(iii) We do the following to determine whether doors are open or closed: For each door
polygon Di,j belonging to wall plane πi we take a set of 100 uniformly distributed sample
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Figure 2: Histograms for the maximum, median and minimum distance from each plane to its junctions using the supplied plane
equation. Note that the plane parameters are not optimized to minimize distance to all junctions.

points D̂i,j = {pk ∈ Di,j}. For each sample set D̂i,j and each perspective image Îl for a
scene, we find the sample points

D̂l
i,j =

{
(xk, yk, 1)T ∼ Plpk

∣∣∣ (xk, yk) ∈ Îl
}
, (3)

in pixel coordinates using the camera matrix Pl = Kl[Rl tl], where Kl are intrinsic param­
eters, Rl rotation matrix and tl translation vector. We then compute a door closed ratio

ci,j =
∑

l
∑

k αlk∑
l
∑

k 1
, αlk =

{
1, if Îl[yk, xk] = door,
0, otherwise,

(4)

and say that the door D̂i,j is closed if ci,j > 0.3.

4.2 Semantic Information

In Structured3D each plane is annotated with a type and a semantic class. By combining
the information in these two fields we mark each plane as either wall , floor, ceiling , door or
window.

We choose to have one label per line and define each line label as the combination of the
two planes it belongs to. If we look at the last column of Table 1 we see that there are
seven occurring classes, where door and window planes yield two different line labels each.
Since most of the door­door and window­window lines will be concealed behind doors and
window glass we choose to merge these with door­wall and window­wall , respectively. We
then get the mapping in Table 1, which consists of the same five labels as for the planes,
namely wall , floor, ceiling , door and window.

Furthermore, we also label the junctions. The dataset consists of two different kinds of
junctions. There are junctions corresponding to a 3D junction where three planes meet;
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Table 1: Mapping of line labels from plane labels.

Line label Plane labels Occurrence [%]

door door­wall 20.4
wall wall­wall 15.5
ceiling ceiling­wall 15.5
floor floor­wall 15.5
door door­door 11.6
window window­wall 11.0
window window­window 10.4

these we call proper and they should be detected even when occluded by furniture. There
are also junctions which occur either due to the camera having limited field of view, or due
to occlusion from other planes. These we call false. See Figure 3 for an example.

5 SRW­Net

For the CNN architecture we chose to base it on HAWP (Holistically­Attracted Wireframe
Parsing), presented in Xue et al.[2]. Since our data contains semantic labels for both lines
and junctions, but fewer lines per image, we had to make some adjustments to the archi­
tecture and parameters. In addition to the changes we introduce a GCN module, trained
separately, to refine the features using neighbours in the wireframe. See Figure 4 for an
overview of the architecture.

5.1 Backbone

Before fed into the network, the image is resized to H×W pixels, where H = W = 512. It
is then passed through a backbone Hourglass Network [45] which generates a latent feature
spaceF of size N×Ĥ×Ŵ, where Ĥ = Ŵ = 128 and N = 128 is the number of channels.
These features are then used by the different network heads.

5.2 Junction Proposals

The junction proposal head predicts from F a junction label matrix J of size 3× Ĥ× Ŵ
with one­hot encoding for labels invalid , false, proper. It also predicts an offset matrix O
of size 2× Ĥ× Ŵ. They are computed using a 1× 1 convolutional layer and then sigmoid
for O and softmax for J . This is different from HAWP since they did not have labels for
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wall
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door
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Occluded by object
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False
Occluded by plane
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Occluded by image

Figure 3: Example cases for junction labels proper and false .

junctions and used sigmoid for J . We then form Jv = 1 − J [invalid]. After a 3 × 3
NMS (Non­Maximum Suppression) to Jv the top K bins JK = {(xk, yk), k = 1...K} are
selected (K = 80) and the offset map is used to compute the final position of the junctions
Jf = {(xk, yk) + O(xk, yk) · w, k = 1...K} where w is a rescaling factor. Like HAWP we
use cross entropy loss to form L(J , Ĵ ) and L1 loss for L(O, Ô). But we weight invalid
as 1:250 in L(J , Ĵ ) to account for bias and improve recall. The final loss function is
Lj = λmsk ·L(J , Ĵ ) + λoff · Jv ⊙L(O, Ô), where ⊙ is elementwise multiplication, λmsk
and λoff are design parameters.

5.3 Line Segment Proposal

The line segment proposal head is the same as for HAWP and is a modification of AFM
[39] which uses a parametrization of line segments using four parameters. It is, however,
not unique and each parametrization may yield up to three line segments. The proposal
head takes F and predicts a 4× Ĥ× Ŵ matrix, where the first dimension is the 4D AFM
parametrization, which is then converted to the endpoint line segment representation. The
loss function is the same as for HAWP and we denote it LLS.
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6. Evaluation

5.4 Line Segment and Junction Proposal Matching

Now we have line segment proposals and junction proposals. Each line segment’s endpoints
are matched to their closest junction. If the Euclidean distance between each endpoint and
matched junction is below τ = 10, we form a line segment between these two junctions.
We denote the set of matched line segments Lm.

5.5 Matched line segment classification

Each matched line segment l ∈ Lm will be classified as either invalid , wall , floor, ceiling ,
window or door. Following the implementation of HAWP we use the LoIPool operation
[4] from L­CNN. First s = 32 uniformly spaced points along the line are sampled from
F . All features are then reduced, concatenated and given to the 2­layer fully connected
classifier ending with the softmax operation and cross entropy loss Lcls. This is trained end
to end and the final loss is L = Ljunc + LLS + Lcls. During training we balance negative
and positive examples while also providing hard negative examples from the ground truth
data, see HAWP [2] for details. We reduced the number of sampled lines to 100 negative
and 100 positive.

5.6 Wireframe Refinement ­ Graph Convolutional Network

This GCN module uses the graph structure to augment the line and junction features with
encoded features from the neighbouring lines and junctions prior to classification. The
module is trained separately from the larger network and takes lines with invalid score less
than 0.95 as input. We form two graphs, the junction graph is simply the estimated wire­
frame where junction features are nodes and lines define edges. The line segment graph
is created by taking the Line Graph [46] of the junction graph, s.t. the line segment fea­
tures now are nodes. The architecture of the GCN layers are encoder­based with skip­
connections to a fully connected classifier layer, see Figure 4. We use 4 GCN layers for
junction and line head respectively. To achieve good results we sample positive and nega­
tive examples as 5:1 for the loss function. The loss and classifier architecture are the same
as previously.

6 Evaluation

sAP (structural average precision) [4] is the area under the precision and recall curve for a
set of scored detected line segments. Let L̂ =

(
p̂1 p̂2

)
∈ Lg be any line segment in the
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set of true line segments. A detected line segment L =
(
p1 p2

)
is a true positive if

min
L̂∈Lg

δ(L, L̂) = ∥p1 − p̂1∥22 + ∥p2 − p̂2∥22 ≤ β, (5)

where β is a design parameter. We also require that only one detection is matched to each
true line segment. Any extra predictions are marked as false positives. In our experiments
we evaluate the metric at β = 5, 10, 15 at 128 × 128 resolution and denote the metrics
sAP5, sAP10 and sAP15 respectively. We calculate sAP for each separate label and then take
the mean to form msAP. We also calculate sAPm =

∑
β sAPβ/3 for each label and take its

mean across labels as msAPm.

NMS (Non Maximum Suppression) is also performed on line segments to improve per­
formance. We use the same distance δ as in Equation (5) and say that if a line segment L
has a neighbour L̂ s.t. δ(L, L̂) < γ2 with the same predicted label and higher score, L is
removed. We use γ = 3.

jAP (junction AP), is analogous to sAP. Instead of the criteria in Equation (5) we take the
Euclidean distance between the junction and the closest ground truth junction of the same
label. The thresholds are 0.5, 1.0 and 2.0 and mjAPm, jAPm follows as before.

7 Experiments

All experiments were done using pre­trained weights from HAWP as initialization for appli­
cable layers, as we noticed this produced better results than training from scratch. Models
were trained for 40 epochs with learning rate 4 · 10−4, weight decay 10−4 and batch size
11 on a Nvidia Titan V. The learning rate was reduced to 4 · 10−5 at epoch 25. For the
GCN refinement module we trained for 10 epochs with learning rate 1.2 · 10−3, weight
decay 10−4 and batch size 60. The learning rate was reduced to 1.2 · 10−4 at epoch 5.

7.1 Model evaluation

We evaluate the proposed model on the test set. See Table 2 for AP numbers and Figure
5 for the PR (precision recall) curve for threshold 10. We see that floor is by far the most
difficult line type to detect correctly. Since there is no method available for direct compar­
ison we trained HAWP [2] and L­CNN [4] on Structured3D­SRW using their code and
training methods. All models are initiated with the pre­trained weights provided by the
code releases. Since these algorithms output a non­semantic wireframe we generate a wire­
frame prediction from our method by calculating the score as (1 − invalid) for junctions
and lines. In Table 3 we see that our method out­performs both HAWP and L­CNN in
line segment detection (sAP). HAWP performs better in the junction metric jAP.
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Table 2: AP Scores for the final model.

Type sAP5 sAP10 sAP15 sAPm

ceiling 35.5 42.4 46.5 41.5
door 44.7 49.6 52 48.8
floor 15.5 21.6 24.6 20.6
wall 39.8 47.3 51.2 46.1
window 49.5 55.4 58.2 54.4
mAP 37 43.3 46.5 42.3

Type jAP0.5 jAP1 jAP2 jAPm

false 17.8 36 43.7 32.5
proper 21.9 39 46.8 35.9
mAP 19.9 37.5 45.3 34.2

7.2 Ablation study

In Table 4 we show results on how the class weights for the junction lossL(J , Ĵ ), the GCN
refinement module and line NMS affects the classification for the validation set. Although
equal weights for L(J , Ĵ ) outperforms a weighted loss in sAPm the GCN refinement
module benefits from the improved jAPm and recall. Therefore the weighted loss with
GCN refinement module and line NMS has the best performance.

7.3 Room Layout vs Semantic Room Wireframe

We make a qualitative comparison in Figure 6 with the method of Lin et al.[1]² from the
Room Layout Estimation task to illustrate the benefits of this data. For our method we
use all lines with score higher than 0.9. Since the methods are trained on different data
we cannot compare performance, but we see that the representation for the Room Layout
Estimation task is not sufficient for these complex scenes.

8 Conclusions

We have introduced the task of Semantic Room Wireframe detection and generated an­
notations from Structured3D. This dataset challenges algorithms to detect complex Room
Geometries from single view perspective images. We show that a CNN for Wireframe es­
timation can be adapted to this task and handles complex Room Geometries better than a
reference method for Room Layout Estimation. We also show how the graph structure can

²https://github.com/leVirve/lsun-room
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Table 3: Comparision of the (1-invalid) score against HAWP and L-CNN.

Arch. sAPm jAPm

LCNN 31.8 34.9
HAWP 46.0 37.0
SRW 46.6 36.2

be used with a GCN refinement module to out­perform the baseline even in non­semantic
wireframe detection.
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Table 4: Ablation study on validation set.

GCN NMS L(J , Ĵ ) sAPm jAPm

equal 44.6 26.4
weighted 31.6 37.4

✓ equal 45.0 39.0
✓ weighted 45.3 37.9
✓ ✓ equal 45.8 37.9
✓ ✓ weighted 46.7 37.9
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Appendix

This is supplementary material for our paper ”Semantic Room Wireframe Detection from
a Single View”. It further describes the data generation process and provides more images
for qualitative evaluation.

Structured3D­SRW Data Generation

This section gives a brief explanation on how our dataset Structured3D­SRW, described in
Section 4 of the paper, is generated. For further details we refer to the code.

First we define for a point r =
(
x1 x2 . . . xn

)
∈ Rn and its corresponding point

p =
(
y1 y2 . . . yn+1

)
∈ Pn in homogeneous coordinates the mapping function

Pn → Rn : ϕ(p) =
(

y1
yn+1

y2
yn+1

. . .
yn

yn+1

)
. (6)

The task is to generate a set of junctions Ji connected by edges Ei for each image Ii. To
simplify we will consider a single line segment l̂ =

(
p̂1 p̂2

)
with endpoints p̂1, p̂2 ∈ P3

s.t ϕ(p̂1), ϕ(p̂2) ∈ R3 are in the scene coordinate system. as well as the scene’s defining set
of planes, which have polygons W = {wk, k = 1, ...,N} and plane parameters

Π̂ =

{
π̂k =

(
n̂k

d̂

) ∣∣∣∣ ∥n̂k∥ = 1, ϕ(p) ∈ wk ⇒ pTπ̂k = 0
}
, (7)

where n̂k ∈ R3 is the normal vector.

For now we assume that the line segment is in front of the camera and inside the image.
We start by transforming the planes and line segment to the camera centered coordinate
system

L =
(
p1 p2

)
= TiL̂,

Π =
{

πk = T−1π̂k

∣∣∣ π̂ ∈ Π̂
}
, where Ti =

(
Ri ti
0 1

)
. (8)

For each plane πk we find where on the viewing ray for line segment endpoint pj we have
the plane. So if

aj = −
dk

ϕ(pj)Tnk
(9)

we know that 0 < aj < 1 if the point is occluded. Now we have four cases
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Figure 7: Histograms for the maximum, median and minimum distance from each plane to its junctions using the estimated
plane equation.

• a1, a2 ≥ 1⇒The entire line segment is in front of plane, we are done.

• a1, a2 ≤ 0⇒The plane is behind the camera, we are done.

• a1, a2 < 1⇒The line segment is behind the plane, Lb = L.

• For all other cases a part of the line segment is in front of the plane. We form the
line segment Lb which is behind the plane and Lf which is in front.

Now we can project Lb onto the plane πk and take the 2D geometric difference to get a set
of line segments

L̂w =

((
a1
a2

)
⊙ Lb

)
− wk, (10)

where ⊙ is elementwise multiplication. These are in the plane πk so we so we find the cor­
responding line segments on L and denote them Lw. We then merge Lf with Lw and get the
visible set of line segments which we transform back to the camera coordinate system and
apply Ki to get the pixel coordinates. An overview of the algorithm is given in Algorithm
1. Please refer to the implementation code for details.

Plane estimation

In Section 4.1 we estimate new plane parameters that fit optimally with the plane junction.
See Figure 7 for the histograms of distances from plane to junctions.
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Algorithm 1: An overview of how the algorithm to annotate one scene works.
For details and special cases please refer to the implementation code.

Data: Parameters of scene planes: Π̂, Semantic images: Î, RGB images: I, All
plane junctions: J, All scene lines: L̂,

Result: Set of visible line segments Li
V for each image i

1 W := makePolygons(̂I, Π̂, J);
2 for Ii ∈ I do
3 Π := T−1

i P̂i;
4 L := TiL̂;
5 for L ∈ L do
6 L :=cutInFrontAndInImage(L);
7 if L = ∅ then
8 continue;
9 end

10 Li
V = {L} ;

11 for wk ∈ W, πk ∈ Π do
12 Lt := ∅;
13 for L ∈ Li

V do
14 Lf, Lb := behindPlane(πk, L);
15 Lp := inPolygon(Lb);
16 Lt := Lt∪ appendLine(Lp, Lf);
17 end
18 Li

V := Lt;
19 end
20 end
21 end

Additional Images for Qualitative Comparison

Here is and extension to Section 7.3 of the paper, where we compared SRW­Net a Room
Layout estimation algorithm [1]. For additional images from Structured3D­SRW, see Fig­
ure 8.
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Figure 8: Results from the comparison with room layout estimation. On the left: images with ground truth semantic wireframe
annotations. In the middle: the results from our method. To the right: room layout results from [1].
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TheMulti­View Geometry of Parallel Cylinders

ERIk TEgLER, JOHANNA ENgMAN, DAvID GILLSjö, GABRIELLE FLOOD, VIkTOR LARSSON,
MAgNuS OSkARSSON AND KALLE ÅSTRöM

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract: In this paper we study structure from motion problems for parallel cylin­
ders. Using sparse keypoint correspondences is an efficient (and standard) way to
solve the structure from motion problem. However, point features are sometimes
unavailable and they can be unstable over time and viewing conditions. Instead, we
propose a framework based on silhouettes of quadric surfaces, with special empha­
sis on parallel cylinders. Such structures are quite common, e.g. trees, lampposts,
pillars, and furniture legs. Traditionally, the projection of the center lines of such
cylinders have been considered and used in computer vision. Here, we demonstrate
that the apparent width of the cylinders also contains useful information for structure
and motion estimation. We provide mathematical analysis of relative structure and
relative motion tensors, which is used to develop a number of minimal solvers for
simultaneously estimating camera pose and scene structure from silhouette lines of
cylinders. These solvers can be used efficiently in robust estimation schemes, such as
RANSAC. We use Sampson­approximation methods for efficient estimation using
over­determined data and develop averaging techniques. We also perform synthetic
accuracy and robustness tests and evaluate our methods on a number of real­world
scenarios.

Keywords: Structure from motion, Parallel cylinders, Minimal Solvers, Sampson approximation

1 Introduction

Structure from motion (SfM) and simultaneous localization and mapping (SLAM) pipelines
have a long history, and there exist several real­time systems for 3D reconstruction, e.g.
[31, 43, 44]. These are often based on sparse point features extracted from images [27, 41].
Such systems are made possible by a long history of research results on the multi­view geom­
etry of points, epipolar geometry, trifocal tensors, RANSAC, bundle adjustment, rotation
averaging, etc. Sparse point features are efficient in terms of matching, tracking and opti­
mization. However, there exists a number of limitations with such representations. Firstly,
they carry little semantic information. Further processing of the scene, as extracting and
recognizing objects, requires running additional algorithms. Secondly, sparse features are
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Figure 1: Multi-view geometry of parallel cylinders. Left: Each camera observes a set of parallel cylinders. Since the cylinders
are parallel in 3D, the images can be rectified such that each projected cylinder is parallel in the image. Right: In the
rectified coordinate system we cannot observe the translation of the camera along the cylinders (the z-axis). We can
consider the remaining problem in 2D (the xy-plane).

not very stable over time, neither on a small, nor on a large time scale. If we want to return
to a scene and use the previously created 3D reconstruction for localization or matching
it can be difficult to match old features to new, due to changes in the scene environment
such as lighting, season or weather condition [42]. Thirdly, sparse point features carry little
geometric information. This motivates the use of additional features that inherently carry
more semantic and geometric information about the scene. In many man­made environ­
ments, other geometric primitives can be used to describe the 3D geometry, e.g. planes,
lines and conics [3, 4, 20, 37]. There has also been an increased interest in richer point
features, for example, point plus scale or point plus directions [8, 23, 40].

In this paper we study structure from motion problems for parallel cylinders. Such cylinders
appear in both natural (trees in a forest) or man­made (light­poles, fences, pillars) environ­
ments. Assuming that the cylinders are parallel makes it possible to reduce the problem
from the case of 3D­to­2D­projections to the case of 2D­to­1D­projections. The parallel
structures can be used to rectify the images, see Figure 1 (left). After rectification, the z­
coordinates of both scene points and cameras are irrelevant and the problem reduces to a
2D­to­1D­projection problem, see Figure 1 (right). Traditionally, only the center lines of
the parallel cylinders have been used for these kinds of problems. There is a relatively rich
understanding of the geometry of the 2D­to­1D­projection case, for example [2, 33–35].
This paper can be viewed as an extension of such problems.

Related Work

Concerning geometric algorithms for conics, in [26] the authors introduce a method for
estimating relative pose for objects that are rotationally symmetric. The methods are iter­
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ative and do not handle pose or SfM for multiple objects. Bundle adjustment for points
has been extensively covered in many publications, see e.g. [46]. For lines and conics it is
not as straightforward to define and use an appropriate and statistically sound error model.
This problem has, however, been studied e.g. in [7, 18]. Pose of conics and quadrics has
been studied for example in [10, 16, 28]. In [21, 38] it is shown that each projection of a
conic or silhouette of a quadric provides two constraints for the two­view relative orienta­
tion problem. This is essentially the epipolar tangency constraint used in SfM for general
silhouettes [5, 6]. For planar conics and circles there are several results on pose, homog­
raphy estimation and relative pose, e.g. in [11, 12, 22, 29, 30]. Robust triangulation was
investigated in [17]. The paper that is closest to our work is [32], in which the authors
present a series of algorithms for pose, 3D reconstruction and structure from motion from
cylinders. However, these algorithms do not work with minimal data and there are no
robust estimation algorithms.

While line detections from cylinder outlines are assumed to be given in this paper, there
are a number of relevant methods that may be used to automatically retrieve line segments
from an image. Fast gradient based methods like LSD [14] and EDlines [1] are typically
outperformed by neural network based methods. Many of these are trained on wireframe
parsing datasets [9, 19, 50] consisting of connected line segments. Some methods like L­
CNN [51], HAWP [49], SOLD2 [36] and SRW­Net [13] have multi­step pipelines which
detects line segment endpoints and lines separately to later form a connected wireframe
by matching. Others like AFM [48], M­LSD [15] and LETR [47] predict line segments
directly.

Main Contribution

In this work we show how the structure from motion problem for multiple views of multiple
parallel cylinders simplifies to the problem of 1D­views of circles in the plane. We com­
pletely characterize the two­view geometry, introduce matching tensors for both two­view
relative motion and for two­circle relative structure and show that there is an interesting
duality between pairs of cameras and pairs of circles. Furthermore, we derive fast mini­
mal solvers and fast over­determined methods based on the Sampson approximation of the
bundle adjustment errors and test our solvers in a structure from motion system and study
how our methods work on both synthetic and real data.

2 Cylinder Geometry

We will now investigate which relative pose problems from images of conics that might
be interesting and solvable. In order to do this we can study how many excess constraints
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Table 1: The table shows different minimal relative pose problems. Many of these examples are both difficult to solve and not
of so much practical use. In this paper we concentrate on the tractable minimal case in the last row.

Object type Constraints Object DoF #Cameras #Objects

Quadrics 9 5 2 5
Elliptic cylinders 4 7 2 5
Parallel Elliptic Cylinders 2 5 3 5
Parallel Circular Cylinders 2 3 2 2

E such problems have, i.e. the number of constraints minus the number of unknown
variables. For a given problem we typically have

E = Amn− (Bm + Cn−D), (1)

where m denotes the number of images and n the number of objects and A,B, C and D
denotes the degrees of freedom of the image object, camera, world object and coordinate
system, respectively. In Table 1 the possible minimal cases are listed, i.e. where E = 0.
Many of these cases are both very difficult to solve and have limited practical use. Therefore
we will in the remainder of this paper concentrate on the most interesting and tractable case,
namely parallel cylinders, as illustrated in Figure 1.

We can without loss of generality assume that the cylinders are parallel to the world z­
axis. The first step is to detect the silhouette lines of the cylinders, using e.g. [13, 36, 49,
51]. Assuming calibrated cameras it is relatively straightforward to robustly estimate the
joint intersection point ui of the lines in each image i. This point will be the projection
of the point at infinity, at which the parallel lines in 3D meet. After applying an image
homography Ri to each image, so that ui maps to Riui = [0 1 0], all image lines will be
parallel to the y­direction in the image plane, see Figure 1. This means that the problem
can be formulated as a 2D problem of circles (in the xy−plane) projected into a reduced
camera. In each reduced camera there are three degrees of freedom remaining, the camera
center (x, y) in the xy−plane, and a single rotation (with angle θ) around the z­axis. Thus,
for each image the camera can be parameterized using three parameters. Furthermore, in
this case, the cylinders are circles in the xy­plane, and these can be parameterized using three
parameters as well, the center point (u, v) and the radius r. For each cylinder, we observe
its silhouette in the image. An illustration of this from above can be seen in Figure 2. In
the xy­plane we use θ to denote the camera direction with respect to the coordinate system.
The silhouette—seen from the camera at (x, y)—will now correspond to the angles to the
left and right tangent point of the circle c = (u, v, r), relative to the camera direction. This
projection can be represented with two angles; first the angle α from the camera center to
the center of the circle relative to the camera orientation, and second the angular half­width
β of the image of the circle. To project a circle c = (u, v, r) into a camera p = (x, y, θ) we
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Figure 2: The figure shows the image (angles α, β) of a circle (u, v, r) as seen from a camera (x, y, θ). The tangents to the circle
from the point (x, y) form angles (α + β), (α − β) to the viewing angle θ. The depth d, the radius r and angle β
are related through d sin(β) = r.

compute

α(p, c) = atan2(u− x, v− y)− θ, (2)

β(p, c) = asin
( r

d

)
, (3)

where d =
√
(u− x)2 + (v− y)2 is the distance between the circle center and the camera

center. Note that α(p, c) does not depend on the radius r, and similarly β(p, c) does not
depend on the camera orientation θ.

It is possible to find the circle structure and the motion of the cameras using only one
type of measurements. If αij is used the problem is essentially an ordinary structure from
motion problem of 2D points projected to a 1D retina which has been studied in several
papers, for example [3, 39]. The minimal problems are three views of five points—which
has two solutions—and four views of four points—which also has two solutions [2]. The
problem of retaining the structure and motion using only the measurements βij is less well
studied. Given measurements of β it is possible to calculate the distances dij between all
circle centers and all camera centers. These expressions also involve the unknown radii.
If the radii were all known this would be the node calibration problem for time­of­arrival
measurements, which has been studied extensively, e.g. in [24]. The minimal problems are
three views of three points, which has eight solutions, [45]. However since the radii are
also unknown, it is possible to use more measurements to first calculate the radii and then
solve the time­of­arrival problem.

In this paper we study different aspects of the structure from motion problem when we
have both types of measurements mentioned above. In other words, we study the problem
of determining both structure c1, . . . , cn and motion p1, . . . , pm from the image measure­
ments (ᾱij, β̄ij), i = 1, . . . ,m, j = 1, . . . , n. Often some image measurements are missing,
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so we introduce the index set I of (i, j) if cylinder j is visible in image i. In the end we seek
the solution to an optimization problem (bundle adjustment)

min
p,c

∑
(i,j)∈I

L
(
α(pi, cj)− ᾱij

σαij

)
+
∑

(i,j)∈I

L

(
β(pi, cj)− β̄ij

σβij

)
, (4)

where σ denotes estimated standard deviations of measurements. Here we use the squared
loss L(z) = z2, but it is possible to use L1 loss, truncated L2 or L1 or any other robust loss.

3 The Multi­View Geometry of Parallel Cylinders

One approach to solve the structure from motion problem is to formulate the problem as
a system of polynomial equations. We can then use an existing automatic solver generator
[25] to generate a solver for these equations. Our original system of equations (2) and (3)
can be reformulated using the addition rule of tangents, and the change of variables

si = tan(θi), (5)

to get {
(uj − xi)(tanαij + si)− (vj − yi)(1− tanαijsi) = 0,
sin2(βij)((uj − xi)

2 + (vj − yi)
2)− r2j = 0,

(6)

with variables {x1, x2, y1, y2, s1, s2, u1, u2, v1, v2, r1, r2}. This is a system of eight polyno­
mial equations in twelve unknowns, of which four can be fixed by a suitable choice of
coordinate system. An efficient solver can be produced using the system [25], that gives at
most eight (possibly complex) solutions. However, as will be explained in the next sections,
interesting alternative solvers can be constructed using a relative motion and/or relative
structure tensor, also these will avoid some symmetries in the solution structure.

3.1 The Relative Motion Tensor T

The fundamental matrix encodes the epipolar geometry of two 3D­to­2D perspective cam­
eras. The matrix provides constraints on which measurements are consistent with the par­
ticular camera configuration. In this section we derive the analogous matching tensor for
the particular 2D­to­1D setting that we consider. This new tensor encodes the relative po­
sition of two cameras and yields a constraint on each cylinder correspondence, similar to
the epipolar constraint.

The relative motion of two cameras can be characterized by two angles, θ1 of the first camera
and θ2 of the second camera. This relative motion can be understood as normalizing the
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Figure 3: Left: The relative motion tensor T describing the constraint from a circle-correspondence in two-views. Right: The
relative structure tensor S describing the constraint between two circles observed in one view.

coordinate system by placing the first camera in (0, 0) and the second in (1, 0). Note that
we can w.l.o.g. assume the baseline between the cameras to be of unit length since the scale
is not observable.

One circle c seen in these two images gives four measurements: (α1•, β1•) from the first
camera and (α2•, β2•) from the second camera, where the subscript dot index indicates that
the angle is w.r.t. some circle.

Theorem 8.1. Two views (α1•, β1•, α2•, β2•) of one circle is only consistent with a relative
motion (θ1, θ2) if 

cos(α1•) sin(β2•)
sin(α1•) sin(β2•)
− cos(α2•) sin(β1•)
− sin(α2•) sin(β1•)


T 

sin(θ1)
cos(θ1)
sin(θ2)
cos(θ2)

 = 0. (7)

Proof. Consider two cameras with relative motion (θ1, θ2) and measurements (α1•, β1•, α2•, β2•)
as illustrated in Figure 3 (left). If the measurements are consistent with a circle with pa­
rameters (u, v, r), then consider the triangle of the two camera centers and the circle center.
Using the law of sines we have that

sin(θ1 + α1•)

d2•
=

sin(θ2 + α2•)

d1•
. (8)

From (3) we get d1• =
r

sinβ1•
and d2• =

r
sinβ2•

. Inserting this into (8) gives

sin(θ1 + α1•) sin(β2•)

r
=

sin(θ2 + α2•) sin(β1•)

r
, (9)

or sin(θ1 + α1•) sin(β2•)− sin(θ2 + α2•) sin(β1•) = 0, which can be rewritten as

sin(θ1) cos(α1•) sin(β2•) + cos(θ1) sin(α1•) sin(β2•)−
sin(θ2) cos(α2•) sin(β1•)− cos(θ2) sin(α2•) sin(β1•) = 0,

(10)
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which is the same as (7), hence, this concludes the proof. □

We will call

T (θ1, θ2) =


sin(θ1)
cos(θ1)
sin(θ2)
cos(θ2)

 ∈ P3 (11)

the relative motion tensor. It is a projective entity that has one non­linear homogeneous
constraint

T 2
1 + T 2

2 = T 2
3 + T 2

4 , (12)

where subscript index denotes the element number. This can be rewritten as T TDT = 0
for a suitable matrix D. When extracting θ1 and θ2 from the vector it might be natural to
choose the scale of the vector so that |T | = 2, since then T 2

1 +T 2
2 = 1 and T 2

3 +T 2
4 = 1.

Minimal Solver Using Relative Motion Tensor

Theorem 8.1 can be used to estimate the relative motion of two cameras using two views
of two circles by first forming the matrix

M =

[
cos(α11) sin(β21) sin(α11) sin(β21) − cos(α21) sin(β11) − sin(α21) sin(β11)
cos(α12) sin(β22) sin(α12) sin(β22) − cos(α22) sin(β12) − sin(α22) sin(β12)

]
.

(13)

We know that the relative motion tensor should be orthogonal to the rows in M, i.e. that
MT = 0. Using singular value decomposition of M we can parameterize all vectors or­
thogonal to the rows of M as

T (z) = B1z1 + B2z2 = Bz, (14)

where B is the basis of the null space. Inserting this into the quadratic constraint T TDT
gives a homogeneous second degree equation

T TDT = (Bz)TDBz = zTBTDBz = zTAz = 0, (15)

in z. Equation (15) is a quadratic function in one projective variable, z ∈ P1.

For each of the two solutions of z, we can backtrack, i.e. first calculate the corresponding
relative motion vector, from that obtain the camera angles

θ1 = atan2(T1, T2), θ2 = atan2(T3, T4), (16)

and finally, compute the circles.

142



3. The Multi­View Geometry of Parallel Cylinders

3.2 The Relative Structure Tensor S

In the previous section we derived a constraint on a single cylinder observed in two cam­
eras. Interestingly, there is a symmetric variant of this problem, where we instead consider
one camera observing two cylinders. In this case it is possible to derive an analogous con­
straint, however this time on the radii and distance between the two cylinders. Again this
is formulated in terms of a matching tensor, which similarly to the relative motion tensor
T , can be used to formulate a fast minimal solver.

The relative structure of two circles can be characterized by the radius r1 of the first circle,
the radius r2 of the second circle, and the distance L between the two circles. Since the
scale is a gauge freedom, the vector (r1, r2, L) can be scaled arbitrarily. One view, p, of
this circle­pair gives four measurements: (α•1, β•1) to the first circle and (α•2, β•2) to the
second circle, subscript dot is now denoting an arbitrary camera.

Theorem8.2. One view (α•1, β•1, α•2, β•2) is only consistent with a two­circle­configuration
with relative structure (r1, r2, L) if

[
1 −1

sin2(β•1)
−1

sin2(β•2)

2 cos(α•2−α•1)
sin(β•1) sin(β•2)

]
L2

r21
r22

r1r2

 = 0. (17)

Proof. The geometric situation is illustrated in Figure 3 (right). We will use the law of
cosines on the triangle formed by the camera center and the centers of the two circles. This
gives

L2 = d2
•1 + d2

•2 − 2d•1d•2 cos(α•2 − α•1). (18)

From (3) we get d•1 = r1
sinβ•1

and d•2 = r2
sinβ•2

. Inserting this in (18) gives

L2 − r21
1

sin2 β•1
− r22

1
sin2 β•2

+ r1r2
2 cos(α•2 − α•1)

sinβ•1 sinβ•2
= 0, (19)

which is what we get from the matrix multiplication in Equation (8.2). This concludes the
proof. □

We will call

S(r1, r2, L) =


L2

r21
r22

r1r2

 ∈ P3 (20)
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the relative structure tensor. It is a projective entity that has one quadratic homogeneous
constraint

S2S3 − S2
4 = 0. (21)

where again subscript index denotes the element number. This can be rewritten as STCS =
0 for a suitable matrix C. Notice that for real two­circle configurations, we would normally
assume that r1 > 0, r2 > 0, and L > 0, which means that we would have all elements of
S positive.

Minimal Solver Using Relative Structure Tensor

Theorem 8.2 can be used to estimate the relative structure of two circles using two views of
two circles by simply forming the matrix

M =

[
1 −1

sin2(β11)
−1

sin2(β12)

2 cos(α12−α11)
sin(β11) sin(β12)

1 −1
sin2(β21)

−1
sin2(β22)

2 cos(α22−α21)
sin(β21) sin(β22)

]
. (22)

Similar to before, the relative structure tensor should be orthogonal to M, giving the equa­
tion MS = 0. This is solved analogously to the relative motion tensor problem presented
in Equations (13)­(16).

4 Circle­Based Structure from Motion in 2D

In this section we present a framework for reconstructing both cameras and parallel cylin­
ders. One of the difficult parts of a structure from motion estimation problem is that of
identifying inliers in the feature detections, finding correspondences, and obtaining an ini­
tial estimate of the parameters. We use our proposed solvers in a RANSAC bootstrapping
framework to find initial estimates of the structure and motions, and at the same time we
estimate the inlier set.

Non­Minimal Estimators

The relative motion and relative structure tensors can be used to estimate structure and
motion for the minimal cases as shown in Sections 3.1 and 3.2. They can also be used for
fast estimation of structure from motion in the over­determined case. This works similar
for both types of tensors, but we exemplify this with the relative motion tensor.

The relative motion tensor constraint can be used to linearly estimate T using n ≥ 3
cylinders seen in two views by adding rows to the matrix M in (13) and finding the vector
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T that minimize |MT | under the constraint |T | = 1. This is done using singular value
decomposition. From this it is again possible to calculate (θ1, θ2) and then finally calculate
the cylinders. One advantage of estimating relative motion by minimizing the sum of the
square of the residuals MT is that M only depends on image data and can be computed
once and reused during the optimization. Another advantage is that T encodes relative
motion, but the scene structure of the circles is not needed.

Sampson Approximation

The estimate from the previous section, is based on minimizing an algebraic error |MT |,
which is different from the bundle adjustment error (4) and thus, although fast, the result is
sub­optimal. A better approximation to the bundle adjustment estimate can be obtained by
considering the problem of adjusting the image data as little as possible so that the modified
data matrix M̃ solves M̃T = 0. This would solve the bundle adjustment problem, i.e.
minimizing (4). If the residuals MT are small, we can approximate the closest distance
to the manifold M̃T = 0. For each residual this distance is approximated by |MiT |

|∇MiT | .
Thus by weighting row Mi with the weight wi = 1

|∇MiT | a better approximation to the
bundle adjustment estimate can be obtained. The smaller the residuals are, the better the
approximation is. The approximation is, however, only valid for relative motion tensors on
the manifold T TDT = 0.

Extending to a Complete Structure from Motion Pipeline

Using the tools from this paper it is possible to design structure from motion estimation
systems for the general case of m views of n cylinders in the presence of noise, outliers
and missing data. We have experimented with several variants, e.g. (i) primal method ­
pairwise estimation of relative motion followed by rotation and then translation averaging;
(ii) dual method ­ pairwise estimation of relative structure, followed by radius averaging
and multi­dimensional scaling; and (iii) incremental method ­ incremental robust structure
from motion, starting with two­view RANSAC, followed by extensions to more views and
cylinders through robust pose and robust triangulation. All these approaches allow for final
adjustment of the parameters through non­linear optimization, see (4), often referred to as
bundle adjustment.

5 Experimental Validation

In the following sections we experimentally evaluate the proposed solvers. In Section 5.1 we
study both the numerical stability of the solvers and also the noise sensitivity of the problem.
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Figure 4: Left: Numerical stability of solvers. Runtimes of Matlab solvers given in legend. Right: Stability of the problem with
respect to noise.

Finally, in Section 5.2, we show a series of experiments where we apply the method to real
data.

5.1 Simulated Data

We evaluate the numerical stability of the solvers by studying how large reprojection errors
we get when the solver is applied to a problem without any noise. In Figure 4 (left) a
histogram of these reprojection errors is shown, for each of our three proposed solvers from
Section 3. The first one is using the relative motion tensor and the second one is using the
relative structure tensor. The third one is auto generated using [25] with eight equations
(6) and eight unknowns. All three solvers are fast and provide solutions with small errors.
Of the three the one based on relative motion is best in terms of speed and accuracy. In the
right part of Figure 4 we show how sensitive the problem is to measurement noise. This
was done by simulating a large number of problems consisting of two cameras observing
two circles. We then solved for the camera viewing directions. The median error in this
viewing direction was then plotted against the standard deviation of the normal distributed
noise added to the α and β measurements. The graph shows that the estimated viewing
directions have roughly 50 times larger median errors compared to the noise of the input
data. The randomly generated problems were created by setting the two camera centers at
(−5, 0) and (5, 0) and the cameras viewing direction were sampled uniformly from the
interval (π/4, 3π/4). Then the two circles’ x­coordinates, y­coordinates and radii were
sampled uniformly from (−20, 20), (5, 15) and (0.2, 0.7) respectively.
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Figure 5: Left: two images with reprojected cylinder silhouettes, using the estimated solution. Right: the reconstruction reg-
istered to an top view. Also shown are the back-projected left and right silhouette lines in cyan and red. Note that
there are no apparent image point correspondences in the two input images.

5.2 Real Data

Fountain Experiments

In Figure 5 (left) two images of a fountain scene are shown. We extracted silhouette lines
manually (13 and 11 respectively). The images were then rectified, using the focal length
from the EXIF­data of the images. We do not assume any known correspondences in this
experiment. Note also that due to the extreme change in viewpoint, there are actually no
point correspondences available, so a standard SfM pipeline such as e.g. COLMAP[43]
will fail. We ran our relative motion solver, sampling exhaustively all combinations of two­
cylinder correspondences. For each solution we checked how many inlier measurements
we got in total, with the constraint that each cylinder can match at most one cylinder in
the other image. This constraint was enforced by solving an assignment problem optimally
for each solution. The resulting reconstruction is shown in Figure 5 (right), overlaid on
a top­view aerial image of the scene. The lines to the left in the input images are the
reprojected lines from the estimated solution. Since the cylinder widths are quite small
with respect to the depths, and since we do not have any tentative correspondences, there
are a number of possible (false) correspondences that give small reprojection errors. In the
final reconstruction two cylinders (marked in red) have wrong correspondences, however,
the camera estimates are reasonable.
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Figure 6: The forest reconstruction from a top view. The green circles are the ground truth trees position, the red arrows are
the ground truth camera position and the blue circles and arrows are the solutions given by our system.

Forest Experiments

In this experiment we show how the solvers handle real data of approximately parallel cylin­
ders, given from trees in a forest. The ground truth cameras and cylinder models were
provided by a dedicated SLAM system. This system only detects a fraction of the trees so
in addition to the trees not being perfect cylinders the lack of tracked cylinders constitutes
an additional difficulty for our solvers. The cylinder lines were computed from manually
labeled trunk silhouettes in ten images. Using our incremental SfM system, explained in
Section 4, we estimate the trees and the cameras. The results are shown in Figure 6, where
the trees are shown as circles and the cameras as arrows. The estimated cameras and trees
are displayed in blue, while ground truth is plotted in red and green, respectively. From
experience we know that the ground truth cameras in this dataset are much more reliable
than the ground truth tree positions and therefore we evaluate this experiment only on the
cameras. In this case the mean error for the translation of the cameras is 0.1228 m and the
mean error for the rotation of the cameras is 1.3452 degrees. In Figure 7 (top) the recon­
struction of a pair of cameras is shown together with one frame with the detected cylinders
marked. Overall, considering that the trees are only approximately parallel cylinders, the
results look very good.

Column Experiment

In this experiment, we will test the dual approach of first estimating a set of cylinders. In
this often occurring use­case, we have a fixed structure of a set of cylinders—the columns
of a building—as depicted in the bottom of Figure 7. We (manually) extract the silhouette
lines in a number of images. Since the structure is fixed, and part of the building, the order
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Figure 7: Qualitative reconstructions for the Forest (top) and Column (bottom) datasets.

will be the same in all images. This means that the correspondence problem of the cylinders
across images is solved. We sample all six possible pairs of cylinders, and use the relative
structure solver to estimate the cylinder geometry, using RANSAC over the 23 images for
each pair. From the pairwise estimated cylinders we solve for a global estimate in a least
squares sense. The camera poses are then linearly estimated followed by bundle adjust­
ment over all cylinders and camera poses. We have also compared with a reconstruction
using COLMAP. At the bottom of Figure 7 the reconstruction is shown, for two different
viewpoints, with the estimated poses from COLMAP in blue. We have registered our re­
construction (setting the height to zero in all camera poses), and the results are also shown
in the figure (with the estimated poses in black).

6 Conclusion

We have provided theory for the minimal structure from motion problem of two paral­
lel cylinders in two views. We studied this both as a two­view relative motion and as a
two­circle relative structure problem, using relative motion and structure tensors which,
respectively, describe constraints for these 2D­to­1D mappings in a similar way as the fun­
damental matrix does for two 3D­to­2D cameras. We developed several minimal solvers
and suggest how these can be used in a complete structure from motion pipeline and how
to optimize the found solutions in real settings with noise and outlier measurements. These
methods were evaluated, both on synthetic and real data. The variety of experiments con­
ducted show both robustness of our solvers but also their potential in a system setting.
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Previous solvers and algorithms that solve similar problems demand more data points in
each observation, and—to the best of our knowledge—there are no similar solvers to com­
pare with ours.
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Efficient Merging of Maps and Detection of Changes
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Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract: With the advent of cheap sensors and computing capabilities as well as
better algorithms it is now possible to do structure from motion using crowd sourced
data. Individual estimates of a map can be obtained using structure from motion
(SfM) or simultaneous localization and mapping (SLAM) using e.g. images, sound
or radio. However the problem of map merging as used for collaborative SLAM needs
further attention. In this paper we study the basic principles behind map merging
and collaborative SLAM. We develop a method for merging maps – based on a small
memory footprint representation of individual maps – in a way that is computation­
ally efficient. We also demonstrate how the same framework can be used to detect
changes in the map. This makes it possible to remove inconsistent parts before merg­
ing the maps. The methods are tested on both simulated and real data, using both
sensor data from radio sensors and from cameras.

Keywords: Map Merging, Change Detection, Collaborative SLAM, Structure from
Motion

1 Introduction

Structure from motion [5], is the problem of estimating the parameters of a map and of
sensor motion using only sensor data. The map is typically a set of 2D or 3D points each
consisting of a position and a feature vector. Assuming that feature errors are zero­mean
Gaussian, the maximum likelihood estimate is that of minimising the sum of squares of the
residuals. Within the field of computer vision this process is denoted bundle adjustment,
where bundle refers to the bundle of light rays connecting each camera with each 3D point.
For an overview of the literature and theory, see [13].

These optimization techniques are applicable not only to vision, but also to other types
of sensors, such as audio, [9, 14] and radio [1]. With the advent of cheaper sensors and
computing capabilities as well as better algorithms, it is now possible to gather and use
much larger datasets. Instead of mapping a city every 5 years using special measurement
cars or aerial photography, it is in principle possible for every car to add to the map of
cities as they drive through them. Thus there is an additional need for research on map
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SfM SfM SfM SfM SfM

Merge

Figure 1: Structure from motion (SfM) is used to estimate a 3D map of scene features using images (or other sensors). In this
paper we study the problem of detecting changes and merging maps, given multiple maps estimated by SfM from
datasets collected at different occasions.

merging, including the problem of determining what has changed in a map. In this paper
we study the basic principles behind map merging and collaborative SLAM. A straight­
forward method to merge several individual maps is to take all measurements into account
simultaneously. However, non­linear optimization using all data can be prohibitively slow.
We will study how a small memory footprint representation of a map can be generated and
used to merge maps in a way that is computationally efficient, while still retaining most of
the information from each individual bundle adjustment. We also demonstrate how the
same framework can be used to detect changes in the map. This makes it possible to remove
changing parts before merging the stationary parts of the map. The idea is demonstrated
in Figure 1.

The idea of approximating the result from parts of the data has previously been used in
the rotation averaging literature, cf. [2]. These approximate methods can give satisfactory
results at a much increased speed. Another example of this idea is the approach of Global
Epipolar Adjustment [12], in which a simplified error metric is based on the linear epipolar
constraints for image pairs. Another approach is incremental light bundle adjustment,
iLBA, [6] in which an error metric based on a combination of epipolar constraints and a
variant of the trifocal constraint is used.

The main contributions of this paper are a novel method for computationally efficient
merging of individual maps obtained from bundle adjustment, utilizing a compact rep­
resentation of the Jacobian matrix, and a change detection method based on a statistical
analysis of the residuals.
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2 The Separate Bundles ­ for TOA and Images

Before different maps are merged, the individual map estimates have to be created. In this
section we present some of the notations used to understand how the raw data relates to
the quality of the map estimates.

For the case of time of arrival (TOA) measurements the feature map consists of a number
of receiver positions. Initially, TOA measures between m receivers at positions xi ∈ R3

and n sender positions yj ∈ R3 are given. For each sender­receiver pair this measure can
be translated into a distance estimate dij = |xi− yj|+ εij, where 1 ≤ i ≤ m and 1 ≤ j ≤ n
and where | · | denotes the Euclidean norm of a vector inR3. The measurements errors εij
are assumed to be independent, Gaussian with mean zero and standard deviation σ.

The final map estimate for a TOA or structure from motion system is usually obtained by
non­linear least squares minimization over inlier measurements; this process is referred to as
bundle adjustment in computer vision. Here, a few key components from the optimization
are presented.

For the TOA data, let r denote the measurements residuals,

r =
[
r11 . . . r1n r21 . . . r2n rm1 . . . rmn

]T
, rij = dij − |xi − yj| , (1)

and denote the parameters of interest, which are optimized, by z. This would typically be
the receiver and the sender positions,

z = (x1, x2, . . . xm, y1, . . . yn) . (2)

The computer vision case is analogous. Denoting the camera matrices Pi and the 3D points
Uj, each image point uij gives a residual rij. The residual vector r is found by stacking all
image feature residuals rij and the parameters are collected in a parameter vector

z = (P1, P2, . . . Pm, U1, . . . Un) . (3)

The maximum likelihood estimate of z is found by minimizing the sum of the squares of
the residuals, i.e.

z∗ = argminzr
Tr , (4)

which gives the optimal parameter update

∆z = −(JTJ)−1JTr . (5)

For more details on the optimization, see [13]. For the analysis, the estimate of the matrix
J (the Jacobian) is containing the derivatives of the residuals with respect to the parameters
is of interest, i.e. r with respect to z, further on denoted ∂r/∂z.
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The map points can only be estimated up to a choice of coordinate system. For simplicity
we will in the TOA case normalize the coordinate system so that the first receiver is placed in
the origin, the second along the x­axis, the third in the xy­plane and so forth. By removing
this gauge freedom with dimension ϕwe see that the effective number of degrees of freedom
in the problem is ddof = (m+n)ρ−ϕ, where ρ denotes the dimension. For TOA problems
in 3D we have ρ = 3 and ϕ = 6. The effective degrees of freedom for the computer vision
case becomes ddof = (6m+3n)−ϕ, with gauge freedom ϕ = 7 since we are free to choose
position, orientation and scale of the coordinate system.

3 Merging Separate Maps

Once the N separate maps are obtained they can be merged to get a single more accurate
map. We have investigated three different ways to do this.

3.1 The Full Bundle

One way to add the maps is do one large bundle where all the individual measurements
are used simultaneously. Merging all maps through a large bundle is a good way to get an
accurate map. However, the method is time consuming and if a new measurement is made
after the original merge, the whole map has to be re­bundled. In that sense, there is no way
to add new information to the existing, which makes this method unsuitable for online
applications.

3.2 The Kalman Filter

A traditional method designed to update parameters gradually is the Kalman filter [8]. The
algorithm for the Kalman filter looks as follows:

Priori estimate update:
x1 = A · x0 (6)

P1 = A · P0 · AT + Q (7)

Measurement update:

K = P1 ·HT · (H · P1 ·HT + R)−1 (8)
x2 = x1 + K · (u−H · x1) (9)
P2 = (I− K ·H) · P1 . (10)

Then, H · x2 is the new state prediction, and x2 and P2 are the new estimates replacing x0
and P0 for the next iteration. In our case x0 will be the receivers from the first measurement
occasion, x0 = q(1) (superscript denoting measurement occasion), while the observation
u will be the receiver values from the following N − 1 measurements s.t. uk−1 = q(k),
2 ≤ k ≤ N. Both the update matrix and the observation matrix are identity matrices,
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A = I, H = I and the covariance of the random excitation is set to Q = 0.1 · I. Finally, P0
and R are measurement uncertainties, P0 = C[∆q(1)] and Rk−1 = C[∆q(k)], 2 ≤ k ≤ N.
The covariance C[∆q] can be extracted from the covariance of ∆z from Equation (5). This
is given by

C[∆z] = (JTJ)−1JT ·E[rTr] · J(JTJ)−1 = σ2(JTJ)−1 . (11)

The covariance of the map, C[∆q], can be retrieved by picking the rows and columns in
C[∆z] that correspond to q and the variance of r can be approximated by [7, p. 148]

σ2 ≈ 1
m · n− ddof

· rTr =
1

m · n− ddof
·

m·n∑
i=1

r 2
i . (12)

The Kalman filter is a computationally cheap method. However, it is not as accurate as the
full bundle. Also, the parameters need to be tuned for the specific problem and it is not
evident either how to detect and handle changes in the map.

3.3 The Linearized Method

The idea of this method is that the optimal residuals from the separate bundles can be
linearized – such that all that needs to be saved is a small memory footprint representation
– to avoid the large bundles. Having the optimal residuals r(k) and the optimal Jacobians
J (k) from each run k, the residuals can be linearized using a first order Taylor approximation.
A key idea here is to divide the unknown parameters in z into two parts q and s, where q
are the parameters that exist in several SLAM sessions. The parameters s can be thought
of as auxillary paramters, e.g. those that are relevant only for one specific bundle session.
In the time­of­arrival case, some of the 3D anchors might be constant over several SLAM
sessions whereas the measurement points and some of the anchors might be different. For
vision based structure from motion, some of the 3D points are the same (these go into q)
whereas the rest of the points and camera matrices go into s.

The Compressed Residual

First, the Jacobian is divided into two blocks

J =
[
Ja Jb

]
, (13)

where Ja contains the columns that correspond to the main parameters q and Jb contains
the columns corresponding to the auxiliary parameters s. The squared Jacobian is

JTJ =
[
JTa
JTb

]
·
[
Ja Jb

]
=

[
JTa Ja JTa Jb
JTb Ja JTb Jb

]
=

[
U W

WT V

]
. (14)
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Furthermore, if we insert this in the equation for the optimal update from (5) we get

∆z =

[
∆q
∆s

]
= −(JTJ)−1JTr ⇔

[
U W

WT V

] [
∆q
∆s

]
= −JTr . (15)

The product−JTr is zero in an optimal point and so the second row provides a connection
between q and s. This gives a linear constraint on how to adjust the auxiliary parameters s
when the main parameters q change. Thus the partial derivatives of s with respect to q is

WT∆q+ V∆s = 0 ⇔ ∆s = −V−1WT∆q ⇒ ∂s

∂q
= −V−1WT . (16)

We can use this together with the definition J = ∂r/∂z to find how the residuals change
if we change the receiver map

∆r =
[
Ja Jb

] [∆q
∆s

]
=

(
Ja + Jb ·

∂s

∂q

)
∆q . (17)

Thus, Ja + Jb ∂s
∂q will be the Jacobian for the map, further on denoted Jq.

Now, denote the residuals as a function of ∆q. A first order Taylor expansion gives

r(∆q) ≈ r|o + r′∆q|o∆q = r|o + Jq|o∆q . (18)

Here o denotes an optimal point and |o denotes evaluating an expression at the point o.
Then, the square of these residuals will be

rTr ≈ (r|o + Jq|o∆q)T(ro + Jq|o∆q) = r|Toro + 2r|To Jq|o∆q+ ∆qTJq|To Jq|o∆q . (19)

In a minimum point r|To Jq is zero. Furthermore, using the QR­decomposition of the Jaco­
bian we get

∆qTJTq Jq∆q = ∆qT(QR)TQR∆q = ∆qTRTQTQR∆q = ∆qTRTR∆q . (20)

Introducing the notation a = (r|Tor|o)1/2, the squared residuals from (19) can be written
shorter as

rTr ≈ a2 + ∆qTRTR∆q , (21)

and this is our compressed expression for the squared residuals.

TheMerge

Furthermore, this compressed expression can be used to add two separate maps. Assume
that we have the residuals for the two maps,(

r(i)
)T(

r(i)
)
=
(
a(i)
)2

+
(
∆q(i))T(R (i))TR (i)∆q(i) , i = 1, 2 . (22)
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Adding the two equations and writing ∆q(i) = q− q(i) for an arbitrary q gives
2∑

i=1

(
r(i)
)T(r(i)) = 2∑

i=1

(
a(i)
)2

+
(
∆q(i))T(R (i))TR (i)∆q(i) =

(
a(1)
)2

+
(
a(2)
)2

+

[
R (1)(q− q(1))
R (2)(q− q(2))]T [R (1)(q− q(1))

R (2)(q− q(2))] = (a(1))2 + (a(2))2 + r̂Tr̂ .

(23)

The terms (a(1))2 and (a(2))2 are fixed while the third term r̂Tr̂ can be minimized to
minimize the sum of the residuals. Introducing new notations M and b, r̂ can be written

r̂ =

[
R (1)(q− q(1))

R (2)(q− q(2))

]
=

[
R (1)

R (2)

]
q−

[
R (1)q(1)

R (2)q(2)

]
= Mq− b . (24)

To minimize r̂ and thus r̂Tr̂ is a least squares problem which can be solved using the pseudo
inverse. Denoting the merged map q∗ gives

q(∗) = (MTM)−1MTb . (25)

We can also compress the final result. Using that a general q can be written q = ∆q(∗) +
q(∗), the third term in (23) can be expressed

r̂Tr̂ =(Mq− b)T(Mq− b) =
(
Mq(∗) − b + M∆q(∗))T(Mq(∗) − b + M∆q(∗))

=
(
Mq(∗) − b

)T(Mq(∗) − b
)
+
(
∆q(∗))TMTM∆q(∗) ,

(26)

where the linear term vanishes due to orthogonality. Using this in Equation (23) gives(
r(∗)
)T
r(∗) =

(
a(1)
)2

+
(
a(2)
)2

+
(
Mq(∗) − b

)T(Mq(∗) − b
)
+
(
∆q(∗))TMTM∆q(∗) .

(27)
If M is QR­decomposed in a similar manner as Jq was in (20) this total result can be com­
pressed as (

r(∗)
)T
r(∗) =

(
a(∗)
)2

+
(
∆q(∗))T(R (∗))TR (∗)∆q(∗) , (28)

with R(∗) being the triangular matrix from the QR­decomposition of M and

a(∗) =
((

a(1)
)2

+
(
a(2)
)2

+
(
Mq(∗) − b

)T(Mq(∗) − b
)) 1

2
. (29)

By this, the representation of the final map is the same as in (21) and the merged map can be
treated as one of the original. Furthermore, more maps can be added using the algorithm
described above. Thus, to add maps, all we need to save from the separate bundles are
the maps q(i), the squared residuals a(i), and the triangular matrices R (i) from the QR­
decompositions of the Jacobians.

In some cases the linearized method is similar to the Kalman filter. However, several maps
can be added at once using the linearized model and it also allows for better control. We
will also show that this method can be developed to detect map changes.
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4 Detection of Changes

Once we know how to merge two or more maps we can also use this to detect whether
the map has changed between the measurement occasions. For this, assume that we have
two maps q(1) and q(2) and their merge q(∗). Furthermore, we have the norms of their
residuals, a(1), a(2) and a(∗). An approximation for the residual variance is derived in (12).
This can be used to find the estimated value of how the squared residuals change when we
add maps. Rearranging terms from (12), we get

E
[(

a(i)
)2]

=E
[(
r(i)
)T(

r(i)
)]

= σ2(mn− (nρ+ mρ− ϕ)) , i = 1, 2 (30)

E
[(

a(∗)
)2]

=E
[(
r(∗)
)T(

r(∗)
)]

= σ2(mn− (Nnρ+ mρ− ϕ)) , (31)

and subtracting these – in this case with N = 2 maps – gives

E
[(

a(∗)
)2 − (a(1))2 − (a(2))2] = σ2(N− 1)(mρ− ϕ) . (32)

If we use real data, σ is unknown, but it can be estimated from the separate bundles using
(12), s.t. σ̂2 = ((σ(1))2 + (σ(2))2)/2.

The values in (32) can be seen as a sum of (N− 1)(mρ−ϕ) Gaussian variables, and a sum
of 2ν independent Gaussian distributed variables with mean zero and standard deviation
σn has a Γ distribution with density [3, p. 47]

fα,ν(x) =
1

Γ(v)
ανxν−1e−αx , (33)

with α = 1/(2σ2
n) and Γ being the gamma function. This density will be denoted Γ(α, ν)

(two parameters). Furthermore, using ã = (a(1))2 + (a(2))2 − (a(∗))2 and γ = (N −
1)(mρ−ϕ) we get that ã ∼ Γ(1/(2σ2), γ/2). Thus, to know whether a map has changed
we can compare the estimated ã to the distribution. A reasonable choice is that if the
difference ã lies within the 99 percentile of Γ(1/(2σ2), γ/2) there has not been any change
in the map, but if ã is higher than this limit, a change has probably occured.

If a change between two maps is discovered, we further investigate those maps. By compar­
ing the positions for each map point, we say that if the distance between them is larger than
3σ̂ the map point has probably moved. This could also be used to decrease the variance
even further for the receivers that have not changed, by using information from all maps
for these receivers.

5 Experimental Validation

To validate the method suggested in this paper, experiments on simulated TOA data as
well as real ultra­wideband (UWB) data have been performed. We have also developed the
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Table 1: The results from the experiment explained in Section 5.1. The values come from a merge of two maps between which
no change has occured. These values are the mean of 10 similar runs.

n 10 100 1000 4000

Runtime [s]
Full bundle 2.3 · 10−2 0.19 3.8 54.7
Linearized 1.9 · 10−3 3.2 · 10−4 4.7 · 10−4 3.3 · 10−4

Kalman 2.4 · 10−3 2.1 · 10−4 2.2 · 10−4 2.1 · 10−4

|| |q(t) − q| ||
Full bundle 1.20 0.11 1.6 · 10−2 3.0 · 10−3

Linearized 1.34 0.11 1.6 · 10−2 3.0 · 10−3

Kalman 1.48 0.12 2.2 · 10−2 5.8 · 10−3

rTr
mn = a2

mn

Full bundle 0.11 0.12 0.13 0.13
Linearized 0.11 0.12 0.13 0.13

method to work for, and tried it on, 3D­reconstructions from image data.

5.1 Time of Arrival – Simulated Data

For each of the simulated experiments m receivers in 3D were generated from a uniform
distribution, q(t) ∼ U(0, 10), superscript (t) denoting the true value. We simulated N dif­
ferent measurement occasions with n sender positions s(t) ∼ U(0, 10) each and calculated
the mn sender­receiver distances. Gaussian noise with standard deviation σ was added to
achieve distance measurements. For each measure we performed a separate bundle to get
the N maps q(1), . . . ,q(N) and the compressed representation explained in Section 3.3 and
more specifically in (21).

Test of Time and Accuracy

For the first experiment m = 10, σn = 0.3, N = 2 and no change occured in the true
map. The experiments were run four times with n = 10, 100, 1000, 4000 respectively.
For each case, the merge was computed using the three methods presented in this paper and

the runtimes were measured. We computed the error norm
√∑m

i=1 |q
(t)
i − qi|2 and for

the full bundle and the linearized method, we also computed the squared distance residuals
per residual rTr/(mn) = a 2/(mn). The results can be seen in Table 1.

Even if the runtime is highly dependent on the implementations, the table gives a valid
comparison between the methods. The linearized method is almost as accurate as the full
bundle. Moreover, when only the sender positions increase, and thus also the number of
distances, the runtime for the linearized method and the Kalman filter do not increase
notably, while the runtime for the full bundle does. Hence, the linearized method is faster
than the full bundle and more accurate than the Kalman filter.
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Figure 2: The plots show histograms of the residuals ãfull (to the left) and ãlin (to the right) computed using the full bundle and
the linearized method respectively. The curve (–) shows the Γ distribution which we expect ã to belong to.

Validating the Detection Threshold

To validate the threshold for detection of changes described in Section 4, we tested the
distribution of ã empirically. Using m = 30, n = 200, N = 2 and σn = 0.5 the distances
were computed. The separate bundles as well as the merge using both the full bundle and
the linearized method were then conducted. For all of the different maps we computed the
compressed representations from (21). We then computed

ãfull =
(
a(1)
)2

+
(
a(2)
)2 − (a(∗)full

)2
, and ãlin =

(
a(1)
)2

+
(
a(2)
)2 − (a(∗)lin

)2
, (34)

where subscript index full and lin denotes the full bundle and the linearized method re­
spectively. This was re­made 2000 times with different noise. The total degrees of freedom
were γ = (N − 1)(m · ρ − ϕ) = 30 · 3 − 6 = 84. The results of ãfull and ãlin were then
plotted in a histogram together with a Γ(2, 42) distribution in Figure 2. The histograms
agree well with the gamma distribution in both cases; hence, this can be used to test the
significance.

Detection of Changed Maps

Furthermore, we did an experiment where the map actually had changed. This time we
used m = 10, n = 30, N = 3 and σn = 0.5. Four of the ten receivers moved before the
last measurement. After running the separate bundles and merging the maps both using a
full bundle and our linearized method we investigated the differences in the residuals. The
system had γ = 2 · (10 · 3− 6) = 48 degrees of freedom and thus ã should be such that
it could come from a Γ(1/(2σ̂2), 24) distribution if no changes has occured. Using the
estimated σ̂2 the 99­percentile of this was ã = 17.7. In this specific case, the results from
the merge gave ãfull = 603 and ãlin = 749 and this clearly showed that something had
changed. The results from the unsuccessful merge can be seen to the left in Figure 3. To
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5. Experimental Validation

Figure 3: An unsuccessful merge of map 1,2 and 3 (left) and a successful merge of map 1 and 2 (right). The stars (∗) show the
true receiver positions, the squares the results from full bundle (□) and the linearized method (□). In the right figure,
the points for which a change has been detected are (correctly) marked by a diamond (⋄,⋄).

the right in Figure 3 are the results from the merge between the first and second map, after
the system successfully had detected the change.

5.2 Time of Arrival – Real Data

To test our method N = 9 experiments were conducted using a Bitcraze Crazyflie quad­
copter and their Loco­positioning system which consists of m = 5 anchors with UWB
chips and a flying quadcopter with a mounted UWB chip, giving approximately n = 600
sender positions for each measurement. The five anchors were positioned around the room
and one of them was moved before the last three runs. The experiment was conducted in
a MOCAP studio to record the ground truth flightpath as well as the anchor positions.
Distance measurements from the quadcopter (sender) to all the anchors (receivers) were
measured at a frequency of 30 Hz.

The problem was solved as explained in previous sections, except that the threshold for ã
now was 10 times the 99 percentile for the Γ distribution. This threshold was used for
all real data experiments. In Figure 4 the results from the Kalman filter and the linearized
method are shown. While the dynamics of the Kalman filter makes the estimated receivers
end up further away from the true positions – on their way to the correct position – for some
of the measurements, the linearized method correctly detects when a change has occured.
Thereafter, only the similar maps are merged.

5.3 Images – Real Data

In this experiment, N = 5 sets of images were taken of an indoor scene, a bookshelf with
a number of toy models, as depicted in Figure 1. In between set 2 and 3 an R2D2 model
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Figure 4: Results from two of the maps from the experiments with UWB data. The stars (∗) show the true receiver positions, the
circles (◦) the results from the Kalman filter and the squares (□) from the linearized method. The change between the
maps has been correctly detected by the linearized method and changed receivers are marked with a diamond (⋄).

was moved, which we wanted to detect. As a first step we used a structure from motion
pipeline [11] to obtain a 3D reconstruction for each set. The points in this reconstruction
are the feature points in the map, corresponding to the receivers in the TOA experiments.

Unlike the TOA experiments, correspondence between 3D points in the different datasets
are not given. Prior to merging, we performed data association by SIFT [10] feature match­
ing and geometric alignment in a RANSAC [4] framework. After this the maps were also
in the same coordinate system, which is required for the linearized method and speeds up
the full bundling method.

Using the same method as in Section 5.2 – with detection based on a Γ distribution and the
feature point distances – the algorithm detected change during the merge of dataset 2 and 3,
which is correct. In Figure 5 we see that the feature points on R2D2 are correctly detected
as changed. Note that some features are not present in both datasets and therefore these
features on the R2D2 are not marked as changed. Figure 6 shows the 3D reconstruction
from above. Here we see that the merged points on R2D2 does not align with either dataset
2 or 3.

Figure 5: Changes detected in merge between dataset 2 and 3. Feature points are maked with blue dots and changed features
are circled in cyan.
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6. Conclusions

Figure 6: To the left, the merge between dataset 1 and 2 where no change was detected. The separate maps are marked with
dots (•,•) and the merge by diamonds (⋄). To the right, the merge between dataset 2 and 3, where a change was
detected. The points for which a change was detected are marked by squares (□).

6 Conclusions

We have presented a novel and efficient method, with small memory footprint, for merging
individual maps obtained from bundle adjustment optimization along with a statistically
motivated method for detecting changes in the map. The method has been compared
favorably to using full bundle adjustment and the Kalman filter and is shown to be a good
compromise between performance and time efficiency. This makes the method suitable
for online applications as well as the use of crowd sourced data. The performance has
been confirmed on both TOA and vision problems for both simulated and real data. One
limitation is that the map points used for the coordinate system normalization need to be
consistent for all maps. However, if this problem is solved, we believe that the method
could be further developed to a full collaborative SLAM system.
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a Low Memory Footprint
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Abstract: With the development of cheap image sensors, the amount of available
image data have increased enormously, and the possibility of using crowdsourced
collection methods has emerged. This calls for development of ways to handle all
these data. In this paper, we present new tools that will enable efficient, flexible and
robust map merging. Assuming that separate optimisations have been performed for
the individual maps, we show how only relevant data can be stored in a low memory
footprint representation. We use these representations to perform map merging so
that the algorithm is invariant to the merging order and independent of the choice of
coordinate system. The result is a robust algorithm that can be applied to several maps
simultaneously. The result of a merge can also be represented with the same type of
low­memory footprint format, which enables further merging and updating of the
map in a hierarchical way. Furthermore, the method can perform loop closing and
also detect changes in the scene between the capture of the different image sequences.
Using both simulated and real data — from both a hand held mobile phone and from
a drone — we verify the performance of the proposed method. Keywords: Structure
from motion, Map Merging, Minimal Solvers

1 Introduction

Over the last couple of years the availability of cheap image sensors — such as cameras in
mobile phones — has increased immensely. This allows for fast and relatively straightfor­
ward collection of large datasets through crowdsourcing. The images can be used to create
3D maps of the environment. However, the more data there are, the heavier the computa­
tions for creating these maps will be and due to this, there is a need for faster algorithms for
creating 3D maps. Furthermore, additional research on how to fuse individual maps into
one global, more accurate map is needed. One use case of such algorithms can be found
in the industry for self­driving cars. With a fast and accurate way to merge individual sub­
maps, each car that drives in an environment could create its own local map and use that
to contribute to a global map.
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Figure 1: A drone equipped with a camera, IMU and a Raspberry Pi. The drone is used for real-time mapping and was used for
one of the real data experiments in this paper.

Estimating map parameters and sensor motion using only sensor data is referred to as si­
multaneous location and mapping (SLAM) [1, 2] and structure from motion (SfM) [3].
Classically, SLAM has focused more on the motion, while SfM has been more focused
on the structure. Also, SLAM often requires that one moving camera is used, while SfM
can be used for unsorted images from different cameras. Nevertheless, the two methods
essentially solve the same problem, but are originating from different research fields.

When image data are used, the SfM is usually performed using bundle adjustment. The
name refers to the bundle of rays going from each 3D point in space to each camera and
it can be seen as a large sparse geometric parameter estimation problem, cf. [4]. Bundle
adjustment is commonly used both as a final step and as an intermediate step in the op­
timisation to prevent error buildup [5, 6]. It can also be used to merge maps, by doing a
new optimisation over all data at once. However, bundle adjustment is a computationally
expensive process and there is a need for making these methods more efficient.

A faster method to align two maps is to use point cloud registration. One example of
a commonly used method for registration is iterative closest point (ICP) [7]. This does
not require any knowledge of point matches between the different sets. If such matches
are known, one can instead use e.g. Procrustes analysis [8]. The methods for point cloud
registration do not, however, solve the merging problem, but leaves a map with double
representations of matching points.

When it comes to fusion of individual maps, there are different ways to do this, but many
of the methods are developed for concurrent mapping. Several of them have been created
to perform collaborative visual SLAM. There are examples of collaborative visual SLAM
that work for several units at once and are fast enough to run in real­time [9]. Many of
these examples are focused on implementations in drones flying simultaneously. In these
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cases, parts of the pipeline are run on the platform, while parts are computed in the cloud.
The map fusion is then based on a few keyframes, to decrease the need for storage space
[10]. There are also several examples where the bundle adjustment is only performed locally
to decrease the computational effort [11]. In the collaborative SLAM method presented
by [12] a dynamic environment is possible and several cameras can be used. However, the
cameras are initialised by viewing the same scene. This simplifies the global coordinate
system, but is not always applicable, since it is often the case that there are no common
points for all bundle sessions. There are also studies where several cameras have been used
at the same time, but when they are fixed on a stereo head [13]. All these methods are
developed for simultaneous mapping using several cameras. When maps from different
occasions are merged the conditions change, which gives other limitations and possibilities.

Another important problem within SfM is the ability to perform loop closure. This prob­
lem appears when a reconstruction is made iteratively on a long image sequence and some
feature points reappear after some time. Due to the inherent drift and error accumulation
the reappearing points will not be reconstructed at the same position as they where recon­
structed initially. For the loop closure problem it is assumed that it is possible to identify
which points in the images that belong to the same 3D point. When re­appearing points
are detected, it is possible to utilise this information and increase the quality of the recon­
struction and at the same time position these at the same 3D location. Some techniques
for loop closure can be found in [14–16].

There are also examples where SLAM is solved using a Bayesian approach [17], which is
faster but not as accurate as bundle adjustment [4]. The methods that are discussed so far
in this paper are not only applicable to images, but work similarly for other sensor data as
well, e.g. wifi [18] and audio [19, 20]. Gaining information and ideas from these fields can
thus be useful for SfM as well.

In [21], a method that is a compromise between a full optimisation bundle and the Kalman
filter was presented. The method was primarily evaluated on audio data together with
a small experiment for image data. In this paper we develop that idea further to work
automatically for SfM data from RGB images. The idea behind the method presented in
[21] is that maps can be merged efficiently using only a small memory footprint from the
map and the residuals. Then the merging problem can be solved linearly. For this to work
on images from different datasets there is a need for a coordinate system estimator.

In this paper, we present a method for efficient and simultaneous estimation of the param­
eters — i.e. camera matrices and 3D points — as well as the coordinate system. The system
is also adopted for partially non­overlapping data. The pre­process of the data starts with
the detection of feature point descriptors, e.g. using SIFT [22] or ORB [23], whereupon
the individual maps are estimated using a SfM pipeline [24]. The data can be collected us­
ing a hand­held camera or an autonomous drone, like the one in Figure 1. The individual
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maps are then fused at the same time as transformations into a global coordinate system
are estimated using only the map points and a compressed representation of the Jacobian.
This means that once the individual maps are computed, there is no need for saving the
actual images — not even a few keyframes.

The main contribution of this paper is the generic and efficient method for merging sub­
maps obtained from several image sequences. The proposed method is independent of the
chosen order of the sequences and the choice of coordinate system. It is furthermore very
efficient compared to making a full bundle adjustment of all image sequences together, by
utilising a compact and efficient representation of each bundle, consisting of a considerably
reduced number of free variables. The merging method can also be used to detect changes
in a scene and to solve the loop closure problem. This is validated on both simulated and
real data.

2 SfM Systems and Bundle Adjustment

The pre­processing steps, such as creating the individual map representations, are not the
focus of this paper. Nonetheless, we will briefly go through the theory. Many of the nota­
tions that will be used later in the paper are introduced in this section. The purpose of the
individual optimisation bundles is to find the m camera matrices Pi and the n 3D points
Uj that induce the image points uij. Each image point gives rise to two residual terms rij,
one for each image coordinate, when it is compared to the projection of Uj in camera i,

rij =

P 1
i Uj

P 3
i Uj
− u1

ij
P 2

i Uj

P 3
i Uj
− u2

ij

 . (1)

Above, P k
i denotes row k of camera matrix Pi and  uk

ij denotes element k of uij. The total
residual vector r is composed by stacking all individual residual vectors rij. Furthermore,
we collect the unknown parameters in a structure z, s.t.

z = (P1, P2, . . . Pm, U1, U2, . . . Un). (2)

In the optimisation we use local parametrisations, ∆z ∈ R6m+3n, around each point z0 in
the parameter space,

(z0,∆z) −→ z. (3)

While z contains twelve parameters for each camera, the local parametrisations only use six
parameters per camera, in order to assure that the camera is composed by a rotation matrix
and a translation matrix. To find out how a change ∆z affects the residual r, we compute
the derivatives of the components in r with respect to the elements in ∆z. Even if we only
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2. SfM Systems and Bundle Adjustment

refer to the six parameters per camera together with the 3D points we will for simplicity
further on denote this Jacobian J = ∂r/∂z. The maximum likelihood estimate z∗ of z is
found by minimising the sum of squared residuals,

z∗ = argminzr
Tr. (4)

Using Gauss­Newton, each step of the iterative bundle adjustment corresponds to the pa­
rameter update

∆z = −(JTJ)−1JTr. (5)

Performing the optimisation on N separate data collections results in N different parameter
representations z(k), where superscript index (k) denotes the representation number. Some
of the 3D points are visible in several representations while some are visible in only one.
Note that the ordering might differ, such that U (k)

j does not represent the same point

as U (l)
j . Once matches between the different data collections have been established, e.g.

using ORB or SIFT features, the individual map representations can be merged into one
global map. One way to do this would be to perform a bundle adjustment with all data
from all data collections, but this could be prohibitively expensive in terms of memory and
computations. Another way could be to do co­registration of the point clouds, e.g. using
Procrustes. The naive way to merge the maps would be to then take the average position of
matching points. One drawback of this merging method is that the resulting global map
is depending on the merging order.

2.1 A Compact and Efficient Model for a Bundle Session

The proposed method exploits the fact that the optimal residuals from the separate bundles
can be linearised to avoid the large bundles. Our bundle representation is built on theory
from [21] and for completeness, we will summarise some of that theory in this section.

A key idea is to divide the unknown parameters in z into two parts q and s, where q
contains the parameters that potentially could match to those of other SfM sessions. The
parameters in s can be thought of as auxiliary parameters. There is an interesting trade­off
here. Making q larger allows for a higher number of potential matches with other SfM
sessions, but requires a large memory footprint and vice versa. In this paper we use the
approach that some (or all) of the 3D points go into q, whereas the rest of the points and
camera matrices go into s.
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Approximating the Residual

The parameters in z are ordered such that ∆z =
[
∆q ∆s

]T. The Jacobian J is divided
correspondingly, with the part that corresponds to the parameters in q denoted Ja and one
that corresponds to the parameters in s denoted Jb. The auxiliary parameters in s will
depend on the points in q as follows

∂s

∂q
= −(JTb Jb)−1(JTa Jb)T. (6)

That derivative can furthermore be used to express how the residuals change if the points
in q are moved. We have that

∆r =
(

Ja + Jb ·
∂s

∂q︸ ︷︷ ︸
Jq

)
∆q. (7)

Furthermore, viewing the residual as a function of an update ∆q and linearising it around
an optimal point o gives the following approximation of the squared residual

rTr ≈ a2 + ∆qTRTR∆q, (8)

where a2 = r|Toro and R is a triangular matrix originating from QR­decomposition of Jq|o.

Another way to view this is to form a modified residual vector r̂ according to

r̂ =

[
a

R∆q

]
=

[
a

R(q− q|o)

]
, (9)

whose sum of squares is an approximation of the original sum of squares, i.e.

rTr ≈ r̂Tr̂. (10)

The linearisation decreases the memory footprint substantially compared to the original
problem.

To summarise the theory from [21], the compressed representation of data consists of
(q|o, a,R), where q|o is a subset of the 3D points. Note that while Jq is a rectangular
matrix, R will be quadratic and thus much smaller than Jq. Despite this, it was shown in
[21] that it is possible to obtain a good approximation of the residual according to Equa­
tion (8). Furthermore, once an update has been made, the rest of the points and the camera
matrices can be updated using ∂s/∂q.
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3. Merging Several SfM Sessions

2.2 Gauge Freedom

SfM estimates can only be determined up to an unknown choice of coordinate system,
which is called gauge freedom. This involves translation, rotation and change of scale,
which in total has seven degrees of freedom. A consequence of this is that the Jacobian Jq
and also the matrix R has a seven­dimensional nullspace. The process of changing coor­
dinate system is however non­linear, and therefore the approximation we presented in the
previous section is only valid for points close to the optimal point q|o. In [21] the different
maps were pre­aligned and the gauge freedom was therefore less relevant.

3 Merging Several SfM Sessions

As we mentioned before, one way to add several individual SfM sessions would be to do a
new bundle, over all data. However, this could be computationally expensive and require
storing a large amount of data. The faster approach presented in [21] solved the problem
linearly. Though, this did require that the individual map representations were aligned and
that a number of points were visible in all maps. In this section, we generalise this further to
work for any representations and handle the coordinate ambiguity. Thus, no pre­alignment
is needed and that makes the approach much more flexible.

Assume that for each map k we have the compressed information as (q(k), a(k),R (k)). De­
note the global map q and let that contain some or all of the 3D points that are contained
in at least one of the individual maps q(k).

If q is assumed to contain n̄ 3D points, all potential global map representations lie on a
3n̄­dimensional manifold. Each representation can then be projected to lower dimensional
spaces in which the local map representations lie. In practice, the projection pk(q) simply
means that we leave some points out, while we keep the rest, i.e. pk(q) has the same num­
ber of points (and the same point order) as q(k). However, they might be in a different
coordinate system. Therefore, we apply a similarity transform Tk to obtain a local map
representation. Hence, we would like Tkpk(q) to be close to q(k).

Thence, the unknowns are the global map  q and the N different transformations Tk. By
collecting individual residuals, similar to the ones in (9), the approximate modified residuals

r̂ =


a(1)

R (1)(T1p1(q)− q(1))
...

a(N)

R (N)(TNpN(q)− q(N))

 (11)
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Figure 2: The blue solid lines show the level curves of the linearised error function and the o shows the point we have linearised
around. By adding a penalty in the perpendicular direction, along the dashed green line, the resulting error function
is the one shown as red ellipses.

are such that r̂Tr̂ is approximately equal to the sum of the squared residuals for all N
sessions.

Our approach to solve this problem is to bundle over q and all Tk, trying to minimise (10)
with  r̂ according to (11). This bundle will be significantly smaller and faster than bundling
over all the original images with the re­projection errors as loss.

One difficulty with this approach is that the approximation (8) only holds when each map
Tkpk(q) is close to its working point q(k). An interesting thing to note here is that the last
seven rows of R (k) — the triangular matrix which comes from QR­decomposition of the
Jacobian w.r.t. q of bundle k — will be zero, due to the gauge freedom. An illustration of
this is given in Figure 2, where we visualise this in a lower dimension. The error function
locally looks like a parabolic cylinder (illustrated with blue level curves in the figure). To
force the error function to be quadratic — a paraboloid — we change the last seven rows
of R (k) such that they are orthogonal to the rest of the rows (see the green dashed line).
The change of the last rows of R (k) results in an error function that has the level curves
shown by the red ellipses. By optimising over the transformation T (k), we will end up at a
point where the orbit is tangent to a level curve (a red curve in Figure 2). One such point
could be the one marked by x in the image. Since this x is close to our working point o, the
linearisation is still valid and the addition of the last rows of R (k) will have little undesired
effect.
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4. Hypothesis Testing of the Merge

3.1 The Bundle Initialisation

The initialisation for the merge bundle can be done in several ways. We have decided to
initialise q from q(1), and T1 to be the identity matrix, while we initialise the rest of the Tk:s
using Procrustes analysis between matching points in q(k) and q(1). Points in q that are
not in q(1) are initialised from the other maps and Tk. Initial estimates between two maps
can be obtained using three point correspondences, but there are also solvers for mini­loop
closure involving fewer than three points between three, four and five maps, cf. [25].

3.2 The Bundle for Merging the Maps

Similar to the individual bundle approach, we collect the unknown variables in a structure
w, s.t.

w = (q, T1, T2, . . . ,TN), (12)

and use local parametrisations, ∆w ∈ RM, around each point w0 in the parameter space,

(w0,∆w) −→ w. (13)

The dimension M of ∆w depends on how many of the points in q that are common
between the individual maps. In the local optimisation we use a Levenberg­Marquart ap­
proach. In each step we calculate the Jacobian Jw that describes how changes in the param­
eters ∆w affect the residual r̂.

3.3 Compressing the Result from the Merge

Once the merge is done, the residuals can be compressed for future merges. The Jacobian
Jw is again divided in one part J̄a that corresponds to the parameters in q and one J̄b that
corresponds to the rest of the parameters s (now corresponding to changes in T1, . . . ,TN
and some of the 3D points). From this we again calculate how s depends on q, similar to
what we did in Equation (6). We then calculate R̄ from a QR­factorisation of J̄q = J̄a +
J̄b · ∂s/∂q. In this way, a compact representation (q, ā, R̄) of the result can be calculated,
again similar to what we did for the individual bundle sessions. The value ā 2 is the squared
residual in the optimal point.

4 Hypothesis Testing of the Merge

Even if we assume that the matches between the maps are given, some of them might be
wrong. Also, there could be other errors in the merge, e.g. if any object in the scene has
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moved. For this reason, some hypothesis test is needed. We use the same approach as
in [21] and compare the increased error to a Γ distribution, and extend that theory here.
Again, let N denote the number of map representations that are merged.

If we assume that the measurement errors in the images are zero mean Gaussian with a
standard deviation σ, the expected value of the squared residuals (a(k))2 in the individually
optimal points from (8) are

E[
(
a(k)
)2
] = E[

(
r(k)
)T(

r(k)
)
] = σ2(η(k)res − d (k)

dof

)
. (14)

We denote the number of residuals in bundle k by η(k)res and the effective degrees of freedom
d (k)

dof . In a bundle with m cameras and n 3D points, these will be ηres = 2mn and ddof =

6m + 3n − 7, where the 7 represents the gauge freedom. Furthermore, if we assume that
the merge was successful, the expected value for the merged map will be

E[ā2] = E[rTr] = σ2(ηres − ddof), (15)

where ddof is the effective degrees of freedom in the merge and ηres is the total number of
residuals. We have that ηres =

∑
k η

(k)
res , while the value of ddof will depend on the overlap

between the individual map representations.

Now, for the difference between ā 2 and all (a(k))2, we have

E
[

ā 2 −
∑

k

(
a(k)
)2

︸ ︷︷ ︸
ã

]
= σ2

(
ηres − ddof −

∑
k

(
η(k)res − d(k)dof

))
. (16)

Letting ã = ā 2 −
∑

k
(
a(k)
)2 and denoting the number of 3D points that are common in

i individual maps κi, this gives

E[ã] =σ2
(∑

k

d (k)
dof − ddof

)
=σ2

(( N∑
i=1

3κi(i− 1)
)
− 7 · (N− 1)

)
,

(17)

where the factor 3κ(i − 1) represents that we have locked another 3κi point coordinates
i − 1 times. We subtract by 7 · (N − 1) since all individual maps are now merged to the
same coordinate system.

Furthermore, since the noise is Gaussian, the value in (17) will be a sum of
∑

k d (k)
dof − ddof

Gaussian distributed variables. Altogether, this means that for a successful merge, ã should
come from a Γ distribution with the following density [26]

fα,ν(x) =
1

Γ(v)
ανxν−1e−αx. (18)
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Here, Γ is the gamma function and

α =
1

2σ2 , ν =

(∑N
i=1 3κi(i− 1)

)
− 7 · (N− 1)

2
. (19)

Hence, if the merge for some reason was not successful, this could be discovered by com­
paring the value of ã to the expected Γ distribution. Using this, we can detect whether
changes has occurred in the scene between the different mapping occasions.

The standard deviation σ of the noise is often unknown. Nevertheless, it can be estimated
as the mean of the standard deviations for the individual map representations, which in
turn would be estimated according to [27, p. 47].

5 Using Merging for Increased Robustness

Once we know which Γ distribution the increased error ã should come from, this can be
used as a hypothesis test. This could furthermore be used to increase robustness in a large
SfM session. If we do a bundle over a scene and the residuals are not sufficiently small, one
might suspect that there is corrupt data or outliers involved. The SfM session could then
be divided to a number of parts, where SfM first is performed on each of them, resulting
in a number of sub­maps. Given that the different sub­maps are divided such that they
have overlap, they can be merged using our method. By merging one part at a time and
checking the distribution of ã, it can be found where in the dataset there is corrupt data.
That part can thereafter be divided into smaller parts, and the process can be repeated. We
can by that avoid to add erroneous information to the global map, while we successfully
can add the other parts which are correct.

6 Experimental Validation

To verify the proposed method we have run a number of experiments, both on simulated
and real image data. The experiments are described in an order of increased complexity.

6.1 Verification on Simulated Data

First, we verified the method and the hypothesis test on simulated data. We simulated 100
3D points Uj in a box of size 10 × 6 × 2 and ten cameras Pi pointing towards the box.
The cameras were re­simulated three times to mimic three mappings. All 3D points were
visible in all cameras and we added Gaussian noise with zero mean and standard deviation

183



Paper VI

Figure 3: The image shows the histogram of ã achieved from running the same experiment several times with different noise
realisations. The histogram is expected to follow the Γ distribution shown by the red curve.

σ = 0.05 in the image projections. On each mapping we separately performed bundle
adjustment using only the image projections uij, resulting in three different representations
of the same scene, each given in a different coordinate system. We found matches between
all three map representations and using ten of these matches in q, we merged the maps into
one global map.

We repeated the experiment above 2 000 times with the same cameras and 3D points, but
with different noise realisations. For each run, we saved ã and finally we plotted a histogram
over the result. Figure 3 shows the histogram together with the expected Γ distribution
from Equation (18). The figure clearly shows that the error follows the distribution even
though we have linearised the residual according to Equation (11). This is a verification
that the method works even when we are optimising over the transformations to the global
coordinate system as well as the global map.

Early Stopping of Pre­Processing

In the previous experiment we let the individual map representations reach an optimal state
before merging them. However, this is not always the case in reality, due to poorly chosen
bundle thresholds or to shortage of time. In the second experiment we investigated how the
system performance degrades with less optimisation in the pre­processing steps. The setup
was similar; all 3D points were visible in all map representations (but only in 80 % of the
cameras). We used noise with σ = 0.005. We stopped the bundle for the individual maps
based on the Euclidean norm of the gradient 2r̂J, which is obtained by differentiating (10),
with the residual given by (9) and the Jacobian J defined from that. The termination was set
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Figure 4: How the RMSE for the final map achieved using different merging methods change when the individual map bundles
are terminated at different levels. The x-axis shows the Euclidean norm of the gradient and the y-axis the RMSE. The
error for the individual maps is included for comparison.

at different levels, after which we used our proposed method for merging. For comparison,
we performed a large bundle on all data, and we also did Procrustes registration (using an
arbitrary order) followed by averaging over matching points. The mean RMSE over 1 000
runs was computed and is plotted in Figure 4. For comparison, the mean RMSE for the
three individual map representations is shown as well. To compute the RMSE we first did
Procrustes registration of the respective map to the true map.

Our proposed method performs better than Procrustes at all stages, and furthermore the
graph is less steep than that of the individual errors, which means that some of the perfor­
mance that is lost from the early stopping is recovered using our method. Finally, one can
see that for small gradient norms, our method performs as well as the large bundle, which
is much more computationally expensive.

Solving Loop Closure by Map Splitting

Furthermore, we wanted to show that our method can solve the problem of loop closure,
not within one individual bundle, but in the merging of several slightly overlapping ses­
sions. We also decreased the number of parameters in q to be a small part of all the 3D
points. First off, we simulated a SfM session of a room of size 5× 6× 2 m and divided it
into four parts, such that each sub­map captured one of the walls, with a few corner points
common between the different sub­maps, and no points common in more than two maps.
Each sub­map consisted of 200 3D points and only 6 % of these coincided with points
from any of the other maps. The noise level was σ = 0.005.
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Figure 5: The left plot shows the result from merging the different sub-maps without matches in the beginning and the end of
the map. To the right we have added matches between these two and the loop closure problem is solved.

To simulate a loop closing problem we used two merging methods — one with matches
between sub­maps 1­2, 2­3 and 3­4 and one where there were matches between sub­maps
1­4 as well. The first case represents what happens when you do SfM starting at one point of
the room and do a loop without using any loop closing technique, while the latter uses our
proposed method. We could see that our method improves the performance concerning
loop closure. In most cases there was a drift in the map for the first method, but if we
added matches between sub­maps 1­4 as well, this drift disappeared. Figure 5 shows how
the method fails to connect the ends of the blue and the purple sub­maps in the first case,
but succeeds in the second.

Running the same experiment 1 000 times shows that adding matches between sub­maps
1­4 gives a reduced Euclidean distance from the ground truth in 85 % of the cases, and
the distance is reduced by 50 % or more in 80 % of the cases. In terms of RMSE, this
error was less than 0.1 in 99.8 % of the cases for the full bundle. This can be considered
as gold standard. The corresponding value for our method with all matches was 80 %;
for our method without 1­4 matches 25 %; and for Procrustes and averaging 7.7 %. The
mean RMSE within those 80 % for our method was 0.038. If the merge is unsuccessful,
the RMSE value is not very suggestive, since the registration made for comparison might
be wrong too.

Furthermore, Table 1 illustrates how much the memory footprint is decreased when we use
our compressed error representation. The linearised residual in (8) reduces the parameters
in the Jacobians from approximately 3 000×660 to 30×30 compared to the full residual.
This becomes even more evident when we look at the size of the bundle for the map merg­
ing, compare Equations (10) and (11). All this show that our proposed method performs
best except for the full bundle and that it therefore is a very good compromise between
performance and efficiency.
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Table 1: Four sub-maps were merged. The table shows the size of the Jacobian for using the full residual (1) and the linearised
residual (8) for each sub-map. The last line shows how much smaller the merging problem becomes using our method.

Bundle # points Size of full Size of compressed
session Jacobian Jacobian
1 200 3 082 × 660 27 × 27
2 200 2 792 × 660 24 × 24
3 200 3 140 × 660 33 × 33
4 200 3 190 × 660 36 × 36
merge 784 12 204 × 2 601 120 × 88

6.2 Verification on Real Data

Small Bookshelf Experiment

In this experiment we made five separate data collections of a bookshelf. Between collection
2 and 3 we moved an R2D2 figure a few centimeters, see Figure 6. The individual maps
were then merged pairwise in sequence — i.e. 1­2, 2­3, 3­4 and 4­5 — and compared with
our previous work [21] where the transforms between maps were computed prior to the
merging. As we see in Figure 7 the residuals are smaller when jointly estimating merge and
transform. The squared residuals ã are then compared with the 99:th percentile of the Γ
distribution from Section 4. We see that change between collection 2 and 3 is correctly
detected for both versions, while the previous work with fixed transform is giving a false
positive between dataset 3 and 4. Even if the differences are small, this experiment shows
that our proposed method performs better than the previous one, despite the problem being
harder.

Experiment in an Office Environment

In the following experiment we made four separate data collections using a drone. Sample
images from these datasets, as well as 3D reconstructions, are shown in the two top rows
of Figure 8. Each recording consisted of approximately a minute worth of video footage.
The recordings were made with a small drone equipped with a monochrome global shutter
camera (OV9281) with resolution 480 × 640 and an inertial measurement unit (MPU­
9250). The 3D reconstructions were generated by a SLAM system built on ORB features
[23] and IMU data [28], where the matches are filtered using the technique from [29] and
the solution is optimised using [30]. For each of the reconstructions, the object points
were saved along with extracted feature locations and descriptors. The feature locations
were undistorted prior to saving, to remove fish­eye effects.

The statistics for the four experiments are shown in Table 2. The saved descriptors were
used to generate hypothesis matches between the different reconstructions. These tentative
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Figure 6: This figure shows how the R2D2 model moved between collection 2 and 3 in the bookshelf experiment.

matches were then tested in a hypothesis and testing framework using the hypothesis test
proposed in Section 4 of this paper. This process produced 24 points that were matched
across the four experiments.

In the bottom row of Figure 8 we show parts of the merged map after Procrustes to the left
and merging using our method to the right. Notice that the top and left wall in the upper
left corner had double representations after Procrustes. After merging the two copies of the
walls they are positioned on top of each other. After the merge with the proposed method
it was possible to identify an additional 346 points that could be merged.

To validate the performance we selected a few points in one of the maps and calculated a
number of interpoint distances before and after merging. We also measured these distances
in reality with a measuring tape. The results are presented in Table 3. The results show that
our method reduces the error in all the measured distances.

7 Conclusion

In this paper we have presented a new method for merging of 3D maps. The method
relies on a low memory footprint representation of the individual residuals that makes it
efficient even for a large amount of image data. By bundling over an approximate error,
the size of the Jacobian is reduced with several orders of magnitude compared to doing
bundle adjustment over all data at once. Furthermore, the method is robust and flexible
in the sense that the individual sub­maps do not have to be in the same coordinate system.

188



7. Conclusion

1 - 2 2 - 3 3 - 4 4 - 5
10

-4

10
-3

10
-2

10
-1

Figure 7: The sum of squared residuals for the merges of different dataset pairs. We see that jointly estimating the transform
and 3D points during the merge yields smaller residuals than when estimating the transform before merging as in
previous work [21]. Change between dataset 2 and 3 is correctly detected.

Our merging method can be used to add two or several maps at once and also for updating
a global map using local map estimates. This can furthermore be used to perform loop
closing, which is verified using both simulated and real data. Using a hypothesis test based
on a statistical analysis of the error we can analyse whether the merge was successful and
discover if changes has occurred in the scene between the mappings. In the future we would
like to use this to develop a system that can divide a large map into several sub­maps in order
to only add the parts of the map that preserves robustness. Another interesting extension
would be to generalise the method to rotation averaging.
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Table 2: Four datasets were collected by drone recordings. The number of 3D points and the size of the Jacobians for each
dataset are shown. The proposed method makes it possible to compress the data to a 72× 72 matrix for each dataset.

Bundle # points Size of full Size of compressed
session Jacobian Jacobian
1 999 18 918 × 3 621 72 × 72
2 603 11 972 × 2 151 72 × 72
3 549 11 114 × 1 989 72 × 72
4 386 7 596 × 1 452 72 × 72
merge 2465 49 600 × 8 997 288 × 100

Figure 8: The two top rows shows the 3D reconstructions and a few images from two of the four drone recordings in the office
experiment. The bottom row shows parts of the merged map using Procrustes to the left and our proposed method
to the right. Note that the top and left walls are doubled after the Procrustes registration, while our method solves
that problem.
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Table 3: Interpoint distances between a few selected points in the office experiment before and after merging using Procrustes
registration followed by averaging and our proposedmethod. The column to the right shows the ground truth distances.

Pt 1 Pt 2 Dist (mm) Dist (mm) Dist (mm) Dist (mm)
ind ind one map merge Pro. merge our gt
52 766 365 365 220 213
52 839 589 589 512 516
52 840 1358 1296 1264 1260
60 839 825 825 834 840
60 840 879 1023 860 857
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Minimal Solvers for 3D Map Matching with Statistical
Deformations
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Abstract: An important issue in simultaneous localisation and mapping is how to
match and merge individual local maps into one global map. This is addressed within
the field of robotics and is crucial for multi­robot SLAM. There are a number of dif­
ferent ways to solve this task depending on the representation of the map. To take
advantage of matching and merging methods that allow for deformations of the local
maps it is important to find feature matches that capture such deformations. In this
paper we present minimal solvers for point cloud matching using statistical defor­
mations. The solvers use either three or four point matches. These solve for either
rigid or similarity transformation as well as shape deformation in the direction of the
most important modes of variation. Given an initial set of tentative matches based
on, for example, feature descriptors or machine learning we use these solvers in a
RANSAC loop to remove outliers among the tentative matches. We evaluate the
methods on both synthetic and real data and compare them to RANSAC methods
based on Procrustes and demonstrate that the proposed methods improve on the cur­
rent state­of­the­art.
Keywords: Structure from motion, Map Merging, Minimal Solvers, Statistic Defor­
mation

1 Introduction

Simultaneous localisation and mapping (SLAM) and structure from motion (SfM) refer
to the process of estimating map parameters as well as sensor motion, using only sensor
data [12, 13]. In this paper we will be focusing on image data, but the methods presented
are applicable to other sensor modalities, such as RGB­D cameras, lidar, microphones and
radio receivers. If the reconstruction of a scene is made from a long image sequence and the
camera returns to a position that previously has been visited there is a risk that the recon­
struction of a point does not end up at the same position as it did when it was reconstructed
earlier. This is due to the inherent drift and error accumulation in the SLAM system and is
referred to as a loop closing problem. To solve this problem, these point must be detected
as duplicates.
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Figure 1: The figure shows a motivating example, where the red and blue maps to the left should be matched. Since the
overlapping area contains drift, a rigid matching method will not be able to find all the matches, see the zoomed in
image in the middle. Allowing for statistical deformations, such matches can be found and the errors can be corrected,
as in the right plot.

A similar problem arises when several robots are working in an environment simultaneously.
This is often referred to as colloborative SLAM [51] or multi­robot SLAM [50]. Each robot
has its own SLAM system, building its own local map of the environment. To be able to
locate each other and to cooperate in building one accurate, global map, these local maps
need to be matched and merged. This will also occur when a single robot later returns to a
previously reconstructed scene. Again, in order to do the merging, a reliable set of matches
needs to be found. Yet another use­case is when a large dataset is split into smaller pieces,
which are then merged. This allows for weeding out parts of the data that have produced a
bad structure and motion estimate and thus producing a more robust result, see [52, 53].

Given a set of tentative matches, we present several minimal solvers that can be used to
find a good inlier set. Many previous methods for point cloud matching only give rigid
registrations. However, to capture loop closing issues and to match local maps that contain
errors, this is not enough. Therefore, we allow for some statistical deformations in the
direction of the major modes of variation – i.e. deformations of the 3D model that influence
the reprojection error the least. Together with Random Sample Consensus (RANSAC) [14]
we show that our solvers find a better inlier set compared to three and four point Procrustes
[8, 21, 38, 39]. We then use this set in a map merging algorithm that allows for statistical
deformations and show that local errors are corrected. The idea for the method is illustrated
in Figure 1. The main contributions of this paper are¹

• New minimal solvers for matching of 3D point clouds of known scale, using three or
four point matches, which take statistical deformations in the direction of the most
important modes of variation into account.

¹Code: https://github.com/gabrielleflood/statistical-mapmatching-minsolv/
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• New minimal solvers for matching of 3D point clouds of unknown scale, again using
statistical deformations and either three or four point matches.

• A solver for matching of duplicate points within maps, using the modes of variation,
to do, e.g. loop closing.

• A framework for how to use these new minimal solvers to match 3D point cloud
maps.

2 Related Work

There are different representations of 3D reconstructions, e.g. surface based [19], voxel
based and graph based methods, occupancy grids and point clouds [3, 47]. Here we will
focus on point feature maps. There are several examples of feature detectors for images,
e.g. SIFT [27], SURF [4], BRIEF [9] and ORB [35]. Knowing the features of the image
points, these can be propagated to 3D (see Section 5). These features can then be used to
find accurate matches between the maps.

The problem of finding the transformation that matches two points clouds optimally un­
der the assumption of equal and independent Gaussian noise is a classical problem and the
Procrustes algorithm [8] forms the backbone of many matching algorithms. This algorithm
does neither handle outliers nor different error characteristics in the matching process [38].
The problem of finding an optimal transformation for a robust error norm is significantly
more challenging. Nevertheless, there are polynomial time algorithms for solving this prob­
lem [31]. In [28] minimal solvers for line intersections with plane and point matches are
presented. Other examples of solvers that work directly on point clouds are [29] which use
fewer point correspondences but several maps and the 4PCS algorithm where coplanar sets
of point points are used [1]. For all these methods it is common to use RANSAC loops
to find robust matches and for many of them a set of tentative point matches are given
[14]. However, few of the above algorithms handle the large scale uncertainties that one
typically gets from SLAM or SfM estimates of maps. The 3D point matching problem has
also been investigated using deep learning methods. One such example is the 3DRegNet,
which both defines point matches as inliers or outliers and aligns the two scans [32]. Some
other methods using learning are [34, 45, 46, 49].

For large scale 3D point cloud matching, the iterative closest point (ICP) algorithm and
its many variants are commonly used [5, 10, 36]. However, these methods do not take
advantage of any given point matches. In [26] the 3D point cloud is instead transformed
into 2D bearing angle images, after which SURF features are used to find matching pixels,
which also gives corresponding pairs in 3D. There are also map matching algorithms that
use some a priori information to find matches between the maps, as in [33]. It is also
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common to initialise by letting all robots view the same scene for collaborative SLAM [51].
There are examples of SLAM systems that can merge parts of an active map when doing
loop closure. Both [18, 30] are methods that perform loop closure based on bag­of­words
for selected keyframes. Though, only rigid transformations are found. In [43, 44] non­
rigid transformations are allowed for. Both are inspired by [40], where the map is divided
into small clusters, which are aligned using affine transformations. However, this does not
allow for different transformations for neighbouring points.

Matching of separate maps followed by map merging is in general commonly used for
multi­robot systems [3, 47]. One way to do the matching between maps is by saving
keyframes for each map and do an efficient search among these [41]. Map merging can
also be used to divide mappings in smaller parts which are first reconstructed separately
and then merged to decrease drift. Similarly, matching algorithms can be used to have
more information in the form of a dense map in parts of a larger, sparse map [2].

Several review papers about map merging for multi­robot systems have been published dur­
ing the last years and the authors conclude that more research on map merging in 3D is
needed [3, 7] and that a key step in the merging is to extract stable point features [47].
Many of the matching and merging methods above only work with rigid transformations.
If the reconstruction of a local map is erroneous there is no way to correct this later. The
software package Maplab [37] contains tools for both building and merging maps – includ­
ing matching them – captured at different occasions. For map merging they suggest rigid
co­registration followed by iterative loop closing and bundle adjustment. There are some
works that use statistical information, e.g. in [48], where principal component analysis is
used to improve the initial matching for the ICP algorithm. In [24] the authors study the
registration of two 2D maps with uncertainty and unknown transformation. It is shown
that an approximation of the error function can be solved in closed form. In [15, 16],
the authors develop methods that iteratively can solve for unknown transformations and
exploit the uncertainty in the maps, but the problem of finding the correspondences is not
considered.

3 Point Matching in Uncertain 3D Point Clouds

To address the difficulties with uncertainties in local 3D maps we propose minimal solvers
that allow the points to deform in the direction of the most important modes of variation.
We believe that such solvers are important components that can be used together with
hypothesis and test paradigms and approximate merging algorithms [15, 16] or full bundle
adjustement [54] in order to produce fast and robust map merging algorithms. Assuming
that tentative point correspondences between maps and/or within a map are given and that
we know the covariance of the point clouds – typically from bundle adjustment – we suggest
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to allow a deformation of the points in the direction of the modes of variation. Denote
a point cloud (or map) P and the corresponding covariance C. When doing eigenvalue
decomposition of C there will always be seven eigenvalues that are infinite, due to gauge
freedoms, since the rotation, translation and scale of the point cloud can be altered without
affecting the residuals. Ignoring the eigenvectors corresponding to these seven eigenvalues,
we denote the eigenvector corresponding to the 7+kth largest eigenvalue Bk. Henceforth,
Bk will be referred to as the kth largest mode of variation.

We will first go through the different problems that we are interested in solving and then
we will explain how the actual solvers are generated in Section 3.4.

3.1 One­to­One Matches within Point Clouds

When we assume that tentative point correspondences are given this also covers matches
within the same map, i.e. loop closure or duplicate points. To achieve this, we transform
the points along the K largest modes of variation

pi +

K∑
k=1

bkBki = pj +

K∑
k=1

bkBkj, (1)

where Bki and Bkj denote the parts of Bk that correspond to the ith and jth map point,
respectively, and b1, . . . bK are unknown factors. To match the points pi and pj we solve
for these b:s and by adding exactly three modes we get a minimal system with one solution
– a system of three linear equations with three unknowns. The idea is to minimise the
negative log­likelihood of the new point cloud, while merging the points. This leads to the
following optimisation problemmin

b

∑
k

b2
k

λk
,

s.t pi +
∑

k bkBki = pj +
∑

k bkBkj,

(2)

where λk is the eigenvalue corresponding to the kth mode of variation Bk. The objective
function in (2) is quadratic and the constraints are linear, hence the problem is easily solved.

3.2 Matches Between Point Clouds with Known Scale

To achieve a match between two different point clouds we present four minimal solvers,
using either three or four point correspondences in maps where the scale is either known or
unknown. The case with known scale is applicable, e.g. when the point clouds have been
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created using a SLAM system that incorporates IMU data or the point clouds have been
scaled using some known distances within the maps.

Given that the scale in the two maps is known and the same, rigid registration would
correspond to finding an unknown rotation and translation, i.e. six degrees of freedom.
Although two point correspondences give six constraints, they can only be used to estimate
five out of the six degrees of freedom in the similarity transform, since one constraint is
undetermined.

Three Point Matching

The most common way to solve the registration problem is by using three point correspon­
dences. If the point triplet (p1,p2,p3) ∈ P should match (q1,q2,q3) ∈ Q that gives
nine constraints. Hence, with the six degrees of freedom from the transformation we can
solve for another three variables; thus we add three modes of variation. These modes can
be added to either the first or the second triplet. If we call the modes of the first map B
and those of the second B̄ this gives the modified points

p̃i = pi +

k∑
j=1

bjBji, i = 1, 2, 3,

q̃i = qi +
3−k∑
j=1

b̄jB̄ji, i = 1, 2, 3,

(3)

where k is an integer between 0 and 3, deciding how many modes of variation that are
added to each triplet. We will mostly use k = 1, but all cases have been investigated. The
rotation and translation between the maps can be eliminated to achieve three equations in
the three unknowns b1, b̄1 and b̄2 by first creating the vectors

v1 = p̃2 − p̃1, v2 = p̃3 − p̃1,

w1 = q̃2 − q̃1, w2 = q̃3 − q̃1,
(4)

and then requiring that the triplet­shapes are the same
vT

1v1 = wT
1w1,

vT
2v2 = wT

2w2,

vT
1v2 = wT

1w2.

(5)

Solving this system gives the three unknowns b1, b̄1 and b̄2.
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3. Point Matching in Uncertain 3D Point Clouds

Four Point Matching

There are also examples of registration and matching methods that use four point corre­
spondences. This utilises more information and in our case it allows for more modes to be
used. Looking at the point quadruplets (p1,p2,p3,p4) ∈ P and (q1,q2,q3,q4) ∈ Q,
this gives us in total twelve constraints, so we can solve for a total of six unknowns except
for the rotation and translation. Similar to before, we modify the points,

p̃i = pi +
k∑

j=1

bjBji,, i = 1, . . . , 4,

q̃i = qi +
6−k∑
j=1

b̄jB̄ji, , i = 1, . . . , 4,

(6)

where k is an integer between 0 and 6.

As in the three point case, we form the vectors

vi = p̃i+1 − p̃1, i = 1, 2, 3,
wi = q̃i+1 − q̃1, i = 1, 2, 3,

(7)

and eliminate the translation and rotation by creating the equations

vT
i vj = wT

i wj, 1 ≤ i ≤ 3, i ≤ j ≤ 3. (8)

3.3 Matches Between Point Clouds with Unknown Scale

Despite the possibilities to have a known scale of the point clouds, this is not always the
case. Therefore, we have expressed three and four point solutions for unknown scale as
well.

Three Point Matching

Again, we are looking at the point triplets (p1,p2,p3) ∈ P and (q1,q2,q3) ∈ Q which
give nine conditions. However, we can only solve for two additional parameters if the scale
is unknown. Hence, we add two modes of variation to the triplets. This is done in the same
way as in (3), but now k can be at maximum 2 and the second summation goes to 2 − k.
The vectors from (4) are created in the same way as before. However, when expressing the
matching criteria, the scale has to be eliminated as well. This is done by taking the product
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of scalar products in the different triplets
(vT

1v1) · (wT
2w2) = (vT

2v2) · (wT
1w1)

(vT
1v1) · (wT

1w2) = (vT
1v2) · (wT

1w1)

(vT
2v2) · (wT

1w2) = (vT
1v2) · (wT

2w2).

(9)

Four Point Matching

The equations for the four point solver with unknown scale will be expressed in a similar
fashion. As in the three point case, we can add one less mode of variation compared to
when the scale is known, i.e. a total of five modes. The modified points are given by (6),
but with k ≤ 5 and the upper bound of the second equation as 5 − k. The vectors are
formed according to (7). We further collect the scalar products within each quadruplet in
a vector

o = [vT
1v1 vT

1v2 vT
1v3 vT

2v2 vT
2v3 vT

3v3],

u = [wT
1w1 wT

1w2 wT
1w3 wT

2w2 wT
2w3 wT

3w3].
(10)

Here, o can be seen as a vector collecting the unique elements of the Gram matrix of the
vectors vi. If we let oi denote the ith entry of o and correspondingly for u, we obtain 15
equations

oi · uj = oj · ui, 1 ≤ i ≤ 6, i < j ≤ 6. (11)

3.4 The Minimal Solvers

In this paper we study solvers for five problems, described by (2), (5), (8), (9), (11). Of
these the problem described by (2) is easy to solve. State­of­the­art methods to handle
the resulting systems of polynomial equations use theory from algebraic geometry, e.g.
action matrix methods [11], generalised eigenvalue methods [22, 23], and resultant based
methods [6]. There is, however, still much work in terms of parameterising the original
problem, as different paremeterisations may yield completely different results [25]. To
produce solvers for the four systems of equations in (5), (8), (9), (11) we have chosen to
use the automatic generator [25]. The resulting code (in Matlab or C), typically involve
five steps: (i) calculation of the coefficients of the polynomial equations from input data;
(ii) generation of the elimination matrix; (iii) calculation of the eigenvalue matrix; (iv)
calculation of eigenvalues and eigenvectors; and (v) extraction of the solutions from the
eigenvectors and eigenvalues.

However, in some of the cases the automatically generated solvers end up being both large
and slow. The reason is that the automatic method of generating the code for step (i) –
the calculation of the coefficients of the polynomial equations – becomes large. Therefore,
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we have hand­coded this calculation. The resulting code is significantly smaller and faster,
which is shown in Table 1 (the table is further explained in Section 6.1). These experiments
have been run in Matlab. Note that in the table subscript index 1 denotes the automatically
generated solvers and 2 our suggested solvers.

It turns out that the problems have, in the presented order, 8, 64, 4 and 32 solutions,
respectively, see Table 1. After solving for the modification factors bi and b̄i the point pairs
can be modified accordingly. After this some known three or four point method for rigid
registration can be used to achieve a rotation R, a translation t and a scale s if needed. This
aligns the modified triplets perfectly.

4 Minimal Solvers in RANSAC

Given two point clouds P and Q and a set of tentative point matches (pi,qi), we suggest
the use of our presented minimal solvers in a RANSAC framework [14] to find a large inlier
set. First, use Algorithm 1 on both P and Q separately. If the size of the point cloud is
small RANSAC can be exchanged for an exhaustive search. Then, choose one of the solvers
from Sections 3.2, 3.2, 3.3, 3.3 and use Algorithm 2 on the two point clouds. In both
cases, the number of iterations (or stopping criteria) and a tolerance has to be chosen in
order to define the inliers and count the consensus set.

Algorithm 1: RANSAC refinement within a map
1 for a given number of iterations do
2 Randomly select a one point pair (pi,pj) ∈ P .
3 Use the one point solver on the pair.
4 Transform all of P accordingly using Bi and bi.
5 Count the consensus set and keep the solution if it is the best so far.
6 end

5 Finding Pair Matches

In our experiments we describe a 3D point using the mode of the ORB descriptors [35] for
the corresponding image points. Given two point clouds P and Q with points pk and ql,
respectively, and the Hamming distance dH(pk,ql) we say that two points are a tentative
match if {

argminjdH(pk,qj) = l,
argminidH(pi,ql) = k.

(12)
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Algorithm 2: RANSAC for m point solver
1 for a given number of iterations do
2 Randomly select m data point pairs (pi,qi).
3 Use the right m point solver for the chosen pairs.
4 for all solutions do
5 Transform the m point pairs using Bi, B̄i, bi and b̄i.
6 Do rigid registration for the modified point pairs to get R, t (and s).
7 Transform P and Q accordingly, using both Bi, B̄i, bi, b̄i and R, t (and

s).
8 Count the consensus set and keep the solution if it is the best so far.
9 end

10 end

Note that the same thing can be done within the maps, with the requirement that k ̸= l.
The step of finding tentative matches could potentially be solved using a learning based
approach instead [34, 45, 46, 49].

To refine these tentative point pairs we use the suggested algorithms in Section 4. For this
we use that the covariancesC = σ2(JTJ)−1 of the point clouds, using the Jacobian J from
SLAM and the estimated noise level σ. Eigenvalue decomposition of C gives the modes of
variation, and the modes for specific points can be found by choosing the right entries.

6 Experimental Evaluation

We have first evaluated the presented solvers in terms of speed and numerical stability and
then we used them on both a pair of simulated point clouds and point clouds from a SLAM
system run in a real environment. For the latter experiments we have used an even (or as
even as possible) division of the modes on the two maps, i.e. with k = 1 for the three point
solvers and k = 3 for the four point solvers. Nevertheless, all different solvers have been
developed.

6.1 Evaluation of Minimal Solvers

We first ran experiments where the suggested minimal solvers are compared to the auto­
matically generated solvers in terms of robustness and efficiency.
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Figure 2: The plot shows histograms over the residuals for the presented minimal solvers.

Robustness and Executions Times

To evaluate the numerical stability and the speed of the solvers we generated a large number
of synthetic problem instances for each solver. Then, the equations were evaluated for the
found solutions. Figure 2 shows normalised histograms of the maximum equation residual
for all solvers – in total 4500 residuals per solver. We denote the x point solver with a modes
added to the first map and b modes to the second map x­a­b. Hence, we denote the three
point solver with known scale from Section 3.2 by 3­1­2, the one with unknown scale from
Section 3.3 by 3­1­1, and correspondingly for the four points solvers, i.e. 4­3­3 and 4­2­3,
respectively. The three point solvers are both more numerically robust, which is expected
since they use less data and have fewer solutions than the four point solvers. However, all
the solvers show a good stability. The histograms for other mode divisions look similar.

Furthermore, in Table 1 the template sizes as well as the size of the solver file and median
executions times in Matlab are presented. For comparison, we have included both the
values for the automatically generated solvers – denoted by subscript 1 – and the suggested,
improved solvers – denoted by subscript 2. From the table it is clear that we decrease the
size of the solver file in all cases and that the execution times are reduced significantly for
the solves with unknown scale compared to the automatically generated solvers. Note that
the numerical stability, displayed in Figure 2, is the same for both versions of the solvers.

6.2 Using the Minimal Solvers on Maps

This section contains three experiments: one where the found inliers are investigated for a
real dataset and two experiments – on simulated and real data – where the matches are used
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Table 1: Execution times and eliminations template sizes for the minimal solvers. Subscript 1 shows that the solver was auto-
matically generated and 2 the improved version.

Solver Number Template Size Execution
type solutions size [kb] time [ms]

3­1­11 4 9 × 13 197 0.83
3­1­12 4 9 × 13 2.1 0.24
3­1­21 8 18 × 26 8.2 0.21
3­1­22 8 18 × 26 2.9 0.29
4­2­31 32 267 × 299 10 400 77 000
4­2­32 32 267 × 299 165 2.3
4­3­31 64 817 × 881 192 21
4­3­32 64 817 × 881 160 21

for map merging. For the experiments on real data we have generated 3D reconstructions
using a SLAM system built on ORB features [35] and IMU data [17], where the matches
are filtered using the technique from [42] and the solution is optimised using [20]. Hence,
the scale of the maps is already known, and we will be using our solvers from Section 3.2
for these experiments. The tentative matches were found according to Section 5.

Inlier Detection for Real Data

To test the inlier detection we conducted an experiment on three reconstructed 3D maps,
see Figure 3. They capture a room, where the first map has a loop closing problem – one
of the revisited walls has been doubled – and the ratio of the maps are slightly different.

The tentative matches between the maps were found as described in Section 5. Thereafter,
we estimated matches using Algorithm 2 with the 3­1­2 solver (Our 3 pt); Algorithm 2
with the 4­3­3 solver (Our 4 pt); three point Procrustes in a RANSAC loop (Pro 3 pt);
and four point Procrustes in a RANSAC loop (Pro 4 pt). All solvers were embedded in
the same RANSAC loop in order for them to run on the same randomly selected points
(either three or four points). The number of iterations were fixed at 2000 and the solvers
were evaluated for different thresholds between 1 to 15 cm. For each of these thresholds
the number of correctly and erroneously detected matches were counted by comparing to
manual annotations of the tentative matches. There were in total 290 tentative matches
between map 1 and 2, 277 between map 1 and 3, and 278 between map 2 and 3. Of these
845 matches 525 were true matches and 320 were false.

The true positive rates (TPR) and the false positive rates (FPR) for the different solvers were
calculated. The averages over ten such runs have been plotted as ROC curves in Figure 4. If
enough true positives are found, these can be used to close the loop. Our four point solver
shows promising results concerning this, as it gives a higher TPR for parts of the low FPR
values.
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Figure 3: Three local maps that were used to evaluate the minimal solvers in terms of inlier detection. The true labels were
annotated manually.

However, as the results are more unclear for the lowest FPR, we wanted to test the found
inliers, to know if the false positives that were found by the methods would bring any
problems, or if they were just false positives that happened to be close in 3D. Therefore,
we used the found matches in a merging algorithm that allows for statistical deformations
[16]². The results can be seen in Figure 5. Notice that the left wall is doubled in the left
map, where Procrustes has been used, while our method solves this. This indicates the
usefulness of our methods.

Map Merging on Simulated Data

Furthermore, we simulated a similar setup – two mappings capturing half of a room of
size 3× 6× 2 m each, see the blue and red maps, respectively, in Figure 6. For this setup
it is important not only how many true positives that are found, but which. The point
clouds were reconstructed using [52] and as tentative matches both true and random false
matches were added. In this case the scales of the point clouds are unknown. The results
after match refinement using four point Procrustes and our 4­2­3 solver is shown in Figure
6. Our method finds enough matches to close the loop. After aligning the merged maps
to the ground truth map the mean Euclidean error for the four point Procrustes map was
0.43, while is was 0.30 for our four point method. The maximum Euclidean error over
all map points was 1.23 and 0.60, respectively. We ran the same experiment with some
different noise levels and thresholds, using 30 iterations for each setup, and counted the
number of times that matches were detected on both sides of the room. The rate for the
different methods are shown in Table 2. Our four point solver outperforms the others and
our three point solver is better than Procrustes for low noise levels, while the results indicate
that two modes is not enough to capture the uncertainty for higher noise levels.

²https://github.com/gabrielleflood/mapmerging/
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Figure 4: The plot shows the ROC curve for the TPR and FPR w.r.t. inlier threshold for our suggested solvers and Procrustes
registration. The algorithms were run on a total of 845 tentative matches.

7 Conclusions

In this paper we have presented several new minimal solvers for matching of 3D point
clouds, both with known and unknown scale, together with a framework for how to use the
solvers in a RANSAC loop. We have also suggested to use a similar method within maps to
eliminate duplicates and solve for loop closing problems. The solvers were evaluated both in
terms of efficiency and performance and show better results than the widely used Procrustes
method. The output from the suggested system can, e.g. be combined with a map merging
system that allows for statistical deformations. This system captures matches that are more
spread in the point cloud compared to fully rigid registration and can therefore be used to
improve the global map compared to the local map.
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7. Conclusions

Figure 5: The merged room maps from Figure 3. To the left, matches have been found using three point Procrustes and to the
right using our 3-1-2 solver.

Figure 6: The results after merging the simulated maps using matches from four point Procrustes to the left and our four point
method (4-2-3) to the right.

Table 2: The proportion of times that correct inlier matches were found on both sides of the room.

σ = 0.001 σ = 0.005
Threshold 0.15 0.20 0.25 0.15 0.20 0.25
Our 3 pt 0.13 0.23 0.43 0.07 0.20 0.40
Our 4 pt 0.67 0.77 0.83 0.70 0.73 0.87
Pro 3 pt 0 0.03 0.20 0.07 0.20 0.27
Pro 4 pt 0.03 0.03 0.17 0.07 0.20 0.27
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