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I noticed even the crickets

Were actin’ weird up here
‘N so 1 figured I might
Just drink a little beer”
- Frank Zappa
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Popular summary

All life evolves around water. In order to regulate the flow of water in rivers, we
have developed dams. In order to regulate water within our bodies, one needs
another kind of structure: aquaporins.

Aquaporins allow our bodies to either excrete water via saliva or tears, or to
reabsorb excess water from the urine. If we had not been able to do this, the
mucous membranes within our mouths or around our eyes would become very
dry and cracked, and the likelihood of infection would increase. If we were unable
to reabsorb water from the urine, we would need to urinate several litres per hour.

What happens if somethings happens to the genetic code, the DNA, which is
the blueprint for all proteins? In the case of aquaporins and the proteins which
take part in their regulation, diseases such as cataracts, Sjégren’s syndrome, atopic
dermatitis, and nephrogenic diabetes insipidus ensue.

In order to study proteins such as aquaporins, which are membrane proteins
situated in the membranes of the cell, and investigate what happens to them on a
structural level, it is necessary to first produce them in cells. Once the protein has
been produced, it is possible to isolate the cell membranes from them, and in turn
the proteins. This requires the use of detergents and various filtration methods.

We have studied three of these aforementioned aquaporins: aquaporin-0,
aquaporin-2, and aquaporin-5.

The lens of the eye requires a certain level of circulation in order to function,
which is performed by aquaporin-0 being present at the cell membrane of the
cells. It also needs to be open to allow for passage of water molecules through it,
which is regulated through phosphorylation and interaction with another protein,
calmodulin.

Patients with nephrogenic diabetes insipidus may have it due to multiple rea-
sons, and a subset of these are due to mutations in the gene encoding for aquaporin-
2. These mutations cause the change of singular amino acids, which the protein



vi Popular summary

is composed of, to be replaced, thus changing the chemical properties. Our stud-
ies show that mutations from patients which affect certain parts of aquaporin-2,
which are relevant for quality control mechanisms within the cell, are not neces-
sarily too detrimental to the structure of the protein. On the other hand, they may
lead to decreased stability and water flux of the protein.

Sjogren’s syndrome may occur as a consequence of disruptions in the regula-
tion of aqauporin-5, as the excretion of water in mucous membranes is affected.

We have studied ther gulation of these aquaporins, the consequences of patient-
derived mutations, and how all of these aspects function on a molecular level.

The study of these membrane proteins on a biochemical and biophysical level
is very much dependant on our ability to isolate them from other materials within
the cell through the use of detergents. These detergents may lead to certain defects
which may be noticed if one is trying to solve the protein structure through the use
of protein X-ray crystallography. X-ray crystallography of proteins requires protein
crystals, which are formed by slowly concentrating protein in solution droplets,
forcing them into supersaturation. The protein can then either aggregate, or form
crystals. Crystals are tightly packed grids of molecules interacting with each other.
If one shines a laser beam onto such a crystal, a diffraction pattern will show. This
diffraction pattern may be used to solve the molecular structure of the protein.
A problem which one may run into when studying membrane proteins, is that
they often suffer defects as a consequence of the detergents used when purifying
them. These defects may in certain cases lead to further information regarding the
molecular structure. We have, aside from studying aquaporins, also studied the
cause of these defects, and if they may be manipulated to a researcher’s advantage
through the addition of a selection of other molecules.



Populirvetenskaplig
sammanfattning

Allt liv kretsar kring vatten. For att kunna reglera floden av vatten i floder har vi
dammar. For att kunna reglera vattnet inom viéra kroppar krivs det en annan typ
av konstruktion: aquaporiner.

Aquaporiner tilliter vara kroppar att antingen utsondra vatten, i form av ex-
empelvis saliv eller tarar, eller ateruppta vatten fran urin. Hade vi inte kunnat
utsondra saliv eller tarar hade véra slemhinnor i munnen och kring 6gonen blivit
vildigt torra och spruckna, och infektioner hade varit ett faktum. Hade vi inte
kunnat dteruppta vatten fran urinen vi bildar, hade vi behovt urinera flera liter
varje timme.

Vad hinder da nir nagonting blir fel med den genetiska koden, DNA, som
ar ritningen till alla proteiner, inte minst dessa aquaporiner? Sjukdomar sdsom
grastarr, Sjogrens syndrom, atopisk dermatit, och nefrogen diabetes insipidus ir
alla sjukdomar med kopplingar till antingen defekter, eller mutationer, pa sjilva
aquaporinerna, eller andra proteiner och mekanismer som hyjilper till att reglera
dem.

For att kunna studera proteiner sdsom aquaporiner, som dr membranproteiner
benigna i cellens membran, och ta reda pd vad som sker pd en ren strukturell
nivd med dessa proteiner krivs det att man forst uttrycker dem i celler, som man
sedan kan isolera cellmembranen frin. Dessa membran kan sedan 16sas upp med
detergenter, och genom olika filtreringsmetoder kan dessa proteiner sedan renas
upp och studeras.

Vi har studerat just tre av dessa aquaporiner: aquaporin-0, aquaporin-2, och
aquaporin-5.

Ogats lins kriver en viss grad av cirkulation for att fungera, och da krivs det
att aquaporin-0 ir nirvarande vid cellmembranet och dr 6ppen for genomfléde av

vii
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vattenmolekyler. Mekanismen f6r att 5ppna aquaporin-0 sker genom fosforylering
och interaktion med det reglerande proteinet calmodulin.

Patienter med nefrogen diabetes insipidus kan ha det av ménga anledningar,
och en del av dessa dr pa grund av mutationer i genen for aquaporin-2. Dessa
mutationer leder till att enstaka aminosyror, som ir proteinernas byggstenar, byts
ut, och dirmed tillf6r andra kemiska egenskaper dn de ursprungliga. Vara resultat
visar att mutationer frdn patienter, som ror delar av aquaporin-2 som ar relevanta
for glykosylering och kvalitetskontrollmekanismer, inte nodvindigtvis paverkar
integriteten av proteinets struktur till en storre grad. Diremot kan de ofta ha en
negativ inverkar pa proteinets stabilitet och formaga att leda vatten, men de ir
likvil funktionella.

Vid fel i reglering av aquaporin-5 kan sjukdomen Sjogrens syndrom upsté, da
utsondringen av vatten frin slemhinnor upphér att fungera.

Vi har studerat regleringen av dessa aquaporiner, konsekvenserna av muta-
tioner som kan dterfinnas hos patienter, och hur allt detta ter pd en molekylir
niva.

Studierna kring dessa membranproteiner pa en biokemisk och biofysikalisk
niva kretsar mycket kring mojligheten att kunna isolera dem fran ovrigt mate-
rial i cellen genom att anvindningen av detergenter. Dessa detergenter ger dock
vissa bieffekter, vilka ofta ir markbara nir man forséker utrona proteinets strukeur
genom rontgenkristallografi. Roéntgenkristallografi av proteiner kriver just pro-
teinkristaller, vilka kan formas genom att man under vildigt specifika och kon-
trollerade former later protein i 16sning 6ka i koncentration, vilket lingsamt tvin-
gar in proteinet i 6vermittning. Nir detta sker kan proteinet antingen aggregera,
eller bilda kristaller. Kristaller bestir av titt packade molekyler, som binder till
varandra pa ett sidant sitt att en viss geometri uppstar. Belyser man dessa kristaller
med en laserstrale fir man ett diffraktionsmonster, som kan anvindas for att utréna
de enstaka molekylernas struktur pd molekylnivé. Ett problem som kan uppsta vid
studier kring membranproteiner 4r att kristallerna som bildas ofta har defekter till
foljd av anvindningen av detergenter vid uppreningen. Dessa defekter kan dock i
vissa fall kan leda till ytterligare information kring den molekylira strukturen. Vi
har, utdver att studera aquaporiner, dven forsoke att ta reda pd hur dessa defekter
uppstar, och om de kan péverkas till en forskares f6rdel genom olika tillsatser.
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Introduction

It all begun some odd 3.8 billion years ago, when compounds that would come to
form what we now know as a cell likely floated freely in a primordial soup, as was
hypothesised by Aleksandr Oparin [1] and John ”JBS” Haldane [2] in the 1920’s.
Through fortune, be it through divine intervention or through any mechanisms
perceived as likely today or in the future, these compounds formed nucleic acids
(DNA and RNA), lipids, and amino acids, the latter eventually forming polypep-
tides and proteins. Once the cell had formed around the necessary compartments
(which would later include other prokaryotic cells, forming mitochondria and
chloroplasts), it had an incentive to propagate and survive to the best of its abil-
ities. 'The interior could through decoding of the blueprint that is the genetic
code produce the proteins necessary to carry out the housekeeping of the interior,
and interactions and signalling with the exterior environment and other cells in
its proximity, while the exterior was sealed off via a semipermeable lipid bi-layer
that had formed around its interior. Water could slowly move across the bi-layer,
as could Oz and C'Oq, but other molecules would need the development of spe-
cialised channels, or proteins which could mediate and propagate signals within
the cell. Enter the membrane protein.
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Membrane proteins

Membrane proteins are situated in the lipid bi-layer composing the outer perimeter
of the cell, thus providing isolation from the outside world, while also allowing
communication, of sorts, through the embedded membrane proteins.

The membrane has evolved to contain of a mixture of hydrophobic lipids,
steroids (such as cholesterol), and a vast variety of membrane proteins.

Unlike soluble proteins, membrane proteins are required to operate within this
lipid-rich environment, for which they have evolved to be stable within. As they
are destined for the cell membrane, they are required to contain signal sequences
which allows the cell to recognise where they belong. They may also be regulated
via different mechanisms depending on the protein and the triggering mechanism,
be it through trafficking to or from the membrane or gating mechanisms triggered
by another protein, ion, pH, or signalling substance.

Of course, as organisms grew more complex, and even became multi-cellular,
the need for the diverse specialisations of proteins became clear. Certain proteins
evolved to channel ions across the membrane (like voltage-gated potassium chan-
nels), while others evolved to potentiate signalling cascades (like GPCRs). As such,
membrane proteins are highly regarded as potential drug targets. Despite making
up only 20-30% of the human proteome [3], membrane proteins are considered
to make up 60% of drug targets [4][5]".

Nonetheless, the most interesting aspect of the specialisation of membrane
proteins 2, resulted in the regulation of the flow of water better than just through
non-facilitated passive diffusion.

'Despite these reviews being from almost two decades ago, the consensus seems to remain the
unchanged.
2At least for this thesis!
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Aquaporins

Even though a single cell organism such as Escherichia coli, found in the lower
gastrointestinal tract, may be somewhat limited in its complexity in relation to
multicellular organisms, the environments around it may change, and sometimes
rapidly. Thus, they require more than merely passive diffusion of water across their
membranes in order to survive, and through evolution, as was originally proposed
by Darwin [6], organisms adapt to their surroundings, or perish.? Life finds a way.

Aquaporins (AQPs) evolved to allow rapid movement of water molecules across
membranes through facilitated diffusion, and allowed regulation of cellular water
content depending on the osmotic gradient on the outside. As cells specialised
and differentiated into various tissue types, the need for further specialised AQPs
arose. In humans, these AQPs can be divided into a subset of water channels:
Classical AQPs, aquaglyceroporins and superaquaporins.

The classical AQPs have in general specialised in o7/y transporting water, whereas
aquaglyceroporins are capable transporters of both water and glycerol in e.g. adi-
pose tissue, and superaquaporins function as water channels within specific cells

[7].

30r rather, the more successfully adapted assert dominance.
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Class  Location Role PDB  Ref
AQPO | Eye lens Poor water channel,
junction protein
AQP1 1 CNS, kidneys, ear, ~ Water transport 1IH5 (8]
eye, erythrocytes,
muscle, lung
AQP2 I Kidneys, ear, Water re-absorption 4NEF [9]
reproductive tract from urine in kidney
AQP3 II Skin, kidneys, lungs
muscle, GIT
AQP4 I Brain, spine, Swelling in oedemas, 3GDS8
heart, lungs can form arrays 2D57
AQP5 1 Secretory glands, Mucous excretion 3D9S  [10]
lungs, ear, eye,
kidney, GIT
AQP6 I Ear, kidney Poor water channel* 2]
AQP7 1I Adipocytes, ovaries,  Junction protein* 6QZI  [11]
testes SAMX [12]
AQPS8 I Pancreas, liver, Water and ammonia transport [13]
adipose tissue, GIT,
reproductive tract
AQPY 1II Adipose tissue, Water and urea transport
ear, liver, CNS*,
reproductive tract
AQP10 I Adipose tissue, pH-gated glycerol flux 6F7H  [14]
reproductive tract
AQP11 I Kidney, liver, brain, ~ Unknown, essential for [15]
ear, adipose tissue,  kidney development
reproductive tract
AQP12 I Pancreas Unknown (7]
[15]

Table 1: Summary of known location, function, and structure (if known) of hu-

man aquaporins. Classes as follows: I - Classical aquaporins, II - Aquaglycero-

porins, III - Superaquaporins. *Speculated.
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As all aquaporins to some degree are selective toward water, and thus perform
similar tasks, they also evolved to share certain chemical and structural traits. They
all consist of four identical monomers, thus forming a homo-tetramer, which con-
sist of six transmembrane a-helices with interconnecting loops, two of which form
smaller a-helices which join half way through the membrane (Figure 2?). These
helices form a pore in the centre of each monomeric structure, which contains
two highly conserved NPA-motifs at the mid-point, protruding from each of the
smaller helices (with exceptions for AQP11 and AQP12, which have one helix
containing the NPA-motif, and the other either NPC or NPT, respectively), and
aromatic-arginine motif close to the mouth of the pore. The aromatic-arginine
motif acts as an initial selectivity filter, and in the case of aquaglyceroporins, the
radius of said filter is larger in order to facilitate transport of glycerol [16]. The
NPA-motif acts as a water selectivity filter, aligning water molecules one by one
to pass through the pore in an orderly fashion.

() (b)

Figure 1: Extracellular view (a) and side view (b) of a typical AQP, here AQP2
(PDB:4NEF). From the extracellular view, one has a clear view of the water chan-
nelling pores of each monomer.

AQPs may be regulated in a multitude of ways [17]; some are regulated via
pH-dependent gating or phosphorylation-dependent gating, others via a range of
interacting proteins which are involved in the localisation of the AQP, including
ezrin [18], LIP5 [19], calmodulin [20].

Aquaporins are not necessarily required to be active at the cell membrane at
any given moment. Instead, evolution has resulted in aquaporins being able to
either be regulated through pH-dependent gating [21] [22] [23], or by physically
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removing them from the membrane via trafficking [24].

The mechanisms of AQP trafficking are rather well known for some of the
proteins in the family, where post-translational modifications, such as phosphory-
lation (which may be regulated via hormonal signals) [25] or glycosylation, allow
for both quality control and directed transport to the membrane where it needs to
be put into use. In the case of aquaporin-2, once the physiological need for it to
be present at the membrane subsides, it is dephosphorylated and either recycled
via storage vesicles, degraded, or in some cases expelled via exosomes [26].

Since the discovery of AQPs in 1992 by Peter Agre [27] 4, they have been
thoroughly studied and been the focus of many careers, including that of yours
truly.

4Although some may argue Gheorghe Benga stumbled upon it first. [28, 29, 30, 31]
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Aquaporin-0

Aquaporin-0 (AQPO) is a rather poor water channel [32], which is highly expressed
in the lens of the eye. Here it has two functions; it regulates the microcirculation
within the lens fibres, and upon maturation it is truncated [33], allowing it to
form tight junctions with AQPO in neighbouring cells. The circulation ensures
that the cells within the lens are provided with oxygen and nutrients, as well as the
removal of metabolites [34], whereas the junctions that mature AQPO form not
only keep the cells adhered to each other; they also ensure that the space between
cells within the lens is kept at a constant distance which is smaller than that of the
wavelength of visible light [35].

AQPO has been reported to be regulated by pH [36] and by interactions with
calmodulin [37], which in turn is influenced by the level of phosphorylation of
the C-terminal domain of AQPO. Phosphorylation of AQPO occurs at residues
§229, §231, and S235 [38], and varies depending on the maturation of AQPO
and how far from the centre of the lens the cell is located [39].

We wished to explore the impact of the specific residues involved in the phos-
phorylation of AQPO on its interaction with calmodulin, and what significance it
would have for the transportation of water within the lens (Paper III).

Cataracts

Cataracts are often the consequence of mutations or other issues relating to the
function, structure, or regulation of AQPO. Since the circulation within the eye
is predominantly regulated via AQPO, reduced water channelling capabilities may
result in buildup of metabolic waste within the lens. Similarly, if the junction
properties of AQPO were to be affected, the crucial spacing between cells in the
lens would deteriorate, resulting in diminished translucency of the lens [35].

Aquaporin-2

As we go about our lives, our kidneys are continuously filtrating metabolites from
our blood into the urine, at a rate of 1L per hour. If we were to urinate at the
same rate, we would rapidly succumb to dehydration.

Aquaporin-2 (AQP2) was the second aquaporin to be discovered, by Fushimi
et al. in the wondrous year of 1993 [40]. It is situated primarily in the collecting
duct of the nephrons in the kidney, where it plays a key role in hormonally reg-
ulated reabsorption of water from the urine, thus preventing dehydration. While
other AQPs are present further upstream of AQP2 and reabsorb a majority of the
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water[41], AQP2 is the only one of them which is responds to hormonal regula-
tion upon dehydration (Fig. 2).

AQP2 is regulated in response to arginine vasopressin (AVP). AVP activates the
vasopressin V2 receptor (AVPR2), triggering a signalling cascade, which through
cAMP promotes the expression of AQP2, as well as initiates the translocation of
AQP2 situated in storage vesicles by C-terminal phosphorylation. AQP2 may
be phosphorylated at S256 [42], S261 [42], S264 [36], and T269 [43], which
in turn influences the interactions with regulatory proteins, and affects the time
during which it will be localised at the membrane [44].

Nephrogenic diabetes insipidus

Following disruption in the regulation of AQP2 in the kidney, be it due to the
disruption affecting the vasopressin pathway or AQP2 itself, nephrogenic diabetes
insipidus (NDI) ensues. NDI may vary in its severity, but the disease is always
characterised by the patients inability to properly concentrate their urine.

NDI may be either acquired or genetic. Acquired NDI often happens as a con-
sequence of lithium treatment (not uncommon in treatment of bipolar disorder),
or metabolic disturbances (e.g. hypokalemia or hypercalcemia) [45].

Depending on the location of the mutation, and whether it occurs alone or is
combined with either another copy or another point-mutation, it will be processed
by the quality control mechanisms of the cell in different ways, and thus have dif-
ferent fates. Certain mutations end up stuck in the endoplasmic reticulum (ER),
or is sent for endoplasmic-reticulum-associated protein degradation (ERAD) [46],
or might even be assumed functional, but to a lower degree [47, 46, 48].
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Figure 2: AQP2 expression is stimulated via AVP activation of AVPR2 (1). As
AQP2 is expressed, it is co-translationally glycosylated in the ER (2), where it also
undergoes initial quality control mechanisms. If it passes the control, it proceeds
into the Golgi, where the glycosylation is further matured (3), whereas misfolded
protein is directed to the proteasome for degradation (4). After passing through the
Golgi, AQP2 is relocated into storage vesicles, awaiting phosphorylation, which in
turn will target it for translocation into the apical membrane(5). Once in the apical
membrane, it reabsorbs water form the urine, concentrating it (6). The absorbed
water re-enters the blood via AQP3 and AQP4, located in the basolateral mem-
brane. When the body deems hydration to be sufficient, AQP2 is downregulated,
and is thus dephosphorylated and ubiquitinated, promoting endocytosis (7), and
either recycled (8) or relocated into multivesicular bodies (MVBs) (9). Once in
MVBs, it is either removed via exosomes (10), or degraded in the lysosome (11).
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© Glycosylation site
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© Ubiquitination site
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Figure 3: A) Overview of the domains of AQP2, with glycosylation and phospho-
rylation sites indicated, as well as mutated residues studied in Paper IV (T125,
T126, and A147). B) Extracellular view of AQP2. C) Side view of AQP2. D)
Close-up of loop C, with residues involved in the N-linked glycosylation process,
as well as the mutation sites studied (T125 and T126), indicated. E) Close-up of
the C'd%* binding site, the location of A147.
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Residue  Mutation Domain  Reference || Residue Mutation Domain  Reference
M1 I N-term [49] D150 E Loop D [67]
Al19 V TM-I [50] Vie8 M T™M-V [58]
122V TM-I [51] G175 R T™-V [64]
V24 A TM-I [52] G180 S T™-V [61]
28 P TM-I [46] Ci181 W Loop E [51]
G29 S TM-I [49] N184 H Loop E [65]
Ad47 V TM-II [53] P185 A Loop E  [46]
Q57 P TM-II [54] R187 C/H Loop E [68, 57]
G64 R Loop B [55] A190 T Loop E [64]
N68 S Loop B [56] V14 1 Loop E [46]
A70 D Loop B  [57] G196 D LoopE  [69]
V71 M Loop B [406] H201 Y Loop E [70]
R85 W TM-III (58] w202 C Loop E [71]
A8 V TM-III [59] G211 R TM-VI [70]
G Q TM-III [60] G215 C/S T™-VI  [67,72]
G100 R/V TM-III [61, 54] S216 P/F TM-VI [68, 73]
[107 N Loop C  [62] K228 E C-term [52]
T108 M Loop C  [63] R254 Q/L/W C-term [74, 75, 76]
T125 M LoopC  [64] E258 K C-term [56]
T126 M Loop C  [56] P262 L C-term [64]
A130 V TM-IV [65] R267 G C-term [77]
L137 P TM-IV  [66]
Al147 T TM-IV  [56]

Table 2: Known NDI-causing point-mutations of AQP2, reported in patients,

and which region of the protein they are situated in.

Among the point mutations studied in NDI, certain mutations seem to have

a fate within the cell which may not represent their functionality. We elected to
study point mutations T125M, T126M, and A147T, which have previously been
highlighted as targets of interest to better understand the underlying mechanisms

of congenital NDI (Paper IV).
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Figure 4: AQP2 splayed out, with point mutations found in NDI patients indi-
cated in red.

Aquaporin-5

Aquaporin-5 (AQP5), much like aforementioned AQPs 0 and 2, is a water-selective
channel. Unlike the other two, it is highly involved in the production of saliva,
sweat, and tears (and pulmonary secretions)[78].

It is regulated via translocation to the membrane in response to hypotonic
conditions and phosphorylation [79], although the exact mechanisms behind its
regulation are not very well understood.

In order to better understand the trafficking and regulation of AQP5, we in-
vestigated its interactions with ezrin, and how this interaction might look on a
molecular level (Papers I and II).

Sjogren’s syndrome

Sjégren’s syndrome primarily affects the exocrine glands of post-menopausal women,
and may lead to acute dryness of eyes and mouth, as it often affects the salivary
and lacrimal lands the most.

The importance of AQP5 in these tissues has been reported [80], especially
for the production and excretion of saliva and tears. It has also been reported that
patients with Sjogren’s syndrome show abnormal localisation of AQP5 within their
lacrimal and salivary glands [81, 82]. As AQP5 is regulated through trathcking
[79], it is likely that the interaction with a regulatory protein may be at fault.

AQP5 is also involved in the pathology of (diffuse) palmoplantar keratoderma
(83, 84] and atopic dermatitis [85].
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Proteins involved in aquaporin regulation

Ezrin

In order to traffic membrane proteins, such as aquaporins, along the complex net-
work of scaffold proteins, such as actin, within the cell, cargo-binding proteins
may be employed. One such group of proteins is the Ezrin, Radixin, and Moesin
family, also known as the ERM-family, which is essential for cell morphogenesis,
polarisation, motility, and adhesion. The ERM-family proteins share a high level
of sequence identity (>70%), and consist of three domains; a C-terminal actin-
binding domain, a linker domain, and an N-terminal FERM-domain (named af-
ter high levels of conservation within the ERM-family, as well as the oddly named
Protein 4.1. These ERM proteins are highly involved in vesicle trafficking and
maturation, and reorganisation of the cytoskeleton [86].

Ezrin is composed of three main domains: a C-terminal domain which teth-
ers to the cytoskeleton, a long linker domain, and the N-terminal FERM domain
(Figure 5), which binds to amphipathic helices [87], such as those occurring in
certain AQPs C-terminal domains, and it has been shown that knockdown of
ezrin results in membrane accumulation of AQP2 as a result of inhibited endocy-
tosis [18]. We were intrigued to see whether we could shed some light on these
interactions, in particular with AQP2, and AQP5, resulting in Papers I and II.

Figure 5: Overview of the ezrin FERM-domain and its subdomains.
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Calmodulin

Calmodulin is a small ubiquitous helical protein, involved in a vast amount of
regulatory processes throughout the body. It consists of two EF-hand motifs,
connected via an extended helix, which are highly dependant on calcium bind-
ing for the functionality of the protein [88]. Upon binding calcium, calmodulin
undergoes a conformational change, unfolding the two EF-hand motifs from the
connecting helix, allowing it to bind with interacting partners.

Calmodulin has been shown to bind to AQP0, AQP4, and AQP6 [89, 90, 91].



Methodology in membrane
protein biophysics

Protein expression and puriﬁcation

In order to study proteins, it is necessary to find ways to isolate them from the
source material. For certain applications and for certain proteins, it is enough to
prepare them from tissue samples, e.g. AQPO has been successfully purified from
sheep eye lenses [92], and microtubuli can be prepared by putting calf brains in a
blender [93]°.

In most cases however, it is necessary to introduce the gene sequence of the
protein of interest into a new host, most commonly E. coli, Saccharomyces cere-
visiae, Spodoptera frugiperda, or Pichia pastoris. This is done through selection of a
suitable circular DNA vector (plasmid), which is then cut open with endonucle-
ases, and the gene of interest may be inserted. Once the plasmid containing our
insert has been constructed, it may be inserted into a host. The gene may then be
expressed through some trigger, and protein produced and further purified.

In the case of aquaporins, we have chosen to express them in a particular ver-
sion of Pichia pastoris, with an AOX1 promoter. This allows us to increase the
biomass of P pastoris by feeding it glycerol until it has reached a level we deem
high enough (usually for 24 hours), after which protein expression may be in-
duced by switching the feed to methanol. After 48-72 hours of induction, the
cells are harvested.

From the harvested cells, one may now isolate the membranes through lysis
via BeadBeater (a type of high-power blender with 0.1 mm glass beads breaking
the cells) followed by a series of centrifugations and homogenisation into buffers
which are suitable for the protein of interest, but also harsh enough to remove

>Rajiv has described that this is the reason he no longer finds brain palatable. Understandable.

15
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unwanted impurities (such as proteases).

The isolated membranes are then solubilised using a suitable detergent, after
which there are a few options with which to proceed. When constructing the
gene sequence for the protein of interest, one must consider which methods of
liquid chromatography techniques one wishes to utilise. Commonly, one may
introduce a repeat of histidines at either end of the protein sequence, which have
a high degree of affinity for binding to Ni2* ions. Thus, once bound to a column
containing immobilised Ni** ions (immobilised metal ion affinity chromatography),
one may out-compete their interaction, and thus e/ute the protein, by applying a
(sometimes step-wise) gradient of imidazole.

Further purification may be performed by isolating the correct conformation
of the protein, or remove any remaining impurities, through size exclusion chro-
matography. As the name implies, the method isolates particles according to their
size, making them pass a porous stationary phase, trapping smaller molecules for
longer and letting larger ones pass through faster.

We now have protein to conduct studies on!

Structural methods

A handful of different methods have been developed in order to perform structural
studies of proteins. Nuclear magnetic resonance imaging (NMR) allows dynamic
studies in solution, but sacrifices the size of the protein that can be investigated.
Electron microscopy (EM) was for a long time good at getting low resolution images
that could hint at the overall structure of larger proteins or complexes, similarly
to small angle x-ray scattering (SAXS), although SAXS is performed in solution
(and uses X-ray diffraction), thus arguably in more "native” conditions. However,
cryo-EM has made significant advances toward atomic resolution during the last
decade.

Cryo-EM allows a rather simplified approach for the sample preparation com-
pared to what most structural biologists have been used to, with much lower sam-
ple volumes and concentrations needed than previously, but still suffers from the
fact that it is rather difficult to predict how a protein will behave on the grids that
are used for the measurements [94], the protein cannot be too small, and the com-
putational resources required for the processing of the data are vast and not the
easiest to come by for all researchers. I was curious to see if there was any work
done on the distribution of particles across the grids, and what sample concen-
tration would be optimal for a protein of a given size, and did a quick survey of
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the Protein Data Bank (PDB) [95]. As the standard is moving from .pdb-files to
.cif-files for structure submissions, it is possible to include more data on the exper-
imental conditions in the structure file itself. By screening all deposited structures
since 2014 of higher resolution than 4A (5824) for submissions containing in-
formation on the sample concentration (2237) and converting the concentration
from mg/ml to mM, Figure 6 was produced. There does indeed seem to be a cer-
tain correlation between what concentration works for a protein of a given size, but
considering that only 38% of structures had the information necessary, a more
rigorous study would need to be conducted (potentially also taking the blotting
method used into account).
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Figure 6: Distribution of PDB entries using CryoEM yielding structures of < 4A
in relation to their size and concentration of sample applied to the grid. Data
procured 2022-05-13.

But what if we want to study a protein of any size, and maybe even allow for
studies on conformational changes®? Luckily, great minds came up with a solution
for that during the first half of the previous century [96, 97, 98]: Protein X-ray
crystallography.

SAlchough, NMR is usually a preferred method in this case.
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X-ray crystallography

“If no crystals form, dump the samples in the sink and curse the darkness.”
- Alexander McPherson, 1982 7

If you were to leave a drop of water containing regular table salt (NaCl) to dry
at 25°C, you would eventually see small salt crystals appear. This is a consequence
of the water content in the drop diminishing, thus increasing the concentration
of salt in the drop, and at a certain point it will reach the solubility limit for NaCl
at the given temperature (357 mg/ml), and the molecules would start to fall out
of the solution, or precipitate. 1f the precipitation occurs in such a way that the
molecules may start to form homogeneous structures, which are identical along
all axes of the structure, a crystal forms.

For a small molecule like NaCl, weighing 58.443 g/mol (or Dalton (Da)),
this is nothing out of the ordinary. For a molecule weighing thousands of times
more, like a protein, this is indeed rather out of the ordinary. Proteins are complex
molecules, comprised of long chains of amino acids, all with their unique chemical
properties adding to the properties of the different sections of the protein, and
all behaving differently in relation to solvents (such as water) and hydrophobic
environments (such as lipids or other hydrophobic residues). As such, protein
crystals are not the easiest to form, and often take many months (or years) to
produce successfully. Even then, they may not diffract optimally, and the process
may start anew with further optimisation. McPherson’s words of encouragement
shed a touch of levity over the field, which I believe many of us can relate a bit too
well to...

Growing a protein crystal

Once one has purified the desired protein and concentrated it to an arbitrary con-
centration, one may decide how to approach the crystallisation. There are a few
different methods one may employ, which all evolve around different approaches
with which how to push the concentration of protein into the nucleation zone of
the phase diagram (Figure7). The most common method is vapour diffusion [99],
which is usually performed as a hanging drop or sitting drop. In this setup, a reser-
voir containing selected reagents is situated at the bottom of a well, over which
one either hangs (attached to a cover slip) or sizs (commonly on a small elevated

7Preparation and Analysis of Protein Crystals, McPherson, A. (1982). New York: John Wiley
& Sons.
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platform) a drop of protein solution mixed with reservoir solution and desired
additives. As the drop now contains a lower concentration of the reagents found
in the reservoir, water will (as vapour) gradually diffuse from the drop into the
reservoir, thus bringing the protein concentration toward supersaturation. Here,
depending on the nature of the protein in relation to the conditions used, the pro-
tein commonly form disordered precipitate. However, if the conditions are just
right, the protein will enter the nucleation zone, and form crystals. Once a crystal
has begun to form, more protein molecules will be incorporated due to the crystal
being an energetically favourable state in relation to protein in solution, and thus
the crystal will grow. If many small crystals form, they may sometimes shrink in
favour of the growth of a larger one, in a process known as Ostwald ripening [100].

Precipitation zone

Nucleation zone

[Protein]

[Precipitant]

Figure 7: Diagram over how different crystallisation methods function in rela-
tion to protein and precipitant concentration. I: Batch, II: Dialysis, III: Vapour
diffusion, IV: Free interface diffusion. Adapted from Chayen (2004) [101].
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The perfect crystal

In a perfect world, all protein crystals would be approximations of salt crystals
in their crystal packing; well organised, highly symmetric, and well diffracting.
When working with soluble proteins, or the occasional (and rare) well-behaving
membrane protein, this might sometimes (almost) be the case. In theory, this
would mean that all protein molecules composing the crystal are homogeneously
dispersed in a well ordered manner, with low levels of solvent between the molecules,
strong crystal contacts, and hopefully leading to Bragg peaks at subatomic (<1A)
resolution. Such a lattice may look a lot like Figure 12A.

Space groups

When molecules are arranged into a crystal lattice, they may assume to one of
230 different ways of packing, called space groups. The space group essentially
refers to the particular way the molecules have arranged themselves in relation to
each other in Euclidian space through various symmetry operations (mirroring,
chirality, rotation, or inversion). If view a unit cell, the smallest repeating unit
of the crystal, it might contain a single molecule. If this crystal belongs to space
group P1 (Figure 8), the next molecule within the crystal will be located at the
same position and orientation in the neighbouring unit cells. However, if we
look at a molecule in a more complex space group, things get a little harder to
conceptualise, and so does the nomenclature.
Space groups are noted according to the following format,

XN,

where X is the Bravais lattice (the facing of the molecule within the asym-
metric unit; P for primitive (cell corners), I for body centred (one point is at the
centre of the unit cell), A, B, or C' for centring on on a particular face of the
unit cell, R for rhombohedral, F' for face centring (toward each face of the unit
cell), N describes the rotation required to perform the symmetry operation (473
3 would mean a 120° rotation), and n describes the translation required for the
symmetry operation in relation to the lattice vector.

Thus, a P2 crystal would indicate a primitive centring motif of the molecule
(one per unit cell) with a twofold screw axis (180°) and a 1/2 translation of the
lattice vector.

As proteins are entirely composed of L-amino acids, they are limited to which
symmetry operations they can abide by. Thus, the number of various space groups
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a protein may crystallise into reduces significantly, from 230 to 65, shown in Table
3.

Depending on how a particular protein is structured, what chemical properties
and charges are distributed around its surface and what the particular crystallising
conditions are, each protein may crystallise into a range of different space groups,
depending on the crystal contacts that are possible to form under the given cir-
cumstances. Certain space groups (such as /4) may allow for a dense packing of
the molecules, with little void space, whereas other space groups (such as P4) may
result in a crystal packing with more void space. This space may be referred to
as solvent channels, and thus may result in a higher solvent content of the crystal.
Both of these space groups are represented in Figure 8.
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Crystal system
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Point group  Space groups

Triclinic
Monoclinic
Orthorombic

Tetragonal

Trigonal

Hexagonal

Cubic

C1
Cs
Do

Cy
Dy

P1

P2, P2, C2

P222, P222,, P2,212, P212,2;, C222,
0222,, F222, 1222, 12,212,

P4, P4y, Pdy, P4, T4, T4,

PA422, P42,2, P4122, P4522, P4522,
P41212, P452,2, P432,2,

1422, 4,22

P3, P31, P32, R3

P312, P3,12, P3,12, P321, P3,21, P3,21,
R32

P6, P61, P6y, P63, P64, P65

P622, P6,22, P6522, P6322, P6,22, P6522
P23, P23, 23, 123, 1213

PA432, P4132, P4932, P4332, F432, F4,32,
1432, 14,32

Table 3: List of all possible space groups proteins may crystallise into. Crystal sys-

tems indicate the geometry of the asymmetric unit. Point groups indicate the cyclic
(C), dihedral (D), tetrahedral 7', and octahedral O. Subscript number indicates
the number of reflections or rotations. Taken from https://www.ccp4.ac.uk/ccp4-
ed/misc/tables/ (accessed 2023-02-20).
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Figure 8: Space group diagrams of P1 (A), P4, P45, and I4. Images from A
Hypertext Book of Crystallographic Space Group Diagrams and Tables [102].
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The perfect diffraction

If one were to shine a focused beam of light through two thin parallel slits onto a
wall, one would observe a rather interesting phenomenon; the light would create a
pattern, as seen in Figure 10. If one were to increase the number of slits, the pattern
would multiply, and if one were to add another dimension to the slits (thus making
a grid of holes), the pattern would change further. The phenomenon occurs due
to the wave properties of light, creating peaks and troughs. If two scattered waves
have different phases, they may interact in such a way that the peaks of one overlap
with the troughs of the other, thus resulting in no signal (destructive interference).
If they overlap in such a way that both of their peaks occur at the same point in
their phases, one will see a bright spot of light (constructive interference).

This was first shown by Thomas Young in 1804 [103], and is essentially the
basis for modern X-ray crystallography, as a well ordered material, such as a crystal,
functions as a grid. If light of a given wavelength (\) passes through a plane of
Miller indices (plane of Bravais lattice) in a crystal (h, k, 1), a portion of the light
will act as if interacting with a weak mirror, and is reflected at an angle (6). When
the distance between the planes of the crystal (d) are so that the difference in path
length between two incoming waves of light (one being reflected at a higher plane
than the other) is equal to a whole number (n) of wavelengths to the other, the
conditions for Bragg’s law [104] are met:

Figure 9: Conditions for Bragg’s law. Adapted from Protein Crystallography: A
Concise Guide [105].

nA = 2dsin 6 (1)

For a given unit cell in a crystal containing a single atom at position x, y, 2, it
is possible to get the diffraction pattern via the following equation;
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Figure 10: Depiction of the famous double slit experiment. An incoming wave
of light passes through the two slits; the resulting waves will affect each other
and produce constructive interference (spots), and destructive interference (spaces
between spots).

B(h, k1) = f(h, b, [)e2milhahulz) o

where f(hkl) is the atomic scattering factor. However, if we look at a com-
plex crystal, such as those containing macromolecules, there will be a significant
increase in the amount of atoms within each unit cell. In order to study these,
we need to consider the sum of the diffracting atoms (V). Thus, we end up with
something referred to as the structure factor equation;

N
F(h’v ka l) = Z fj(h, k, l)eQWi(hmj_Fkyj'i'lzj) (3)
j=1

In order to calculate the densities of electrons within the unit cell (p), one may
use the total number of electrons in the unit cell, given by the structure factor (F);

1 & e g
pleyz) = & N B(h, k, 1)e2rilhesthy iz —o(iD) 4

where V' is the volume of the unit cell, and ¢ is the phase. But how do we get
the phase?
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The phase problem

As the diffracted light hits the detector, we are able to visually inspect the diffrac-
tion pattern and intensities, and infer the amplitudes. All of these factors are
necessary to solve equation 4, but what we cannot see, are the phases of the light.
The phases contain the most essential information regarding what we are trying to
observe; the three-dimensional information of the molecules we are studying. As
one may see in Figure 11, it is possible to construct an image without the phases,
but it will not be possible to extract much information from it. If we input incor-
rect phases (introducing bias), we end up with an image which we might think is
correct, but in fact is not.

Figure 11: The importance of phase: If we have the amplitudes of an unknown
object (A), and use the phases of a known, hypothetically similar object (B, who
has yet to start his PhD studies), we might end up with what we think is a cor-
rect representation of the object (D). However, if we use the phases of an object
which is actually more representative of the object, we will get a more successful
reconstruction (E, about to submit his PhD thesis).
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Over the last century, a lot of effort has been put into overcoming what has
been come to be the phase problem. Methods such as SAD/MAD (single-/multi-
wavelength anomalous dispersion) and SIR/MIR (single/multiple isomorphous
replacement) use the presence of atoms which scatter at a higher angle than those
naturally in a protein, and can thus be used to a high level of success in combina-
tion with a Patterson map, which utilises the Patterson function;

P(u, v, w) _ Z F<hkl)2€—2ﬂ'i(hu+kv+lw) (5)
hkl

The Patterson function does not utilise the structure factors, but rather the
intensities to calculate interatomic vectors within the unit cell. Thus, it is pos-
sible to map out the three-dimensional structure of the protein, however with a
caveat: anomalous scattering o7 a known homolog may be used, however the for-
mer requires the addition of a heavy atom, and the latter requires input of a solved
structure with minimum 20% homology. Using a homolog, one may perform
molecular replacement, which allows the creation of a Patterson map of the ho-
molog and overlapping it with the map of the unknown structure. This method
is widely used, but has a risk of introducing model bias, as the generated phases
may deviate from what is actually there. Therefore, it is important to approach
this method bearing the risk of bias in mind.

Reality
Lattice imperfections and thermal motion

Aswe are dealing with macromolecular crystals, the likelihood for the crystal lattice
to be entirely uniform and the symmetry operations to be absolutely representative
of every single molecule diminishes, be it due to lack of stable crystal contacts, or
higher solvent content of the crystal (as may happen in the case of certain space
groups). Instead of the pristine lattice that we see in Figure 12A and B, instead we
may be dealing with a lattice which looks a little bit more like Figure 12C and D.

As these deviations from the mean in the crystal structure (u?) impacts the
intensity of the scattered X-rays negatively (|F|), it is necessary to implement con-
siderations for these deviations in the structure factor equation, by taking atomic
displacement into consideration, caused by thermal motion or imperfect unit cell
alignment. We may implement the temperature factor, B ( B = 872u?), and
thus end up with the Debye-Waller factor, and the structure factor equation can be
adjusted accordingly;
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i+ky;+1z;) (6)

29
F(h, k1) Zf](hkl)e e

Continuous diffraction

If there are imperfections in the crystal lattice causing irregularities, the resulting
constructive diffraction is affected. There may not be as many successfully met
conditions required for Bragg peaks to occur, and there may instead be a cer-
tain level of diffuse, or continuous diffraction occurring (see Figure12). This phe-
nomenon has been known within the field of SAXS for a longer time, but within
the realm of X-ray crystallography it is a relatively poorly studied topic. It was
recently discovered that this continuous diffraction may contain structural infor-
mation, and in conjunction with Bragg peaks may lead to even higher resolution
data than merely by the implementation of Bragg peaks alone [106]. This con-
tinuous diffraction also contains information which has allowed @b initio phasing
- thus allowing the structural determination of a protein without using methods
introducing strong scatterers or molecular replacement; without introducing bias.

So far, this phenomenon has only been documented in a few model sys-
tems, but interestingly membrane proteins show potential for targets of this novel
method, due to the crystals they form having a tendency to have larger solvent
channels and higher solvent content.

There have been speculations regarding the core of this phenomenon, and
what information may be extracted from it. Are there only rigid-body irregularities
from which we can extract higher resolution information [107][106][108], or is
there also potential for information relating to biochemically relevant dynamic
motions of the protein [109][110]? Since the proteins are embedded in crystals,
the latter would seem unlikely due to the unnatural environment a protein crystal
unavoidably is.

Nonetheless, we wished to study the nature of continuous diffraction. Firstly,
if it would be possible to observe it in novel crystal systems, and secondly if it
could be affected via the addition of secondary additives (Paper V).
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Figure 12: Example of diffraction patterns from a well ordered crystal lattice, ver-

sus the diffraction pattern from a crystal lattice with imperfections. From Ayyer

et al. [106].
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Characterising a protein - other biophysical techniques

Stopped-flow spectroscopy

In order to measure the functional aspects of a protein, one may employ different
methods depending on what exact aspect of the protein one wishes to study. When
it comes enzymes, enzymatic assays are a common approach.

When it comes to aquaporins however, we are interested in studying the capa-
bility of them to transport water across a membrane. This may be done by recon-
stituting them into lipid vesicles (/Zposomes), after which we can subject them to
rapid mixing with an osmotic gradient, using stopped-flow spectroscopy. During the
reconstitution, one may introduce a fluorophore into the liposomes, which will
scatter differently depending on the swelling or shrinkage of the liposomes. One
may also measure the scattered light from the liposomes without any fluorophore
added. The increase in scattering during this rapid mixing may then be fitted with
the following equation;

y = yo + Are R0l 4 4 e Ralrm0) 7)

where A is the amplitude of the scattering, and % is the swelling rate of the
liposomes once exposed to the osmotic pressure. A; and k; are assumed to be
representative of the passive water transportation through the aquaporin, whereas
Ag and k3 are assumed to be representative of the passive diffusion across the lipid
membrane.

Using k1 from 7, one may calculate the permeability factor (P f);

k1
S
ﬁol VW Cout

Py = (8)

where Sy is the initial surface area of the liposomes, Vj is the initial surface
volume of the liposomes, V4, is the partial molar volume of water (18c¢m?/mol),
and Cl,; is the external osmolality from the mixing solution.

It is essential to correct for successful reconstitution of protein into liposomes,
as there is no guarantee that all protein will be incorporated. This may be done
in various ways, but I have found that running a Western blot and analysing the
bands with Image] [111] allows for an easy approach. Integrate the resulting peaks,
and either correlate them to each other or a known standard. The P f values may
thus be adjusted for the actual protein incorporated.

One of the main reasons to consider studies using proteoliposomes, is the
simplicity of them. Many studies have been conducted using oocytes to investigate
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the effect of e.g. osmotic gradients on a particular protein, but these studies will
always include the entire oocyte, which actually is a rather complex entity. In
contrast, a proteoliposome constructed with selected lipids and purified protein
will be a relatively #7ue representation of that particular protein under very precise
conditions.

Circular dichroism

The secondary structure composition of a protein may be to some degree elu-
cidated by measuring the absorption of polarised light due to their strict chiral
nature (being composed of solely L-amino acids), using circular dichroism (CD).
8

The ellipticity (@) of a protein is usually measured between 190nm and 250nm,
and the mean residual ellipticity (MRE) may be calculated as;

0 x MRW
MRE = 10=—5 ¢ ©)

where M RW is the mean residual weight, P is the pathlength of the cuvette
used for the measurement, and C'is the concentration of the sample.

Typical a-helical proteins display characteristic minimas at 208nm and 222nm
[113], whereas [3-sheets display a minimum at 195nm.

While it may be interesting to investigate the exact secondary composition of
a protein using this method, it heavily relies on very precise concentration deter-
mination of the protein sample, as shown in equation 9. However, as a method
for determining the integrity and stability of the secondary structures of a pro-
tein, it may prove rather useful. As the temperature of a protein sample increases,
the effect on secondary structure may be studied as the absorbance changes. At
a certain point, 50% of the protein in a sample will be denatured. This point is
referred to as the melting point, and the temperature at which this happens the
melting temperature (1,y,). The T}, of a protein may be calculated as follows;

(Tan + Bp) + (Tog + Ba)e T

1—|—e%

9:

(10)

where ), and og are the native and denatured states at 0 K respectively, 3,
and [34 are the slopes with respect to temperature of the native and denatured states

8Little is known regarding why this norm was established, but there have been recent advances
in the synthesis of “mirror proteins” [112].
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respectively, R is the ideal gas constant, and AG is the free energy of unfolding.
Given these conditions, one may calculate the 7},, using the Gibbs-Helmholtz
equation, assuming that the heat capacity of the protein, AC), = 0;

1-T

AG =AH (11)

m

where AH is the enthalpy, and 1" is the measured temperature.

It may also be of interest to compare the onser of the response to temperature,
as merely looking at the 7}, may in certain cases be misleading; if the rate of
unfolding may be slower for protein A than for protein B, they may still have
equal T7,. Thus, one may calculate when 7" deviates from the baseline, resulting

in Topser [114].

Differential scanning fluorometry

While circular dichroism uses the chirality of both proteins and light, differential
scanning fluorometry (DSF) uses excitable fluorescent compounds with various
chemical properties, most often hydrophobic. The concept is rather simple; as
a protein is subjected to increasing temperatures, it will eventually unfold. As
it unfolds, the residues normally buried within the protein are exposed, and the
fluorescent compound may bind to them. As the compound binds, the intensity
of its fluorescence decreases proportionally to the amount of exposed residues.
The resulting curve may be fitted with equation 10, and the 7}, calculated with
equation 11.

What if we want to measure the stability membrane proteins? Suddenly the
approach using hydrophobic compounds no longer works, as membrane proteins
are inherently hydrophobic along their membrane-embedded regions. Lately,
there have been significant advances in rather convenient ways of circumventing
the need of a fluorophore, while also offering speed and convenience; 7anoDSE.

NanoDSF uses the intrinsic fluorescence of the amino acid tryptophan, which
upon unfolding will change in intensity for both soluble proteins and membrane
proteins, while also allowing data to be collected in just over and hour and using
only < 10p! sample. Beautiful.

Microscale Thermophoresis

There are various ways of studying the energies of protein-protein interactions, but
microscale thermophoresis (MST), is probably the most convenient method I have
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encountered. The sample preparation consists of labelling one of the hypothesises
interacting proteins with a fluorescent dye, after which one creates a titration se-
ries with the other protein. Each sample in the series is then loaded into thin glass
capillaries, each housing 104:l. Provided the operator has dispensed the compo-
nents of the samples with sufficient precision, the initial scan of the capillaries will
show the fluorescence of each sample. If there are any larger deviations, the sample
preparation must be redone. Once the capillary scan is successful, measurements
may commence.

The measurements are performed by heating a central spot of the capillary,
using an infra-red laser. As the sample heats up, the measured fluorescence of the
labelled protein changes according to the speed at which it moves either away from
the locally heated area. This speed depends on the size, conformation, charge, and
hydration shell of the protein, which would all be affected if there indeed is an
interaction between the two proteins (and both of the interacting proteins are suf-
ficiently large enough to affect these properties of the other). Larger molecules,
or complexes, move slower than smaller molecules. The difference in this thermo-
poretic mobility within the concentration series of the sample (F},0ry,) may thus be
plotted in relation to the ligand concentration, using the local florescence of the

heated spot before (Foo1q) and after (Fot) heating;

Fhrot
Froorm = (12)
Feotd
The resulting plot may be fitted using the following equation;
L free
=S5 S1—=52) | ———— 1
y =51+ (51 2)<Lfree+KD) (13)

where S7 and Sy are the measured signals from the unbound and bound states
of the labelled protein, respectively, K p is the dissociation constant, and L .. is
the concentration of free ligand, defined by;

(Kp + Piot — Liot)?
4

Lfree = 0~5(Lt0t - Ptot - KD) + \/ + LtotKD (14)

where Ly is the total amount of ligand, and P is the total amount of the
labelled protein.
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In silico approaches

Even though the amount of protein structures deposited to the PDB since its in-
ception has increased almost exponentially every year, the amount of work re-
quired to produce merely a single protein structure still remains rather vast. As
discussed previously, obtaining a protein crystal can take months, or in some cases
years [], and even when the crystals do appear, they may not provide sufficient
diffraction. Even in these days with increasing use of CryoEM, sample optimi-
sation is needed, and once the data has been acquired there may be issues with
processing the terabytes of data (which may end up showing preferred orienta-
tion).

Alongside the work of classical wet lab scientists, 77 silico researchers have been
using the empirical data achieved in the wet lab to guide their attempts at creating
algorithms which may predict the fold of a protein from its amino acid sequence,
with the goal of eventually being able to avoid the arduous work that goes into
solving structures historically and today.

As nature has developed such a vast set of proteins in all living organisms
(and viruses from merely 21 amino acids, there is bound to be a certain level of
similarities between certain regions of proteins which possess similar properties.

Certain secondary structures have certain combination of amino acids that
allow them to form in the environment in which they exist. For example, alpha-
helical structures for soluble proteins likely have an amphipathic composition,
with hydrophilic residues exposed toward the cytosol, and hydrophobic residues
buried inside the structure, away from the cytosol.

If we look at aquaporins, there are multiple sites that have a degree of con-
servation between them, but they all have the central NPA-motif (with a slight
variation in AQP11 and AQP12, as mentioned previously). Thus, if a protein has
this motif within a central pore, it would not be unreasonable to assume that this
is used for water selectivity.

Furthermore, if we look at regions that may be used for post-translational
modifications or protein-protein interactions, we may be able to figure out how the
protein interacts with its environment, and how it might be regulated. If we wish
to study the nature of these interactions, we may choose to do so experimentally
through i.e. proximity ligation assays, microscale thermophoresis, isothermal titration
calorimetry, or via any of the structural methods discussed previously. However, if
we lack prior knowledge of these interactions, and if we want to study importance
of particular amino acid residues, it would be very useful if we could perform
predictions as to how these interactions form structurally. These predictions may
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vary depending on what tool we decide to use, and how they are constructed.

One tool which is commonly used is the online docking server HADDOCK
(High Ambiguity Driven protein-protein Docking) [115], developed by the group of
Alexandre Bonvin developed a web server for online protein-protein interaction
predictions based on the docking of rigid structures to each other while aiming
for low overall energy levels, achieved through buried hydrophobic residues and
appropriate polar interactions where applicable. The caveat is that prior knowledge
of the interaction is required, and a slight variation in the postulated interaction
site may lead to significantly different results.

Another approach has been used by David Baker and cohorts, in their software
Rosetta [116]. Rosetta focuses on protein structure prediction, and rigid body
docking for protein-protein interactions. The rather intriguing aspect of Rosetta
is the rather large and interactive community, leading to developments for more
flexible alpha carbon structure prediction for protein-protein interactions, such as

EvoDOCK [117].

AlphaFold

Protein structure prediction algorithms have been bench marked against each other
at biennial events named Critical Assessment of Techniques for Protein Structure Pre-
diction (CASP) since its inception in 1994.

At the 13th event, CASP13, in 2018, a new competitor entered the scene.
DeepMind, with their artificial intelligence oriented software AlphaFold, performed
vastly better than the competition, and with AlphaFold 2 they scored even higher
in 2020 at CASP14, almost well enough to be considered as good as experimen-
tally determined structures [118].

While AlphaFold is seemingly doing rather impressive progress for singular
protein prediction, it is uncertain whether the specificity for the modelling of
protein-protein interactions is sufficient for replacing experimental work. For even
more complex structures, such as disordered regions or intrinsically disordered pro-
teins, the predictions are simply not good enough. Nonetheless, it can provide
data which may be used in conjunction with experimental data, maybe even con-
firmed. Nonetheless, since AlphaFold relies on a a deep learning algorithm, it is
only as biased as the data it has been trained upon, and serves as a rather good
initial estimation for interactions for which there is little prior information for,
but which shares properties with previously solved structures.

At its current stage, AlphaFold has evolved to be a rather useful tool for exper-
imentalists for the design of experimental studies, and likely will become an ever



increasingly important tool for everyone involved in the field of structural biology,
be it in vitro or in silico.



Results & Discussion

Aquaporin regulation

Paper I: Aquaporin-5 interactions with ezrin

AQP5 was confirmed to interact with ezrin via proximity ligation assays in salivary
gland cells, as well as through immunoprecipitation and LC/MS-MS. As the C-
terminal domain of AQP5 is highly similar to that of AQPO and AQP2, which
have both been suggested to interact with ezrin via this domain [119, 18], it was
assumed to be the main interacting site.

In order to investigate the nature of the interaction, i silico, it was necessary to
predict the structure of the C-terminal domain of AQP5, as it has yet to be experi-
mentally determined in its entirety [10]. We utilised Robetta [120] in order to pre-
dict the full-length AQP5, resulting in two models; one predicted using the crystal
structure for AQP5 (which does not show the full C-terminal domain due to its
flexibility) [10], and one predicted using TrRosetta. The resulting models were
used for docking simulations using PyRosetta [121], by generating 1000 decoys.
The highest scoring predictions were further analysed using HADDOCK [122]
and PRODIGY [123]. The results were then compared with the structures of com-
parable structures where a helical peptide interacted with a FERM domain: Mus
musculus NHERF-1 (PDB:2D10) and NHERF-2 (2D11) C-terminal peptides in
complex with radixin-FERM [124], Drosophila melanogaster merlin C-terminal
in complex with merlin-FERM (PDB:7EDR) [125], and human NHERF-1 in
complex with moesin-FERM [126].

The predicted interactions between AQP5 and ezrin-FERM were shown to be
rather similar to those of the aforementioned helical peptides, although there we
were somewhat bewildered by the fact that AQP5 seemed to bind to ezrin-FERM
in the opposite direction of the other peptides.

37
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Paper II: More aquaporin interactions with ezrin

As we remained a bit uncertain regarding the exact binding mode of AQP5 and
ezrin, a novel development allowed us to try a new approach; the release of Al-
phaFold ° [127].

Using AlphaFold, we set out to study two other proteins which had been con-
firmed to interact with ezrin, with highly similar C-terminal domains (Figure 13);

AQPO [119] and AQP2 [18].

AQPO res. 224-263 FPRLKS | SERLSVL KGAK-PDVSNGQPEV-TGEPVELNTQAL - - - - - - -
AQP2res. 224-271 FPPAKSLSERLAVLKG -LEPDTDWEEREVRRRQSVELHSPQSLPRGTKA
AQP5 res. 226-265 FPNSLSLSERVA | | KGTYEPDEDWEEQREERKKTMELTTR- - - - - - - - -

Figure 13: Alignment of C-terminal domains of AQP0, AQP2, and AQP5. Blue;
hydrophobic residues, red; charged residues; pink; polar residues, yellow; glycine
and proline.

One of the main problems with generating the prediction for Paper I was the
flexibility of the AQP5 C-terminus. In comparison to the methods used there, Al-
phaFold suggested a rather different structure for the C-terminal domain of AQP5,
which was very similar to that of the predicted C-terminal domain of AQP2. How-
ever, the predicted structure of the C-terminal domain of AQPO gave little new
information, due to it likely being intrinsically disordered (Figure 14).

It is however worth noting that the all three predictions assume that the prox-
imal helix of the C-terminal domains is directed toward the cytosolic loops of the
main body of the AQP. This has been shown to be the case in AQP5 [10], but is
not the case for AQP2, probably due to the two prolines unique to AQP2 [21].

The docking generated two different binding modes, depending on if either
full length or merely the C-terminal domain of the AQP was used.

The full length predictions suggested, in contrast to our previous data, that the
distal part of the C-terminal domain adds to the /3-sheet of ezrin-FERM, similarly
to ICAM-2 [128]. All models still showed the same structure of the proximal
C-terminal domain (Figure 15A, C).

In contrast, the docking predictions using only the C-terminal domains in-
dicated a potential allosteric interaction, where the proximal C-terminal domain
binds more like our previous prediction for AQP5 (although not in the "fipped”
mode) (Figure 15D), as well as with the distal C-terminal domain, like the full
length docking (Figure 15B, C).

°Published just as we submitted Paper I.
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Figure 14: Structure of C-terminal domains of A) AQPO, B) AQP2, and C) AQP5,
predicted with AlphaFold. Colour according to hydrophobicity, with white being
highly hydrophobic, and red highly hydrophilic.

Thus, these interactions are potentially more similar to those of NHERF-1 and
NHERF-2 than previously suggested. Even more interesting is the binding mode
of moesin-FERM to the moesin C-terminal domain, which binds in o) of these
suggested modes [129], just like our predicted models. This behaviour has only
been documented for this particular interaction however, so further experimental
work is required to understand it fully.

However, due to our experimental data progressing in parallel with these sim-
ulations focusing on AQP2 and AQP5 at the time of writing, we elected to focus
on these two for Paper II.

The interactions between the C-termini of AQP2 and AQP5 with ezrin-FERM
were studied using GST-fused constructs, due to our interest in only studying the
interaction of the C-terminal domains. GST-fusion proteins also have the advan-
tages of yielding high amounts of protein with little optimisation needed. The
interaction between the produced GST-fusion constructs were confirmed to in-
teract with ezrin-FERM through co-elution followed by Western Blot.

The affinity of the interactions were studied using MST (Figure 16), showing
that AQP2 and AQP5 have similar aflinity to ezrin-FERM (Kp = 7.76 + 2.88
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Ezrin-FERM

Figure 15: A) Full length AQP2 and AQP5 docked with ezrin-FERM. B) C-
terminal peptides of AQP2, AQP5, ICAM-2 and NHERF-1 interacting with
ezrin-FERM. C) Close up of the predicted [-sheet interaction of the distal C-
termini. D) Close up of the predicted interaction of the a-helical proximal C-
termini.
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Figure 16: Fitted Fj,0pm of AQP2 and AQPS5 binding to ezrin-FERM.

pM and Kp = 2.13 £ 0.70 pM, respectively).

One of the potential regulating factors of he AQP2-ezrin interaction may be
phosphorylation of the C-terminal. Initial 7 silico studies, created by generating
S256D, §261D, §264D, and T269D mutants in AlphaFold, where docked with
ezrin-FERM, and analysed with PRODIGY. The data showed increased binding
affinity with phosphorylation, gradually increasing from S256D and S261D to
§264D (Figure 17). The highest affinity was was however predicted for the com-
bination of S256D and T269D, which occurs iz vivo only once S256 has been
phosphorylated. The additional phosphorylation of T269 decreases the rate of in-
ternalisation of AQP2, thus increasing its retention time at the membrane [130].
These phosphorylation data are merely initial studies, and at this stage provide
little more than a direction for the continued studies of the interactions between
AQP2 and ezrin in particular, and AQPO and AQP5 in general, when it comes to
the involvement of phosphorylation.
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Effects on AQP2-Ezrin interaction parameters
depending on phosphorylation
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Figure 17: Energy levels and residue type interactions between AQP2 C-terminal
domain and Ezrin FERM-domain depending on site of phosphorylation, as pre-
dicted by PRODIGY [123].
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Opverall, our data shows a novel binding modes for AQP0, AQP2, and AQP5
interactions with ezrin, and gives a good initial indication for the nature of these
interactions. Nonetheless, further studies, mainly iz vitro, are required to under-
stand the accuracy and relevance of our initial studies.
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Paper III: Aquaporin-0 regulation via CaM

In order to investigate the effect of phosphorylation of the C-terminal domain
of AQPO at residues S229, S231, and $235, phosphomimicking mutations were
created, from serine to aspartate, thus resulting in separate constructs with the
following mutations: $229D, S231D, and $235D.

In order to be able to compare the constructs with wild-type AQPO, it was
necessary to confirm two things: if it is phosphorylated by the expression system
(P pastoris, and if it retains the full C-terminal domain. Fortunately, a Western blot
using a Phos-tag was able to confirm the lack of phosphorylation of the wild-type
AQPO, and the C-terminal domain was confirmed to be intact via linear mode
MALDI spectrometry. Thus, comparison between the wild-type AQPO and the
phosphomimicking mutants was possible.

The interaction between AQPO and calmodulin was initially studied via MST.
Previous studies of this interaction has reported that AQPO binds two calmodulin
molecules, although this was in based upon simulations and electron microscopy
to a resolution of 25A [92]. The MST studies (Figure 18) showed that AQPO
bound to calmodulin similarly to what has previously been suggested, and that
§229D and S235D did not. Interestingly, S231D did show interaction with
calmodulin (with a Kp similar to that of wild-type AQPO0), however in a pe-
culiar fashion; the MST trace went the opposite” way, thus indicating slower
thermophoretic movement (a phenomenon that requires further study), and the
data suggested a 1:1 AQPO:calmodulin interaction.

Using oocytes, it has been shown that the water permeability of unphosphory-
lated AQPO is reduced upon interacting with calmodulin, and that the phospho-
rylation inhibits this gating mechanism [38]. In order to study this phenomenon
without the potential interference with other proteins, which may happen in such
a complex system, we reconstituted the purified AQPO and the phosphomimicking
constructs into liposomes. The resulting proteoliposomes were studied through
stopped-flow spectrometry, where they were subjected to an osmotic gradient and
the subsequent shrinkage of the liposomes could be measured. Due to AQPO be-
ing a rather poor water channel, a rather high lipid to protein ratio was required
(10). As can be seen in Figure 19, wild-type AQPO responds well to calmodulin
binding, whereas the addition of EGTA, a chelating agent, has no effect on AQPO,
but prevents calmodulin from binding. $229D, §231D, and S235D all displayed
unaffected water permeability under all conditions.

We have thus observed that AQPO binds calmodulin and its water permeabil-
ity is regulated via this interaction, and that phosphorylation at $229 and $235
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prevents this gating mechanism, which aligns well with previously reported data
[89, 38]. However, S231D seems to bind calmodulin, without it affecting the
water permeability.

It has previously been shown that C-terminal peptides of AQPO bind calmod-
ulin, although with lower affinity than the full length AQPO [131]. There are
indications that this could be due to interactions with other parts of the cytosol-
facing side of AQPO [132, 133], which might also support the alternative binding
mode of calmodulin interactions with pS231. It could also involve the distal C-
terminal, thus involving an allosteric interaction, which also has been suggested

for LIP5 in interactions with AQP2 [134] - and ezrin!
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mimicking mutations inhibited this regulation.
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Aquaporin quality control

Paper IV: Impact of point mutations on AQP2 in NDI

Two groups of point mutations in AQP2 were generated, based on their impor-
tance to glycosylation and potential Ca®* binding aspects [135]; T125M and
T126M (situated in the N-linked glycosylation site of loop C), and Q57P and
A147T (situated in the presumably important Ca>* binding site).

All constructs were possible to express in P pastoris, although Q57P proved
too unstable for purification without significant further optimisation.

In order to investigate the secondary structure and stability of the constructs,
they were studied using both CD and nanoDSE

CD measurements, performed between 20°C and 95°C' (Figure 20A and
B) showed that the mutations resulted in structures which were highly similar
to the wild-type AQP2, with highly a-helical patterns. As for stability, wild-
type, T125M and T126M were found to display similar stability, with T}, s of
71.03 £ 0.16°C, 73.45 £ 0.65°C', and 72.14 £ 0.25°C), respectively. T125M
did however show an increase in signal from 20°C' to 40°C, but we remain un-
certain of the significance of this. A147T was found to be significantly less stable,
with a T}, of 59.71 £ 0.34.

nanoDSF gave a similar indication (Figure 20C and D), with wild-type AQP2
seemingly being the most stable (7}, = 70.39 £ 0.27°C), followed by T126M
(I, = 67.87+0.39°C), T125M (1}, = 65.27 +0.21°C'), and A147T (1},, =
59.71 £ 0.34°C).

The impact of the mutations on the water permeability of AQP2 was investi-
gated through stopped-flow spectrometry, by reconstituting them into liposomes.
Since AQP2 is a more efficient water channel than AQPO, a lipid to protein ratio
0f 100 was used. The proteoliposomes were then subjected to rapid mixing with an
osmotic gradient, and the rate of shrinkage could be observed (Figure 21A). The
observed values were fitted according to equation 7, and the Py was calculated
according to equation 8 (Figure 21). Wild-type AQP2 and T126M displayed the
same water permeability, whereas T125M displayed a slight decrease, and A147T
even more so.

We sought to study the molecular structure of the mutants through X-ray
crystallography, in hopes of being able to compare them with that of the wild-
type AQP2. For the initial trials, we opted to replicate the conditions used for
crystallisation of the wild-type AQP2 [21]. This did luckily result in crystals of
very similar nature to that of wild-type AQP2; long rod-shaped crystals, which
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Figure 20: A) Normalised mean residual ellipticity for the AQP2 constructs, from
CD measurements. B) Normalised mean residual ellipticity at 222nm, between
20°C" and 95°C'. C) Normalised fluorescence from nanoDSF measurements. D)

T, values derived from both CD and nanoDSF measurements.

appeared within 3 days!®. The diffraction of the crystals varied a lot, but regardless
it was possible to collect data for T126M at 3.16A and T125M at 3.90A. A147T
diffracted to only to 5A, but it proved difficult to determine the cell parameters,
and thus the molecular replacement was unsuccessful.

The resulting structures for T125M (PDB:8GH]) and T126M (PDB:8OEE)
displayed highly similar structures to that of the wild-type AQP2 (PDB:4NEF),
with even loop C retaining its structure (Figure 22). A slight displacement of loop
C could be seen in the structure of T125M, possibly due the steric hindrance cause
by the introduced methionine.

We were also interested in seeing whether it would be possible to perform in
silico studies on the interactions during the glycosylation process within OST-B.
Attempts using AlphaFold failed, but attempts using HADDOCK resulted in po-

19Which, just like the wild-type crystals, would for an unknown reason cease to diffract if fished
beyond 5 days of setting up.



Agquaporin quality control 49

B

o
o
N
o

o
o

=

o
o
h
o

o

>
o
=
o

Pf (cm/s)

*
. wt 1
N T125M
. T126M
. A147T

empty

Normalized scattering

e

)
o
o
o

°
o

0.00 0.05 0.10 0.15 0.20 0.25 0.30 o<

A\
Time (s) P

«’\}@'\ P}D"ﬁ r 6\9‘3
Figure 21: A) Stopped-flow spectrometry of AQP2 and NDI-derived point mu-
tations. B) Calculated water permeability Py of the constructs.

tential indications toward the steric hindrance which might occur during the gly-
cosylation process. A forgetful mind did however lead to reattempting the dock-
ing, as I had forgotten which residues I had entered as potentially involved in the
interaction. This lead to a significantly different result, showing little consequence
of the mutations. We deemed the results as inconclusive, but it was an interesting
lesson in how AlphaFold may be of high value, but it may not be entirely ready
for the type of input we gave it, and how HADDOCK may be heavily biased by
the input you give it. In both cases, we are dealing with bias: AlphaFold from its
training data, HADDOCK from user input.

In summary, the mutations do to some degree cause destabilisation, but the
overall structure is retained, as is the water permeability, albeit less so. The main
cause of the disease model lies in the quality control mechanisms of the cell, as
has been suggested previously [46, 47, 136, 56]. As AQP2 is glycosylated co-
translationally in the ER, the protein undergoes a quality control mechanism
through step-wise trimming of the complex glycan, as may be seen in Figure
23. The process is somewhat of a dance between the proteins UGT, CNX and
CRT [137]. Sufficiently stable, correctly folded proteins are translocated for fur-
ther maturation in the Golgi, while proteins which are not sufhiciently stable are
redirected for degradation in the proteasome. T126M is however sufficiently sta-
ble, and the mutation is 7ot directly in the N-linked glycosylation recognition
sequence, so why is it degraded? It has been shown that UGT has a higher athn-
ity for peptides with a hydrophobic residue following the N-linked glycosylation
sequence [138], which would be caused by a methionine mutation, which would

explain why T126M leads to NDI.
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Figure 22: A) Cytosolic view of wild-type AQP2 (PDB:4NEF), AQP2 T125M
(PDB:8GHYJ), and AQP2 T126M (PDB:8OEE), superimposed. B) Side view of
the protein structures, as in (A). C) Loop C of wild-type AQP2. D) Loop C of
T125M. E) Loop C of T126M. 2Fo-Fc electron density map contoured at 1.00
shown for both T125M and T126M.
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Improving the study of membrane proteins

Paper V: Continuous diffraction - 2 novel approach

The implementation of continuous diffraction has been shown to have the poten-
tial to allow structural information beyond the range of Bragg diffraction to be
collected and used in the structural determination of proteins. As prior studies
had only shown continuous diffraction in photosystem II [106], we aimed to in-
vestigate whether this phenomenon could be observed in other systems as well.
Our initial experiments were performed at the X-ray free electron laser (XFEL) at
LCLS, and showed that AQP2 crystals did show strong continuous diffraction,
extending beyond the Bragg peaks.

Figure 24: A) Crystal of AQP2 mounted in a cryo-loop. B) 3D merge of recip-
rocal space of AQP2 diffraction. C) 2D slice of the merged reciprocal space of
AQP2, measured at an XFEL (LCLS). D) 2D slice of the merged reciprocal space
of AQP2, measured at a synchrotron (DESY). E) 2D slice of the merged reciprocal
space of AQP2, with Bragg peaks subtracted, measured at a synchrotron (DESY).
Detector edge for the images from DESY corresponding to 1.7 A.
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As XFELs are not the easiest to access, it was also interesting to see whether the
it would be sufficient to study continuous diffraction at a synchrotron, which it
turned out to be. The diffraction patterns of multiple crystals were merged into
a 3D reciprocal space volume using Merge3D '!. 2D slices of these volumes are
shown in Figure 24.
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Figure 25: Effect of secondary detergents added to the crystallisation conditions
of AQP2; A) continuous diffraction, B) Bragg diffraction.

Since AQP2 was a highly suitable candidate for studying continuous diffrac-
tion, we were also interested in seeing whether if it was possible to affect the quality
of it through addition of secondary additives (Table 4) to the crystallisation con-
ditions, as well as inducing it into a system that showed only weak signs of contin-
uous diffraction; SoPIP2;1, an AQP from spinach with high structural similarity
to AQP2 [139].

After setting up a a vast amount of drops, and bringing a total of 261 AQP2
crystals and 89 SoPIP2;1 crystals to DESY, we were able to conclude that the
secondary additive did not impact the Bragg diffraction of the AQP2 crystals.
Instead, the crystallisation temperature seemed to play a larger role (Figure 25).

In contrast, the secondary additive impacted the SoPIP2;1 crystals (Figure 26
C). However, it did 7or impact the continuous diffraction of either crystal system.
Nonetheless, after merging the diffractions of SoPIP2;1, there were indications of
weak continuous diffraction.

Uhttps://stash.desy.de/projects/M3D/repos/merge3d
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Detergent CMC (mM) MW (Da) Structure
DDM 0.17 510.6 " &
DM 1.8 482.6 &ﬁ&
HO
HO 0
0G 19.0 292.4 Hoﬁﬁroww
HO
HO 0
NG 6.5 306.4 Ho%_om
HO:
Ho$o
OGNG 1.02 0

Hi (o}
568.7 HOH%%.y

Table 4: Added detergents, their chemical structures, and their properties; dodecyl
maltoside (DDM), decyl maltoside (DM), octyl glucoside (OG), nonyl glucoside
(NG), and octyl glucose neopentyl glycol (OGNG).
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Figure 26: A) Crystal of SoPIP2;1 mounted in a cryo-loop. B) 2D slice of
the merged reciprocal space of SoPIP2;1 diffraction, measured at a synchrotron
(DESY), with the edge of the detector corresponding to 1.7 A Q) Bragg diffrac-
tion of SoPIP2;1 crystals in relation to the secondary detergent added to the crys-

tallisation conditions.
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A

Figure 27: Crystal packing for SoPIP2;1 (packed in space group 4, A and B),
compared with AQP2 (packed in space group P45, C and D), both views of re-

spective packings with 90° rotation in relation to each other.

The nature of continuous diffraction remains elusive, but a clue might lie in
manner of packing within the crystal system. SoPIP2;1 crystallises into 14, with
somewhat dense packing and, compared to AQP2 packing into P45, has relatively
small solvent channels and stronger crystal contacts (Figure 27). It should however
be noted that the addition of maltoside detergents could affect the space group of
SoPIP2;1, leading it to pack into P4242, although without affecting translational
disorder and the continuous diffraction.






Outlook

Since the dawn of my time as a doctoral student in the late summer of 2018,
the field has evolved at a rate that was difficult to foresee. Suddenly, there are
algorithms for protein structure prediction which are accurate to a level which
few could imagine possible within such a short time frame. There are structural
methods which are highly competitive with X-ray crystallography, a method which
has dominated the field of structural biology for decades. The use of AlphaFold
and cryoEM is almost household in structural biology labs these days, and they
are becoming increasingly accessible for researchers outside of our field as well.

While szandard X-ray crystallography may no longer be as alluring as it once
was, competing methods are no guarantee for an easy structure, and crystallogra-
phy remains the go-to method for smaller proteins and time resolved experiments.

However, the future likely lies in neither method, but rather the combina-
tion of them, and the lessons learned from them in terms of sample preparation,
data processing, and final interpretation. In conjunction with endlessly improving
computational power and increasingly sophisticated algorithms, the complexities
of cells and tissues might be easier to elucidate sooner than we might believe today.

With the evolution of biochemical and biophysical methods, naturally the
problems we may investigate and solve are often the driving factors behind these
advancements.

The regulatory mechanisms behind AQPs are becoming increasingly better
understood, although a lot of work still remains in order to be able to paint a wider
picture on the extensive network of proteins involved in “merely” regulating water
regulation of tissues. With this understanding, it will eventually be possible to
circumvent improperly functioning mechanisms within the body, such as quality
control mechanisms acting on high alert to targets which may not pose a threat to
the cell, and regulating e.g. water flow in particular events in our bodies which do
not serve us as well as they so far have evolved to be, like in brain oedemas.

Opverall, the field of structure biology remains an exciting field to be in, and
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in the advent of highly accurate structure prediction algorithms, I curiously look
forward to how we may apply our skills to problems which remain, for the time
being, beyond the grasp of automation.
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