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Popular summary

Over the last century, artificial light became eminent for mankind with widespread
usage ranging from technological applications to entertainment. Such as StarWars
movies have changed the perspective of an entire generation on science. Now, a
general view of having a PhD in physics represents a person closer to invent the
light saber. To be honest, that is our dream too. Unfortunately, in this study we
studied only the boring part of the light, it’s technological versions.

The physics of light has attracted attention for quite some time. A particular exam-
ple is Newton’s interest on light corpuscles. He thought that the light propagation
is caused by light particles and named them as corpuscles. He suggested that these
light particles have a certain speed and in contact with any rigid surface, these
particles shall obey Newtonian mechanics. Even though his theories were quite
close to the modern approach, he did not take into account that light propagates
also as waves. The introduction of the electromagnetic (EM) wave is first formu-
lated by a Scottish physicist and mathematician James Clark Maxwell. He added
the displacement current to Ampere’s law and the solution of his equations were
waves which travel close to the speed of light. This was a historical moment for
scientific development since the Maxwell’s equations are the beginning of an era
with enormous technological developments. One example is that the invention
of the telegraph helped Titanic to send an SOS signal after it’s collision with the
iceberg and Rose survived. Soon after the introduction of the EM waves, the first
EM spectrum is introduced by a German physicist Heinrich Hertz and led us to
catalog light by its frequency. Now we know, fromMRI machines to visible colors
and light from far distant galaxies, different frequencies of light represent different
natural perspectives in the universe.

With the invention of quantum mechanics our fundamental knowledge on the

vii



viii Popular summary

micro universe is expanded. Now, with all these technological advancements we
could produce light in a very wide range in the EM spectrum. In this work, we
study on a device called quantum cascade laser. These unique devices are used to
produce light in the far tomid infrared range between 1.2 to 100 terahertz depend-
ing on their design. This provides them to be useful in technological applications
in the related frequency ranges such as gas detection, military defence systems or
even medical fields of breath analysis.

One of the biggest challenges now is the achievement of high temperature oper-
ation of quantum cascade lasers over a wide range of frequencies in the terahertz.
Here, we suggested new designs where the thermoelectrical cooling is possible
within the entire range between 2 to 4 terahertz. This enables more designs to be
applicable in technological usage. Another interesting outcome is that we show
chaos in the output signal of a quantum cascade laser. Eventually, I did not man-
age to build a light saber, but I provide more knowledge on chaos theory. I hope
this would help to understand which path the water drop will follow in Jeff Gold-
blum’s hand in Jurassic Park I.



Populärvetenskaplig
sammanfattning

Under det senaste århundradet har artificiellt ljus kommit att bli oerhört bety-
delsefullt för mänskligheten. Användningsområdet för artificiellt ljus är brett och
innefattar allt från tekniska tillämpningar till underhållning. Bara det att Star
Wars-filmer har förändrat en hel generations perspektiv på vetenskap, säger en hel
del. En allmän syn på en person som har en doktorsexamen i fysik är att vi jobbar
med att uppfinna ljussabeln. För att vara helt ärlig så är det en dröm många av oss
har. Tyvärr så kommer denna studie bara utforska den tråkiga delen av ljuset, den
tekniska delen.

Ljusets beteende har uppmärksammats relativt länge. Ett särskilt exempel är New-
tons intresse för ljuskroppar. Han antog att ljusets utbredning orsakas av ljuspar-
tiklar och benämnde dem som blodkroppar. Han föreslog att dessa lätta partiklar
har en viss hastighet och i kontakt med vilken stel yta som helst, ska dessa par-
tiklar lyda Newtons mekanik. Även om hans teorier låg ganska nära det moderna
förhållningssättet, tog han inte hänsyn till att ljus även sprider sig likt vågor. In-
förandet av den elektromagnetiska (EM) vågen formulerades först av en skotsk
fysiker och matematiker James Clark Maxwell. Han lade till förskjutningsström-
men till Amperes lag och resultatet av hans ekvationer var vågor som färdas nära
ljusets hastighet. Detta var ett historiskt ögonblick för vetenskaplig utveckling
eftersomMaxwells ekvationer var början på en era med enorm teknisk utveckling.
Ett exempel på det är att uppfinningen av telegrafen hjälpte Titanic att skicka en
SOS-signal efter kollision med isberget och Rose överlevde.

Strax efter introduktionen av EM-vågorna introduceras det första EM-spektrumet
av en tysk fysiker, Heinrich Hertz, som hjälpte till att katalogisera ljus efter dess

ix



x Populärvetenskaplig sammanfattning

frekvens. Nu vet vi att, från MRI-maskiner, synliga färger och till ljus från långt
avlägsna galaxer, olika frekvenser av ljus representerar olika naturliga perspektiv i
universum.

Med kvantmekanikens upptäckt utökas vår grundläggande kunskap ommikrouni-
versum. I och med alla dessa tekniska framsteg kan vi producera ljus i ett mycket
brett spektrum i EM-spektrumet. I detta arbete studerar vi en enhet som kallas
kvantkaskadlaser. Dessa unika enheter används för att producera ljus i det långt till
mitten infraröda området mellan 1,2 till 100 terahertz beroende på deras design.
Detta gör att de kan vara användbara i tekniska applikationer inom de relaterade
frekvensområdena, såsom gasdetektering, militära försvarssystem eller till och med
medicinska områden av andningsanalys.

En av de största utmaningarna nu är uppnåendet av högtemperaturdrift av kvan-
tkaskadlasrar över ett brett spektrum av frekvenser i terahertz. Här föreslår vi nya
konstruktioner där den termoelektriska kylningen är möjlig inom hela området
mellan 2 till 4 terahertz. Detta gör att fler mönster kan användas inom tekniska
användningsområden. Ett annat intressant resultat är att vi visar kaos i utsignalen
från en kvantkaskadlaser.

I slutändan lyckades jag inte bygga en ljussabel, utan men jag ger er mer insyn och
kunskap om kaosteori. Jag hoppas att detta kommer hjälpa till att förstå vilken
väg vattendroppen kommer att följa i Jeff Goldblums hand i Jurassic Park I.
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Research context





Chapter 1

Introduction

The quantum cascade laser (QCL) was first realized in the Bell Laboratories by
Jerome Faist et. al. in 1994 [1] with the lasing wavelength of 4.2 µm. The study
promised further technological applications in the far to mid infrared (IR) region
in the electromagnetic (EM) spectrum. Following the introduction of the QCLs,
both experimental and theoretical interests are elevated significantly. This is fol-
lowed by the achievement of continuous wave operation at room temperature by
Beck et. al. in 2002 [2] around mid IR. Reaching room temperature was a big
step towards the technological applicability where mid IR sources are widely used.
These areas are gas detections, quality controls and even military technologies such
as defence and security systems [3, 4, 5, 6]. Around the same year, the first tera-
hertz (THz) QCL operation in pulsed mode was achieved by Köhler et. al. [7].
Following this study, THz QCLs became viable sources between 1.5 and 6 THz.
However, the struggle was the achievement of continuous wave operation at room
temperature while the highest operation temperature of 250K in pulse mode is
experimentally observed by Ref. [8]. Based on this model, we also suggested a
new study in Paper II showing that the achievement of operation at even a higher
temperature of 265 K is possible. Now, QCLs are viable sources of generating
radiation between 1.2 to 100 THz [9] and their technological applications are
possible either in room temperature in IR or via thermoelectrical cooling in THz.

In classical laser diodes, the generation of a single photon is based on interband
transitions [11]. A high energy electron in the conduction band combines with
a hole in the valance band and the energy of the emitted light resulting from this

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Four level laser diagram including ground, excited, upper (U) and
lower (L) states. Arrows represent the direction of pumping, emission of light and
relaxations. The figure is adapted from Ref. [10].

combination is calculated by the energy difference of the band gap by the material
of use. This restricts the flexibility to vary energies of the emission and thus limits
the frequency of the output light. In quantum cascade lasers, the design of an op-
tical medium is based on quantum wells/barriers to trap the particles [12, 13]. The
outcome of the trapping electrons results in discrete energy states due to the quan-
tum confinement. These discrete energy levels are used as optical levels to produce
optical power[14, 15, 16]. Varying the sequence and width of the wells/barriers
change the energy of these discrete levels. This provides more flexibility to achieve
lasing field in different frequencies via the same composition of semiconductor
materials. In this thesis, I show my contributions to the ongoing researches in
THz QCLs with studying temperature performance analysis as well as the electric
field domains and the theory of chaos.

1.1 Operation Principles of Lasers

For a system with electrons excited from a lower energy state to a higher one, stim-
ulated emission of light occurs due to the energy transfer of the excited electrons to
a light field. This is usually referred as the laser medium. For a simplified working
principle of a laser medium, Fig. 1.1 shows an illustration of a four level scheme
[10]. This is one general example to show the mechanisms of pumping, lasing and
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injection/extraction of the electrons between the energy levels.

Here in Fig. 1.1, first the atoms are pumped to an excited state with higher energy.
This pumping mechanism can be the light emission from an external source, an
applied electric potential or any other sources (e. g. excitation from electrical
discharge). Providing such an external source excite the electrons in the ground
state and transfer them to the excited level (i. e. via stimulated absorption)[10, 17].
This process refers to the pumping of the electrons and the direction of the transfer
is shown by the vertical arrow pointing upwards.

After the particles reach to the excited level, they quickly relax to the upper laser
level ”U” with losing their energy and start accumulating i. e. creating inverted
population. These electrons may stay longer in the upper level depending on their
scattering probability. This is followed by the transition of the electrons to the
lower level ”L” by either scattering or emission of the light. This transition oc-
curs relatively slower than the relaxation time. In case of photon emission, these
photons will create an optical gain. Finally, particles quickly depopulate ”L” and
relaxes to the ground state.

To trap the photons, since they move with the speed of light, inserting mirrors on
the sides of the system will create cavity modes [10]. This results in building power
regarding the multiplication of the trapped photons, creating a gain medium. If
we consider the leakage from the mirrors as losses, the emission of light occurs
when the optical gain is higher than the losses.

To summarize, the main idea to operate an efficient laser is depending on keeping
the particles long enough in the upper laser level to achieve higher population
and quickly depopulate the lower laser level. The trapped photons between the
mirrors will be amplified yielding a build up of optical power i. e. a functioning
laser device.

1.2 THz Quantum Cascade Lasers

The operation of the QCLs are based on intersubband transitions in the conduc-
tion band [16]. The carrier transport in QCLs is based on one type of charge;
electrons. Therefore, they are also known as unipolar lasers [19]. In QCLs, us-
ing bulk semiconductors in the active region design is not an option, instead, a
heterostructure is formed by using periodic repetitions of thin layers with using
different semiconductor material compositions [14]. These periodic repetitions



6 CHAPTER 1. INTRODUCTION

Light

LO

Module

Figure 1.2: Cascading conduction band diagram of a terahertz QCL taken from
Ref. [18]. Each module consists of three wells and three barriers represented by
black solid lines. The probability density of the wavefunctions are plotted and
showing the upper, the lower and the extraction/injection levels with solid, dashed
and dashed dot curves respectively. Diagonal arrow represents the lasing transi-
tions and the vertical arrow represent the longitudinal optical phonon transition.

form a cascading design based on barriers and wells in the conduction band as
shown in Fig. 1.2. Here, the thickness of the layers settles the location of the
energy levels. Varying the emission frequency can be done easily by only chang-
ing the layer thicknesses and sequences. Thus, they provide generation of light in
a broader range of far to mid infrared region in the electromagnetic (EM) spec-
trum. In this thesis, we focus on the Terahertz (THz) range and the THz QCLs
have emission frequencies between 1.2 and 5.4 THz [20, 21, 22]. This is due to
the small energy separation between the upper and lower levels.

With applying an external bias, which provides the tilted alignment, particles first
are injected to the injection level (blue solid curves) as seen in Fig. 1.2. The align-
ment of the injection and the upper laser level (red dashed curves) allows carriers
to resonant tunnel to the upper laser level. Here, in the absence of any scattering
mechanism, carriers persist long enough to achieve inverted population. Follow-
ing with the stimulated emission of the carriers to the lower laser level (magenta
dashed dot curves), lasing transition occurs. This is followed by the quick depopu-
lation of the lower laser states by the extraction level (orange dashed dot curves) to
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Figure 1.3: Illustration of the three subbands of upper (U), lower (L) and ground
(G) in the conduction band. The longitudinal optical phonon transitions as well
as the lasing transition ranges are shown by arrows. Dashed arrows represents the
electron electron scatterings.

assure the inversion. The extraction of these carriers by longitudinal optical (LO)
phonon transition to the injection level in the neighbouring module is followed
by the pumping of the carriers again and the same processes are repeated.

1.2.1 Different Structure Designs

Extraction Schemes

The quick depopulation of the lower laser level is the key point to sustain enough
inversion. In conventional THz QCLs, the energy separation between the lower
laser and the ground levels are typically around 35 − 37 meV. This is approxi-
mately the same energy of the LO phonons with ℏωLO = 36. The depopulation
mechanism is usually established by the scattering of the longitudinal optical (LO)
phonons as seen in Fig. 1.3. This is either done by placing the lower laser and the
injection level in the same well, i. e. direct LO phonon extraction (see Fig. 1.4(a)),
or adding an additional extraction barrier. Thus, extraction is done by the reso-
nant tunneling of the carriers to an additional energy level in the neighbouring
well (see Fig. 1.4(b)). This additional energy level is usually referred to the extrac-
tion level. When the extraction level resonates with the lower laser level, carriers
tunnel and depopulate the lower laser level. This is followed by their de-excitations
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Figure 1.4: Illustration of conduction bands for four different THz QCLs with
EZ states (see Sec. 2.1.1). (a) LU2022 device studied in Paper II. (b) V812 device
studied in Paper I. (c) The device studied in Ref. [24] and also in Chap. 5 labelled
as ChassagneuxIEEE2012. (d) The device studied in Ref. [25]. Arrows show the
injection, lasing and extraction mechanisms. The extensions of the single modules
are displayed by the gray areas.

via LO phonon scattering to the injection level. This mechanism is called resonant
phonon (RP) extraction scheme[23].

Fig. 1.4(a) shows the direct LO phonon extraction where the lower laser level
is aligned vertically with the injection level. This is usually the case in two-well
designs due to their simple and compact structure involves only three levels, the
injector, the upper and the lower laser levels. RP extraction mechanism on the
other hand is shown in panels (b), (c) and (d) where additional extraction barriers
are introduced and the lower level is depopulated by the resonant tunnelling to
the extraction level before the LO phonon transition to the injection level.
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Lasing transitions

With achieving enough inversion, the lasing transition occurs between the upper
and the lower laser levels. This lasing transition is done either vertically or diagonal
in case of the existence of a lasing barrier between the laser levels.

Fig. 1.4(c) and (d) show the scenario of vertical lasing transitions. Here, the upper
laser level is aligned vertically above the lower laser level in the same well. In panels
(a) and (b) this transition rather arises diagonal. Increasing the diagonality (i. e.
increasing horizontal distance between the upper laser level and the injection level)
is usually desired to prevent scattering from the upper laser level to the lower laser
level or the injection level of the subsequent module. Therefore, it is common to
see QCL designs with diagonal lasing transitions to provide sufficient inversion.

Injection Schemes

The population in the upper laser level is achieved by injecting the carriers from
the injection level. The most common injection scheme is the tunneling injection.
This is the mechanism when the injection and the upper laser levels align and due
to their resonance, the carriers are transported to the upper laser level, creating
the inversion. This injection scheme is shown in Fig. 1.4(a), (b) and (c) where the
injection and the upper laser levels align.

Another option is to use the scattering assisted (SA) injection. This is the process
of resonance tunneling of the carriers from injection to another level in the neigh-
bouring well. Here, due to the energy separation between this additional level and
the upper laser level is close to the LO phonon energy, LO phonons scatter to
the upper laser level and create inversion. This mechanism is shown in Fig. 1.4(d)
where the upper laser level is populated by the LO phonon scattering. However,
these designs are not very common. This might be due to the long module length
providing less gain per length and their more complicated structure results in scat-
tering of the carriers between the levels thus reduces the inversion.

1.3 Negative Differential Conductivity

Achieving a proper emission of light in a QCL design is depending on few key
points. First, sufficient population inversion needs to be established. Secondly,
the gain must match and overcome the wave guide and mirror losses. Finally,
the electrical stability of the design at the operation point is desired [16]. Here,
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Figure 1.5: Simulated non-lasing current bias relation for the device studied in
Ref. [26]. The appearance of the NDC region is highlighted by the gray area.

we briefly mention about the appearance of the negative differential conductiv-
ity (NDC) region in the current-bias relation which results in instabilities at the
operation point.

The resonant tunneling due to the alignment of the levels provides current flow
inside the modules. As the applied bias increases, resonances between the higher
states become relevant and they contribute more to the overall current density.
Usually, a stable operation point is achieved around the maximum current. This
is not the case for devices with NDC. Here, presence of the NDC region implies
a drop in the current densities with increasing the bias. This forms a characteristic
N-shape behaviour in the current-bias relation and two separate current peaks
occur [27].

Such scenario is shown for a THzQCL device in Fig. 1.5 where the data is obtained
by our non-equilibrium Green’s functions (NEGF) package discussed in Chap.2.
Note that, the results are shown here are without the irradiation (no ac field is
applied). Here, due to the detuning of the levels with increasing field, current
drops after the resonance following the first current peak at 46mV. At higher bias,
alignment with the higher states become relevant and the current increases again
resulting a second peak at 75 mV. Here the appearance of the N-shape region
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becomes clear and the NDC region is highlighted between 46 and 52 mV.

Following the decrease in current after the first current peak, the electric field dis-
tribution becomes no more homogeneous and forms domains instead [28]. This
causes instabilities and usually prevents stable operation points. In Chap. 3, we
focus on the formation of these electric field domains for extended THz QCLs
with NDC and introduce our domain model to analyse the dynamical evolution
of the electric field distributions.

1.4 Motivation of this thesis

Quantum cascade lasers are now one of the few sources to generate light in far to
mid infrared region. However, there are still issues and improvements needed to be
studied to improve their quality and applications. For THz QCL, the main issue
is the achievement of operation at the room temperature. Here, any improvement
in the maximal operation temperature reduces the need of cooling and is of highest
relevance for the technical realization. Another one are the electrical instabilities
in the appearance of NDC. In this work, we provide background information of
the Papers which focuses on such issues and suggest improvements in the field.
The source of our simulations are based on our Non-equilibrium Green’s function
(NEGF) model and the computational scheme with necessary inputs is explained
in Chap. 2.

The motivation of this thesis is based on three aspects. First aspect is the study of
the electric field domain dynamics for devices with negative differential conduc-
tivity (NDC). Since the appearance of an NDC results instabilities at the nominal
operation point (NOP), our inhomogeneous domain model studied in Chap. 3
provides understanding of the electric field distribution inside the modules. Cor-
responding work is done in Paper III where we investigated the spectral behaviour
of the light and its dependence on the initial and the boundary parameters.

Second aspect is the study of chaos theory in THzQCLs. This idea was implied af-
ter observing irregular voltage oscillations for the device studied in Ref. [18]. These
complex oscillations are studied in Paper I and we show the first autonomous THz
QCL exhibiting chaos. This is quite exciting since autonomous time dependent
chaotic systems are quite rare and the chaotic signals can be applied for secured
communication systems [29].

Third aspect is the study of high temperature performances of THz QCLs. This
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study is done in Paper II where we provide a two-well design operating at the
highest temperature of 265 K around 4 THz. Further unpublished results are
shown in Chap. 5 where we expand our investigation on low frequency designs
around 2 THz. Here, we show a trend of simulated phonon and experimental
heat-sink temperature difference directly proportional to the maximum currents.
Also, based on the device studied in Paper II, we suggest two-well designs with
operation temperatures higher than 200 K around. This is an ongoing work and
aimed to enable technological applications of QCLs operating around 2 THz with
thermoelectrical cooling.



Chapter 2

TheModel

In this chapter, we show a brief theoretical background of THz QCLs and the
computational flow which we used to simulate the corresponding devices. The
chapter is divided into two parts: First, we define the general Hamiltonian for the
related QCL systems where the eigenstates are used for the calculations and the
description of basic phenomena. Secondly, we show the simulation scheme and
the corresponding input parameters of the NEGF package we used the extract
quantitative results to analyse temperature performances in Paper II and Chap. 5.
Further details can be found in Refs. [30, 28, 31, 32].

2.1 General Hamiltonian

To start with, the time dependent Hamiltonian of the system reads

H(t) = H0 +HDC +Hscatt +HAC(t) (2.1)

Here, the first term H0 is the kinetic energy of the free particle and the poten-
tial of the heterostructure without an applied bias. The second term includes the
applied DC voltage via the potential −eFz where the z-direction is the growth
direction of the layered structure and F is the electric field. Knowing the charge
distribution we add the mean field part in this term. Albeit implemented, the
mean field does not provide a significant difference for THz QCLs studied here
due to the short lengths. BothH0 andHDC are diagonal in the momentum space

13
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k describing the behaviour parallel to the layers. The third term includes all the
non-diagonal elements in k regarding to the scattering mechanism and solving this
part with the NEGF package provides the kinetics. The final term,HAC(t), adds
the AC field (and the dynamical mean field). Solving the AC part with the NEGF
package provides the photo-assisted current describing the gain. In the model, the
applied laser field is defined as the classical electromagnetic field in Lorenz gauge
−eFacz cosωt [31].

There are few more approaches to solve the kinetics of the charge carriers such
as rate equations [16, 33] and Fermi-Golden rule [34, 35, 36] or Monte Carlo
simulations [37, 38]. Introducing the density matrix allows us to describe the co-
herencies which are in particular relevant for the tunneling injection [39]. The
density matrix is not a quantity to be calculated easily when the order of the en-
ergies are comparable for the electron scattering, tunneling and the emitted light.
In our NEGF model, the treatment to the density matrix is done by lesser Green’s
functions

ρij =
1

2iπ

∫ +∞

−∞
dE G<

ij(E, k) (2.2)

From the densitymatrix we evaluate all the observables such as the current densities
in a straight forward matter [31].

2.1.1 Choices of basis

We describe electrons in the conduction band of semiconductors via the com-
mon envelope function approach [40] where the microscopic lattice structure is
reflected by the band edge Ec of the conduction band and the effective mass mc

at the gamma point. Specifically, we use the two band approach which includes
non-parabolicity [41, 16, 42]. On this basis, H0 is determined from the specific
layer structure of the QCL studied here. In the following, all wave functions are
actually envelope functions. The current is calculated within this two band model
following Ref. [32].

As QCLs consist of periodic repetitions of the central module, eigenfunctions of
H0 are Bloch functions with band index ν. For each band we can construct Wan-
nier functions localised in a single module [43]. These Wannier functions are
periodically repeated for each module and have the same expectation value of the
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Figure 2.1: Illustrations of a three well THz QCL design studied in [24] with
applied biases of 52 mV. Wannier states in (a), Wannier Stark states in (b) and
EZ states in (c) are used to visualise the electronic states in the heterostructure.
Design includes upper (u), lower (l), injection (i) and extraction (e) states as well
as parasitic states in higher energies. The lasing transition and the LO phonon
extraction energies is highlighted by arrows on the left side of the panels.

energy as given by the center of the Bloch band they originated from. These Wan-
nier states for different bands ν and/or localised in different modules form an
orthonormal basis for the Hilbert space. By restricting the number of bands of the
Bloch states we limit the basis up to a certain energy cutoff. Within this basis all
further calculations are done where we routinely check that the cutoff is sufficiently
large for not changing the results. These considerations refers to the z-direction
of the heterostructure. In addition, the lateral degrees of freedom (x, y = r) are
taken into account by plane waves eik·r.

The Wannier-Stark states are defined as the eigenstates of H0 + HDC where an
applied voltage is taken into account. These states are periodic upon shifting the
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energy by eFdwhere d is the length of the module. They provide the best estimate
for the energy levels. Also, their energy difference can be used to estimate the
lasing frequencies. Therefore, in the heterostructures studied in Chap. 5 we use
Wannier-Stark (WS) states for illustrative purposes.

Recently in paper II, we also introduced a new set of states with the combination of
energy selectivity and spatial localization which we call EZ states. These states are
introduced when the energy differences between several WS states are less than the
broadening. This set of states we refer as a multiplet. The EZ states are the linear
combinations of the states in the multiplet which diagonalises the z-matrix. These
new states have roughly the same energies as the multiplet states. TheHamiltonian
exhibits non-diagonal elements between different states resulting from the multi-
plet, which are the mutual tunnel matrix elements. In the following simulations
we usually choose the energy separation of less than ≈ 5 meV to introduce these
multiplets.

Here in Fig. 2.1, the differences between Wannier-Stark, Wannier and EZ states
are shown for a three well THz design studied in Ref. [24]. In both panels the
injector, the upper laser, the lower laser and the extraction states are included as
well as the higher parasitic states. The lasing transition from upper to lower level
as well as the depopulation of the extraction level by longitudinal optical (LO)
phonon transitions (ℏωLO) are highlighted by the black arrows. In each panel,
phonon temperature is fixed to 150 K and 52 mV per module is chosen at the
peak currents. Here, the Wannier-Stark picture in panel (b) clearly reveals the
resonance between the injection and the upper laser state. As the presence of the
applied DC voltage shifts the states, the energies become aligned. This is not the
case in (a) where Wannier states are used to illustrate the occupations. Since the
Wannier states are defined without any applied bias, a slight shift in the energies
are observed in the absence of bias. Therefore, they are not suitable to follow
the correct energy values of the levels and the energy of the lasing transitions.
Following the small energy separation between the injector and the upper levels
in Wannier Stark picture, we show the EZ states in panel (c). Here, the EZ states
provide an even more clear distribution of the ground and the upper laser levels.

2.2 Computational scheme of the NEGF package

The NEGF model is used by various groups [44, 45, 46] to solve the kinetics of
the charge carriers in the QCLs. In this section, we show the simulation scheme
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and the inputs necessary to simulate our NEGF package which is used to extract
quantitative results of THz QCLs studied in this thesis and the corresponding
Papers.

Before simulating theNEGF program, we first need to calculate theWannier states
since they are used as the corresponding basis. To calculate the Wannier states, we
need the following parameters:

• Layer sequences.

• Effective masses.

• Conduction band offsets at the Gamma point.

• The Kane parameter applicable for the heterostructure system used.

With entering these parameters, our Wannier program produces data of the Wan-
nier states and creates input files to use in our NEGF program. Here, we can
make a simple illustration of the related heterostructure with the Wannier states
under zero voltage or with the Wannier-Stark states with entering applied bias but
without considering the mean fields.

Following the generation of the Wannier data, we now prepare to start our NEGF
program. To do that, we first need the physical parameters as doping profile, inter-
face roughness parameters, material parameters for phonon scattering andmaterial
parameters for alloy scattering. We also introduce the phonon temperature which
determines the occupation of the phonon modes.

Inside the input file, we vary the parameters such as the number of neighbour-
ing periods Nper, the number of Wannier states per period Nnu, the number of
harmonics Nh, the range of applied DC voltage eFd, the frequency range ω, the
range of applied AC field eFacd and the waveguide and mirror losses. Here, the
total number of the states are calculated via N = Nnu(1 + 2Nper) following
Ref. [32].

With gathering all the necessary input information, now we start the NEGF pro-
gram. The flow of the computation is shown in the following order:

• Initial guess of the self energies.

• Calculation of the energy dependent Green’s functions

• Calculation of the current and densities.
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• Calculating and updating the mean field, and the new self energies from the
Green’s functions.

• If converged, move to the next Fdc for non-lasing case, for gain move to the
next ω and for lasing case move to the next Fac. If no convergence, repeat
the process from step two.

Even though theNEGF approach provides consistent results [32, 30, 31],the com-
putational process is quite slow and based onmany self consistent iterations. Here,
the main idea is to accomplish the convergence quickly. In the simulations, we
accept a good convergence is achieved when the old self-energies differ from the
new ones by less than 2 ∗ 10−4.

To calculate non-lasing currents, we only apply dc field eFd without harmonics.
To calculate the linear gain, we apply a small AC field strength eFacd (usually
between 0.1 and 1meV) and increase the number of harmonicsNh = 1 either for
the selected bias point or in a bias range of interest with varying eFd. To calculate
the lasing currents (and non-linear gain), we increase the AC field strength higher
and depending on the convergence, we might need to use higher harmonics. We
usually avoid using higher harmonics since the time of the computational process
increases proportional to theNh. Eventually, if the iterations converge, we extract
the current, the gain and the density data for the related heterostructure.

The results of our NEGF package is used to calculate homogeneous current densi-
ties and gains in Paper I, Paper III and Chap. 3 as the input of our inhomogeneous
domain model. In Paper II we use the NEGF program to study higher temper-
ature performance of two-well QCLs operating around 4 THz. Typical results
are shown in Chap. 5 where we use the NEGF package to study temperature per-
formance of QCLs operating around 2 THz. We also include new data on our
ongoing project where we suggest designs promising the highest operation tem-
peratures around 2 THz based on the two-well structures studied in Paper II.

2.2.1 Resolved Visualization of Current and Electron Densities

Following Eq. 2.2, we use lesser Green’s functions G< to solve the density ma-
trix and the current densities. Here G< provides information on energy. This
allows us to compute energetically and spatially resolved current and particle den-
sities. Fig. 2.2 shows the resolved current and particle densities for a four-well
design studied in Ref. [26]. In panel (a) the spatial extension of the current den-
sity through the barriers are clearly seen. Due to the alignment of the higher
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Figure 2.2: Energetically and spatially resolved current and particle densities in
(a) and (b) extracted from NEGF package respectively. The device shown here is
studied in Ref. [26] at 76 mV bias per module and phonon temperature of 150
K. EZ states are used to visualise electronic states. The conduction band offset of
0.831x eV is used in the simulations.

states, this current extension at the edges of the barriers provides information on
the leakage current through the parasitic states and to the continuum. In panel
(b), location of the particle densities are shown by resolved densities. This also
enable us to observe the location of the inversion as the majority of the particles
are localised in the upper state as well as very few population in the lower level.

In the Chap. 5 and Paper II, we use the resolved plots to analyse the quality of
the designs and the temperature performances of THz QCLs. The resolved cur-
rent plots allow us to track the undesired currents due to the thermally activated
scatterings. The resolved density plots provide the spatial extension of the carriers
(especially the density distribution between the injector and upper laser levels) as
well as the locations of the absorption between the injection and lower laser states.





Chapter 3

Dynamics of Electric Field
Domains

The model used in Chap. 2 implies that the total bias drop is distributed homo-
geneously over every module. This assumption is based on matching the elec-
tron and sheet doping densities in the modules. This is not the case for ex-
tended QCLs if they exhibit NDC. The increase in the particle fluctuations shat-
ters the equal distribution of the electron densities in each module. Thus, the
electric field distribution becomes unstable and domains form with different elec-
tric fields [47, 48, 49, 50]. These electric field domains are observed in both
stationary[51, 52, 53] and oscillatory formations [54, 55]. Previously, unstable
field distributions were known to prevent stable operation points inside the NDC
region and were usually preferred to be avoided. Recently, it was shown that the
stable operation point is possible inside the NDC by the ignition of the lasing
fields in the presence of the oscillating electric field domains [18].

In this chapter, we describe our inhomogeneous field domain model for THz
QCLs studied in Paper I and Paper III. We also show the applications of the
domain model including the study of the spectral properties of lasing field and
the voltage characteristics under various initial and boundary conditions. Gen-
eral methods to solve gain mediums in two level systems as well as the input we
used based on fitting the homogeneous gain and current densities are presented in
Appendix A.

21
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3.1 Travelling Electric Field Domains

The formation of electric field domains was observed previously such as in Gunn
diode due to the self sustained current oscillations inside the NDC region [48,
56, 57]. Stationary field formations and saw tooth behaviour of the current den-
sities are also commonly observed [58, 59, 60, 61]. Thus, different designs have
different characteristics of the current - bias relation and consequently different
field formations inside the modules [62, 63, 64]. In this section, we show the
background theory of our domain model for two THz QCLs V812 (Paper I) and
EV2244 (Paper III). The dynamics of the model includes the self sustained itera-
tions of the electric fields, the current densities and the electron densities for each
module.

The study of our domain model in this section is based on the dynamical evolution
of the electric field domains. Here, the interface between the spatial regions with
different electric fields is called a front. This contains a charge (i. e. existence of
more or less carriers than the doping) and depending on whether the field is in-
creasing or decreasing, the charge can be positive or negative. The transition from
low field to high field requires a negative charge. This attributes to the accumula-
tion front. On the other hand, the transition from high field to low field requires
positive charge i. e. depletion front. For highly doped systems, these fronts can
be stationary. This is due to the relative increase in the electrons is not too large
and they are trapped in a certain module. For a low or medium doped systems, we
need a higher excess charge and this is not consistent with trapping the electrons.
If these fronts move in time, they are called travelling fronts [28].

To begin with, we introduce the inhomogeneous field distribution inside the het-
erostructure illustratively shown by the periodically repeated one-well heterostruc-
ture as displayed in Fig. 3.1. Here, we treat the excess charges as an average inside
the modules. The curvature observed as the charging effects of the electron den-
sities and doping (usually located in the widest well as explained in Paper III)
changes the heterostructure potential. Here in Fig. 3.1, the first approximation
is that the carriers are localized in the widest well due to the weakly coupling of
the quantum wells. The current flow between the modules i and i+1 is labeled as
Ji→i+1 and is a function of average field drop Fi and the sheet electron density
ni. For a simplified heterostructure withN quantum wells andN+1 barriers, we
introduce modified continuity and Poisson’s equations to calculate the dynamics
of the electron densities and the electric fields [28, 65].
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Figure 3.1: Illustration of a one well heterostructure with inhomogeneous field
distribution adapted from Fig.22 of Ref. [28]

e
dni

dt
= Ji−1→i − Ji→i+1

(Fi − Fi−1) =
e

ϵ0ϵr
(ni − nD)

(3.1)

where i = 1, ..., N , nD is the doping density per unit area and ϵ0 and ϵr are the
relative and the dielectric permittivities. In addition, the boundary currents be-
tween the injection and receiving contacts are calculated with a phenomenological
ohmic conductivity σ relation:

J0→1 = σF0

JN→N+1 = σFN
nN

nD

(3.2)

The effects of the boundary conductivity was recently shown as crucial on field
dynamics [65] especially in systems with relatively low doping where the travelling
fronts oscillate as studied in Paper III.

By applying the time derivative to the Poisson’s equation in Eq. 3.1, combination
with the continuity equation provides the dynamics of the local fields evolve with
the total current density J(t) and the current flow from module i to i+1 Ji→i+1
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dFi

dt
=

1

ϵ0ϵr
(J(t)− Ji→i+1) (3.3)

The QCL voltage is also defined as the sum of the fields over the modules with
module length of d as

UQCL(t) =

N∑
i=0

Fi(t)d (3.4)

The total current density can be extracted with inserting Eq. 3.4

J(t) =
1

N + 1

(
ϵ0ϵr
d

dUQCL(t)

dt
+

N∑
k=0

Ji→i+1

)
(3.5)

In our model, the current in each module is calculated by the average electric fields
between the electron densities in neighbouring modules. Also, the homogeneous
current density is calculated by fitting J(Fdc, Fac, ω) which is extracted from the
NEGF package as defined in Eq. A.9. Here, we accept that the doping density and
the carrier densities differ from each other. Thus, following Refs. [18, 28, 50, 52]
the current density inside the modules can be written as

Ji→i+1 = J(Fdc, Fac, ω)
ni − ni+1F (Fi, T )

nD − nDF (Fi, T )
(3.6)

Here, we assume that the current density is proportional to the electron den-
sity in the module i. This current is decreased by the thermally activated back-
ward currents in the neighbouring modules i+1 with proportional to the function
F (Fi, T ) = e−eFid/kBT . In addition, the doping density normalizes Eq. 3.6 and
the homogeneous current is recovered when electron densities in modules i and
i+1 matches with the doping density [65].

The total current density J(t) is usually calculated when an external circuit is in-
troduced. In Paper I and Paper III we consider the total current calculated via
Eq. 3.7 for the external circuit shown in Fig.3.2. The circuit includes a parallel
capacitance Cp, load and probe resistancesRL andRp and the Schottky potential
VB to align the conduction band at the metal contact.
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Figure 3.2: External Circuit design used to simulate V812 and EV2244 taken
from Paper I and Paper III.

AJ(t) =
U0 − UQCL(t)− VB

RL
−

UQCL(t) + VB

Rp
(3.7)

In the following sections, we use Eq. 3.7 to calculate the total current for both
V812 and EV2244 designs. The J(t)-UQCL relation is called load line and de-
termines the stationary point. The related operation points are highlighted by the
load lines in Fig. 3.5 with gray straight lines representing the external voltage U0.

3.1.1 Applications of the domain model

The dynamical equations of the electric fields with our inhomogeneous field distri-
bution is defined in the previous section. In this section, we show the simulations
of the time evolution of the self-sustained bias oscillations and the travelling elec-
tric field domains for the devices V812 and EV2244. The model provides the
electric field distribution and the carrier motion in the modules as a function of
time.

For the devices studied here, we usually observe a low field at the injection and
high field at the receiving contact. Fig. 3.3 shows such a scenario of the electric
field distribution as a function of time and module index. Here module index 1
represents the injection contact and N’th (222 for V812 and 151 for EV2244)
represents the receiving contact. It is clear that for a given time t, the electric field
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Figure 3.3: Travelling electric field domains as a function of time and module
index for two devices V812 in (a) and EV2244 in (b). The operation points U0

are shown in the white boxes. Here the boundary conductivities at the contacts
are σ = 0.15 A/Vcm in each panel.
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Figure 3.4: Travelling electric field domains as a function of and module index for
the devices V812 in (a) and EV2244 in (b). Here the conductivities at the contacts
σ = 0.05 A/Vcm in (a) and σ = 0.03 A/Vcm in (b).

is distributed differently inside the modules with the low field dominating the
injection contact. This is the case of accumulations fronts as discussed previously.
With iterating time, the field domains moves back and forth between the contacts
due to change in field distributions inside the modules. Following the decrease
in the spatial extend of the high field domains e. g. at t = 13 in (b), due to the
instabilities, new domains form. This formation of the new domains reveals an
oscillatory behaviour and the oscillation frequencies are depending on the velocity
of the fronts [28].

In addition to the accumulation fronts, there are also depletion fronts regarding
the positive charges. These are usually faster due to lesser electrons [28]. The
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Figure 3.5: Current-bias relation with and without irradiation for devices V812
and EV2244 shown in Fig. A.2. Additionally, average current is extracted from
inhomogeneous domain model in shown with dashed dotted curves. Gray lines
represent the load lines.

presence of the depletion fronts is usually observed when the high field domains
form around the injection contact as seen in both panels of Fig. 3.4. This scenario
is usually observed when the phenomenological boundary conductivity is relevant
as studied in Paper III and in Eq. 3.2. As the boundary current drops inside the
NDC, we observe (when σ is lower) that the high fields shift to the injection
contact and the depletion fronts become relevant due to the requirement of a
positive charge.

The spatio-temporal time averages of the current densities from the domain cal-
culations are shown for V812 and EV2244 by dash-dotted curves in Fig. 3.5.
Here, the solid and dashed curves are the homogeneous lasing and non-lasing cur-
rent densities extracted from the NEGF package. The load currents are shown
by the gray lines with the respective operation points U0 = 56.50 V in (a) and
U0 = 17.80 V in (b). These operation points are used in Fig. 3.6 where we show
the QCL bias Uqcl calculated by the sum of the electric fields following Eq. 3.4
as a function of time. It is observed that the frequency of the bias oscillations are
quite large in V812 in (a) compared to EV2244 in (b). The frequencies of the
oscillations are ≈ 800 MHz in (a) and ≈ 150 MHz in (b). Also, the amplitude
of the oscillations vary by 2 V in (a) and 0.6 V in (b). In addition, in Paper I
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Figure 3.6: Average QCL voltage for all modules as a function of time for two
devices V812 in (a) and EV2244 in (b). The external applied voltages are high-
lighted by the boxes in top center.

the irregular oscillations shown in (a) are taken into account and chaos is studied.
This is not the case in (b) where the bias oscillations are quite regular.

3.1.2 Analysing of the lasing field

In this section we study the spectral behaviours of the lasing field as discussed in
Paper III with introducing the photon numbers in the Fabry-Perot cavity modes.
For each mode ”j” the average photon number Nph

j is related with the ac field
strength F 2

ac with a single frequency ωj . The gain of each mode is averaged for all
modules and calculated from the fitted gain shown in Eq.A.6

G(ω) =
1

NnD

N∑
m

nm
G0(ω)

1 + τγ(ω
′
j)F

2
ac

(3.8)

with the life times of the upper laser states τ . Here, the probe frequency ω is
separated from the frequency of the ac field ω

′ . This provides us to study the
saturated gain with selected frequencies. This is not the case in NEGF package
where a single frequency is provided. Also, we assume that the gain is a function
of the electron density nm in the modules. Each cavity mode ”j” contributes to
the gain saturation in every module ”m” with a gain recovery time which is usually
around 1 ps or less following the Ref. [18]. The photon life time is assumed to
be around 5-6 ps, thus the gain can be written as a direct function of the field
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Figure 3.7: Lasing intensity as a function of time and cavity modes for different
operation points. In (a) and (b) simulations for EV2244 are shown as well as V812
in (c) and (d). To reference, cavity modes 25, 30 and 35 are equal to 3.57, 3,71
and 3,85 THz in EV2244 and cavity modes 10, 20 and 30 are 2.77, 3.17 and 3.57
THz for V812 respectively. Contact conductivity is taken as σ = 0.15 AVcm−1

in each panels.

intensity. Following the chapter 7 in Ref. [16] and Ref. [18] we can write the
photon numbers in the cavity mode ”j” as

dNph
j (t)

dt
=

c

ng
(G(ω)− gloss)N

ph
j (t) + Ijsp (3.9)

where

Isp =
N∑
m

AnU
m

τ spj
(3.10)

Here ng = 3.6 is the group refractive index, τ sp is the spontaneous emission
of light from upper laser state[66] and taken as 3 ms in the simulations (see the
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discussion in Ref. [18]), gloss contains the waveguide and mirror losses and c is
the speed of light. Following the approximations in Ref. [67], for devices V812
and EV2244 operating above 3 THz, the losses are approximated by gloss = 20
cm−1.

Fig. 3.7 shows the lasing fields in the cavity modes as a function of time for devices
EV2244 and V812. In the horizontal panels, we show the lasing fields by two
different external voltages for the same device. As the spatial extend of the high
fields grow with time, the gain matches with losses and lasing switches on (see
between 8 and 10 ns in Fig. 3.3(b) and Fig. 3.7(a) for EV2244). This usually
exhibits lasing in higher frequencies. With a sufficient increase in the current while
entering the high field domain, current matches with the low field domain and
results lasing in the low frequency range (see between 4 and 4.6 ns in Fig. 3.3(a) and
Fig. 3.7(c)). Increasing the external bias stabilizes the lasing field and continuous
lasing persists as seen in mode 28 in panel (b) and 11 in (d). As the front velocities
are relatively slower in EV2244 as seen in Fig. 3.3(a), there is a longer time period
between each pulsation of the lasing field. The rapid pulsations in V812 are due
to the much higher velocity of the travelling fronts between the high and low field
domains as seen in Fig.3.3(a).

In extended QCL devices with NDC, the field domain model provides a com-
prehensive analysis of the dynamical evolution of the systems. In addition, the
characteristics of the QCL voltage and the spectral properties of the lasing field
depends on the boundary and initial conditions. Such calculations and analysis
are done in paper I and III. In paper I, we mostly focused on the irregular volt-
age oscillations and provided rigorous analysis for chaos theory. In paper III, we
show how the spectral properties are sensitive to the contact conductivity and the
parallel capacitance connected to the external circuit.



Chapter 4

Chaos

Chaotic systems usually exhibit random and complex behaviours in the long time
limit. Typically, noise is not of relevance and the study of such systems is also
referred as ”deterministic chaos” [68]. Modelling such systems is quite hard since
they become unpredictable in longer time periods. There are few concepts to ob-
serve such systems; the accuracy of the measurement, well defined time scale and
acceptable amount of uncertainty during the observations. One main concept is
the definition of a reasonable time scale where the model turns from easily pre-
dictable to complete random. The time scale for these systems is called Lyapunov
timescale [69, 70]. This could be days for a weather forecast or millions of years for
an orbital system. In such systems the dynamical evolution becomes exponentially
more random and complicated with time, e. g. prediction of the weather forecast
become more unreliable for the next four days than two days. Thus the chaos the-
ory is used to model such systems and the theory consists of proper predictions
with introducing mathematical models.

There are many approaches to provide understanding of the chaotic systems. One
andmulti dimensional maps, Fractal geometries, attractors, conservative and dissi-
pative systems are few examples to categorize them under common mathematical
models. Following Refs. [71, 72], there are a few rules to imply whether a sys-
tem is chaotic or not. First, the system should be sensitive to its initial conditions
which is related with a positive Lyapunov exponent. Second, the phase spaces of
the system should overlap thus the topology become mixed. Finally, the periodic
orbits of the system should be dense [73]. These fundamental concepts are used to

31



32 CHAPTER 4. CHAOS

identify chaotic behaviour in Paper I where we introduced the first autonomous
THz QCL exhibiting chaos.

In this chapter, we first study the common logistic map. Here, we show the defi-
nition of the stable points and how the iterations evolve with the control param-
eters. Following, we study bifurcation diagrams, Lyapunov exponent and phase
portraits. These models are used as the basis of indications of our chaos study
in voltage oscillations of a THz QCL in Paper I. Finally, we show three chaotic
examples of autonomous systems without periodic driving; the Lorenz map, the
coupled pendulum and the three body model. Here we compare the similarities
of the phase portraits with the quantitative results shown in Paper I.

4.1 Modelling Chaos

In this section, we show common approaches to study chaos in non-linear systems.
These approaches include the construction of the bifurcation diagrams, phase por-
traits and Lyapunov exponent. We first introduce the most common logistic map
example to provide a brief understanding on the fixed points.

To start with, we introduce a simple example of tracking the population dynamics
in a system [74]. Let’s assume the number of the population of a system with x
(e.g. micro organisms in an environment) and define the time unit by the number
of days d. In the simplest model, the organisms reproduce with a rate ”r” in every
generation. This is shown by the relation

x(d+ 1) = rx(d) (4.1)

with a change in the population of each day by x(d) = rdx(0). Depending on
whether r is larger or less than 1, the change in population will either results in
an exponential growth or extinction. However, they would not grow infinitely
due to the limited environment (e. g. lack of food and nutrition). Therefore, we
introduce a more complex function motivated by the reproduction with extracting
some saturation. This function is the ”Logistic function” which is one of the most
commonmodels to study the conditions and behaviour of the complexity [75, 68]
and can be written as

f(x) = rx(1− x) (4.2)
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Figure 4.1: Time evolution of the function of logistic map for r = 2.0 in (a) and
r = 3.6 in (b) are shown. The initial points are fixed in each panel as x0 = 0.1

The time iteration of this logistic function is also known as the ”Logistic map” and
defined as

x(d+ 1) = rx(d)(1− x(d)) (4.3)

Here, the function f(x) is close to rx for small x but is reduced for larger x.

Assuming the initial condition is x(0), each iteration results more and more com-
plicated analytical expressions. Thus a computational analysis is needed. Follow-
ing the two different control parameters r = 2.0 and r = 3.6 with the same ini-
tial condition x0 = 0.1, time iterations of the logistic maps are shown in Fig. 4.1.
Here, we show that the evolution of the function is highly depending on the con-
trol parameter. In panel (a), the stabilization of the function occurs within a few
days thus the long time estimations of such a distribution is possible. In panel
(b) on the other hand, quite complex oscillations occur and prevent consistent
estimations.

Assuming some long iterations labelled by i of a function x(i) converges to a single
point xc, means that the x(i) and x(i ± 1) are close to each other for adjacent
iterations. Then, we can write the logistic map f(x) at the xc as

xc = f(xc) (4.4)

Here, xc is called a fixed point and is usually extracted by the intersection of the
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Figure 4.2: Graphical visualization of the iteration scheme of logistic map for
varying control parameter r and initial point x0 are shown. Final iteration points
are highlighted by red circles. The figure is inspired from Ref. [74].

function f(x) with y = x curve as seen in Fig. 4.2. Following the figure, we show
two scenarios. First, in the horizontal panels two different control parameters are
used as r = 2.0 in (a,c) and r = 3.6 in (b,d) with fixing the initial point x0. The
other scenario is changing x0 and this is shown by the vertical panels as x0 = 0.1
in (a,b) and x0 = 0.11 in (c,d) with fixed r.

Here in Fig. 4.2, vertical and horizontal dashed lines represent the iterations. This
is done by the following logic: starting with the x0 in the y = x curve, first
we draw a line vertically until it intersects with the function f(x). From the
intersection point, we continue drawing horizontally until the line reaches x = y
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curve again. Following the same procedure of drawing vertical and horizontal
lines, we follow the sequence of x(d) as given by Eq. 4.3. Sometimes we find
convergency to a fixed point (also called an attractor [76]). Here, such convergence
is shown in panels (a) and (c) regardless of the choice of initial point. Increasing r
provides a different scenario. Here in panels (b) and (d), iterations do not converge
to a fixed point rather scatter. This divergence from the intersection usually reveals
the existence of an unstable point.

One clear observation here is that in each scenario, independent of the initial con-
dition, the complexity of the system depends mainly on the value of r. However,
in case of r = 3.6, depending on the initial point, the trajectories of the iterations
deviate significantly. This is not the case of r = 2 where the iterations eventu-
ally converge to a fixed point regardless of the initial condition. This indicates the
sensitivity to the initial condition in the complex scenario.

4.1.1 Bifurcations

Previously, we discussed the logistic map as an example of providing the complex-
ity of a system and the fixed point analysis. The bifurcation is the change of fixed
points of a system with the control parameter. These fixed points either stay in
a stable point or become unstable with varying the control parameter. The case
of existence of an unstable point is usually followed by an alternating stable point
within a limit cycle which is periodic. Also, bifurcation portraits are used to visu-
alise these fixed points that the system approaches asymptotically as a function of
the control parameter. Therefore they provide mathematical expressions based on
dividing a system into separate topological solutions.

Bifurcations usually appear in systems defined by non-linear equations [68, 77].
Depending on their dynamical structure, these systems can be expressed by various
bifurcation diagrams such as saddle node, trans-critical, sub-critical and super-
critical bifurcations [78].

In the top panel of Fig. 4.3, we show an example of a supercritical pitchfork bi-
furcation of the logistic map. Here, stable fixed points are shown by the straight
lines. The points (junctions) where negative Lyapunov exponent goes to zero are
the bifurcation points and they are unstable. Following the increase in r after the
first bifurcation point at r = 3, the pair of two new lines are created. By pair, we
mean that the existence of an oscillating new stable point that alternates between
these two points (i. e. limit cycle) in time as discussed previously. Increasing r
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Figure 4.3: Top: The bifurcation diagram for the logistic map is shown. Bottom:
respective Lyapunov exponents as a function of control parameter r are shown.
The algorithm is adapted from Ref. [79]

further, a new stable point forms following the next bifurcation point and now al-
ternates between four points (see r = 3.45). This doubling scenario repeats itself
any time the system approaches to a bifurcation point and results in a very dense
and complicated structure following r > 3.6.

In paper I, we introduce such bifurcation portraits similar in principle with intro-



4.1. MODELLING CHAOS 37

ducing local minimas and maximas of the QCL voltage oscillations as fixed points.
This provided an understanding about the complexity of the system. Note that
we use bifurcations as an indication but not as a proof of chaos. The most valid
mathematical method to verify chaos is extracting the positive Lyapunov expo-
nents. This is explained in the following section.

4.1.2 Lyapunov exponents

The Lyapunov exponent is a measure of the rate of exponential separations of
the adjacent trajectories of a dynamical system. This is done by constructing the
phase portrait and tracking the deviation between the neighbouring trajectories.
This approach is usually used to understand the sensitivity of the system to its ini-
tial conditions and to characterize the chaotic motion (see also the vertical panels
in Fig. 4.2) [74, 68, 80]. In this section we provide a brief background on the
derivations of the Lyapunov exponents. We also show our approach to process
data, following Refs. [81, 82], to extract the largest Lyapunov exponent for a THz
QCL studied in Paper I.

Let’s assume an infinitesimal non-linear chaotic system with N dimensions slightly
perturbed by the initial conditions. As the time iterates until T , the separation of
the paths diverges and the distance between them increases as shown in Fig. 4.4.
Here, the Lyapunov exponent provide a measure of this divergence between the
original and perturbed paths. It is commonly observed that in a chaotic system,
this distance grows exponentially as long as the perturbation is not too large [68,
74]. This is because the limitations regarding to the system size. Thus, if we apply
a large perturbation, this grow becomes bounded by the size of the system. This
exponential growth between the paths are defined by the logarithmic relations we
show in the following [74].

Here in Fig. 4.4, two paths with slightly perturbed initial conditions are denoted by
x(i) and xp(i) where p denotes the perturbed path. The perturbed path therefore
can be written as

∆xp(i) = x(i) + δx(i) (4.5)

with the amount of infinitesimal deviations from the original path δ. The deviation
between the paths with iterations until T increases exponentially as



38 CHAPTER 4. CHAOS

Figure 4.4: Diagram of two adjacent paths of a system with different initial con-
ditions.

|δx(T )| = |δx(0)|eλT (4.6)

Here, λ is the Lyapunov exponent and denotes the rate of separation (see Ref. [68]).
The exponential term is related with the stretching of the distance between the ad-
jacent points. In the limits of T → ∞ and assuming the δ → 0, the Lyapunov
exponent can be written by a more clear form

λ = lim
T→∞

1

T

T−1∑
i=0

ln
∣∣∣f ′

(x(i))
∣∣∣ (4.7)

where

∣∣∣f ′
(x(i))

∣∣∣ ≈ ∣∣∣∣δx(i+ 1)

δx(i)

∣∣∣∣ (4.8)

Depending on the dimension of the system, there can be also more than one Lya-
punov exponent. If the largest exponent satisfies λL ≤ 0, the divergence between
the two paths either increases slowly or decreases. This will provide sufficient
knowledge of the system in longer time periods. However, in case of λL > 0, the
divergence between the paths will grow exponentially and predicting the future of
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the system becomes unlikely. Thus the construction of the Lyapunov exponent is
one of the main mathematical concept of deciding whether the system is chaotic
or not.

In the bottom panel of Fig. 4.3 we also show Lyapunov exponents for the logistic
map as a function of the control parameter r. To guide the eye, we draw a hor-
izontal line at λ = 0 and use markers to point the largest Lyapunov exponents.
Here, until the system reaches to the first bifurcation point at r = 3, Lyapunov
exponents are negative. At r = 3, Lyapunov exponent approaches to zero, mean-
ing an unstable point forms. The same scenario is shown at r = 3.45 where the
system approaches to a second bifurcation point. Following the range r > 3.6,
system goes into a very complicated phase where the Lyapunov exponents become
mainly positive.

4.1.3 Our approach on Lyapunov exponent

In the previous section, we explained the general definition of the Lyapunov ex-
ponent. In this section, we show our approach of extracting the largest Lyapunov
exponent for the data studied in Paper I. To do that, we need the delay and the
dimension to construct the phase portrait.

To construct the phase portrait, we choose the QCL bias U(t) as the state variable
out of our 223 variable system (from the data studied in Paper I). Then, we intro-
duce a three dimensional vector to define the phase space, v(t) = [U(t), U(t −
τ), U(t−2τ)] operate in time where τ is the delay time. Here, the main idea is to
choose a proper τ to provide information on how much is the correlation between
the state variables.

Following Ref. [83], we use mutual information to retrieve an optimal τ . First, we
extract the minimum and maximum points of the time series of U(t). Following
the division of the distance between the minimum and maximum points into N
bins, we could introduce the mutual information as

I =

N∑
i=0

N∑
j=1

Pi,j(τ)log
Pi,j(τ)

PiPj
(4.9)

where Pi and Pj are the probability of the data at bins i and j and Pi,j is the joint
probability of the data in bin i and in bin j. Here in Eq. 4.9, we show the amount
of information is gathered in average time t and t+ τ . In case of large delay time
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Figure 4.5: Time series in (a) and the mutual information in (b) are shown. The
QCL voltage data is taken from Paper I for external voltage of U0 = 57 (V).

of τ → ∞, for a chaotic system, the joint probability distribution will approach
to 1/N and the mutual information disappears. Here, we choose smallest τ as the
optimal delay and this provides smaller I for the data we have.

In Fig. 4.5(a), we show the time series of theQCL biasU(t) studied in Paper I.The
operation point is chosen where the oscillations are quite irregular. In Fig. 4.5(b)
we show themutual information based on Ref.[83] to extract the delay time. Here,
a significant decrease inmutual information is observed around 200 delay time and
following this point, higher delays does not seem to correlate. Thus, we obtain the
proper delay time as of this point.

The dimension on the other hand provides recreation of the multidimensional
systems [84]. Such as the Lorenz system, d = 3 is chosen to reveal the three
dimensional structure. Regarding to the amount of coupled differential equations,
more dimensions can be formulated. In paper I the device has the dimension of
223 which is the total number of the modules and the cavity modes.

With the extraction of the delay time and knowing the dimension of the system,
it is now possible to construct a phase space for a vector of U(t), U(t + τ) and
U(t+ 2τ). To calculate the Lyapunov exponent we first start iterating the vector
from t0 to a point t1. Here at t1, both three components are approximately same
within certain dynamics. Then, we compare the distance between the trajectories.
Initially this distance is small. By iterating time, in case of chaos, the distance grows
larger with eλt. This deviation provides the Lyapunov exponent and the system
exhibit chaos if λ > 0. In paper I, we use the model introduced in Ref.[81] to
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calculate the largest Lyapunov exponent.

4.1.4 Phase Portraits

In non-linear dynamical systems, phase portraits are common ways to visualise the
trajectories of the time evolution of the systems [85, 86, 87, 88, 89]. The phase
portraits are usually introduced in multidimensional systems which are defined
by more than one state variables (e. g. angles and the angular velocities in the
coupled pendulum). In this section, we study and compare the phase portraits of
the Lorenz model and the QCL bias studied in Paper I.

The reason of choosing the Lorenz model and the THz QCL is that they are both
autonomous chaotic systems. Which means that no time dependent external drive
is applied. The external driving usually shows up in two ways. One way is to put
the system out of it’s equilibrium and this is usually the case in all physical sys-
tems. As the system in equilibrium goes into a stationary thermal state, they do
not exhibit chaos. Thus, all chaotic systems need a driving to be pushed out of
equilibrium. The second one is the existence of a time dependent (periodic) driv-
ing. Usually, if we have an oscillating non-linear system with a specific frequency
(e. g. RC circuit or a single pendulum), adding an additional periodic driving
with another frequency forces the system to be in two separate frequencies and
resulting in complex phase portraits.

To construct phase portraits, at least a 2-D vector is required for a system defined
by time dependent differential equations and 3-D vector for time independent
system. For a time independent system, a point inside the limit cycle of a 2D
phase will converge to the limit cycle (unless they escape to infinity) since the two
points can not intersect with the stable point by different trajectories. They will
either approach or diverge from the stable point. This is not the case of a time
dependent system since the two points in the limit cycle can be at the same point
in different times with different directions. Here, the Lorenz model is defined by
time independent differential equations. Thus, the phase portrait is constructed
three dimensional.

Following Ref. [90], we now introduce the set of equations to define the tempera-
ture gradient inside the earth atmosphere due to the incoming radiation from the
sun. Regarding the up and down motion of the warm and the cold weather plates,
interaction between them result in friction (e. g. Benard cells [91]). If the temper-
ature difference between the cold and the warm plates become large enough, they
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Figure 4.6: 3D phase portrait of the Lorenz map following the control parameters
of r = 14, 16, 25 in (a), (b) and (c) respectively.

overcome the friction and start moving. This will cause vortexes. Following the in-
crease in temperature difference up to a critical value, the system exhibits a period
doubling scenario. To understand this, a set of non-linear equations are defined
to show the flow between these two plates. This is also known as the atmospheric
convection [92, 93]. To model this, Lorenz introduced three set of equations

dU

dt
= α(V − U)

dV

dt
= U(r −W )− V

dW

dt
= UV − βW

(4.10)

Here, U is defined as the rate of convection and V and W denotes the change in
the temperature in both horizontal and vertical directions. In addition, the three
constants α, r and β are the Prandtl number, Rayleigh number and the dimension
of the layers respectively.
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Figure 4.7: 3D phase portraits of the QCL voltage oscillations for the data studied
in Paper I. External applied voltages are highlighted with the white boxes. In
panels (a) and (b) we show the phase portrait with respect to first and second time
derivatives of theUQCL data. In panels (c) and (d) the phase portrait is constructed
by adding the delay times τ and 2τ .

Solving these equations results in visualization of the three dimensional phase por-
traits with the control parameter r as seen in Fig. 4.6. Here, Prandtl number
α = 10 and dimension of the layer β = 2.667 is used as fixed parameters. One
can easily see the transition of a system from regular to complex with only changing
a single control parameter of r where the phase portrait become dense.

Fig. 4.7 shows the similarities of such transition to complexity in the phase por-
traits for the QCL voltage data studied in Paper I. Here, a long transience of 100
ns is cut and the following 30 ns are shown (the respective time series are shown in
Fig.6 in Paper I). In the upper panels (a) and (b) the second and the third variables
are chosen as the first and the second time derivatives of the voltage respectively. In
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the bottom panels (c) and (d), QCL voltage is shown with respect to the selected
delay times of τ = 0.2 ns where the time steps in the data are 1 ps. Thus, 3D
visualisation is provided to show the evolution of the trajectories. The control pa-
rameter is the external voltage U0 and from panel (a) to (c) is shown in increasing
order. A noticeable extension of the trajectories in the phase portraits observed as
a complex structure at U0 = 57.0 V. Thus, the transitions of the distinguishable
paths in (a) and (c) to a much complex scenarios in (b) and (d) are shown.

4.2 Examples of Complex Systems

In the real world, most systems are tend to act as dissipative since many conditions
result in losing the dynamical properties such as friction, thermal effects and etc.
However, in case of applying a time dependent driving force to the losses from the
dissipation balance each other with the driving force. This creates conditions for
the system to evolve by its own behaviour as mentioned previously in Sec.4.1.4.
Thus, in the presence of a time dependent driving, some systems exhibit chaos
[94, 95, 96, 76]. This is not the case in Paper I where the chaotic behaviour in
QCL is observed without a periodic driving. In this section, we show two such
autonomous time dependent systems exhibit chaos; coupled pendulum and three
body model.

One general example of such a chaotic system without periodic driving is the cou-
pled pendulum [98, 99, 100, 101, 102] with the common stretching and folding
behaviour of its phase space [103, 71, 104]. Here in Fig. 4.8 we show the illustra-
tion of the double pendulum scenario in (a) and the time series of the angles θ1
and θ2 in (b). The phase spaces are illustrated by choosing the angular velocities
θ̇1/θ̇2 as a function of θ1/θ2 in (c) and (d). In panel (b), both time series exhibits
complex oscillations. This is shown more clearly in panel (c) and (d) where the
extend of the trajectories in each case spread around the phase portraits.

Another example of time dependent autonomous system is the three body model
[106]. An example of the trajectories of three coupled stars as a function of time
are shown in Fig. 4.9. The model is based on adding an additional celestial object
(third star) to the coupled system of Alpha Centauri A and B. Solving the equation
of motion provide the trajectories of these stars. As the time evolves, a very com-
plex portrait reveals. Here, the code and the model is taken from the independent
work done by Ref. [105].

In this Chapter, we briefly aimed to provide necessary information for the back-
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Figure 4.8: Illustration of the coupled pendulum including the constant parame-
ters of masses m1 = 3 and m2 = 1 kg and lengths L1 = 1 and L2 = 2 m in (a)
is shown. Time evolution of the angles θ1/θ2 in the range between 0 and π/2 are
shown in (b) and the constructed phase portraits for the respective angles with the
angular velocities are shown in (c) and (d). The background calculations for the
code including the constants are adapted from Ref. [97].

ground ideas of implying the chaos models to the THz QCL device. As discussed
above, in Paper I we show such scenarios of complex phase portraits, bifurcations as
well as positive Lyapunov exponents. Our calculations show that an autonomous
QCL exhibiting chaos without periodic drive is possible. Another study shows
chaos in QCLs in Ref. [95] but with applying a periodic drive. Thus, the device
studied in Paper I is the only autonomous QCL up to far.
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Figure 4.9: Illustration of the trajectories of a three body model. Three stars are
chosen to model the time evolution of the coupled system. The python code is
taken from Ref. [105]



Chapter 5

Low Frequency THz Quantum
Cascade Lasers

The NEGF package has been used for large variety of simulations such as a sys-
tematic study of different structures [67] demonstrating its quantitative results. In
paper II, we used it to understand and improve the temperature performance of
the two-well QCLs operating around 4 THz. In this chapter, we use our NEGF
package to provide typical results of the temperature performances of low fre-
quency QCLs operating around 2THz. We first introduce the heterostructures
to show the injection and extraction schemes. This is followed by the simulation
of non-lasing current densities for two different conduction band offsets (CBO).
Thus, the approximate barrier heights are extracted by comparing the maximum
simulated and experimental current densities. This may reflect differences in the
calibrations in different labs (see the corresponding discussion in Paper II). The
quality of the designs with temperature is shown by the resolved current densities
in order to identify the leakage current and temperature dependent mechanisms.
Finally, we show the temperature dependent current densities and gain. Addi-
tionally, we also show our on going project of achieving the highest operation
temperature at lower frequencies based on the LU2022 devices studied in Paper
II.

47
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Figure 5.1: Wannier-Stark states at peak currents of four THz QCL design based
on GaAs as wells and AlGaAs as barriers. The lasing transitions are shown by ar-
rows and the applied biases at the current peak are highlighted by orange boxes
on left bottom corners. The devices studied in (a), (b), (c) and (d) are Chassag-
neuxIEEE2012, KumarAPL2006, WilliamsElecLett2004 and KumarNature2010
respectively. Phonon temperatures are fixed in each panel to 150 K.

5.1 Applications of the NEGF Package

In this section, we study in detail four specific structures labelled by Chassagneux-
IEEE2012 (the device operating at 2.3 THz in the article) [24], KumarAPL2006
[107], WilliamsElecLett2004 [108], and KumarNature2011 [26]. Each design is
simulated using the layer sequences and sheet doping densities defined in the re-
lated articles. Note that, in the simulations the effected masses in the conduction
band is taken as meff = 0.067 + 0.083x and the root mean square of interface
roughness is η = 0.23.

The heterostructures of the devices are shown in Fig. 5.1 with the Wannier-Stark
states at resonance (at Jmax). Each device has the energy separation of around
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Wafer Jexp
max (kAcm−2) J sim

max (kAcm
−2) CBO (eV)

ChassagneuxIEEE2012 1.18 1.12 0.831x
0.78 1.01x

KumarAPL2006 0.247 0.831x
0.18 0.17 1.01x

WilliamsElecLett2004 0.82 0.831x
0.64 0.58 1.01x

KumarNature2010 0.85 0.831x
0.75 0.69 1.01x

Table 5.1: Table shows the experimental and simulated maximum currents. The
simulated currents are shown for two different CBOs.

34-38 meV between the extraction and injection levels. This is close to the LO
phonon energy ℏωLO = 36 meV of GaAs. Thus, LO phonon extraction is the
mechanism of quick depopulation of the lower states in each design. In panels (a),
(b) and (c) the common resonant tunneling scheme is used to populate the upper
levels.

In panel (d), scattering-assisted injection is used to achieve inversion. The device
in (d) has a quite engaging design since the lasing transition is divided into two
separate branches as shown by the arrows. The first transition is achieved with
populating the upper state by resonant tunnelling via the injection barrier. The
lasing transition occurs here with the frequency of around 3.6 THz. The carriers
in the lower state travel to the closest energy level in the next well. This generates
a second inversion followed by a lasing transition in a smaller lasing frequency of
around 1.9 THz. This is due to the design which is aimed to maximise the current
flow in higher voltages than the alignment of the injector and upper laser levels
[26].

Following Table. 5.1, simulated currents are compared with the experimental val-
ues in the purpose of deciding the approximate barrier heights. To match the
currents, we use two band offsets as barrier heights 0.831x eV and 1.01x eV
following Refs. [67, 109]. The decision for each device is done by comparing
the maximum current densities Jmax and characteristics. Here, in Chassagneux-
IEEE2012, the difference between the currents is 0.06 kAcm−2 for 0.831x eV
and 0.4 kAcm−2 for 1.01x. This comparison allows us to choose the smaller
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Figure 5.2: Current and bias relation without lasing is shown for four structures
discussed in Fig. 5.1. Full lines are calculated with 0.831x eV and dashed lines
are with 1.01x eV conduction band offsets. The devices studied here are Chassag-
neuxIEEE2012, KumarAPL2006, WilliamsElecLett2004 and KumarNature2010
for (a), (b), (c) and (d) respectively. Phonon temperatures are fixed in each panel
at 150 K.

CBO of 0.831x eV for the further simulations. Similar comparisons are done for
the rest of the devices and for both KumarAPL2006, WilliamsElecLett2004 and
KumarNature2010, CBO of 1.01x eV is used in the following simulations. This
follows the observation in Paper II that our simulations for MIT sample require
an increased CBO value.

Fig. 5.2 shows the simulated non-lasing current densities for each device shown
in Fig. 5.1 with the same order of labelling. ChassagneuxIEEE2012 exhibits the
highest current with Jmax = 1.12 kAcm−2 whereas the KumarAPL2006 has the
lowest with Jmax = 0.170 kAcm−2. It is expected that due to the decrease in
tunneling amplitudes while the barrier height increases, current density drops. In
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Figure 5.3: Current densities and bias relation without lasing is shown for four
structures discussed in Fig. 5.1. Phonon temperatures are listed in the legends.
The devices shown here from panel a to d are as follows: ChassagneuxIEEE2012,
KumarAPL2006, WilliamsElecLett2004 and KumarNature2010

Fig. 5.2 we show such scenarios where in each device, average current densities
drop by 30% as the barrier heights increase. The reason of using various numer-
ical approximations on band offsets may be related to different calibrations and
measurements of the barrier heights by separate groups.

5.1.1 Temperature Dependence of Current

Currently, one of the main challenge is to maximize the operation temperature in
THz QCLs [110]. After a long period of time following the achievement of the
operation at 199 K [111], the highest operation temperature of 250 K in pulsed
mode was achieved [109]. Obtaining the population inversion in higher temper-
atures is quite difficult as several mechanism have impacts on the inversion. For
instance, when the energy spacing between the upper and lower laser levels is less
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Figure 5.4: Spatially and energetically resolved current densities for devices Chas-
sagneuxIEEE2012 in (a) and (b) and KumarNature2010 in (c) and (d). Horizon-
tal panels are the same devices with different temperatures. Following 150 K in
(a) and (c) and 300K (b) and (d) are used.

than the LO phonon energy of 36 meV, LO phonon scattering allows thermally
excited electrons to relax from the upper to the lower laser level. This mechanism
depopulates the upper laser level and diminishes the inversion. Also, the thermal
backfilling mechanism studied in Paper II is shown as one of the detrimental ef-
fects on the inversion. This is the case when electrons in the extractor level absorbs
an optical phonon and travels back to the lower laser level followed by a decrease
in the inversion. In addition, the leakage of the hot carriers from laser states to the
continuum results in barrier leakage. Overall, the achievement of sufficient inver-
sion fails and gain does not surpass losses. This prevents desired lasing operation
at higher temperatures [8].

Fig. 5.3 shows the simulated non-lasing current densities as a function of simulated
phonon temperatures. In KumarAPL2006 and WilliamsElecLett2004 shown in
(b) and (c), there are no substantial changes in the current densities with tempera-
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Figure 5.5: Linear response gain calculated by our NEGF model for eFacd = 0.1
meV as a function of phonon temperature. The simulated devices are highlighted
in the boxes at top right corners.

ture followed by a slight decrease at 250 K. In KumarNature2010 shown in (d), the
current density increases with the phonon temperature due to the large spatial ex-
tend of the leakage current. This results in dissipation of higher powers, reducing
efficiency and heating of the lattice. In contrast, with increasing phonon tem-
perature the current density decreases in ChassagneuxIEEE2012 shown in panel
(a). This trend may arise where our model fails to capture the escaping currents
through the continuum at the edges of the barriers. Regarding to the character-
istics, in each panel of Fig. 5.3 the curvatures in the current densities at the low
field range vanish with the phonon temperature.

In Fig. 5.4 we show the energetically and spatially resolved currents for the two
devices exhibiting the strongest temperature dependence. In the horizontal panels
(a) and (b), resolved currents for ChassagneuxIEEE2012 device is shown for 150
K and 300 K respectively. Similarly in the bottom panels, resolved currents for
KumarNature2010 device is presented for 150 K in (c) and 300 K in (d). In
both devices, as the phonon temperatures raise, the spatial extends of the current
densities significantly increase in (b) and (d). This is due to the thermally activated
scattering of the carriers to the higher states and their escape from the barriers to
the continuum. Additionally, we observe that the spatial extend of the currents
between the upper level and the extraction level caused by LO phonon emission
as well as the LO phonon emission from the lower laser level to the higher states.
Similar behaviour is observed inWilliamsElecLett2004 and KumarAPL2006 with
slight variations.
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Figure 5.6: Spatially and energetically resolved densities for Chassagneux-
IEEE2012 are shown. Phonon temperatures are 150 K in (a) and 300 K in (b).
The module biases at resonance are highlighted by the boxes in the lower left cor-
ners.

5.1.2 Temperature Dependence of Gain

The objective of designing QCLs is to achieve light i. e. substantial gain is re-
quired. Favorably, more population in the upper and less in the lower laser levels
are desired to achieve higher inversion. As the thermally scattering mechanism are
of significance, the gain is detrimentally affected by the temperature due to the
decrease in inversion. In this section, we show the effects of phonon temperatures
on resolved electron densities and gain. Also, we show a systematic approach to
understand the difference between experimental heatsink and simulated phonon
temperatures for the four THz QCLs studied previously.

In Fig. 5.5, simulated linear response gain as a function of frequency is shown for
ChassagneuxIEEE2012 and KumarAPL2006. The phonon temperatures are var-
ied and due to the scattering and backfilling mechanisms, the gain substantially
drops as the inversion diminishes. In each panel, the overall drop in gain is ap-
proximately 40% for 50 K steps. Similar trends are observed for the other devices
with small variations.

Fig. 5.6 shows the spatially and energetically resolved electron densities for the
ChassagneuxIEEE2012 device for two different phonon temperatures. It is quite
clear that the injector and the upper laser level share themost of the carrier densities
in both panels. This is due to the resonant tunneling injection scheme where
almost half of the carriers occupying the upper laser levels. Here, one could easily
identify that the lower laser levels are almost empty at 150 K in panel (a). This
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Figure 5.7: Maximum gain as a function of phonon temperatures are shown for
the devices shown in Fig. 2.1. Vertical lines are the maximum heatsink tempera-
tures of the devices in pulse mode. Same markers represents the simulation and
experimental temperatures of the same devices. Horizontal dashed line represents
the waveguide and mirror losses g = 10 cm−1.

shows that the optimal operation point is chosen. Increasing phonon temperature
results in significant thermal backfillings to the lower laser level from the upper
laser and the extractor level as seen in (b) (see Paper II for further analysis on the
thermal backfilling mechanism). This detrimentally decreases the inversion and
the gain drops approximately 60% following the Fig. 5.7. Similar scenarios are
also observed in other devices with slight variations.

To provide a general picture, the simulated maximum gain as a function of simu-
lated phonon temperatures are comparedwith the experimental maximumheatsink
temperatures in Fig. 5.7. The vertical lines are the experimental maximal heatsink
temperatures of the devices which are naturally lower than the simulated phonon
temperatures. To guide the eye, we use same markers to compare experimental
and simulated data for each device (e. g. diamond marker is used for Williams-
ElecLett2004). The waveguide and mirror losses are assumed to be 10 cm−1 for
the metal-metal waveguides following the approximations in Ref. [67] for lasing
frequencies between 1.7 and 2.5 THz. This is visualised by the horizontal dashed
line. Here, KumarNature2010 and ChassagneuxIEEE2012 have the highest op-
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Wafer Jexp
max (kAcm−2) Tsim

max (K) Texp
max (K) fsim (THz) fexp (THz)

(A) 1.18 275 140 2.41 2.3
(B) 0.75 275 163 2.17 2.1

(C) 0.64 175 72 1.85 1.8
(D) 0.18 125 110 1.93 1.9

Table 5.2: Table shows the maximum experimental heatsink and simulated
phonon temperatures, peak currents and the experimental and simulated (at max-
imum gain) lasing frequencies. The devices are labelled following the same or-
dering with the peak currents as: ChassagneuxIEEE2012 (A), KumarNature2010
(B), WilliamsElecLett2004 (C) and KumarAPL2006 (D)

eration temperatures in experiments and this is consistent with our simulations
with the phonon temperatures slightly larger than the heatsink temperatures.

In Table. 5.2 we show the summary of the maximum heatsink and the phonon
temperatures as well as the experimental and simulated lasing frequencies for each
device. The table shows that our choice of operation points are consistent as
the simulated lasing frequencies match with the experimental ones. In Kumar-
Nature2010 and ChassagneuxIEEE2012 which exhibits the highest currents, the
simulated gain surpass losses up to 275 K. This represents to a temperature differ-
ence of 112 K in KumarNature2010 and 135 K in ChassagneuxIEEE2012 with
the maximum heatsink temperatures. These considerable differences may be ex-
plained by the choice of the waveguide and mirror losses. A similar case is also seen
in WilliamsElecLett2004 with a phonon and heatsink temperature difference of
around 103K. On the other hand in KumarAPL2006, the simulated phonon tem-
perature fits well with a difference of 15K with the experimental heatsink temper-
ature which is the device with lowest current. The order of the difference between
the heatsink and phonon temperatures are studied in detail in Paper II and in
Refs. [112, 113].

To summarize, a difference of about 100 K seems to suits well with most of the
devices similar to Paper II for 4 THz QCLs. Here, we observed that the differ-
ence in simulated phonon and the experimental heatsink temperatures decreases
proportionally with the maximum currents. It is quite ambitious to state a system-
atical approach as we could not have a viable model embedded to the temperature
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differences for all the devices. More information about the actual losses due to the
waveguide and mirrors are needed to fully quantify the differences.

5.2 High performing THz QCLs at low frequencies

Currently, the highest operation temperatures of THzQCLs are based on two-well
designs studied in Paper II. Inspired by the design in Paper II exhibiting the high-
est operation temperature around 4 THz, here we provide new two-well designs
based on the LU2022 device. The aim is to achieve highest operation temperature
around 2 THz. To simplify, we label the structures with LU2022A and LU2022B
where we increase the width of the lasing well and the extraction barrier to reduce
the energy differences between the lasing levels. Here, the quantitative results are
gathered by using our NEGF package.
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Figure 5.8: Gain as a function of frequency for the devices LU2022, LU2022A
and LU2022B at phonon temperature of 300K.

The operation in the lower frequencies are achieved by the combination of in-
creasing the lasing well and the extraction barrier. In Fig. 5.8, we show the gain
spectrum of each device at phonon temperatures at 300 K showing gain above
20 cm−1, which is a conservative estimation for losses. Increasing the lasing well
and the extraction barrier results in a decrease in maximum gain while the lasing
frequencies shift to the lower branches. With using the same approximation in
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Wafer Seq. (nm) J sim
max (kAcm

−2) gmax cm−1 fsim (THz)

LU2022 3.1/7.1/2.1/14.2 2.52 29.3 4.1
LU2022A 3.1/7.3/2.2/14.2 2.55 26 3.1

LU2022B 3.1/7.6/2.4/14.2 2.54 20.6 1.93

Table 5.3: Layer sequences of the suggested two new devices LU2022A and
LU2022B. Maximum current densities , maximum gain and the lasing frequen-
cies at a phonon temperature of 300 K are shown.

Paper II, we use a difference of 90K between the simulated phonon and the ex-
perimental heatsink temperatures. This indicates lasing operation well above 200
K where thermoelectric cooling is possible [114].

Here in Tab. 5.3, we show the layer sequences, simulated maximum current den-
sities, maximum gain and the lasing frequencies for the related devices. Increas-
ing the lasing well and the extraction barrier results in a systematical increase in
the maximum current density while the lasing frequencies decrease. Even if the
gain drops substantially, at 1.93 THz, it matches the losses and the lasing op-
eration is achieved. Here, with the approximation of 90 K difference between
the phonon and heatsink temperatures yields the experimental operation at 210
K around 1.93 THz is possible. This is the highest operation temperature in the
related frequency range and can allow technological applications with thermoelec-
trical cooling [114, 115].



Chapter 6

Summary and Outlook

In this thesis, we provided new insights into contemporary issues of THz QCLs
such as higher temperature operation, analysing the electric field distribution in
the presence of NDC, and chaotic output signals.

First, we provided microscopic simulations with our NEGF package to extract
quantitative results for current and gain for THz QCLs. We could identify struc-
tures operating up to 265 K around 4 THz as published in Paper II. This would
constitute a new record temperature operation and enable devices which require
very little cooling. Moreover in Chap. 5, we expanded this operation principle to
lower frequencies down to 2 THz. Our findings suggest that the thermoelectrical
cooling is possible for devices in the entire range of 2 to 4 THz.

The formation of the electric field domains is studied extensively in this thesis
with two different aspects. First, we studied how the interaction of the electric
field domains with the light field can broaden the effective gain spectrum of the
device in accordance with recent experimental findings as discussed in Paper III
and Chap. 3. This allows to produce samples with wider frequency coverage of
the spectrum and is relevant for generating frequency combs.

Furthermore, we showed that the interaction of electric field domains with the
light field can result in chaotic behaviour. This is shown in Paper I and Chap. 4
where we observed the first autonomous QCL exhibiting chaos. Next to their
fundamental interest such chaotic systems have been suggested to be applicable
for secure communication systems.
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The limitations of our model is the lacking description of the leakage to the contin-
uum. This effects both the THz operation and the high field domains. Modelling
this leakage could provide a more realistic model with consistent results for some
devices. Also, expanding chaos to mid IR QCLs may increase the technological
applicability. Additionally, we still wonder about the basic phenomenon limiting
THz operation. It would be very interesting to learn whether operation below 1
THz is possible.



Appendix A

A.1 Rate equations and gain medium

The gain medium inside a two level system is usually treated by the rate equations
and the Fermi Golden rule [13, 16]. These models are commonly used to solve
quantum transport and gain inside such systems. The occupations of the states,
transition rates, scattering life times as well the applied ac fields are the relevant
variables. Here, we define the probe frequency as ω, dc voltage Fdcd and the ac
field Fac respectively.

An illustration of the two level system is shown in Fig. A.1. Here the model in-
cludes the injected current Ji, particle populations n1 and n2, the scattering life
times τ1, τ2 of levels 1 and 2 and the scattering life time from level 2 to level 1
τ2,1. The rate equations applied in Refs. [16, 30] are

dn1

dt
=

n2

τ2,1
+ γ1→2(ω)F

2
ac∆n− n1 − ntherm

1

τ1
(A.1)

and
dn2

dt
=

Ji
e
− γ1→2(ω)F

2
ac∆n− n2

τ2
(A.2)

Here in Eq. A.1 and Eq. A.2, the population inversion is denoted by ∆n =
n2 − n1 and the third term of Eq. A.1 represents the thermal equilibrium of the
population without the injection current. In addition, we introduced the transi-
tion rate γ between the states by Fermi Golden rule. Assuming the gain spectrum
is Lorentzian, the transition rate can be written as
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Figure A.1: An illustration of the two level gain medium inspired by [16]. The
model includes in injection current Ji and scattering and transition life times τ .

γ1,2(ω) =
π

2ℏ
|ez1,2|2

1

2π

Γ

(∆E − E)2 + Γ2/4
(A.3)

where z is the dipole matrix element between the states and separated from the ac
field intensity F 2

ac.

Introducing the steady state conditions dn/dt = 0 to the rate equations and
assuming (τ2,1 − τ1)/τ2 ≈ 0 as well as combining with Eq. A.1 and Eq. A.2
provide the population inversion as

∆n = −ntherm
1 + τ2

Ji
e
− (τ1 + τ2)γ1,2(ω)F

2
ac∆n (A.4)

The first two terms are the unsaturated populations while the last term is the sat-
uration where the ac field intensity is relevant. The gain recovery time from the
saturation can be estimated by τeff ≈ τ1 + τ2.

A.1.1 Our approach to gain and current

Our model is based on fitting the Lorentzian profile to linear and non-linear re-
sponse gain obtained by homogeneous NEGF package. Starting with the defini-
tion of the linear response gain in Refs. [30], and the combination with the γ in
Eq. A.3
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G0(ω) =
2ω∆n

c
√

ϵrϵ20d
γ1→2(ω) (A.5)

The saturation of the gain with ac field intensity and including the life times of
the upper laser level τ can be defined as

G(ω, ω
′
) =

G0(ω)

1 + τγ(ω′)F 2
ac

(A.6)

Here in Eq. A.6 the separation of the pumping ω
′ and the probe frequency ω

allows to control the saturation in selected frequencies. The Lorentzian in the de-
nominator is taken into account to treat the power broadening. Thus the relevant
term in saturation can be written as

τiγi(ωi)F
2
ac =

∣∣∣πzi
d

∣∣∣ (eFacd)
2

γuli + γlsi

1

2π

Γ

(∆E − Ei)2 + Γ2/4
(A.7)

Here, the term |πzi/d| with the matrix element z and the module length d is a
dimensionless constant. The width of the transitions in the upper laser level γul

and the lower laser level γls is calculated by saturation of the gain.

Our treatment of the current J(ω) is based on the laser transitions and the total
current becomes the sum of the stationary and lasing induced currents

J(Fdc, Fac, ω) = J0 + e
∑
i

(nu − ni)κ(ω, ωi)
I(ω)

ℏω
(A.8)

Here, κ is the cross-section of the absorption and emission processes and the pho-
ton flux is described by the intensity I in the last term. As the inversion and the
cross-section is related with the gain G ≈ (nu − ni)κ. the current inside the
modules can be written as

J(Fdc, Fac, ω
′
) = J0 + edG(ω

′
)
c
√

ϵrϵ20F
2
ac

2ω′ (A.9)

As the devices studied here have a clear gain distribution in Lorentzian shape, we
are confident that our approach is suitable to obtain quantitative results.
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Figure A.2: Current bias relation for two THz devices V813 in (a) and EV2244
in (b). Full curves are the current without lasing as well as dashed curves represent
current with lasing. Gray areas highlight the NDC regions as well as black vertical
lines are the nominal operation points (NOP).

A.2 Extracting results from the NEGF package

Our domain model is based on fitting the homogeneous gain extracted from our
NEGF package. Here, we show the current bias relation and the gain saturation
with applied ac field which is proportional to the photon number in the cavity
modes. The two devices shown here are labelled as V812 and EV2244.

Fig. A.2 shows the current bias relations of devices V812 and EV2244 with and
without lasing. The simulations are done by fixed phonon temperatures at 77
K for V812 and 150 K for EV2244. Both devices exhibit two current peaks as
discussed in Sec. 1.3 and the NDC region appears in between. V812 has relatively
higher currents of up to 0.9 kAcm2 than EV2244 of 0.25 kAcm2. This shows that
the threshold current is also lower in EV2244. The decrease in current after the
resonance is avoided by applying an AC field strength Fac as the additional photo-
assisted current increases the total current. In each device, the nominal operation
points (NOP) are located inside the NDC region and a stable operation can be
achieved via applied ac field (red dashed curves). In panel (a) following the current
with lasing, the lasing switches on around 42 mV inside the NDC.This is not the
case in EV2244 where the lasing starts around the first current peak at 37 mV.

Using two separate ac fields strength of eFacd = 0.1 and eFacd = 10 meV,
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Figure A.3: Linear and non-linear response gain for two THz devices V812 in
(a) and EV2244 in (b). In each panel full lines represent the linear response gain
with eFacd = 0.1 meV and dashed ones represent non-linear response gain with
eFacd = 10 meV. The data extracted from NEGF package is shown with square
and round markers while full lines represents the fit. The phonon temperatures
are 77 K in (a) and 150 K in (b).

we simulate the linear and non-linear response gain respectively for each device
shown in Fig.A.3 at the NOP. Both devices have sufficiently large gain where the
waveguide andmirror losses are accepted as 20 cm−1 following the approximations
in Ref. [67]. Here, we use the Lorentzian distribution to fit the gain data to extract
the width, amplitude and central frequency of the distribution. The results are
used to calculate saturated gain and current in our inhomogeneous domain model.
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