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Distributionally Robust RRT with Risk Allocation

Kajsa Ekenberg, Venkatraman Renganathan and Björn Olofsson

Abstract— An integration of distributionally robust risk al-
location into sampling-based motion planning algorithms for
robots operating in uncertain environments is proposed. We
perform non-uniform risk allocation by decomposing the dis-
tributionally robust joint risk constraints defined over the entire
planning horizon into individual risk constraints given the total
risk budget. Specifically, the deterministic tightening defined
using the individual risk constraints is leveraged to define
our proposed exact risk allocation procedure. Our idea of
embedding the risk allocation technique into sampling based
motion planning algorithms realises guaranteed conservative,
yet increasingly more risk feasible trajectories for efficient state
space exploration.

I. INTRODUCTION

Motion planning under uncertainty becomes challenging
when only limited information about the system uncertainty
is known. Such lack of information adds additional com-
plexity to the existing path planning problem formulation
for finding guarantees on the safety of the path generated
by algorithms that aim to address such uncertainty. Often
some assumptions (such as Gaussian) are made in the
name of tractability as in [1], [2] and they may lead to
significant miscalculation of risk. Recently, this shortcoming
was addressed in [3]–[5] using the distributionally robust
optimization techniques. Though many risk bounded path
planning techniques work in face of stochastic uncertainties
characterised by either their distributions or moments, they
suffer from unwanted conservatism due to the uniform risk
allocation being used. That is, given a total risk budget
for safety violation, it is a common practice to distribute
it uniformly across all the obstacles and the planning hori-
zon. The drawbacks of such uniform risk allocation were
identified in [6] and rectified using a two-stage optimization
method based iterative risk allocation strategy. This strategy
has yielded promising, less conservative and guaranteed
results for covariance steering problems for stochastic linear
systems as described in [7]. The conservatism that arises in
motion planning due to the lack of exact information about
the stochastic uncertainties should not restrict the ability of
sampling based algorithms like RRT [8] to efficiently explore
the state space too much. To overcome this shortcoming, one
possible and promising option would be to use non-uniform
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risk allocation as in [9]–[11], so that they do not exceed the
risks allocated uniformly.

Contributions: We extend the DR-RRT algorithm pre-
sented in [3] by embedding our proposed risk allocation
technique into it. Our main contributions are as follows:

1) We propose a new distributionally robust risk alloca-
tion technique called Exact Risk Allocation (ERA) for
sampling based motion planning algorithms that allo-
cates as minimum risks as possible while respecting a
given total risk budget (See Theorem 1).

2) We prove that all feasible paths with the uniform risk
allocation of length Tpath ∈ N≥1 and total risk budget
∆path ∈ (0, 0.5] is also feasible with the ERA but the
vice-versa is not necessarily true (See Theorem 2).

3) We demonstrate our proposed technique using simula-
tion results and show that by switching from uniform
risk allocation to ERA, it is possible to give the same
risk guarantees for sampling based motion planning
algorithms while maintaining a reduced conservatism.

Following a summary of notations, the rest of the paper
is organized as follows: The main problem statement of risk
bounded motion planning with risk allocation is presented
in §II. Then, the proposed Distributionally Robust Exact
Risk Allocation (DR-ERA) algorithm is presented in §III.
Subsequently, the embedding of (DR-ERA) into the sampling
based motion planning algorithm RRT is discussed in §IV.
Then, the proposed approach is demonstrated using simula-
tion results in §V. Finally, the paper is closed in §VI along
with directions for future research.

NOTATIONS & PRELIMINARIES

The set of real numbers and natural numbers are denoted
by R and N, respectively. The subset of natural numbers
between and including a and b with a < b and beyond b
with b included are denoted by [a : b] and N≥b respectively.
The operators ⊕, \, and | · | denote the set translation, set
subtraction and set cardinality respectively. The transpose
of a matrix A is denoted by AT. An identity matrix of
dimension n is denoted by In. For a non-zero vector x ∈ Rn
and a matrix P ∈ Sn++ (here, Sn++ denotes the set of positive
definite matrices), let ‖x‖P =

√
xTPx. The Euclidean norm

of a vector x is denoted as ‖x‖2 or simply ‖x‖. A binary
condition being true and false is denoted by > and ⊥,
respectively.

II. PROBLEM FORMULATION

A. Robot & Environment Model

Consider a robot operating in an uncertain environment,
X ⊆ Rn, with dynamic obstacles. The set of obstacles is
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denoted as B with |B| = N . The robot model is a stochastic
discrete-time linear time invariant system given by

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rn and uk ∈ Rm is the system state and input
at time step k, respectively. The matrices A and B denote
the dynamics matrix and the input matrix respectively. The
process noise wk ∈ Rm is a zero-mean random vector that
is independent and identically distributed across time. The
distribution of wk, namely Pwk

, is unknown but belongs to
a moment-based ambiguity set of distributions,

Pw =
{
Pwk
| E[wk] = 0,E[wkw

T
k ] = Σw

}
. (2)

The initial state x0 is subject to a similar uncertainty model
as the process noise, with its distribution belonging to a
moment-based ambiguity set, Px0 ∈ Px0 , given by

Px0 =
{
Px0 | E[x0] = x̂0,E[(x0 − x̂0)(x0 − x̂0)T] = Σx0

}
. (3)

We assume the obstacles to have a random walk around their
initial position. That is,

Oik = O0
i ⊕ ĉik ⊕ cik, ∀i ∈ B, (4)

where Oik denotes the position of the obstacle i ∈ B at time
step k. The known shape of the obstacle is represented by
O0
i ⊂ Rn while ĉik represents a known nominal translation.

The location uncertainty and unpredictable motion of obsta-
cle i ∈ B is represented by cik ∈ Rn which is a random
vector with unknown distribution Pcik ∈ Pcik. The robot is
expected to be in the free space at all time steps k. That is,

xk ∈ X free
k := X \

⋃
i∈B
Oik, (5)

and the input of the robot is subject to the constraint uk ∈ U .
Here, U , X and Oik are all assumed to be convex polytopes
that can be represented by a conjunction of linear inequalities

U = {uk | Auuk ≤ bu} , (6)
X = {xk | Axxk ≤ bx} , (7)
Oik = {xk | Aikxk ≤ bik} . (8)

B. Distributionally Robust Path Planning Problem
Problem 1: We seek to approximately solve the distri-

butionally robust risk constrained path planning problem.
Given an uncertain initial state x0 ∼ Px0 and a set of goal
locations Xgoal ⊂ Rn, we seek to find a feedback control
policy π = {πk}T−1

k=0 such that applying the control inputs
uk = πk(xk), k = [0 : T − 1] yields a probabilistically
feasible path from the initial state to the goal that minimizes
a finite-horizon cost function. That is,

minimize
π

T−1∑
k=0

`t(x̂k,Xgoal, ut) + `T (x̂T ,Xgoal) (9a)

subject to (1), x0 ∼ Px0 ∈ Px, wk ∼ Pw ∈ Pw, (9b)
(4), (5), uk ∈ U , cik ∼ Pcik ∈ Pcik, (9c)

inf
Pxk
∈Pxk

Pxk

[
T∧
k=1

xk ∈ X free
k

]
> 1−∆.

(9d)

Here, `t(.) is the stage cost function quantifying the dis-
tance to the goal set and actuator effort and it is expressed in
terms of the robot mean state, x̂k, so that all the uncertainty
comes from the constraints. As (9d) is an infinite dimensional
distributionally robust risk constraint, solving the constrained
optimisation problem given by (9) exactly is practically hard
and so we resort to approximate solutions using sampling
based motion planning algorithms. The constant ∆ ∈ (0, 0.5]
represents the user-prescribed total risk budget for the entire
planning horizon, such that the worst-case probability of
colliding with any of the N obstacles or being outside X over
the planning horizon should be at most ∆. We use the LQR
fixed affine feedback control policy given by uk = Kkxk+gk
and the state mean x̂k and covariance matrix Σxk

evolve as

x̂k+1 = (A+BKk)x̂k +Bgk, (10)

Σxk+1
= (A+BKk)Σxk

(A+BKk)T + Σw. (11)

Note that (9d) can be decomposed into individual chance
constraints for each obstacle and the state constraint X at
each time step. The individual risk bound for each obstacle
i ∈ B and the constraints j = 1, . . . , ne defining X at time
step k, denoted by δik and κjk respectively, should respect

T∑
k=1

N∑
i=1

δik +

T∑
k=1

ne∑
j=1

κjk ≤ ∆. (12)

The following lemma is an adaptation of Theorem 1 in [3]
with inclusion of time horizon from t = 1, . . . , T .

Lemma 1: If (12) holds true, then (9d) holds true as well if
the worst-case probability of colliding with obstacle i and the
worst-case probability of violating any one of j = 1, . . . , ne
constraints defining X at time step k ∈ [1 : T ] are

sup
Pxk
∈Pxk

Pxk
(xk ∈ Oik) ≤ δik, and, (13)

sup
Pxk
∈Px

Pxk
(aTxjxk ≥ aTxjcxj) ≤ κjk. (14)

Proof: We know that xk /∈ X free
k ⇐⇒{

xk ∈
⋃N
i=1Oik

}
∪ {xk /∈ X}. We denote the event of

colliding with obstacle i at time step k as Cik := xk ∈ Oik
and similarly let the event of violating the jth constraint
defining the state constraint set X at time step k be Djk :={
aTxjxk ≥ aTxjcxj

}
. Then, the left hand side of (9d) can be

equivalently written as

sup
Pxk
∈Pxk

Pxk

[
T∨
k=1

[{
xk ∈

N⋃
i=1

Oik

}
∪ {xk /∈ X}

]]

≤ sup
Pxk
∈Pxk

Pxk

[
T∨
k=1

N∨
i=1

Cik

]
+ sup

Pxk
∈Pxk

Pxk

 T∨
k=1

ne∨
j=1

Djk


≤

T∑
k=1

N∑
i=1

sup
Pxk
∈Pxk

Pxk
[Cik] +

T∑
k=1

ne∑
j=1

sup
Pxk
∈Px

Pxk
[Djk]

≤
T∑
k=1

N∑
i=1

δik +

T∑
k=1

ne∑
j=1

κjk

≤ ∆,



Here, we applied the Boole’s inequality [12] to get the second
inequality, (13) and (14) to get the third inequality and (12)
for the fourth inequality to obtain the desired result.
We now reformulate Problem 1 with individual risk bounds.

Problem 2: We seek to approximately solve the following
distributionally robust path planning problem with individual
risk bounds as follows:

minimize
π, δ

T−1∑
k=0

`t(x̂k,Xgoal, ut) + `T (x̂T ,Xgoal) (15a)

subject to (1), x0 ∼ Px0
∈ Px, wk ∼ Pw ∈ Pw, (15b)

(4), (5), uk ∈ U , cik ∼ Pcik ∈ Pcik, (15c)

inf
Pxk
∈Px

Pxk
(xk /∈ Oik) > 1− δik, ∀i∈B,∀k∈[1:T ],

(15d)

sup
Pxk
∈Px

Pxk
(aTxjxk ≥ aTxjcxj) ≤ κjk,

∀j∈[1,ne],
∀k∈[1:T ] ,

(15e)
T∑
k=1

N∑
i=1

δik +

T∑
k=1

ne∑
j=1

κjk ≤ ∆. (15f)

Note that the only difference between Problems 1 and 2 is
that Problem 2 is expressed with individual risk constraints
and the allocated individual risks satisfy the total risk budget
∆.

III. DISTRIBUTIONALLY ROBUST RISK ALLOCATION

Allocating the individual risks in a non-uniform way while
still enforcing the DR risk constraint (9d) can minimize the
conservatism of the resulting path from source to the goal.
Let us define the vector of all individual risk bounds as

δ :=
[
δ11 . . . δNT

]T
, κ :=

[
κ11 . . . κneT

]T
. (16)

A. Risk Treatment for Polytopic Obstacles & State Con-
straints

Since the obstacle Oik,∀i ∈ B is a convex polytope, it can
be represented by ni hyperplanes. Collision with obstacle
i ∈ B at time step k occurs if the position of the robot lies
inside the obstacle, xk ∈ Oik. This can be expressed as a
conjunction of ni linear constraints on the robot’s position,

xk ∈ Oik ⇐⇒
ni∧
j=0

aTijxk < bikj . (17)

The individual chance constraints given by (13) encode the
fact that the worst-case probability of colliding with obstacle
i at time step k should be at most δik. That is,

sup
Px∈Pxk

Pxk

 ni∧
j=1

aTijxk < aTijcikj

 ≤ δik, (18)

where cikj = ĉikj + cik is a point on the jth constraint of
obstacle Oik, with its first and second moments being ĉikj
and Σcjk respectively. The distributionally robust individual
risk constraint in (18) can be handled by a disjunction

of linear constraints on the state mean x̂k defined using
deterministic constraint tightening as in [13]. That is,

aTikj x̂k ≥ aTikj ĉikj + γjik, (19)

γjik(δik) :=

√
1− δik
δik

∥∥∥(Σxk
+ Σcjk)

1
2 aikj

∥∥∥
2
, (20)

where, γjik is the deterministic constraint tightening of the jth
constraint of obstacle i ∈ B at time k. To this end, we define
Boolean quantities hjik and hik that represent the mean state
being outside the tightened jth constraint of Oik and outside
the tightened obstacle Oik, respectively:

hjik =

{
>, (19) is satisfied
⊥, otherwise,

(21)

hik =

{
>,

∨ni

j=1 h
j
ik = >

⊥, otherwise
. (22)

Here, (19) encodes the condition that the mean position of
the robot should lie outside the tightened obstacle to fulfill
hjik = >. A similar approach can be taken for treating the
state constraints in the exact same probabilistic sense. The
distributionally robust individual risk constraint in (15e) can
be handled by a disjunction of linear constraints on the state
mean x̂k defined using deterministic constraint tightening.

aTxj x̂k ≤ aTxjcxj −

√
1− κjk
κjk

∥∥∥Σ
1
2
xkaxj

∥∥∥
2︸ ︷︷ ︸

:=ηjk(κjk)

. (23)

Similarly, we define Boolean quantities gjk representing the
mean state being inside the tightened jth constraint of X .

gjk =

{
>, (23) is satisfied
⊥, otherwise.

(24)

Here, ηjk is the deterministic constraint tightening of the jth
constraint of X at time k and (24) encodes the condition that
the mean position of the robot should lie inside the tightened
state constraint set X in order to fulfill gjk = >.

B. Exact Risk Allocation (ERA) Algorithm

The aim of ERA is to allocate as little risks δik and κjk as
possible for all obstacles i ∈ B and the constraints defining
the state constraint set X at all time steps k that fulfill the
DR risk constraint in (15d) and (15e) respectively. Note that
ERA cannot be done if the mean state x̂k is either inside the
obstacle or outside X as such paths will be deemed as non-
feasible. Hence, we define the ERA problem with Boolean
conditions for each constraints defining the obstacle i ∈ B
and the constraints defining the state constraint set X .

Problem 3: Find the minimum risk δik for all obstacles
i ∈ B at all time steps k ∈ [1 : T ] such that hjik = >, j =
1, . . . , ni and similarly the minimum risk κjk for which glk =
> for l = 1, . . . , ne.

Theorem 1: The minimum risk for obstacle i ∈ B while
satisfying hjik = >,∀j = 1, . . . , ni at all time steps k =



1, . . . , T is obtained by setting aTikj x̂k = aTikj ĉikj + γjik and
is given by

δ?ik =

1 +

 aTikj x̂k − aTikj ĉikj∥∥∥(Σxk
+ Σcjk)

1
2 aikj

∥∥∥
2

2

−1

, (25)

and the minimum risk for jth constraint defining X while
satisfying gjk = >,∀j = 1, . . . , ne at all time steps k =
1, . . . , T is obtained by setting aTxj x̂k = aTxjcxj − η

j
k and

κ?jk =

1 +

aTxjcxj − aTxj x̂k∥∥∥Σ
1
2
xkaxj

∥∥∥
2


2
−1

. (26)

Proof: Since Σk and Σcjk are known constants and√
1−δik
δik

is a decreasing function of δik, rearranging (21) for

the case of hjik = > leads to the following individual risk
lower bound,

δik ≥

1 +

 aTikj x̂k − aTikj ĉikj∥∥∥(Σxk
+ Σcjk)

1
2 aikj

∥∥∥
2

2

−1

︸ ︷︷ ︸
:=δ?ik

. (27)

Similarly, rearranging (24) for the case of gjk = >,∀j =
1, . . . , ne leads to the following individual risk lower bound,

κjk ≥

1 +

aTxjcxj − aTxj x̂k∥∥∥Σ
1
2
xkaxj

∥∥∥
2


2
−1

︸ ︷︷ ︸
:=κ?

jk

. (28)

IV. DISTRIBUTIONALLY ROBUST RRT WITH EXACT
RISK ALLOCATION

In this section, we extend the sampling-based Distribution-
ally Robust RRT (DR-RRT) algorithm in [3] that grows trees
of state distributions while enforcing distributionally robust
risk constraints using the proposed ERA algorithm. Usually,
DR-RRT employs a Uniform Risk Allocation (URA) as it
trivially satisfies (12), where each obstacle and time step are
first assigned the same risk δik = ∆

TN , and the assigned
risks are then used to check the probabilistic feasibility of
the generated path according to the constraint in (21). With
ERA, the problem is tackled in the opposite direction by first
assigning risks δik that fulfill the DR risk constraints in (21)
and then checking if (12) holds.

A. Tree Expansion

Algorithm 1 outlines the DR-RRT tree expansion with Ex-
act Risk Allocation incorporated and the readers are referred
to [3] for information on DR-RRT tree expansion. Note
that the trajectory generated from the LQR finite horizon
steering function does not depend on the risk allocations
δik. In the next step, Exact Risk Allocation is applied to

the generated trajectory, as outlined in Algorithm 2. The
ERA-function returns risk allocations δik and κjk for all
obstacles i ∈ B and all the constraints j = 1, . . . , ne defining
the state constraint set X at all time steps k along the
trajectory. The risk allocation is done so that (19) and (23)
arefulfilled and the total risk leading up to each time step
is obtained by summing up all risk allocations δik up to
a certain time step, denoted as k?. The path from Nnear

up to time step Tsteer is then checked for distributionally
robust feasibility, as outlined in Algorithm 3. If the path
is feasible, the total cost J and the residual risk δres are
calculated and used to assign a score to the path from the
near node Nnear as score(Nnear) = (θJ/J)+θresδres, where
θJ , θres ∈ [0, 1], θJ + θres = 1 are left to the user’s choice
to emphasize the cost and the residual risk appropriately.
When paths from all near nodes that are DR-feasible have
been assigned a score, the path with the best score is chosen
and a new node and edge is added to the tree. The residual
risk δres is also added to the node, which can in turn be
re-allocated as described in subsection IV-B when steering
from this node to a new sample. Feasible portions of the
trajectories are also added to the tree in the same manner.

B. Feasibility Check

The feasibility check is based on the total risk allocated
up to time step k, denoted by δtot(k). The risk constraints
(15d-15f) have to hold for the entire planning horizon T
and not just over the steering horizons Tsteer ∈ N≥1. To
assure this is the case, we begin by distributing the total risk
budget ∆ uniformly over all steering horizons according to
∆steer = ∆·Tsteer

T , where ∆steer is the risk budget over each
steering horizon Tsteer. An entire trajectory from a near node
to the sample is deemed to be feasible, provided the total risk
allocated over the steering horizon, δtot(Tsteer) ≤ ∆steer.
A similar reasoning can be applied to assure the feasibility
of a portion of the steered path, from a near node up to
a certain time step k. Then, the total risk allocated up to
that time step, δtot(k), has to fulfill δtot(k) ≤ ∆k, where
∆k := k·∆steer

Tsteer
is the uniformly allocated risk budget up to

time step k. This means that a trajectory, or a portion of it, is
considered feasible only when the total allocated risk (using
ERA) does not exceed the corresponding total uniformly
allocated risk. While this method has less conservatism than
uniform risk allocation, there are still a lot of conservatism
present from allocating the total risk budget uniformly over
all steering horizons. This conservatism can be mitigated
by reallocating residual risk of a horizon to the subsequent
steering. If the entire risk budget ∆steer or ∆k is not used,
such that δtot(Tsteer) < ∆steer or δtot(k) < ∆k, a residual
for the newly generated node at time step k or Tsteer can be
created according to

δres = ∆steer − δtot(Tsteer) or (29)
δres = ∆k − δtot(k). (30)

These residual risks can then be reallocated to new trajec-
tories generated from this node. When a new point xs is
sampled, the residual risk of the near node δres[Nnear] can



be allocated to the trajectory generated by steering from
Nnear to xs. The total risk budget for the new trajectory or
its portion is then ∆steer + δres[Nnear] or ∆k + δres[Nnear],
respectively. Then, the feasibility of the trajectory generated
from Nnear depends upon the relaxed risk budget constraints

δtot(Tsteer) ≤ ∆steer + δres[Nnear] or (31)
δtot(k) ≤ ∆k + δres[Nnear], (32)

and the residual of Nnear is added to the residual of newly
created nodes originating from Nnear. That is,

δres = ∆steer + δres[Nnear]− δtot(Tsteer) or (33)
δres = ∆k + δres[Nnear]− δtot(k). (34)

Remarks: Note that the above risk allocation procedure still
has some conservatism. An inevitable conservatism stems
from the usage of Boole’s inequality to decompose the joint
risk constraint in (9d) into individual risk constraints. Though
some trajectories are deemed to be infeasible and dismissed
as they fail to satisfy (33), they could be potentially stored
with the hope that they become feasible when they are
connected with new trajectories such that the combination
of the trajectories becomes risk feasible. Albeit, such an
effort would come at the expense of increased computational
burden and memory storage along with the book-keeping to
correctly identify feasible branches as near nodes to a random
sample during RRT tree expansion. For the ease of expo-
sition, we decided not to implement the above mentioned
nuances and only reallocate risk to future horizons.

Theorem 2: All DR-RRT feasible paths with the URA of
length Tpath and total risk budget ∆path ∈ (0, 0.5] is also
feasible with the ERA but the vice-versa is not necessarily
true.

Proof: Without loss of generality, we present the proof
assuming that the environmental borders given by (7) are not
treated probabilistically. Consider a path that is feasible with
URA meaning that all risk allocations are assigned the same
value δuni =

∆path

N ·Tpath
and they satisfy (12) and

∨ni
j=1 (aTij x̂k − aTij ĉikj ≥ γ

j
ik(δuni)),

∀i∈[1:N ],
∀k∈[1:Tpath].

On the other hand, the ERA sets risk allocations δik such
that

∨ni
j=1 (aTij x̂k − aTij ĉikj = γjik(δik)), ∀i∈[1:N ],

∀k∈[1:Tpath].

Then, ∀i ∈ B,∀k = 1, . . . ,Tpath, and j = 1, . . . , ni

γjik(δuni)) ≤ γjik(δik)) ⇐⇒
√

1− δuni

δuni
≤
√

1− δik
δik

⇐⇒ δik ≤ δuni.

Further, the sum of all exact risk allocations satisfies
Tpath∑
k=1

N∑
i=1

δik ≤
Tpath∑
k=1

N∑
i=1

δuni =

Tpath∑
k=1

N∑
i=1

∆path

N · Tpath
= ∆path.

Thus, the path is also feasible with the ERA. Conversely, we
just need to prove that there exists a path which is feasible
with ERA but not with URA. Suppose that at time step

k, ∃i ∈ B such that the given path with risk allocation δik <
δuni is feasible with ERA meaning that

∑Tpath

k=1

∑N
i=1 δik =

∆̄path < ∆path. Since,
∑Tpath

k=1

∑N
i=1 δuni = ∆path >

∆̄path, we can conclude that ∃j = 1, . . . , ni for which
γjik(δuni)) < γjik(δik)), and the path will be deemed in-
feasible with URA as both (22) with γjik(δuni) and the risk
summation condition that

∑Tpath

k=1

∑N
i=1 δuni ≤ ∆path cannot

hold true simultaneously. Hence, there exist paths that are
feasible with ERA but not with URA.

Algorithm 1 DR-RRT: Tree Expansion

Inputs: Tree T , time k, Tsteer, θJ , θres ∈ [0, 1]
xs = sample(X free

k )
Nnear = NearestMNodes(xs, T ,M)
for all Nnear do

(x̂path,Σpath) = Steer(Nnear, xs,Tsteer)
δ, κ = ExactRiskAllocation(x̂path,Σpath,Tsteer)

δtot(k
?) =

∑k?

k=1(
∑N
i=1 δik +

∑ne

j=1 κjk), ∀k? ≤
Tsteer

if DRFeasible(δtot(Tsteer), δres[Nnear]) then
J = J [Nnear] + J(x̂path,Σpath)
δres = δres[Nnear] + ∆steer − δtot(Tsteer)
score(Nnear) = (θJ/J) + θresδres

Select path (x̂path,Σpath) from Nnear with best score
T .AddNode(x̂path(Tsteer),Σpath(Tsteer))
T .AddEdge(Nnear, x̂path(Tsteer))
T .AddResidual(δres)
for k = 1 : Tsteer − 1 do

if DRFeasible(δtot(k), δres[Nnear]) then
δres = δres[Nnear] + ∆k − δtot(k)
T .AddNode(x̂path(k),Σpath(k))
T .AddEdge(Nnear, x̂path(k))
T .AddResidual(δres)

Algorithm 2 ExactRiskAllocation

Inputs: Path x̂path,Σpath,Tsteer

Output: Risk matrices δ ∈ RN×Tsteer , κ ∈ Rne×Tsteer .
for k = 1 : Tsteer do

for i = 1 : N do
Assign δik satisfying (27).

for j = 1 : ne do
Assign κjk satisfying (28).

return δ, κ

Algorithm 3 DRFeasible

Inputs: total risk δtot(k), residual of Nnear, δres[Nnear]
Output: true if DR-feasible, otherwise false
if δtot(k) satisfies (32) then
return true

else
return false



Fig. 1. DR-RRT tree in R2 with URA using
∆ = 0.1.

Fig. 2. DR-RRT tree in R2 with ERA using
∆ = 0.1.

Fig. 3. DR-RRT tree in R2 with ERA using
∆ = 0.02.

V. NUMERICAL SIMULATIONS

We consider an environment [0, 50]2 cluttered with N =
10 randomly located rectangular obstacles. In all simulations,
a unit-mass robot with discrete-time stochastic double inte-
grator dynamics is considered. The initial position is [0, 0]
and the initial velocity is zero. The dynamics and input
matrices are

A =

[
I2 dtI2

02×2 I2

]
, B =

[
dt2

2 I2
dtI2

]
, (35)

where dt = 0.1 s. The state of the robot is a two-dimensional
position and velocity with two-dimensional force inputs. The
covariance matrices of the initial state x0 and the disturbance
w are

Σx0
= 10−3

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,Σw = 10−3

0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

 .
All obstacles are static and treated as deterministic, so that all
uncertainty comes from the unknown state of the robot. The
robot is treated as a point mass (without loss of generality as
a known geometry can be easily handled by adding a fixed
tightening to all obstacles) and the environmental bounds
are not treated probabilistically. The steering from a near
node to a sample xs is done by solving a discrete-time linear
quadratic optimal control problem to compute the affine state
feedback policy that minimizes the cost function

Ts−1∑
k=0

êTkQêk + uTkRuk + êTTs
QêTs

, (36)

where êk = x̂k − xs and Ts = Tsteer, Q = 40I4 and
R = 0.1. The quadratic optimal cost-to-go function is also
used as the distance metric in the selection of the nearest tree
nodes. In all simulations, the trajectories of the mean state
x̂k is represented by lines and the uncertainty is represented
by ellipses of one standard deviation, derived from the
covariance Σxk

. Note that in the simulation involving the
DR-RRT-tree, the ellipses are too small to be visible. The
planning horizon is T = 1000 and the steering horizon
is Tsteer = 10. The risk budget for the entire planning
horizon T is denoted as ∆. Three DR-RRT trees with 1000
samplings are simulated namely: 1) Using URA and risk

budget ∆ = 0.1, 2) Using ERA and risk budget ∆ = 0.1,
and 3) Using ERA and risk budget ∆ = 0.02. The risk
allocation of ERA were done using results from Theorem 1.
Besides from the risk allocation and risk budget, everything
in the trees and environment are exactly the same, including
the random sampling points. This is to get a fair comparison
of the different trees. With uniform risk allocation, the same
risk is allocated for all obstacles and time steps, such that
δik = ∆

T ·N = 0.1
1000·10 = 10−5. With exact risk allocation, the

risk budget for a steering horizon is ∆steer +δres, where δres

is the residual of the node from which the steering is done.
Further,

∆steer =
∆ · Tsteer

T
=

{
10−3, when ∆ = 0.1

2× 10−4, when ∆ = 0.02.

Discussion: From Figures 1 and 2, it can easily be seen that
DR-RRT with ERA generates less conservative paths than
DR-RRT with uniform risk allocation when the same risk
budget ∆ = 0.1 is used. That is, with the same total risk
budget ∆, DR-RRT with ERA explores the state space more
efficiently than with URA (consequence of Theorem 2), still
by having the same risk guarantees. Additionally, Figure 3
illustrates how DR-RRT with ERA can be used with lower
risk budget ∆ = 0.02 and still generate paths with a similar
degree of conservatism as DR-RRT with an URA using a
higher risk budget of ∆ = 0.1. Overall, our results convey
that ERA gives the same risk guarantees for sampling based
motion planning algorithms while maintaining a reduced
conservatism.

VI. CONCLUSION

An extension of the sampling based probabilistically com-
plete distributionally robust RRT motion planning algorithm
with an optimal risk allocation was presented. It was proven
that our risk allocation based embedding technique realises
guaranteed conservative, yet increasingly more risk feasi-
ble trajectories for efficient state space exploration. Our
simulation results corroborated our proposed risk allocation
technique. Future research will aim to design a slightly more
involved risk allocation based embedding into the DR-RRT?

algorithm as in [4] to guarantee both risk bounded and
asymptotically optimal trajectories.
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