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ABSTRACT In this paper a Maximum likelihood estimation algorithm for Finite Impulse Response
Errors-in-Variables systems is developed. We consider that the noise-free input signal is Gaussian-mixture
distributed. We propose an Expectation-Maximization-based algorithm to estimate the system model
parameters, the input and output noise variances, and the Gaussian mixture noise-free input parameters.
The benefits of our proposal are illustrated via numerical simulations.

INDEX TERMS Errors-in-Variables, Maximum Likelihood, Expectation-Maximization, Gaussian Mixture
distribution, Estimation.

I. INTRODUCTION
Errors-in-Variables (EIV) models [1] refers to the represen-
tation of dynamic and static systems in which both input and
output signals are corrupted by noise. EIV models play a
fundamental role in many scientific areas, including a great
number of applications, in which variables can only be mea-
sured with errors. Among others, medical variables–such as
blood pressure, temperature– and agricultural variables–such
as rainfall and soil nitrogen, are measured with errors, see e.g.
[2]. On the other hand, economic and productive applications
include forecasting in macroeconomics [3], electromagnetic
mineral exploration [4], feedback control in 5G-wireless
networks (where the quantization and delay of signals can
be seen as measurements with errors [5]), modeling and
tracking autonomous underwater vehicles, structural health
monitoring and thermal models for many-core systems-on-
chip, among others (see [1] for further details).

It is well known that classical methodologies are not
suitable for the identification of EIV systems since they
only consider measurement errors in the system output, thus

resulting in non-consistent estimates when the system input
is also measured with errors (see e.g. [6] and the references
therein). In addition, the system identifiability does not hold
in general, unless some additional assumptions are consid-
ered such as prior knowledge about the noise-free input, input
and output noises [1], [2]. Moreover, if the measurement
noises and the noise-free input are Gaussian distributed, it is
not possible to uniquely identify static EIV systems [7], [8].
This implies that the joint distribution of the input and output
signals can be modeled utilizing different sets of the system
parameters and still obtain the same second order statistics.
Then, it is not possible to obtain a consistent estimator when
the data size goes to infinity because this limit is not uniquely
defined (see e.g. [2]). However, it has been established that
if the noise-free input is non-Gaussian distributed, then the
system is generally identifiable [9]–[11].

A number of techniques have been developed to deal with
EIV system identification, such as total least squares, in-
strumental variables, bias-compensation, covariance match-

VOLUME x, yyyy 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3255827

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Angel L. Cedeño et al.: FIR Errors-in-Variables system identification utilizing Approximated Likelihood and Gaussian Mixture Models

ing, high-order statistic (HOS), maximum likelihood (ML),
among others (see e.g. [1], [2], [12]–[14]). Some assumptions
can be used to achieve the EIV system identifiability. Then,
depending upon such assumptions, we can have a particu-
lar scheme for EIV identification. For instance, total least
squares methods are developed under the assumption that the
ratio between the input noise variance and the output noise
variance is known in order to obtain a consistent estimator
[1]. HOS methods are developed under the assumption that
the noise-free input is non-Gaussian distributed. These meth-
ods consider the information contained in the cumulants and
moments of the third or fourth order, which are assumed to
be nonzero [15]. However, HOS methods typically require a
large number of samples to yield accurate estimators [15],
[16]. In [17] an identification method was developed in
which the non-Gaussian distribution is estimated using a
non-parametric deconvolution kernel method, assuming that
the distributions of both the noise input and output signals
are known. In [18] an ML estimator for the identification
of EIV systems is developed under the assumption that the
noise-free input, the noise input and the noise output signals
are modeled as Auto-regressive moving average (ARMA)
processes. In this approach, ARMA processes are driven by
Gaussian white noises, and the parameters of these three
ARMA processes are jointly estimated with the system pa-
rameters.

On the other hand, ML is a method widely used for param-
eters estimation in dynamical systems, due to its properties
of consistency and asymptotic efficiency [19]. The ML esti-
mator maximizes the probability of the observed data condi-
tioned to the system parameters. This optimization problem
can be difficult to solve in presence of latent variables,
thus the Expectation-Maximization algorithm (EM) can be
used in this context, see e.g. [20]–[22]. Usually the ML is
developed under the assumption of independent and iden-
tically distributed (i.i.d.) samples of the underlying random
variables. However, when this assumption does not hold, the
computation of the likelihood function of the available data
can be intractable since the dependency upon signals on their
past might lead to complex expressions. In this context, an
alternative for obtaining an estimate of the system parameters
is to consider an approximation of the likelihood function
[23].

Composite likelihood is an approach used to approximate
the likelihood function. This approach has been extensively
used in many areas and applications (see e.g. [24]–[26] and
the references therein). This approximated likelihood was
introduced in [27] and [28] with the name pseudo-likelihood
function in the context of spatially correlated data, and in
[29] it was introduced with the name composite likelihood.
In this paper we used a version of the composite likelihood
where the main idea is to replace the conditioning on all
previous observations by only the k most recent ones. This
simplification is made by recognizing that practical systems
have finite memory, i.e., distant data do not provide important
information about the current observation (see e.g. [30],

[31]). The consistency of this approximation was studied in
[32], where the kth order likelihood function was defined.

In this work we are interested in the identification of
FIR-EIV systems where both the input and output of a FIR
model are corrupted by additive noises (where the usual
i.i.d. assumption does not hold). In particular, we develop
an ML estimator for an FIR-EIV system when the noise-
free input probability density function (PDF) is given by a
Gaussian Mixture Model (GMM). The motivations to con-
sider the noise-free input PDF as GMM are i) to satisfy the
condition of identifiability [9], [10] and ii) because the GMM
approximates any PDF with compact support [33], which
allows for identifying the FIR-EIV system with any noise-
free input distribution. Furthermore, GMMs have been used
in many applications such as filtering [34]–[37], static EIV
system identification [38], Bayesian estimation [39], [40],
linear dynamic systems estimation [41], [42], uncertainty
modeling for FIR systems [43], and astronomy [44]. We use
the approximated likelihood given in [32] in order to reduce
the computational complexity that is produced by correlated
data corresponding to the input and output measurements.
The main contributions of our work are the following:

(i) We obtain an approximated likelihood function for an
FIR-EIV system using GMMs. The composite likeli-
hood is obtained based on the methodology proposed
in [32]. Here, we consider that the noise-free input
distribution is modeled as a GMM.

(ii) We propose an EM-based algorithm to solve the associ-
ated ML estimation problem with GMMs, obtaining the
estimates of the FIR-EIV system model parameters, the
noise-free input distribution parameters, and the noise
input and output signals variances.

The EIV system identification algorithm presented in this pa-
per considers that the PDF of the noise-free input corresponds
to a GMM. Nevertheless, it can be used to approximate
non-Gaussian distributions that are not Gaussian mixture
distributions. The remainder of the paper is as follows: In
Section II a motivation example is presented. In Section III
the problem of interest is stated. In Section IV the estimation
problem for the FIR-EIV systems is addressed using ML
methodology with GMMs. In Section V an EM algorithm is
presented to solve the corresponding ML estimation problem.
Numerical examples are presented in Section VI, showing
that the proposed method in this paper yields more accurate
estimations than HOS methods. Finally, in Section VIII, we
present conclusions.

II. MOTIVATION EXAMPLE

Consider the problem to estimate the constant slope K in the
following static system:

y0t = Ku0t , (1)
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FIGURE 1. Estimation of the constant slope K = 4 with 5000 data points and a uniformly distributed noise-free input U [−3, 3]: (a) using EM method: K̂ =
4.004 ± 0.039, (b) using HOS method: K̂ = 4.281 ± 1.591, and (C) using PEM method: K̂ = 2.847 ± 0.025. The noises are both zero-mean Gaussian with unit
variance.

where y0t and u0t are not available for the estimation process.
Instead, they are measured with additive noises as follows:

yt = y0t + ỹt, (2)

ut = u0t + ũt, (3)

where ỹt and ũt are zero-men Gaussian white noises. Then,
as it is shown in our previous work [38], an estimation of
the parameter K is non-trivial, and some of the available
methods in the literature produce inaccurate estimates, such
as HOS method and Prediction Error Method (PEM) [19].
In addition, the HOS technique requires a large data set to
improve the estimation, and the PEM approach only consid-
ers errors in the signal yt. In Figure 1 we show the estimation
results from 100 Monte Carlo simulations using the EM algo-
rithm for static EIV systems proposed in [38], HOS method
[45], and the classical PEM. In this example we consider
that the true slope is K = 4, the noise-free input u0t is a
uniformly distributed signal in the interval [−3, 3], and a set
of observations containing 5000 data points. We observe that
the estimator obtained using the EM method is more accurate
than the estimator obtained using the HOS method, which
produced estimates that show a large variance (gray-shaded
region) and biased mean. Additionally, the PEM algorithm
produced a biased estimation with a small variance. As we
mentioned before, there are many applications that involve
dynamical systems where both input and output variables
can only be measured with errors, i.e. dynamic EIV systems.
Thus, it is important to develop identification methodologies
to obtain an accurate estimator of the system’s parameters in
the EIV framework. This paper presents a method to identify
dynamic EIV systems that can be seen as an extension of our
previous work [38] developed for static EIV models.

III. STATEMENT OF THE PROBLEM
A. SYSTEM DESCRIPTION
Consider the FIR-EIV system shown in Fig. 2. The noise-
free input and output, denoted by u0t ∈ R and y0t ∈ R

respectively, are related by:

y0t = H(q−1, θ)u0t , (4)

where H(q−1, θ) is a FIR system given by:

H(q−1, θ) = h0 + h1q
−1 + · · ·+ hrq

−r, (5)

q−1 is the backward shift operator (q−1ut = ut−1) and r ∈ N
is the FIR system order. In addition

yt = y0t + ỹt,

ut = u0t + ũt,
(6)

where yt ∈ R is the noisy output signal, ut ∈ R is the noisy
input signal, and ũt ∈ R and ỹt ∈ R are zero-mean mutually
uncorrelated Gaussian white noise sequences with variance
Γu and Γy , respectively.

The noise-free input, u0t , is Gaussian-mixture distributed
as follows:

p(u0t ) =

K∑

j=1

ρjN (u0t ; ηj ,Γj), (7)

where K ≥ 2 (K ∈ N), ρj > 0 is the jth mixing
weight subject to

∑K
j=1 ρj = 1, N (u0t ; ηj ,Γj) represents

a Gaussian PDF with mean value ηj ∈ R and variance
Γj ∈ R+, given by:

N (u0t ; ηj ,Γj) =
1√
2πΓj

exp

{
− (u0t − ηj)

2

2Γj

}
. (8)

The system (6) can be rewritten in matrix form as follows:

zt = Arxt + vt, (9)

where vt is a zero-mean white Gaussian noise with covari-
ance matrix Φ = diag{Γy,Γu} and

zt = [yt, ut]
⊤
, Ar =

[
h0 h1 . . . hr
1 0 . . . 0

]
, (10)

xt =
[
u0t , u

0
t−1, · · · , u0t−r

]⊤
, vt = [ỹt, ũt]

⊤
. (11)
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FIGURE 2. Basic setup of errors-in-variables problem.

The difficulty in the identification of the parameters of the
system (9) is due to the fact that x1, x2, . . . , xN is a latent
correlated sequence, which results in z1, z2, . . . , zN not be-
ing an i.i.d. sequence of zt. This, in turn yields a likelihood
function of the data that can not be written as the product of
independent PDFs, difficulting the optimization procedure.
The problem of interest can be stated as follows: From a
set of noise-corrupted input and output signals1, z1:N =
{y1:N , u1:N}, and the system model in (9), we develop an
ML estimator for the system parameters defined as follows:

β̂ML = argmax
β

ℓN (z1:N |β),

s.t. ρj > 0,

M∑

i=1

ρj = 1,
(12)

where ℓN (z1:N |β) = log {p(z1:N |β)} is the log-likelihood
function, and β is defined as

β =
[
θ⊤, γ⊤,Γy,Γu

]⊤
, (13)

θ = [h0, h1, . . . , hr]
⊤
, (14)

γ = [ρ1, η1,Γ1, . . . , ρM , ηM ,ΓM ]
⊤
. (15)

B. STANDING ASSUMPTIONS
We consider that there exists a vector of parameters β = β0
that defines the "true" system. In order to formulate the ML
estimation algorithm, we introduce the following standing
assumptions [18], [42], [46]:

Assumption 1. The vector of parameters β0, the input signal
ut, the noise-free input u0t , the noise ũt and ỹt in (6) satisfy
regularity conditions, guaranteeing that the ML estimate βML

converges (in probability or a.s.) to the true solution β0 as
N → ∞.

Assumption 2. The noise-free input u0t is a stationary, inde-
pendent, and identically distributed stochastic signal with a
non-Gaussian distribution.

Assumption 3. u0t , ũt, and ỹt are jointly independent.

Assumption 4. The filter order r of the system (4), and the
number of Gaussian components K of the noise-free input
distribution are known.

1We use x1:N to denote the signal xt for t = 1, ..., N .

Assumption 5. System (4) is a Single Input Single Output
(SISO), linear, and asymptotically stable system.

Assumption 6. The system (4) is operating in open loop,
and only ut and yt with t = 1, . . . , N are available to be
measured.

Assumption 1 is necessary to develop an estimation al-
gorithm that holds the asymptotic properties of the ML
estimator. Assumptions 2 and 3 are necessary to compute the
conditional PDF of the random variable zt given its past, in
order to obtain the likelihood function. Assumption 4 can
be relaxed, for example, using an information criterion to
determine the correct order r or by using a non-Gaussian
noise-free input distribution that does not correspond to a
GMM but can be approximated by one. We will address
this case in Section VI. Assumption 5 is necessary to obtain
an asymptotically unbiased ML estimator [47] and a system
model that is controllable and observable [48].

The EIV framework utilized in this paper is inspired in
Figure 3, as was stated in [1, pag 54]. The signal wt can
be considered as an accessible control variable and F de-
scribes an actuator with potentially complicated dynamics.
This implies that the manipulated signalwt is not a signal that
directly excites the system. The signal entering the system is
u0t which is not accessible to be manipulated but only mea-
sured with errors. This situation is illustrated in the practical
experiment setup addressed in section VII, where the control
signal obtained in the workstation, does not directly excite
the DC motor. This control signal first passes through an
amplifier whose output is the signal that really excites the
DC motor. Then, this signal is measured with a sensor that
introduces errors in the measurements. Thus, we have an EIV
problem.

F

System

Σ

Σ

wt

u0t

ũt ut

ỹt

yt
y0t

FIGURE 3. Basic setup of EIV problem, including input generation

IV. MAXIMUM LIKELIHOOD ESTIMATION FOR FIR-EIV
SYSTEMS USING GMMS

In this section we develop an ML estimation algorithm for
system (9) based on an approximation of the full likelihood
function. We consider the composite likelihood approach in
[49] to approximate the full likelihood.

In order to obtain the full and approximated log-likelihood
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functions for system (9), we define the following vectors:

ϕl:t =




zt
zt−1

...
zl


 , ξs:t =




u0t
u0t−1

...
u0s


 , ϑl:t =




vt
vt−1

...
vl


 , (16)

where the notation Xa:b describes the data of X in a discrete-
time window from a to b. For instance, ϕ1:t, i.e. l = 1, is
the vector of the observations z1:t that corresponds to the full
likelihood function up to time t, and ϕt−k:t, i.e. l = t − k,
is the vector of the observations zt−k:t that corresponds to
the likelihood function in the window of length k + 1 (ap-
proximated likelihood function). For a general description,
using the observations zl:t, the system (9) can be expressed
as follows:

ϕl:t = Anξs:t + ϑl:t, (17)

where n = t − l + 1, s = l − r, ϕl:t ∈ R2n, ξs:t ∈ Rn+r,
ϑl:t ∈ R2n and An ∈ R2n×n+r is given by:







h0 h1 . . . hr 0 . . . 0 0

1 0 . . . 0 0 . . . 0 0

0 h0 h1 . . . hr . . . 0 0

An = 0 1 0 . . . 0 . . . 0 0
...

...
...

...
...

. . . 0 0

0 0 0 0 h0 h1 . . . hr

0 0 0 0 1 0 . . . 0 (18)

where the index n in (18) denotes the number of times that
the matrix Ar is repeated (see the gray shadow in An).

A. COMPUTING THE FULL LIKELIHOOD FUNCTION
Utilizing Bayes’s theorem we obtain the full likelihood func-
tion for the available data z1:N as follows:

LN (β) =

N∏

t=r+1

p(zt|z1:t−1, β) =

N∏

t=r+1

p(ϕ1:t|β)
p(ϕ1:t−1|β)

, (19)

where p(ϕ1:t|β) = p(zt, zt−1, . . . , z1|β) is the joint PDF of
the observations z1:t, and p(ϕ1:t−1|β) = p(zt−1, . . . , z1|β) is
the marginal PDF that corresponds to the observations z1:t−1.

We will now present two Lemmas that will be used to find
the joint and marginal PDFs p(ϕ1:t|β) and p(ϕ1:t−1|β). In the
first Lemma, we present the PDF p(ξm) of the random vector
ξm = [u01, u

0
2, . . . , u

0
m]⊤. Since p(u0κ), with κ = 1, 2, . . . ,m,

is the GMM given in (7), the PDF p(ξm) is also a GMM.
The ith Gaussian component in p(ξm) is obtained from each
possible combination of the individual weights, means, and
variances of the random variables u0κ. The indices of each
combination can be thought as the ith experiment in a full
factorial design with m factors and K levels by each factor
(see e.g. [50], [51] for more details regarding a full factorial
design). The weight, mean, and covariance of each Gaussian

components in p(ξm) are given in Figure 4. In order to
compute each combination in the full factorial design we use
the Matlab function fullfact.
In the second Lemma, we establish the PDF of the linear
transformation ϕτ = Aξm + ϑτ where A is a matrix, ξm
is a Gaussian-Mixture distributed random vector, and ϑτ is a
Gaussian distributed random vector.

Lemma 1. Consider the i.i.d. sequence of random variables
u01, u

0
2, . . . , u

0
m, where u0κ ∈ R with κ = 1, 2, . . . ,m,

satisfying

p(u0κ) =

K∑

j=1

ρjN (u0κ; ηj ,Γj), (20)

where ρj , ηj ,Γj ∈ R are the weight, mean, and variance
of each Gaussian component, respectively. K ∈ N is the
number of components of the mixture. Then, the PDF of the
vector ξm = [u01, u

0
2, . . . , u

0
m]⊤ is given by:

p(ξm) =

M∑

i=1

αiN (ξm;µi,Σi) , (21)

where M = Km. The weight αi ∈ R, the mean µi ∈ Rm

and the covariance matrix Σi ∈ Rm×m are given in Figure 4.

Proof. See appendix B.

Lemma 2. Let ξm ∈ Rm be a random vector that satisfies

p(ξm) =

M∑

i=1

αiN (ξm;µi,Σi), (22)

where αi ∈ R is the weight of each component, µi ∈ Rm

is the vector of means, Σi ∈ Rm×m is a positive definite
covariance matrix, and M ∈ N is the number of components
of the mixture. Consider ϕτ = Aξm + ϑτ where ϕτ ∈ Rτ ,
A ∈ Rτ×m, and ϑτ ∈ Rτ . ϑτ is independent of ξm and
satisfies

p(ϑτ ) = N (ϑτ ; ε,Φ), (23)

where ε ∈ Rτ is the vector of means, Φ ∈ Rτ×τ is a positive
definite covariance matrix. Then,

p(ϕτ ) =

M∑

i=1

αiN (ϕτ ;Aµi + ε,AΣiA⊤ +Φ). (24)

Proof. See appendix C.

Based on Lemmas 1 and 2, we first define the PDF of the
observed data set zl:t = {zl, z2, . . . , zt}. Then, setting l = 1,
the required PDFs to compute the full likelihood function are
directly obtained. Consider the system in (17), then the PDF
of the random variable ϕl:t is the parameterized PDF

f(ϕl:t;An) =

M∑

i=1

αiN
(
ϕl:t;Anµi,AnΣiA⊤

n + Λn

)
, (25)

where M = Kn+r. The weight αi ∈ R, the mean
µi ∈ Rn+r, and the covariance matrix Σi ∈ Rn+r×n+r are
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u0
m

ς1
··
ςK
ς1
··
ςK
ς1
··
ςK
ς1
··
ςK
...

ς1
··
ςK
ς1
··
ςK

⇒

⇒
⇒

⇒
⇒

⇒
⇒

⇒

⇒

⇒
⇒

⇒

i

1
··
K

K + 1
··
2K

2K + 1
··
3K

3K + 1
··
4K
...

··

··
Km

ξm αi

ρ1ρ1 . . . ρ1
··

ρ1ρ1 . . . ρK
ρ1ρK . . . ρ1

··
ρ1ρK . . . ρK
ρ2ρ1 . . . ρ1

··
ρ2ρ1 . . . ρK
ρ2ρK . . . ρ1

··
ρ2ρK . . . ρK

...

ρKρ1 . . . ρ1

ρKρ1 . . . ρK
··

ρKρK . . . ρ1
··

ρKρK . . . ρK

µT
i

[η1, η1, . . . , η1]
··

[η1, η1, . . . , ηK ]
[η1, ηK , . . . , η1]

··
[η1, ηK , . . . , ηK ]
[η2, η1, . . . , η1]

··
[η2, η1, . . . , ηK ]
[η2, ηK , . . . , η1]

··
[η2, ηK , . . . , ηK ]

...

[ηK , η1, . . . , η1]

[ηK , η1, . . . , ηK ]
··

[ηK , ηK , . . . , η1]
··

[ηK , ηK , . . . , ηK ]

Σi

diag {Γ1,Γ1, . . . ,Γ1}
··

diag {Γ1,Γ1, . . . ,ΓK}
diag {Γ1,ΓK , . . . ,Γ1}

··

diag {Γ1,ΓK , . . . ,ΓK}
diag {Γ2,Γ1, . . . ,Γ1}

··

diag {Γ2,Γ1, . . . ,ΓK}
diag {Γ2,ΓK , . . . ,Γ1}

··
diag {Γ2,ΓK , . . . ,ΓK}

...

diag {ΓK ,Γ1, . . . ,Γ1}

diag {ΓK ,Γ1, . . . ,ΓK}
··

diag {ΓK ,ΓK , . . . ,Γ1}
··

diag {ΓK ,ΓK , . . . ,ΓK}

FIGURE 4. Full factorial design with m factors and K levels by each factor to obtain the the weights, means, and variances of the joint PDF p(ξm) defined in
Lemma 1. The variable ς represents α, µ, and Σ.

obtained following the indices in the ith experiment in the
full factorial design with n+ r factors and K levels for each
factor (see Figure 4). Λn ∈ R2n×2n is a (block) diagonal
matrix given by

Λn =



Φ . . . 0
...

. . .
...

0 . . . Φ


 . (26)

In the following example we illustrate how to find the PDF
p(ϕl:t).

Example 1. Suppose we have the system in (17) and we want
to compute p(ϕ7:8) for an FIR-EIV system with r = 1, then



z8

z7


 =




h0 h1 0
1 0 0
0 h0 h1
0 1 0







u08

u07

u06


+



v8

v7


 . (27)

Consider that each u0κ ∈ R with κ = 6, 7, 8 satisfies that

p(u0κ) = ρ1N (u0κ; η1,Γ1) + ρ2N (u0κ; η2,Γ2). (28)

v7 ∈ R2 and v8 ∈ R2 are zero-mean Gaussian random
variables with covariance matrix Φ ∈ R2×2. Then, the PDF
of the random variable ϕ7:8 is the parameterized PDF

p(ϕ7:8) = f(ϕ7:8;A2), (29)

where the weight αi ∈ R, the mean µi ∈ R4 and the covari-
ance matrix Σi ∈ R4×4 are given in Table 1. Λ ∈ R4×4 is
the block diagonal matrix Λ2 = diag {Φ,Φ}. △

TABLE 1. Weights, means, and Covariance matrices for example 1.

i Weight Mean Covariance
1 α1 = ρ1ρ1ρ1 µ1 = [η1 η1 η1]⊤ Σ1 = diag {Γ1,Γ1,Γ1}
2 α2 = ρ1ρ1ρ2 µ2 = [η1 η1 η2]⊤ Σ2 = diag {Γ1,Γ1,Γ2}
3 α3 = ρ1ρ2ρ1 µ3 = [η1 η2 η1]⊤ Σ3 = diag {Γ1,Γ2,Γ1}
...

...
...

...
8 α8 = ρ2ρ2ρ2 µ8 = [η2 η2 η2]⊤ Σ8 = diag {Γ2,Γ2,Γ2}

Using the system model (17) with l = 1 and equation (25),
the PDFs to compute the full likelihood function, p(ϕ1:t|β)
and p(ϕ1:t−1|β), are given by:

p(ϕ1:t|β) = f(ϕ1:t;At),

p(ϕ1:t−1|β) = f(ϕ1:t−1;At−1),
(30)

where f(x;W ) represents a PDF corresponding to a Gaus-
sian Mixture distribution in the random vector x parameter-
ized by the matrices W as it is shown in equation (25).

B. APPROXIMATED LIKELIHOOD FUNCTION
From equation (19) we have that the full-log-likelihood func-
tion is given by

LN (β) =

N∑

t=r+1

log

{
p(ϕ1:t|β)
p(ϕ1:t−1|β)

}
, (31)

where both p(ϕ1:t|β) and p(ϕ1:t−1|β) in (30) are GMM.
It is clear that in every instant t the number of Gaussian
components of the full likelihood function increases and the
dimension of each component increases as well with respect
to the PDFs in the previous instant t − 1. This results in
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the maximization of the full likelihood function to be com-
putationally demanding when the data length N increases.
In fact, it requires more than

∑N
t=r+1K

t+r operations for
computing the full likelihood function. This large quantity of
operations makes it complex to estimate β̂ML. In this situa-
tion, an approximated likelihood function can be considered
in order to keep the computational complexity manageable.

Here, the composite likelihood approach to approximate
the full likelihood function is considered. This approximation
is made by omitting the distant data that is out of a window of
length k. This kth-order log-likelihood function was defined
in [32] as follows:

ℓkN (β) =

N∑

t=r+1

log {p(zt|zt−1:t−k, β)} , (32)

where k ∈ {1, . . . , N − 1}. Thus the ML problem with the
approximated log-likelihood function is as follows:

Theorem 1. Consider the parameters to be estimated β
given in (13). Then, under the standing assumptions, the ML
estimator is given by:

β̂ML = argmax
β

ℓkN (β), s.t. αi > 0,

M∑

i=1

αi = 1, (33)

where the approximated log-likelihood function for the avail-
able data z1:N is given by

ℓkN(β) =

N∑

t=r+1

log

{
p(ϕt−k:t|β)
p(ϕt−k:t−1|β)

}
, (34)

where p(ϕt−k:t|β) and p(ϕt−k:t−1|β) are GMM distributions
obtained from (25) as follows

p(ϕt−k:t|β) = f(ϕt−k:t;Ak+1),

p(ϕt−k:t−1|β) = f(ϕt−k:t−1;Ak).
(35)

Proof. Directly applying (25) (that was derived using Lem-
mas 1 and 2) to the systems ϕt−k:t and ϕt−k:t−1 given in
(17).

Remark 1. Notice that when H(q−1, θ) = h0, and k = 0,
we have the particular case of static EIV system treated in
our previous work [38] where p(ϕt:t−1|β) = 1 and

p(ϕt:t|β) = f(ϕt:t;A1). (36)

Clearly, in the case of static EIV systems we use the full log-
likelihood function since {z1:N} is an i.i.d. sequence. △

We next focus on understanding how to choose k suffi-
ciently large in order to obtain a good approximation of the
likelihood function and keep the computational complexity
low. Firstly, we observe that the covariance matrices in the
GMMs p(ϕt−k:t|β) and p(ϕt−k:t−1|β) in (35) are diagonal-
banded matrices, which implies that k should at least satisfy
k ≥ r. Secondly, we analyze the behavior of the log-
likelihood function when the distant data increases i.e. in-
creasing the number of past data points in the approximated

−15 −10 −5 0 5 10 15

0.4

0.6

0.8

1

·104

η1 = −4

η1

−
ℓ(
β
)

k = 2, η̂1 = −4.000

k = 3, η̂1 = −4.000

k = 4, η̂1 = −4.000

k = 5, η̂1 = −4.000

k = 6, η̂1 = −4.000

k = 7, η̂1 = −4.000

k = 8, η̂1 = −4.000

k = 8, η̂1 = −4.000

True η1

0 2 4 6 8 10 12 14 16 18 20

2

4

6

8
·104

h2 = 4

h2

−
ℓ(
β
)

k = 2, ĥ2 = 4.000

k = 3, ĥ2 = 4.000

k = 4, ĥ2 = 4.000

k = 5, ĥ2 = 4.000

k = 6, ĥ2 = 4.000

k = 7, ĥ2 = 4.000

k = 8, ĥ2 = 4.000

k = 9, ĥ2 = 4.000

True h2

FIGURE 5. Log-likelihood function for the system in (37). All parameters are
fixed in their true values except: η1 (top) and h2 (bottom).

log-likelihood function. For this purpose we consider sev-
eral numerical simulations for FIR-EIV systems with orders
r ∈ {1, 2, 3, 4, 5}. We test these systems, computing the
approximated log-likelihood function, varying the parameter
k ∈ {r, r + 1, . . . }. In all cases, we obtain that the approx-
imated log-likelihood function does not change significantly
when k increases, thus we can consider that r ≤ k ≤ 3r.
This results is similar to what was reported in [30], where, in
the context of spacial correlated data, the authors concluded
that 1 ≤ k ≤ 10. In Figure 5 we show the approximated
log-likelihood function for the system:

H(q−1, θ) = −1 + q−1 + 4q−2, (37)

with Γu = 1 and Γy = 2. The true parameters of the PDF
p(u0t ) are: ρ1 = 0.25, ρ2 = 0.75, η1 = −4, η2 = 6, Γ1 = 1,
and Γ2 = 2. In this example all parameters are fixed in their
true values except one of them. We observe that the optimal
value of the parameters remains invariant when increasing of
k.

V. AN ITERATIVE ALGORITHM FOR IDENTIFYING
FIR-EIV SYSTEMS USING GMMS
In order to obtain the estimation β̂ML of the parameter vector
β, the approximated log-likelihood function ℓkN(β) to be
optimized is given by

ℓkN(β) =

N∑

t=r+1

log

{
M∑

i=1

αiN
(
ϕt−k:t;ψ

i
k+1,∆

i
k+1

)

p(ϕt−k:t−1|β)

}
, (38)
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with weights αi, mean values ψi
k+1 = Ak+1µi, and covari-

ance matrices ∆i
k+1 = Ak+1ΣiA⊤

k+1 + Λk+1. The PDF,
p(ϕt−k:t−1|β), is given by:

p(ϕt−k:t−1|β) =
M∑

ϱ=1

αϱN (ϕt−k:t−1;ψ
ϱ
k,∆

ϱ
k) , (39)

with weights αϱ, mean values ψϱ
k = Akµϱ, and covariance

matrices ∆ϱ
k = AkΣϱA⊤

k + Λk. The maximization of the
log-likelihood function in (38) can be intractable since, in
general, it is a non-convex function of the data. Additionally,
the log-sum structure in the log-likelihood function makes it
difficult to obtain closed-form expressions for the estimators.
In this case, the EM algorithm is typically used for the
attainment of the ML estimator (see e.g. [6], [20], [22]).

The EM algorithm is a popular technique for identifying
linear and non-linear dynamic systems in the time domain
(see e.g. [52], [53]) and frequency domain [21]. The main
idea behind the EM algorithm is that at each iteration, a
simpler-to-optimize auxiliary function is handled, instead of
the original log-likelihood function. The solution of the EM
algorithm is obtained by iteratively alternating between two
steps: (i) an Expectation step (E-step), where the auxiliary
function is obtained, and (ii) a Maximization step (M-step),
where the parameter estimates are found. A common strategy
to develop an EM algorithm [20] with GMMs is to define the
likelihood function with a data augmentation approach. That
is, the likelihood function is defined from the observed data
and with a hidden random variable that indicates from which
GMM component an observation comes from [54]. On the
other hand, in [22] a systematic procedure to develop an EM-
based algorithm without explicitly defining a hidden variable
was proposed, obtaining an iterative algorithm that holds the
same properties of a traditional EM algorithms with GMMs.
In this section, and inspired by [22], we will show how an
EM-based estimation algorithm can be developed to solve the
FIR-EIV system identification problem stated in (33).

A. EM-BASED ALGORITHM FORMULATION
Let us define the following:

Ki(ϕt−k:t, β) =
αiN

(
ϕt−k:t;ψ

i
k+1,∆

i
k+1

)

p(ϕt−k:t−1)
, (40)

Vt(β) =

M∑

i=1

Ki(ϕt−k:t, β). (41)

Then, the log-likelihood function in (34) can be expressed as

ℓkN (β) =

N∑

t=1

log [Vt(β)] . (42)

The logarithm in (42) can be written as Bt(β) = log [Vt(β)],
where:

Bt(β) = Qt(β, β̂
(m))−Ht(β, β̂

(m)), (43)

with

Qt(β, β̂
(m)) =

M∑

i=1

log {Ki(ϕt−k:t, β)}
Ki(ϕt−k:t, β̂

(m))

Vt(β̂(m))
,

(44)

Ht(β, β̂
(m)) =

M∑

i=1

log

{Ki(ϕt−k:t, β)

Vt(β)

} Ki(ϕt−k:t, β̂
(m))

Vt(β̂(m))
.

(45)

Lemma 3. The function Ht(β, β̂
(m)) is a decreasing func-

tion for any value of β and satisfies the following:

Ht(β, β̂
(m))−Ht(β̂

(m), β̂(m)) ≤ 0. (46)

Proof. The result is directly obtained from Jensen’s inequal-
ity (see e.g. [22] and the references therein).

From Lemma 3 we can formulate the following iterative
algorithm:

QN (β, β̂(m)) =

N∑

t=r+1

Qt(β, β̂
(m)), (47)

β̂(m+1) = argmax
β

QN (β, β̂(m)),

s.t. αi > 0,

M∑

i=1

αi = 1.
(48)

Notice that (47) and (48) correspond to the E-step and M-step
of the EM algorithm, respectively [20].

B. OPTIMIZATION OF THE AUXILIARY FUNCTION
The optimization problem in (48) can be carried out by
using Nonlinear Programming for constrained problems (see
e.g. [55] and the references therein). There is a variety of
methods and solvers for this type of optimization problem
that involves a nonlinear cost function and linear constraints.
The most common used techniques are the active set-, in-
terior point-, augmented Lagrangian-, and Newton-based-
methods, to mention a few (see for example [56]). Addition-
ally, there are solvers that implement methods like branch-
and-bound such as BARON [57], or primal-dual interior
point such as the Matlab optimization toolbox [58] or SciPy
package in Python [59]. In this paper we used the Matlab
function fmincon with the interior point method. To solve the
optimization problem, the following constraints are defined:
Γu,Γy,Γj > 0, ρj > 0, and

∑M
i=1 ρj = 1. We summarize

the proposed algorithm as follows:
1) Fix the number components, M , for the GMM of the

noise-free input p(u0t ).
2) Choose an initial guess β̂(0) and set m = 1.
3) Compute the estimates of β̂(m+1) by solving (48).
4) Set m = m + 1 and go back to step 3 until a stopping

criterion is satisfied.
Initialization methodologies for iterative algorithms with
GMMs have been studied in order to obtain accurate es-
timates and to improve the rate of convergence [60], [61].
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From system (4), we consider an initialization procedure as
follows:
(1) The initial value of the FIR system parameters are

obtained using HOS method.
(2) The initial guess of the mean values of the GMM

parameters are evenly spaced between the minimum and
the maximum value of the input signal ut.

(3) The initial values of the variances {Γj}Kj=1 are set equal
to the sample variance of ut.

(4) The mixing weight for each GMM component is given
by ρj = 1/K.

VI. NUMERICAL EXAMPLES
In this section, we present three numerical examples, similar
to [14], [62], to analyze the performance of our proposal. This
framework of numerical simulations is typically used when
the performance of new estimation algorithms are tested
with problems for which an experimental setup cannot be
planned or to reduce the costs of experiments [63], [64].
We compare the estimation accuracy of the results obtained
using our proposal with the HOS method [15]. We solve the
EIV problem in Figure 2 considering that the measurements
{z1:N} are generated from the system model in (4)-(6) with
Γu = 1 and Γy = 1.

In the first example, the system model in Figure 2 holds
all the standing assumptions stated in Section III-B. In the
second and third examples, our proposed EM-based algo-
rithm is used to estimate the FIR-EIV system model relaxing
Assumption 4. That is, the noise-free input distribution is not
a GMM but can be approximated by one. This approximation
framework is based on the Wiener approximation theorem
that claims that any PDF with compact support can be, in
general, approximated by a finite summation of Gaussian
distributions (see Appendix A, Theorem 2). The true values
of the system parameters and the noise-free input distribution
for the three examples are summarized in Table 2. The
simulation setup is as follows:

1) The initial value the FIR parameters are obtained using
HOS method.

2) The initial guess for the GMM parameters is given by
the sample variance of ut for {Γj}Kj=1, and by ρj =
1/K for the mixing weights. The means of the mixture
components, denoted by ηj , are evenly spaced between
the minimum and the maximum value of the input signal
ut.

3) We consider different data lengths, namely N = 1000,
N = 2000, and N = 5000.

4) The number of Monte Carlo (MC) simulations is 100.
5) The stopping criterion is chosen as

∥∥∥β̂(m) − β̂(m−1)
∥∥∥/

∥∥∥β̂(m)
∥∥∥ ≤ 5× 10−6,

or when 1000 iterations of the EM algorithm have been
reached. Here ∥·∥ denotes the Euclidean vector norm
operator.

A. EXAMPLE 1: THE NOISE-FREE INPUT IS A GMM
DISTRIBUTED SIGNAL
Consider the FIR system given in the first row of Table 2,
where we define the true parameters of the system and the
true noise-free input distribution. In this example the ap-
proximated log-likelihood function is defined using the joint
PDF p(ϕt−3:t|β) = f(ϕt−3:t;A4) and the marginal PDF
p(ϕt−3:t−1|β) = f(ϕt−3:t−1;A3). Notice that the number of
past data points in the approximated log-likelihood function
is k = r = 3. Figure 6, column 1, shows the mean PDF of the
100 estimates, for the data length N ∈ {1000, 2000, 5000}.
The gray-shaded region represents the area in which all esti-
mated PDFs lie. We observe that the average of all estimated
PDFs fits the true PDF as N increases. Table 3 and 4 (first
row) show the mean and the corresponding standard devia-
tions of the estimated parameters obtained with HOS and our
proposal, respectively. We observe that the estimation using
our proposal, with a small data length (up to N = 5000), is
more accurate than the HOS method, which requires a large
data length (up to N = 50000) to yield a small estimation
error.

B. EXAMPLE 2: THE NOISE-FREE INPUT IS A
EXPONENTIAL DISTRIBUTED SIGNAL
Consider the FIR system given in the second row of Table
2, where we define the true parameters of the FIR system
and the true noise-free input distribution. In this example, the
approximated log-likelihood function can be calculated using
the joint PDF p(ϕt−2:t|β) = f(ϕt−2:t;A3) and the marginal
PDF p(ϕt−2:t−1|β) = f(ϕt−2:t−1;A2). The number of past
data points in the approximated log-likelihood function is
k = r = 2. Notice that, in this example the noise-free input
signal follows an exponential distribution, and we do not
have prior knowledge of the number of Gaussian components
to approximate it. In this example we choose K = 2. In
Figure 6, second column, we show the mean PDF of the
100 estimates, for the data length N ∈ {1000, 2000, 5000}.
The gray-shaded region represents the area in which all
estimated PDFs lie. We observe that the Gaussian Mixture
approximation of the exponential distributions fits adequately
enough the true distribution to obtain an accurate parameter
estimation. Tables 3 and 4 (second row) show the mean and
the corresponding standard deviations of the estimated pa-
rameters obtained with HOS and our proposal, respectively.
We observe that the estimation using our proposal is more
accurate than HOS method. Notice that the latter exhibits a
poor performance when the data length is not too large.

C. EXAMPLE 3: THE NOISE-FREE INPUT IS UNIFORMLY
DISTRIBUTED
Consider the FIR system given in the third row of Table
2, where we define the true parameters of the FIR system
and the true noise-free input distribution. In this example
the approximated log-likelihood function is defined using the
joint PDF p(ϕt−1:t|β) = f(ϕt−1:t;A2) and the marginal
PDF p(ϕt−1:t−1|β) = f(ϕt−1:t−1;A1). The number of past
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TABLE 2. Distributions and true parameters for simulate the noise-free input distribution p(uo
t ).

FIR System True values Noise-free Distribution True values

Example 1 H(q−1, θ) = h0 + h1q−1 + h2q−2 + h3q−3

h0 = −2.5

h1 = 0.5

h2 = −1.0

h3 = 1.5

p(uo
t ) =

2∑
j=1

ρjN (uo
t ; ηj ,Γj)

ρ1 = 0.3, ρ2 = 0.7

η1 = −1, η2 = 3.0

Γ1 = 1.0, Γ2 = 1.0

Example 2 H(q−1, θ) = h0 + h1q−1 + h2q−2

h0 = 3.2

h1 = 1.8

h2 = −0.75

p(uo
t ) =

{
λ exp {−λuo

t } uo
t ≥ 0

0 uo
t < 0

λ = 1,

K = 2

Example 3 H(q−1, θ) = h0 + h1q−1 h0 = 4.25

h1 = 1.25
p(uo

t ) =

{
(b− a)−1 a ≤ uo

t ≤ b

0 otherwise

a = −3.0,

b = 3.0,

K = 3

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

N
=

1
0
0
0

p̂(uo
t ) p(uo

t )

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
p̂(uo

t ) p(uo
t )

−4 −2 0 2 4
0

0.1

0.2

0.3
p̂(uo

t ) p(uo
t )

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

N
=

2
0
0
0

p̂(uo
t ) p(uo

t )

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
p̂(uo

t ) p(uo
t )

−4 −2 0 2 4
0

0.1

0.2

0.3
p̂(uo

t ) p(uo
t )

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

uo
t

N
=

5
0
0
0

p̂(uo
t ) p(uo

t )

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

uo
t

p̂(uo
t ) p(uo

t )

−4 −2 0 2 4
0

0.1

0.2

0.3

uo
t

p̂(uo
t ) p(uo

t )

Example 1 Example 2 Example 3

FIGURE 6. Estimated noise-free input distribution p(u0
t ) using GMM for the data length N ∈ {1000, 2000, 5000}.

data points in the approximated log-likelihood function is
k = r = 1. We choose K = 3 Gaussian components
to approximate the noise-free input distribution. Figure 6,
column 3, shows the estimated average PDF for all Monte
Carlo realizations with N ∈ {1000, 2000, 5000}. As in the
previous example, the gray-shaded region represents the area
in which all estimated PDFs lie. We observe that the esti-
mated GMM PDFs fits the uniform distribution making our
proposal adequate for estimate the FIR-EIV system in pres-
ence of any unknown non-Gaussian distribution. In Tables 3
and 4 (third row) we summarized the results of simulations,
showing the mean and standard deviation for the estimated
parameters. We observe that the estimated parameters, using
our proposal, are similar to the true value and that the stan-
dard deviation decreases while the data length N increases.
In contrast, the HOS method has a poor performance and
requires a large data set to improve the estimations.

Remark 2. Notice that the GMMs obtained as approxi-
mations of the non-Gaussian distributions of the noise-free

TABLE 3. Estimated parameters for the numerical examples using EM-based
method.

True values N = 1000 N = 2000 N = 5000

E
xa

m
pl

e
1

h0 = −2.5 −2.477± 0.046 −2.496± 0.032 −2.501± 0.020

h1 = 0.5 0.492± 0.032 0.504± 0.025 0.501± 0.015

h2 = −1.0 −1.026± 0.033 −1.000± 0.024 −1.000± 0.015

h3 = 1.5 1.515± 0.046 1.499± 0.029 1.500± 0.020

Γy = 1.0 0.991± 0.424 1.022± 0.281 1.002± 0.166

Γu = 1.0 1.000± 0.066 1.008± 0.052 1.000± 0.030

E
xa

m
pl

e
2

h0 = 3.2 3.209± 0.086 3.206± 0.063 3.204± 0.039

h1 = 1.8 1.789± 0.059 1.799± 0.041 1.801± 0.028

h2 = −0.8 −0.803± 0.062 −0.798± 0.047 −0.802± 0.028

Γy = 1.0 0.967± 0.248 0.990± 0.148 1.005± 0.101

Γu = 1.0 1.009± 0.052 1.010± 0.037 1.002± 0.020

E
xa

m
pl

e
3 h0 = 4.2 4.247± 0.095 4.226± 0.069 4.205± 0.045

h1 = 1.2 1.240± 0.060 1.222± 0.044 1.201± 0.024

Γy = 1.0 0.977± 0.650 0.987± 0.504 0.999± 0.348

Γu = 1.0 0.992± 0.060 1.007± 0.042 1.001± 0.030

signals used in examples 2 and 3, are the best approximations
that we can obtain using the reduced numbers of Gaussian
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TABLE 4. Estimated parameters for the numerical examples using HOS method.

True values N = 1000 N = 2000 N = 5000 N = 10000 N = 30000 N = 50000

Example 1

h0 = −2.5 −1.942± 0.269 −2.087± 0.232 −2.137± 0.245 −2.205± 0.241 −2.329± 0.236 −2.423± 0.223

h1 = 0.5 0.333± 0.273 0.386± 0.264 0.534± 0.235 0.460± 0.231 0.522± 0.200 0.480± 0.151

h2 = −1.0 −0.808± 0.261 −0.813± 0.253 −0.799± 0.242 −0.815± 0.238 −0.820± 0.228 −0.866± 0.220

h3 = 1.5 1.442± 0.109 1.478± 0.085 1.481± 0.048 1.497± 0.023 1.501± 0.006 1.500± 0.003

Example 2
h0 = 3.2 1.471± 0.425 1.725± 0.415 1.553± 0.351 1.753± 0.345 2.899± 0.312 2.996± 0.303

h1 = 1.8 0.759± 0.442 0.901± 0.337 0.990± 0.336 1.046± 0.321 1.074± 0.311 1.424± 0.300

h2 = −0.8 −0.684± 0.122 −0.714± 0.103 −0.726± 0.068 −0.739± 0.030 −0.744± 0.008 −0.746± 0.005

Example 3 h0 = 4.2 3.221± 0.393 3.255± 0.370 3.308± 0.365 3.441± 0.341 3.507± 0.320 3.907± 0.308

h1 = 1.2 0.980± 0.358 0.990± 0.373 0.997± 0.375 1.028± 0.357 1.199± 0.336 1.202± 0.324

components of the examples. In particular, fitting a GMM
with 3 components to the uniformly distributed noise-free
signal in Example 3 yields: ρ1 = 0.1785, η1 = −2.3343,
Γ1 = 0.1625, ρ2 = 0.5851, η2 = −0.1318, Γ2 = 1.3089,
ρ3 = 0.2364, η3 = 2.1796, and Γ3 = 0.2697, which are
the parameters obtained using the proposed method for EIV-
FIR identification. An information criterion can be used to
select the number of components of the GMM, e.g., Akaike
information criterion [65]. However, a further analysis of
this issue is out of the scope of the paper.

VII. PRACTICAL EXPERIMENTAL RESULTS
In this section, we first utilize our methodology to approx-
imate a sampled first-order continuous-time system with an
FIR system model. Then, we consider an experimental setup,
namely a Rotary Servo Unit from Quanser, to test both EIV
and HOS methods utilizing FIR system models.

A. APPROXIMATION OF A FIRST-ORDER SYSTEM
USING AN FIR MODEL
Consider the first-order continuous-time transfer function
given by:

Y (s)

U(s)
=

Kc

τs+ 1
, (49)

where Y (s) is the Laplace transform of output y(t), U(s)
is the Laplace transform of input u(t), Kc is the steady-
state gain, τ is the time constant, and s is the argument
of the Laplace transform. The corresponding sampled-data
transfer function with sampling period, ∆, and instantaneous
sampling is given by [66]:

Y (z)

U(z)
= Kd

b1
z − a1

, (50)

where Kd = Kc/τ , b1 = 1− e−τ∆, a1 = e−τ∆, and z is the
forward shift operator or the Z-transform variable. To illus-
trate the FIR system model approximation for the sampled-
data model in (50), we consider a simulation setup with data
length N = 5000, Kc = 46.59, τ = 31.81, ∆ = 50 ms,
and 50 Monte Carlo simulations. The PDF of the noise-free
input signal is shown in Fig. 7(a). We also consider a 4th
order FIR system model to approximate the sampled model
in (50), and noise variances Γu = Γy = 0.1. Fig. 7(a) shows
the estimated average of the noise-free input voltage PDF as
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FIGURE 7. Simulations Results: (a) Noise-free input distribution, (b) Impulse
response of the true and estimated model with ∆ = 0.05 [s].

a GMM for all Monte Carlo realizations (red line). The blue-
shaded region represents the area in which all the estimated
PDFs lie. The gray-shaded bars correspond to the histogram
of the corresponding noise-free input voltage signal. We
observe that the average of the estimated GMM fits the noise-
free input distribution. Fig. 7(b) shows the impulse response
corresponding to the average of all Monte Carlo simulations
for the estimated FIR system model (red line). The blue line
represents the impulse response of the sampled-data model in
(50). We observe an accurate approximation of the first-order
system using a FIR system model. Additionally, from the
simulations, the estimated input and output noise variances
are Γ̂u = 0.12± 0.011 and Γ̂y = 0.11± 0.009, respectively.
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B. APPLICATION TO QUANSER ROTARY SERVO UNIT

The angular speed of the Rotary Servo Base Unit load shaft
with respect to the input motor voltage can be modeled with
the first-order continuous-time transfer function in (49), see
e.g., [67]. Here, Y (s) is the Laplace transform of the load
shaft speed, and U(s) is the Laplace transform of the motor
input voltage.
Fig. 8 shows the hardware configuration of the experimental
setup, which consists of a SRV02 Rotary Servo Base Unit, a
Q8-USB Data Acquisition (DAQ) device, a Quanser VoltPaq-
X2 power amplifier, and a personal computer with MATLAB
2021a/Simulink software. This experimental setup has been
used in several applications related to modeling and control
[68], [69]. In this case we aim at obtaining an FIR system
model for the Rotatory Servo Base unit. The angular speed
measurements are obtained from the encoder signal utilizing
a second order low pass filter [67]. The experimental setup is
built using Matlab/Simulink and QUARC software to drive
the experimental plant in real time. The sampling rate to
collect the experimental data (N = 5000) is selected to 1
kHz. The noise-free input was the same as the simulation
experiment, see Fig. 7(a). As in the simulation results, we
consider a 4th order FIR system for modeling the sampled-
data transfer function of the angular speed with respect to the
input motor voltage utilizing both EIV and HOS methods.
The estimation results of the input and output noise variances
obtained with the proposed method are Γ̂u = 0.0026 and
Γ̂y = 0.0012, respectively. Since the noise source variances
are small, the FIR model of both the EIV and HOS methods
are similar, as it is shown by the frequency response (mag-
nitude and phase) in Fig. 9(a). Additionally, the EIV method
yields an approximation of the PDF of the noise-free input
motor voltage, as a Gaussian mixture model, see Fig. 9(b).

VIII. CONCLUSIONS

In this paper, we have proposed an identification algorithm
for FIR-EIV systems. We have considered that the unknown
distribution of the noise-free input p(u0t ) is a GMM. We
have used the ML estimator to identify system parameters,
input and output noise variances, and the parameters defining
the GMM distribution. In our approach we have not assume
any prior knowledge about the input and output noise vari-
ances. In order to deal with easier-to-handle expressions,
we have used the EM algorithm and a composite likelihood
function. Based on the Wiener approximation theorem, we
have shown that our proposed algorithm adequately handles
non-Gaussian distributions that are not Gaussian mixture
distributions but can be approximated by a GMM, yielding
more accurate estimates than the HOS method.

APPENDIX A TECHNICAL LEMMATA

Theorem 2. Any PDF of an n-dimensional random variable
u0t , p(u0t ), with compact support can be approximated as
closely as desired in the space L1(Rn) by a distribution of

the form:

p(u0t ) ≈
K∑

j=1

ρjN
(
u0t ; ηj ,Γj

)
, (51)

where N
(
u0t ; ηj ,Γj

)
represents an n-dimensional Gaussian

distribution with mean ηj ∈ Rn, covariance matrix Γj ∈
Rn×n, K is the number of elements in the sum, and ρj > 0

is the jth mixing weight subject to
∑K

j=1 ρj = 1.

Proof. See [33, Theorem 3].

APPENDIX B PROOF LEMMA 1
Without loss of generality we prove the case for m = 2
and K = 2, since for m > 2 and any number of Gaussian
components the procedure is similar. Due to the fact that u01
and u02 are independent and identically distributed, the joint
PDF of ξ2 =

[
u01, u

0
2

]⊤
is given by

p(ξ2) =

2∏

κ=1

2∑

j=1

ρjN (u0κ; ηj ,Γj), (52)

then, in extended form, we have

p(ξ2) =ρ1ρ1N
(
u01; η1,Γ1

)
N

(
u02; η1,Γ1

)
+

ρ2ρ1N
(
u01; η2,Γ2

)
N

(
u02; η1,Γ1

)
+

ρ1ρ2N
(
u01; η1,Γ1

)
N

(
u02; η2,Γ2

)
+

ρ2ρ2N
(
u01; η2,Γ2

)
N

(
u02; η2,Γ2

)
.

(53)

Notice that, all of the elements in p(ξ2) are products of
two Gaussian PDFs, and due to the fact u01 and u02 are
independent, then each product is a joint PDF, thus

p(ξ2) =ρ1ρ1N
([
u01
u02

]
;

[
η1
η1

]
,

[
Γ1 0
0 Γ1

])
+

ρ2ρ1N
([
u01
u02

]
;

[
η2
η1

]
,

[
Γ2 0
0 Γ1

])
+

ρ1ρ2N
([
u01
u02

]
;

[
η1
η2

]
,

[
Γ1 0
0 Γ2

])
+

ρ2ρ2N
([
u01
u02

]
;

[
η2
η2

]
,

[
Γ2 0
0 Γ2

])
.

(54)

Putting all in compact form we get

p(ξ2) =

M∑

i=1

αiN (ξ2;µi,Σi) , (55)

where M = 4. The weight αi ∈ R, the mean µi ∈
R2, and the covariance matrix Σi ∈ R2×2 are obtained
using the indices of the ith experiment in the full facto-
rial design with 2 factors and 2 levels for each factor, i.e.
{{1, 1} , {1, 2} , {2, 1} , {2, 2}} as it is shown in Figure 4.
Finally, we can conclude that the joint PDF in (21) holds for
all m and K.
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FIGURE 8. Experimental EIV setup using a Rotary Servo Base Quanser unit.

APPENDIX C PROOF LEMMA 2
Consider the characteristic function of the random vector
X ∈ Rτ given by

Ψ(X, t) = E
{
exp

{
jt⊤X

}}
, (56)

where t ∈ Rτ , j =
√
−1, and E {·} is the expectation oper-

ator. The characteristic function of the sum ϕτ = Aξm + ϑτ
is given by:

Ψ(ϕτ , t) = E
{
exp

{
jt⊤(Aξm + ϑτ )

}}

= E
{
exp

{
j(A⊤t)⊤ξm

}
exp

{
jt⊤ϑτ

}}
.

(57)

Due to the independence of ξm and ϑτ we have

Ψ(ϕτ , t) = Ψ(ξm,A⊤t)Ψ(ϑτ , t). (58)

We need to find the characteristic function of ξm and ϑτ ,
where ξm is Gaussian mixture distributed and ϑτ is Gaussian
distributed. By definition

Ψ(ξm, ζ) = E
{
exp

{
jζ⊤ξm

}}

=

∫
exp

{
jζ⊤ξm

}
p(ξm)dξm

=

∫
exp

{
jζ⊤ξm

} M∑

i=1

αiN (ξm;µi,Σi)dξm

=

M∑

i=1

αi

∫
exp

{
jζ⊤ξm

}
N (ξm;µi,Σi)dξm

=

M∑

i=1

αiΨi(ξm, ζ),

(59)

where ζ = A⊤t and Ψi(ξm, ζ) is the characteristic function
of ith multivariate Gaussian component. Now, consider a
general multivariate Gaussian PDF of W ∈ Rτ , given by
N (w;µ,Σ). Then, its characteristic function is obtained as:

Ψ(W, t) =

∫
exp

{
jt⊤w

}
N (w;µ,Σ)dw

=
1√

det 2πΣ

∫ [
exp

{
jt⊤w

}

exp

{
−1

2
[w − µ]

⊤
Σ−1 [w − µ]

}]
dw

=
1√

det 2πΣ

∫
exp

{
−1

2
[w − µ]

⊤

Σ−1 [w − µ] + jt⊤w
}
dw.

(60)

Completing the square in the exponential argument we get

Arg = −1

2
[w − µ]

⊤
Σ−1 [w − µ] + jt⊤w

= −1

2
[w − µ]

⊤
Σ−1 [w − µ] + jt⊤w

+ jt⊤µ− jt⊤µ+
1

2
t⊤Σt− 1

2
t⊤Σt

= −1

2
[w − µ]

⊤
Σ−1 [w − µ] + jt⊤ΣΣ−1 (w − µ)

+ jt⊤µ+
1

2
t⊤ΣΣ−1Σt− 1

2
t⊤Σt

= −1

2
[w − b]

⊤
Σ−1 [w − b] + jt⊤µ− 1

2
t⊤Σt,

(61)
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FIGURE 9. Experimental Results: (a) Frequency response of the
experimental system, (b) Estimated PDF of noisy-free input signal as a GMM.

where b = (µ+ jΣt). Then

Ψ(W, t) =
1√

det 2πΣ
exp

{
jt⊤µ− 1

2
t⊤Σt

}

∫
exp

{
−1

2
[w − b]

⊤
Σ−1 [w − b]

}
dw.

(62)

The last integral has closed form [70, pág 321] given by√
det 2πΣ, then

Ψ(W, t) = exp

{
jt⊤µ− 1

2
t⊤Σt

}
. (63)

Thus, using the result derived in (63), the characteristic
functions of ξm and ϑτ are given respectively by

Ψ(ξm,A⊤t) =

M∑

i=1

αi exp

{
jt⊤Aµi −

1

2
t⊤AΣiA⊤t

}
(64)

Ψ(ϑτ , t) = exp

{
jt⊤ε− 1

2
t⊤Φt

}
. (65)

Finally the characteristic function of ϕτ is as follows

Ψ(ϕτ , t) = Ψ(ξm,A⊤t)Ψ(ϑτ , t)

=

M∑

i=1

αi exp

{
jt⊤ (Aµi + ε)− 1

2
t⊤

(
AΣiA⊤ +Φ

)
t

}
,

(66)

where each element of the characteristic function of ϕτ cor-
responds to characteristic function of Gaussian distribution

with mean Aµi+ ε and covariance matrix AΣiA⊤+Φ, then
(24) holds.
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