
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

GANDER: a Platform for Exploration of Gaze-driven Assistance in Code Review

Saranpää, William; Apell Skjutar, Felix; Heander, Johan; Söderberg, Emma; Niehorster,
Diederick C; Mattsson, Olivia; Klintskog, Hedda; Church, Luke

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Saranpää, W., Apell Skjutar, F., Heander, J., Söderberg, E., Niehorster, D. C., Mattsson, O., Klintskog, H., &
Church, L. (Accepted/In press). GANDER: a Platform for Exploration of Gaze-driven Assistance in Code Review.

Total number of authors:
8

Creative Commons License:
CC BY

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2023

https://portal.research.lu.se/en/publications/0805c029-bee6-452a-be36-2a37442eacaa


GANDER: a Platform for Exploration of Gaze-driven Assistance in
Code Review

William Saranpää
william.saranpaa@cs.lth.se

Lund University
Sweden

Felix Apell Skjutar
felix.apellskjutar@gmail.com

Lund University
Sweden

Johan Heander
johan.heander@cs.lth.se

Lund University
Sweden

Emma Söderberg
emma.soderberg@cs.lth.se

Lund University
Sweden

Diederick C. Niehorster
diederick_c.niehorster@humlab.lu.se

Lund University
Sweden

Olivia Mattsson
oliviamattssons@gmail.com

Knowit
Sweden

Hedda Klintskog
hklintskog@gmail.com

Unibap
Sweden

Luke Church
luke@church.name
Lund University

Sweden

ABSTRACT
Gaze-control and gaze-assistance in software development tools
have so far been explored in the setting of code editing, but other
developer activities like code review could also benefit from this
kind of tool support. In this paper, we present GANDER, a platform
for user studies on gaze-assisted code review. As a proof of concept,
we extend the platform with an assistant that highlights name
relationships in the code under review based on gaze behavior, and
we perform a user study with 7 participants. While the participants
experience the interaction as overwhelming and lacking explicit
actions (seen in other similar user studies), the study demonstrates
the platform’s capability for mobility, real-time gaze interaction,
data logging, replay and analysis.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; Empirical studies in HCI; • Software and its engi-
neering → Software verification and validation.

KEYWORDS
eye-tracking, code review, human-computer interaction, gaze data

ACM Reference Format:
William Saranpää, Felix Apell Skjutar, Johan Heander, Emma Söderberg,
Diederick C. Niehorster, OliviaMattsson, Hedda Klintskog, and Luke Church.
2023. GANDER: a Platform for Exploration of Gaze-driven Assistance in
Code Review. In 2023 Symposium on Eye Tracking Research and Applications
(ETRA ’23), May 30–June 02, 2023, Tubingen, Germany. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3588015.3589191

This work is licensed under a Creative Commons Attribution International
4.0 License.

ETRA ’23, May 30–June 02, 2023, Tubingen, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0150-4/23/05.
https://doi.org/10.1145/3588015.3589191

1 INTRODUCTION & RELATEDWORK
Tool-based code review has become an established practice in indus-
try [Bacchelli and Bird 2013; Sadowski et al. 2018]; it provides ben-
efits like quality assurance and knowledge sharing, but it typically
also takes a lot of developer time. The provided code review tools,
which typically is a shared central web service centered around a
textual diff view (e.g., GitHub1, Gerrit2, Critique [Sadowski et al.
2018]), may also not align well with developers’ needs; causing
them to, for instance, spend additional time to move code to their
IDE for review [Söderberg et al. 2022]. There is a need for better
code review tooling, and with developers spending a lot of time
looking at code trying to understand it, there is an opportunity
to approach such tool improvements with the assistance of gaze
data [Kuang et al. 2023].

The use of eye-tracking in user studies and experiments fo-
cused on software development activities has increased in recent
years [Kuang et al. 2023; Obaidellah et al. 2018; Sharafi et al. 2020,
2015], including studies of developers’ behavior in code review (e.g.,
[Begel and Vrzakova 2018; Vrzakova et al. 2020]). There has been
work on accelerating research using gaze data in code editing with
iTrace [Guarnera et al. 2018], which plugs into your development
environment to gather gaze data and assists with post-processing
of it. For real-time processing of gaze data, the focus so far has
been on code editing: EyeDE [Glücker et al. 2014] explores gaze-
based control and assistance in code editing; EyeNav [Radevski et al.
2016] explores gaze control with focus on navigation in code with
scrolling, moving of the cursor, and selection; CodeGazer [Shakil
et al. 2019] explores pure gaze-based interaction to trigger code
navigation support in editing; and Javardeye [Santos 2021] explores
gaze control in code editing focused on positioning of the cursor.We
are not aware of any existing approaches that explore gaze-driven
control or assistance in code review.

In this paper, we investigate how to explore gaze-assistance
in code review by focusing on the setup needed for such explo-
ration. To this end, we present a design and implementation of a

1https://github.com/
2https://www.gerritcodereview.com/

https://doi.org/10.1145/3588015.3589191
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588015.3589191
https://github.com/
https://www.gerritcodereview.com/


ETRA ’23, May 30–June 02, 2023, Tubingen, Germany Saranpää et al.

platform3 for exploration of gaze-assistance in code review (Sec-
tion 2), then we present how we implemented the first version of
a gaze-assistant for highlighting of name relationships (Section 3).
We further describe an exploratory early evaluation of the gaze-
assistant (Section 4). We then discuss our results in relation to the
related work (Section 5) and conclude with ideas for future work
(Section 6).

2 THE GANDER PLATFORM
We set out to design and implement a platform for exploration of
gaze-assistance in code review, with the goals of enabling 1) realistic
data gathering, 2) low-cost exploration of gaze-assistance, and 3) a
fully functioning experimental setup for data gathering. For realistic
data gathering, we sought a design that would resemble the code
review interface found in popular version control tools, like GitLab4
and GitHub5, used in software development. We further wanted
a mobile setup that would allow for data gathering in a non-lab
setting closer to practitioners. For low-cost exploration of gaze-
assistance, we sought a design that would allow for exploration
of the user interaction layer without too much effort. For a fully
functioning experimental setup for data gathering, we sought a
design that would be robust enough to reliably gather data in an
experimental setup. We further wanted a design that would be
capable of providing sufficient performance for real-time analysis
of gaze data.

2.1 System walk-through: from interaction to
reaction

When entering the frontend, the user is greeted with a login form
and a button to toggle on the eye tracker. Upon login, the user
can either replay a previous session or view a list of pull requests
connected to a certain repository. The user can choose a pull request
from this list and is then shown the code changes that are part of
the pull request, see Fig. 1 (left). When a user enters the page of a
specific pull request, all relevant pull request information is fetched
fromGitHub. The comments for each file fromGitHub are displayed
and the user can respond to or create their own comments as well.

Interactions (e.g., mouse movement, button clicks, scrolling) and
gaze data are continuously logged during a session, along with
data received from GitHub. The fixation points and interactions
are stored as JSON and the raw eye-tracking data is stored as TSV.
This data enables offline replay of user sessions, either for further
analysis by a researcher, or for cued retrospective recall for the
user in an experiment. In the latter use case, an estimate of the
thoughts of a participant can be gathered while not interrupting
the gaze data by letting them think aloud [Van Gog et al. 2005].
The replay logs are device-independent and enable running replays
on different machines than that used during the session, although
it would have to be the same browser and screen resolution. The
logs can also be used for offline analysis using any general data
analysis framework such as SciPy, R, Octave, etc., in which case
screen resolution or browser does not matter.

3Open source at https://gitlab.com/lund-university/gander
4https://about.gitlab.com/
5https://github.com/

To replay a session of a participant, the user selects replay mode
and chooses which of the locally saved sessions to replay. The view
is then overlaid with a violet hue and an exit button is added in the
upper left corner to be able to exit replay mode, see Fig. 1 (right).
In replay mode, the user’s mouse movements are shown by means
of a drawn cursor, and their gaze position is visualized by means of
a circle. The user can pause the replay and interact with the view,
but can only enter into files part of the interaction recorded in the
log during their session.

2.2 Architecture
The platform architecture (illustrated in Fig. 2) is structured around
several microservices as the backend and a web application as the
frontend. Communication between services and the frontend is
done using REST APIs and websockets.

The GANDER client is written in Dart and acts as the frontend
of the application and creates the views as well as processing data
related to replay. The client logs clicks, mousemovements, keyboard
input and scrolling. Scroll position is saved and used during replay
to place the gaze data in the correct place in the view. To detect
fixation points in real-time, we used the finite state machine of
Diaz-Tula et al. [Diaz-Tula and Morimoto 2017] implemented as
a microservice in python. Gaze data is first pulled from the eye
tracker using Titta [Niehorster et al. 2020] and streamed to the
microservice using websockets. Classified fixation points are then
streamed to the GANDER client over another websocket interface.

The GANDER service is a broker service responsible for con-
necting the different microservices with the goal of simplifying
the communication between the frontend and the backend. The
GANDER service as well as the rest of the microservices are written
in java. The microservices include the GitHub connector, which
fetches information using the GitHub API by gathering pull re-
quests in a repository. For each pull request, modified files and
comments are retrieved and stored locally. The GitHub connector
service then acts as the code repository, caching the file contents
for each pull request while the comments are sent to the annotation
service.

The annotation service is responsible for managing all the
comments within a pull request. It fetches the existing ones from
the GitHub connector and also stores the ones written by a user in
the frontend. This allows a user to answer in an existing thread of
comments and also to start a new comment thread. By storing the
user interactions, the comments can be recreated from the logs of a
session. Comments generated during a user session are not pushed
to the official GitHub repository, they are only stored locally.

The diff service provides information about changes between
different versions of a file so that the frontend can display the diff
view. It uses the GitHub API to get the lines that have been changed
between versions of a file. When the content of a line has been
changed, and not added or deleted, the diff service compares the
versions of the line to find out which parts have been changed. If
only a small part of the line has been changed, the coordinates of
the changes are communicated so that interline-changes can be
visualized with small local highlights.

https://gitlab.com/lund-university/gander
https://about.gitlab.com/
https://github.com/


GANDER: a Platform for Exploration of Gaze-driven Assistance in Code Review ETRA ’23, May 30–June 02, 2023, Tubingen, Germany

Figure 1: Different types of views for the user: interactive session (left) and replay session (right).

When a user opens a pull request, its code is sent to the com-
piler service, which compiles the file using the ExtendJ Java com-
piler [Ekman and Hedin 2007], thus requiring repositories written
in Java. The compiler service determines the declaration and uses
of variables, fields, methods and parameters for each file, and makes
this information available to the frontend. The storage service
stores the replay logs containing each interaction with the frontend,
the eye tracking data and requests and responses to and from the
REST APIs. The replay service uses the logs stored by the storage
service to replay a previous session for user review or qualitative
analysis. We separate the information into a work list, consisting
of gaze data and interaction with the frontend, as well as a request
and response map to mock the backend. This means that the eye
movement, interaction and state of the repository remain the same
as when the user did the session.

3 GAZE-ASSISTED NAME RELATIONSHIP
HIGHLIGHTING: THE RAIN CLOUD
STRATEGY

To show the capabilities of the platform, as a proof of concept we
decided to implement a gaze-assisted highlighting of the relation-
ship between the declaration and uses of variables, methods, fields,
etc., see Fig. 3. We call this highlighting approach “the rain cloud
strategy” since it resembles a rain cloud at the declaration with
traces falling down like rain to every use.

Here, we let the names of variables, methods etc. be areas of
interest (AOIs) and highlight those and the relationships between
them, for instance, between the declaration of a variable and the
uses of the variable. When a minimum number of fixation points
are located within an AOI, it is faintly highlighted. As the AOI
receives more fixations, the highlighting of the AOI intensifies in
color and size and connected AOIs are also highlighted, for instance,
also highlighting the declaration of a variable when fixating on
one of its uses. As the AOI connected to a variable accumulates
more fixations, all the rest of the uses are also highlighted. Each
group of connected AOIs is assigned one of 6 colors at load time
to make them easier to distinguish. When the user switches focus,
the visual feedback of the previously activated AOI decreases until
it disappears completely. This strategy is reminiscent of that of
Glucker et al. [Glücker et al. 2014], where an actions is triggered

after a certain minimum looking duration. This strategy gives the
user an immediate map over how the variable or method is accessed
throughout the file, and since it relies on semantic data from a
compiler it is not fooled by variables having the same name in
different scopes.

Gaze data based interaction with applications needs to account
for the "Midas touch" problem (e.g., [Jacob and Stellmach 2016;
Jacob 1990]), that is, the difficulty of distinguishing intentional gaze
on an item meant to trigger an action with gaze for mere visual
exploration. There are a couple of ways to tackle this issue [Glücker
et al. 2014; Mohan et al. 2018; Shakil et al. 2019; Velichkovsky et al.
1997], e.g., Glucker et al. [Glücker et al. 2014] required a minimum
fixation duration before an action would be triggered in their EyeDE
system, and in the CodeGazer system [Shakil et al. 2019] an action
needs confirmation, by dwelling on a button in the periphery, before
it triggers. We try to avoid spurious activations of the highlighting
by gradually introducing the highlighting when the user has looked
for a sufficient number of fixations.

To add this gaze-assistant on top of the GANDER platform (Sec-
tion 2) we had to modify the platform in the following ways; we
added analysis of fixation points (provided by the fixation service)
in relation to names and relations (provided by the compiler service
via the GANDER service), we added a data structure to keep track
of names as AOIs and their relationships, and we added support to
display the highlighting.

4 USER STUDY
To test the platform and to get user feedback on the gaze-assisted
highlighting feature described in Section 3, we conducted a user
study focused on the research question ‘what is the user experi-
ence of doing code review with gaze-assisted highlighting of name
relationships?’.

4.1 Method
4.1.1 GANDER platform setup. For this study, the GANDER plat-
form was configured to highlight when an AOI (corresponding
to a variable or method name) receives two or more fixations, in-
cluding highlighting of links to the connected uses or declarations
(see Fig. 3). Furthermore, if an AOI receives 30 or more fixations, the
other connected AOIs are also highlighted in addition to the linking
lines. If an AOI is not looked at for 3 seconds its highlighting begins



ETRA ’23, May 30–June 02, 2023, Tubingen, Germany Saranpää et al.

Figure 2: Architecture sketch of the platform.

Figure 3: A screenshot of participant 6 on task 4 in replay.
TheAOIs are highlighted according to the rain cloud strategy.

Figure 4: Picture of the experiment setup.

to fade out. As stimuli, we used pull requests from the FlappyBird
repository6. This repository contains a game written in Java where
the user controls a small bird and navigates it through a course.
We chose this repository because 1) it is written in Java; 2) it is
easy to explain to the participants what the app is doing and 3)
it has a variety of pull requests with varying degrees of size and
complexity.

4.1.2 Physical setup. To be able to recruit participants easily, we set
up the study in a public area of the university trafficked by students
in Computer Science and Electrical Engineering. To get closer to
the setup suggested in eye-tracking experiment guidelines [Sharafi
et al. 2020], we used cardboard screens (see Fig. 4) to reduce the
distractions from people passing by and to give some privacy for the
closing interviews. Participants’ head movements were restricted
with a chin and forehead rest and they viewed the stimuli on a
laptop screen (32.4 cm x 21.7 cm) at a distance of 60 cm while a
Tobii 4C eye tracker recorded their gaze at 90 Hz.

4.1.3 Study protocol. First, participants were provided with infor-
mation about the study7. After providing informed consent, they
were introduced to the GANDER frontend and an introduction to
the FlappyBird project and its code. They were then given an initial
questionnaire about previous experience with code reviews, soft-
ware development and Java programming. After calibration of the
eye tracker, participants were asked to complete six code review-
related tasks. During the first task, they got coaching, explanations
and a chance to ask questions, to make them more familiar with
the user interface, the code and the structure of the tasks. For the
rest of the tasks, the participant first performed the task alone and
in silence and between the tasks was given the option to verbally
provide a short comment about how they experienced the task and
the tool. After finishing all tasks, the participants were given a
closing interview to explore their experience with the GANDER
platform and gaze-assisted code highlighting. The closing interview
was conducted in Swedish and recorded.

4.1.4 Participants. We recruited 8 participants for the study. The
first participant was used for piloting the setup and tuning the
6https://github.com/granttitus/FlappyBird/
7Study protocol and other supplementary material is available at https:
//portal.research.lu.se/en/publications/gander-a-platform-for-exploration-of-
gaze-driven-assistance-in-co

https://github.com/granttitus/FlappyBird/
https://portal.research.lu.se/en/publications/gander-a-platform-for-exploration-of-gaze-driven-assistance-in-co
https://portal.research.lu.se/en/publications/gander-a-platform-for-exploration-of-gaze-driven-assistance-in-co
https://portal.research.lu.se/en/publications/gander-a-platform-for-exploration-of-gaze-driven-assistance-in-co


GANDER: a Platform for Exploration of Gaze-driven Assistance in Code Review ETRA ’23, May 30–June 02, 2023, Tubingen, Germany

configuration. The remaining 7 participants and their experience is
listed at the top of Table 1.

4.1.5 Data collection. The data from the study was collected in
a few different formats. The initial questionnaire was collected in
writing via an electronic form. During the tasks, we collected gaze
data and application logs in the background, as well as written
notes capturing comments and reactions by the participants after
completing the tasks. Finally, the closing interview was recorded
as audio. We discarded the data gathered during the first training
task. The first and second authors acted as study leaders during the
user study. The total effective time a participant spent on the tasks
varied with a mean value of 20.2 min and a median of 21.2 min.

4.1.6 Data analysis. We translated the questionnaire responses
into English and entered them into tables for comparisons between
participants. Then we transcribed and translated the audio record-
ings from the interviews, and carried out a thematic analysis. The
third author created the initial themes which were discussed with
the fourth and eighth authors until a consensus was reached.

4.1.7 Threats to validity. The validity of this study is limited by
the small number of participants and their limited experience with
code reviews, see Table 1. A more experienced code reviewer could
react differently to the highlighting of the variables and find it
more or less useful and distracting than the study participants. The
accuracy of the eye tracker is always a limiting factor for studies
with relatively small and close elements on the screen [Sharafi et al.
2020]. We optimized accuracy by stabilizing participants on a chin
and forehead rest, but participants still reported that the interface
did not highlight all the variables they were looking at.

4.2 Results
The results of the initial questionnaire and the thematic analysis
of the closing interview are presented in Table 1. The themes con-
structed from the interview transcripts highlight different aspects
of the experience using the platform:

• Lack of explicit action: All but one of the participants ex-
perienced that the interaction lacked explicit actions either
for understanding how to interact with the tool (“Difficult
to understand how you were supposed to use it.” - P1, “More
confusion than help really” - P6) or that the rain cloud high-
lighting disappeared unexpectedly when trying to follow the
links (“Then I tried to kind of follow where the line was going
and I never had time to do that. It kind of vanished and then
I had to go back” - P2) or by wanting to use the mouse and
keyboard instead (“But what I would like personally would be
something similar but where I hover with my mouse” - P5, “It
would have been easier to just Control-F, search for it, look for
it” - P6).

• Overwhelming: Participants also described the experience
as being overwhelmingwhen the user interface started chang-
ing and reacting to where they were looking (“There was a
lot of things happening on the screen so it was hard to actually
focus on what you wanted to find” - P3, “It was...a whole lot
of text at the same time” - P4).

• Insufficient accuracy: Problems with accuracy (“So there
were many times when I tried to look at one row and it kind

of thought I was looking at the row above” - P2, “Look at the
same spot, but different AOI lights up” - P6) were reported by
two of the participants.

• Helpful: Two participants found the tool helpful for nav-
igating the code (“I mean it was pretty nice sometimes for
quickly finding where all other places where I kind of use this
variable or function” - P5, “It was helpful” - P1).

• Exciting: Being able to interact with a system using gaze
and focus was described as exciting (“It was an exciting ex-
perience!” - P7) and novel (“A cool thing right. It is like a bit
futuristic.” - P6).

5 DISCUSSION
From the results, we find that participants experienced a lack of
explicit action where it was not apparent how to start, stop or con-
tinue the highlighting. They were overwhelmed by things changing
on-screen and experienced insufficient accuracy when the tool high-
lighted a different location than where they were looking. These
are all common and expected issues in early implementations of
gaze interaction systems related both to the "Midas touch" prob-
lem [Glücker et al. 2014; Jacob and Stellmach 2016; Jacob 1990]
and to animations, especially outside your current focus, being
distracting [Alzahrani et al. 2022].

That it was possible to extend the GANDER platform with eye
tracking interaction and a custom highlighting pattern, and then
replicate issues found in earlier studies, e.g, [Jacob and Stellmach
2016; Jacob 1990], shows that the platform demonstrates an end-to-
end capability of real-time eye-tracking performance, modularity
and extensibility. We think this makes GANDER an interesting test
bed for further design iterations and hope it can be useful to other
research and help to accelerate research into gaze-assisted code
review.8

It is encouraging that some participants found gaze assisted code
review, even in this simple format, exciting and helpful. In future
iterations of the tool we would like to address the reported issues by
exploring, for instance, the approaches taken in CodeGazer [Santos
2021] or DualGaze [Mohan et al. 2018], where gaze control is done
in two steps. A multi-modal approach, where gaze is combined with
a click on the mouse or keyboard [Glücker et al. 2014; Stellmach
and Dachselt 2012], also aligns with the feedback that many partic-
ipants would have liked to combine gaze with mouse and keyboard
interaction. An additional direction to consider, in response to the
feedback of not having enough time to follow relations, would be
to detect the user becoming distracted or looking at the highlighted
connections and make the interaction more adaptive by slowing
down or freezing the animations for a while.

Taking a step back and considering the goals of the platform and
the user study, we did not fully test all the aims of the platform.
Although we tested the mobility of the setup, we did not go to an
industrial context with practitioners. That considered, we did put
what we estimate to be a realistic code review setup (similar de-
sign to e.g., GitHub) with good stimuli (selected from a real project
on GitHub including comments by others on the selected pull re-
quests) in front of participants and everything worked in terms of
robustness, performance, and quality (with regard to the platform

8Open source at https://gitlab.com/lund-university/gander.

https://gitlab.com/lund-university/gander


ETRA ’23, May 30–June 02, 2023, Tubingen, Germany Saranpää et al.

Table 1: Participants’ responses to questionnaire and thematic analysis of their responses in the closing interview

P1 P2 P3 P4 P5 P6 P7 Total

Previous experience
Java programming ✓ ✓ ✓ ✓ ✓ ✓ 6
Software development ✓ ✓ ✓ ✓ ✓ 5
Code review ✓ ✓ ✓ ✓ 4
Industry ✓ ✓ 2

Interview themes

Lack of explicit action ✓ ✓ ✓ ✓ ✓ ✓ 6
Overwhelming ✓ ✓ ✓ 3
Lack of precision ✓ ✓ 2
Exciting ✓ ✓ 2
Helpful ✓ ✓ 2

behaving as intended). We were further able to use the replay mode
to get a good estimate of how the participants interacted with the
pull requests.

When considering the effort of adding the gaze-assisted high-
lighting feature, it was reasonable but could be improved. If we
wanted other kinds of AOIs from the compiler service or other kinds
of gaze states from the fixation service, it would have required more
effort, but by using name relationships that were already available
from the compiler service and limiting the gaze detection to fix-
ations we could focus on the interaction and display. A direction
to explore for the design could be to reduce the effort of adding
different gaze-assistants and exposing more gaze states. In addition,
it could be useful to broaden the use of data from the compiler and
support languages other than Java by, for example, adding support
for the Language Service Protocol [Gunasinghe and Marcus 2022].
It may further be interesting to systematically explore to what ex-
tent the different gaze metrics listed by Sharafi et al. [Sharafi et al.
2020] could be incorporated into the platform design.

6 CONCLUSIONS
We set out to design and implement a platform for user studies in
gaze-assisted code review incorporating near real-time analysis of
gaze data, enabling implementation of a gaze-assistant that high-
lights name relationships in the code based on gaze behavior. We
then evaluated the gaze-assistant in a user study with 7 participants.
Our results indicate that the participants experienced, e.g., lack of
explicit action and being overwhelmed, to a large degree, but also
excitement. While these results align with results in earlier work,
we see the completed user study as a testament to the platform’s
capabilities with regard to mobility, real-time gaze interaction, data
logging, replay and analysis. We see several possible directions for
future work, for instance, continued refinement of the platform to
enable assistance for other languages based on more kinds of AOIs
and gaze states, as well as, further refinements of gaze-driven and
user intention-aware provision of contextual information. Another
interesting direction is adding communication between distributed
GANDER clients for research into collaborative eye tracking [Cheng
et al. 2021].

ACKNOWLEDGMENTS
The authors would like to thank Christofer Rydenfält, Lund Uni-
versity, for feedback during the preparation of the user study. The
authors would further like to thanks the following funders who

partly funded this work: the Swedish strategic research environ-
ment ELLIIT, the Swedish Foundation for Strategic Research (grant
nbr. FFL18-0231), the Swedish Research Council (grant nbr. 2019-
05658), and the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

REFERENCES
Mona Alzahrani, Alexandra L. Uitdenbogerd, and Maria Spichkova. 2022. Impact

of animated objects on autistic and non-autistic users. In The 44th International
Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS).
IEEE/ACM, 102–112. https://doi.org/10.1145/3510458.3513007

Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of
modern code review. In 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 712–721.

Andrew Begel and Hana Vrzakova. 2018. Eye Movements in Code Review. InWorkshop
on Eye Movements in Programming (EMIP). Article 5, 5 pages.

Shiwei Cheng, JialingWang, Xiaoquan Shen, Yijian Chen, and Anind Dey. 2021. Collab-
orative eye tracking based code review through real-time shared gaze visualization.
16, 3 (2021), 163704. https://doi.org/10.1007/s11704-020-0422-1

Antonio Diaz-Tula and Carlos H Morimoto. 2017. Robust, real-time eye movement
classification for gaze interaction using finite state machines. In 2017 COGAIN
symposium.

Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java compiler. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages and applications. 1–18.

Hartmut Glücker, Felix Raab, Florian Echtler, and Christian Wolff. 2014. EyeDE: gaze-
enhanced software development environments. In CHI’14 Extended Abstracts on
Human Factors in Computing Systems. 1555–1560.

Drew T Guarnera, Corey A Bryant, Ashwin Mishra, Jonathan I Maletic, and Bonita
Sharif. 2018. itrace: Eye tracking infrastructure for development environments. In
Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications.
1–3.

Nadeeshaan Gunasinghe and Nipuna Marcus. 2022. Language Server Protocol and
Implementation: Supporting Language-Smart Editing and Programming Tools. Apress.
https://doi.org/10.1007/978-1-4842-7792-8

Rob Jacob and Sophie Stellmach. 2016. What You Look at is What You Get: Gaze-Based
User Interfaces. Interactions 23, 5 (aug 2016), 62–65. https://doi.org/10.1145/2978577

Robert J. K. Jacob. 1990. What You Look at is What You Get: Eye Movement-Based
Interaction Techniques. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Seattle, Washington, USA) (CHI ’90). Association for Com-
puting Machinery, New York, NY, USA, 11–18. https://doi.org/10.1145/97243.97246

Peng Kuang, Emma Söderberg, Diederick C. Niehorster, and Martin Höst. 2023. To-
wards Gaze-Assisted Developer Tools. In International Conference on Software Engi-
neering: New Ideas and Emerging Results (ICSE-NIER). IEEE.

Pallavi Mohan, Wooi Boon Goh, Chi-Wing Fu, and Sai-Kit Yeung. 2018. DualGaze:
Addressing the Midas Touch Problem in Gaze Mediated VR Interaction. In 2018 IEEE
International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).
79–84. https://doi.org/10.1109/ISMAR-Adjunct.2018.00039

Diederick C. Niehorster, Richard Andersson, and Marcus Nyström. 2020. Titta: A tool-
box for creating PsychToolbox and Psychopy experiments with Tobii eye trackers.
Behavior Research Methods 52, 2 (2020), 1970–1979. https://doi.org/10.3758/s13428-
020-01358-8

Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2018. A Survey on
the Usage of Eye-Tracking in Computer Programming. ACM Comput. Surv. 51, 1
(2018).

https://doi.org/10.1145/3510458.3513007
https://doi.org/10.1007/s11704-020-0422-1
https://doi.org/10.1007/978-1-4842-7792-8
https://doi.org/10.1145/2978577
https://doi.org/10.1145/97243.97246
https://doi.org/10.1109/ISMAR-Adjunct.2018.00039
https://doi.org/10.3758/s13428-020-01358-8
https://doi.org/10.3758/s13428-020-01358-8


GANDER: a Platform for Exploration of Gaze-driven Assistance in Code Review ETRA ’23, May 30–June 02, 2023, Tubingen, Germany

Stevche Radevski, Hideaki Hata, and Kenichi Matsumoto. 2016. EyeNav: gaze-based
code navigation. In Proceedings of the 9th Nordic Conference on Human-Computer
Interaction. 1–4.

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli.
2018. Modern code review: a case study at google. In Proceedings of the 40th
international conference on software engineering: Software engineering in practice.
181–190.

André L Santos. 2021. Javardeye: Gaze Input for Cursor Control in a Structured Editor.
In Companion Proceedings of the 5th International Conference on the Art, Science, and
Engineering of Programming. 31–35.

Asma Shakil, Christof Lutteroth, and GeraldWeber. 2019. Codegazer: Making code nav-
igation easy and natural with gaze input. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–12.

Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman Bednarik,
and Martha Crosby. 2020. A practical guide on conducting eye tracking studies in
software engineering. Empirical Software Engineering 25 (2020), 3128–3174.

Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic literature
review on the usage of eye-tracking in software engineering. Information and
Software Technology 67 (2015), 79–107.

Emma Söderberg, Luke Church, Jürgen Börstler, Diederick Niehorster, and Christofer
Rydenfält. 2022. Understanding the Experience of Code Review: Misalignments,
Attention, and Units of Analysis (EASE ’22). 170–179.

Sophie Stellmach and Raimund Dachselt. 2012. Look & touch: gaze-supported target
acquisition. In Proceedings of the SIGCHI conference on human factors in computing
systems. 2981–2990.

Tamara Van Gog, G.W.C. Paas, J.J.G. van Merrienboer, and P. Witte. 2005. Uncovering
the Problem-Solving Process: Cued Retrospective Reporting Versus Concurrent
and Retrospective Reporting. Journal of Experimental Psychology: Applied 11, 4
(Dec. 2005), 237–244. https://doi.org/10.1037/1076-898X.11.4.237

Boris Velichkovsky, Andreas Sprenger, and Pieter Unema. 1997. Towards gaze-mediated
interaction: Collecting solutions of the “Midas touch problem”. In Human-Computer
Interaction INTERACT ’97: IFIP TC13 International Conference on Human-Computer
Interaction, 14th–18th July 1997, Sydney, Australia, Steve Howard, Judy Hammond,
and Gitte Lindgaard (Eds.). Springer US, Boston, MA, 509–516. https://doi.org/10.
1007/978-0-387-35175-9_77

Hana Vrzakova, Andrew Begel, Lauri Mehtätalo, and Roman Bednarik. 2020. Affect
Recognition in Code Review: An In-situ Biometric Study of Reviewer’s Affect.
Journal of Systems and Software 159 (2020), 110434.

https://doi.org/10.1037/1076-898X.11.4.237
https://doi.org/10.1007/978-0-387-35175-9_77
https://doi.org/10.1007/978-0-387-35175-9_77

	Abstract
	1 Introduction & Related work
	2 The GANDER Platform
	2.1 System walk-through: from interaction to reaction
	2.2 Architecture

	3 Gaze-Assisted Name Relationship Highlighting: The Rain Cloud Strategy
	4 User Study
	4.1 Method
	4.2 Results

	5 Discussion
	6 Conclusions
	Acknowledgments
	References

