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Abstract—Automated recognition of continuous emotions in
audio-visual data is a growing area of study that aids in un-
derstanding human-machine interaction. Training such systems
presupposes human annotation of the data. The annotation
process, however, is laborious and expensive given that several
human ratings are required for every data sample to compensate
for the subjectivity of emotion perception. As a consequence,
labelled data for emotion recognition are rare and the existing
corpora are limited when compared to other state-of-the-art
deep learning datasets. In this study, we explore different ways
in which existing emotion annotations can be utilised more
effectively to exploit available labelled information to the fullest.
To reach this objective, we exploit individual raters’ opinions
by employing an ensemble of rater-specific models, one for each
annotator, by that reducing the loss of information which is a
byproduct of annotation aggregation; we find that individual
models can indeed infer subjective opinions. Furthermore, we
explore the fusion of such ensemble predictions using different
fusion techniques. Our ensemble model with only two annotators
outperforms the regular Arousal baseline on the test set of
the MuSe-CaR corpus. While no considerable improvements on
valence could be obtained, using all annotators increases the
prediction performance of arousal by up to .07 Concordance
Correlation Coefficient absolute improvement on test – solely
trained on rate-specific models and fused by an attention-
enhanced Long-short Term Memory-Recurrent Neural Network.

Index Terms—emotion recognition, annotation optimisation, en-
semble models

I. INTRODUCTION

Face-to-face communication has multiple layers alongside
with the spoken word. We also react with gesture, postures,
and facial expression, conveying emotions which are central
to building interpersonal relationships. Nowadays, interaction
takes often place via digital channels, both interpersonal
and with smart devices. When interacting with machines,
the information of these additional layers are lost. However,
automatically recognising the expressed emotions, enables to
develop products that improve our everyday lives. For exam-
ple, attention detection when driving a vehicle can prevent
accidents and children with autism can easier learn to interact
with their surroundings. To this end, models have to be trained
on large amounts of (multimodal) data, such as image, audio,
or spoken language, to mimic a human-labelled assessment of
the emotion being displayed.

†These authors contributed equally.

It is a well-known fact that human emotion perception varies
among individuals [1] and is predominantly subjective. In
other words, a real ‘ground-truth’ is simply impossible for
systems learning emotions [2]. Furthermore, previous studies
have found that human labelling is highly influenced by several
factors including environmental distractions, personal bias, and
task difficulty [2], [3]. As a result, annotator disagreement
is usually higher with dimensional emotion labels than with
categorical ones [4].

To incorporate the possible variability in annotator perception
and performance, several emotional ratings are usually aggre-
gated to a ‘gold standard’, and later used as a training target
for emotion recognition systems. The emotion gold standard
is generally established by around five raters, also referred
to as annotators, since agreement increases strongly until this
point, while more showed much smaller improvement effects
by disproportional increasing costs [5]. It is argued [6] that
higher rater disagreement implies that the sample is of less
value.

Furthermore, the need for trained raters that possess a cultural
understanding of the dataset context and the increased number
of ratings necessary, makes the annotation process expensive.
As a consequence, the multimodal datasets for time-continuous
affective computing are currently either small or scarcely
annotated. For example, the Automatic Sentiment Analysis in
the Wild (SEWA) database [7] is designed to provide over
33 hours of audio-visual data for emotion research in-the-
wild. However, the annotations are only available for 14 %
of the data. In this sense, the recently introduced MuSe-
CaR dataset [8] compromises of over 40 hours of annotated
YouTube videos and is the most extensively annotated multi-
modal sentiment analysis database [9] for such tasks. However,
when compared to large-scale labelled video datasets, e. g. ,
the YouTube-8M, the aforementioned corpora are still small,
considering that such a dataset contains up to 350,000 hours
of audio-visual content [10].

Given that data are sparse, the deliberate loss of annotation
information through gold-standard fusion does not seem to
be an optimal solution. We argue that even disagreeing an-
notations may capture an alternative ‘true’ annotation that
could be more fully utilised. Rather than ignoring disagreeing

                                    

  
  

  
  

   
  

  
  

  
  

   
  

  
  

  
  

  
  

   
  

  
  

  
 

  
   

  
  

  
  

  
   

  
  

   
  

  
  

  
  

 
  

  
  

  
  

  
  

  
  

   
  

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
   

  
  

  
  

   
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

                                                                                                                                              



ratings, we adopt the use of raw annotation signals to train
individual, annotator-specific models, each corresponding to
one annotator, to predict annotator-specific emotions. Further,
we fuse the predictions to test whether the consideration of
different rater opinions benefits the predictive performance.

Finding ways to deal with subjectivity in annotations is not
new within the machine learning domain. Soft labels are
frequently used, for example, to take into account the reviewer
subjectivity for the task of classifying whether a conference
paper will be accepted or not [11]. Similarly, Fayek et al.
attempts to represent an annotator by an individual model
using a combination of soft labels and model ensembling [12].
Further examples can be found for machine translation [13]
and computer vision [14]. While giving an overview of recent
avenues of subjectivity in the field of affective computing,
Rizos and Schuller denoted the prospects that lie in this
uncertainty [15]. The authors argue that subjectivity can be
utilised as an additional and quantifiable information that
can create risk-aware systems. Subjectivity also provides an
understanding of the confidence in emotion recognition pre-
dictions [16], [17]. As far as we are aware, within the context
of continuous emotion ratings, individual annotators are yet to
be modelled explicitly.

In the context of continuous emotion recognition, considering
the annotator subjectivity seems of particular interest due to
the complexity of such annotations. Annotators tend to exhibit
dynamically varying time-delay in their annotations [18].
Moreover, time-varying annotator disagreement arises system-
atically because the perceived emotional content can exhibit
some degree of inherent ambiguity [19]. Hereby, a spatio-
temporal alignment of the individual annotations is important
for generating a distortion-reduced gold standard. Different
methods have been proposed to come up with a signal which
ideally represents a consensus among the raters. Many of them
are based on different similarity metrics including correlation
coefficients or dynamic time warping distance [7], [20]. Others
highlight the individual ratings and assign weights to them
based on their agreement (e. g. , Evaluator Weighted Estimator
(EWE) [6], [21]). A further challenge is to improve the raw
signals ahead of the fusion. Martinez et al. , applied smoothing
and further combined them across annotators using a moving
median filter with a window size of 500 ms and shift of 1/59
seconds [22]. Ringeval et al. used median filtering with a
window width of three samples before creating a single gold
standard using EWE [21]. In a 2018 emotion challenge aiming
at improving the gold-standard [23], Wang et al. argued that
secondary, slight errors in annotations can be removed by
a moving average filter [24]. While testing three different
filtering techniques to smooth annotation data (Savitzky-Golay
filter, moving average filter, and median filter) Thammasan et
al. found that the moving average filter is more practical to
enhance emotion recognition performance [25].

Guided by previous work, we seek for a better understand-
ing of each annotator’s ‘emotional value’ and the effective

utilisation of individual annotations. We intend to answer the
following research questions:

1) Can individual subjective ratings be effective in develop-
ing emotion recognition systems? If so, how?

2) How can we model subjective emotion and how well do
ensembles of rater-specific models perform?

3) What fitting techniques can be used to fuse individual
ensemble predictions and how do they perform compared
to models trained using the gold standard?

II. APPROACH: AN AFFECTIVE RATER ENSEMBLE MODEL

The goal of our approach is to embrace the variability of
data, i. e. , the subjectivity that is intrinsic to human emotion
annotations. To achieve this, we use an ensemble of models,
one for each rater, to model the individual annotator con-
tinuous regression targets. Subsequently, we further combine
the annotator specific predictions in different ways. While the
models used have the same network architecture, they are
trained on different targets based on their rater-specific training
target. In this section, we initially introduce the two smoothing
algorithms, the moving average and Savitzky-Golay filters, that
are applied to the (raw) training targets of the rater-specific
models. Further, we discuss the emotion recognition model to
be employed, and propose multiple fusion methods that can
be used to combine rater-specific predictions.

A. Smoothing

Naturally, noise is present in any human-made signal which
is recorded at a low sample rate, e. g. , 100 ms [7] or 250 ms
[9]. It was found that post-processing steps play a vital role in
reducing noise and incidental errors [25]. The fusion of the
annotations usually smooths out such errors. Given that the
aim is to understand individual ratings as opposed to having
them fused, we provide an analysis of the two previously
found most successful methods, the moving average and the
Savitzky-Golay smoothing using the MuSe-Toolbox [26].

Moving Average Filter: Owing to its simplicity and intelli-
gibility, the moving average filter is one of the most common
filters in digital signal processing. It works by taking the
average of the input signal of each sliding filter frame.

Savitzky-Golay Filter: The filtered signal is smoothed by
passing the data through polynomials of a low degree using
a sliding filter, which then evaluates the polynomial for each
frame at the central point [27]. What gives it an edge over the
moving average is that it does not distort the signal signifi-
cantly and retains high-frequency signal components [25].

B. Emotion Recognition Model

For every individual annotator-specific model, the exact same
model architecture (cf. Figure 1) and feature inputs are
utilised. However, they can be differentiated through their
training targets, which are the individual annotators’ processed
ratings. Our model is based on Sun et al. ’s architecture
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Fig. 1: One network per annotator. Left: Shown above is an
ensemble of multiple annotators k ∈ 1, 2, . . . ,K. All models
receive the same input x during training, and only the targets yk

differ depending on individual annotators. All the predictions
predk are combined to formulate a final prediction predout.
Right: The model architecture for each ensemble. A self-
attention layer encodes the input sequence x of length T to
state s. Next, s is fed into a (bidirectional) RNN layer. The
hidden states ht are then forwarded to a linear layer, outputting
ŷt for each time step t. Right-hand side shows an RNN-LSTM
with attention; figure adapted from [28].

[28], other layer types, and data augmentation [8], [29] which
were successfully applied to this task. It consists of an
Long-short Term Memory (LSTM)-Recurrent Neural Network
(RNN) architecture coupled with self-attention for continuous
emotion recognition (ATTN+LSTM), which allows for context
memorisation [30] over long periods of time [28]. Hereby, it
uses two addition modules, namely multi-head self-attention
and linear layers. The input is initially encoded by the attention
layer. Further, by using a unidirectional or a bidirectional
RNN-encoder, the encoded sequence is projected to a context
dependent space of hidden states. Finally, a feedforward layer
maps the hidden states to the emotion prediction for every
time step to predict arousal or valence in a time and value-
continuous manner.

C. Ensemble Modelling

After training individual models, the predictions are fused to
form a single prediction, which can then be evaluated. There
are several methods to do this. The simplest is computing
the mean over each time step. However, this approach does
not take inter-rater disagreement, captured in the inputs and
much likely transferred to the model representations, into
consideration. Thus, we consider several fusion techniques.
The EWE [6] is commonly used to create gold standard
annotations from several ratings r by incorporating the re-
liability of each rater. It is computed as a weighted mean,
where weights are corresponding to the cross-correlation of
the annotators’ ratings and the mean rating. Based on the
correlation coefficient rk of rater k ∈ 1 . . .K, the EWE for

sample xn is defined as

xEWE
n =

1∑K
k=1 rk

K∑
k=1

rkxn,k. (1)

Annotators’ ratings which are negatively correlated to the
mean of others (rk <= 0) are automatically removed by this
method. In addition, we seek to learn an automatic, annotator-
specific mapping from the individual predictions. To neurally
train an individual mapping, we extended the architecture by
a dynamically learnt fusion network which either incorporates
a bidirectional LSTM-RNN or one with an additional self-
attention encoding. For both network approaches, the hidden
states are forwarded via a linear output layer.

III. MUSE-CAR DATASET

MuSe-CaR is an extensive, in-the-wild dataset [9] that aids
in analysing multimodal sentiment [8], [31]. The idea of the
dataset is based on the proliferation of multimodal-based user
content on social media platforms; its efficient analysis is
vital to establish and improve multimodal sentiment analysis
algorithms. It has around 40 hours of English YouTube vehicle
review video content and is fully annotated by arousal and
valence continuous dimensional emotion annotations. These
annotations depict the emotional state of all the individuals
featured in the videos and are fused to a gold-standard using
the EWE algorithm [6] (cf. Section II-C). To ensure a balance
of in-the-wild characteristics, it cautiously considers varying
video content from professional, semi-professional, and ca-
sual reviewers across all age groups. These video influences
range from changing background to face-angles, shot sizes,
camera motion, occlusions, ambient noises, microphone types,
locations, and colloquialism. The annotations were obtained
through a joystick that had a sample recording frequency of
0.25 Hz. The continuous-fashioned labels are within a range
between -1000 and 1000 before any normalisation. Taking into
account annotator disagreement that is innate to emotional
labelling, each video was annotated using a minimum of five
annotators. A total of 11 annotators were used throughout the
entire process, with all having annotated different videos of ei-
ther emotion dimension. The annotation is done in two rounds,
where after the first round annotators with quantitative and
qualitative performance below average were filtered out [9].
For both Arousal and Valence, the rater agreement (CC) is
0.27 and 0.35, respectively, which is close to values initially
reported for other emotion datasets [7].

The quality of the annotations depends heavily on each
annotator on which our approach relies on. Given that a
few annotators conducted all annotation rounds and only
few samples have been rated by the others, we choose the
annotators with the ids 2, 4, 5, 7, and 8. These annotators
exceeded the threshold of 150 videos for every annotated
dimension. The new selection, excluding the removed data, has
still a fairly equal distribution across the pre-defined partitions.

                                                                                                                                              



20 40 60 80 100 120 140 160

20 40 60 80 100 120 140 160
1.0
0.5
0.0
0.5
1.0

ar
ou

sa
l

20 40 60 80 100 120 140 160
t im e (s)

1.0
0.5
0.0
0.5
1.0

va
le

nc
e

Fig. 2: Annotator-specific ratings for arousal and valence of
a sample video. Different annotation styles can be observed.
From a qualitative perspective, it can be assumed that sys-
tematic differences contain positive variability; while others,
e. g. , the olive signals, show a lot of activity, the cyan arousal
annotations barley exhibit any change over time. The red
signals show the fused annotations.

1.0 0.5 0.0 0.5 1.0
Values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

arousal
2
4
5
7
8

1.0 0.5 0.0 0.5 1.0
Values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

valence
2
4
5
7
8

Fig. 3: The estimated density of Arousal and Valence for the
annotations of the five annotators. There is a visible difference
in value distributions in all the annotators. Annotators 4 and
7 are nearly Gaussian-shaped while annotator 2 is skewed
towards the right.

Regardless of the training that individual annotators are given
before the annotation process, there is a difference in the
understanding of these concepts visible when considering the
distinct styles. One notable style feature is the annotator-
specific value distribution compared in Figure 3.

IV. EXPERIMENTAL SETTINGS AND BASELINE

This regression task’s performance is calculated using the Con-
cordance Correlation Coefficient (CCC) metric [32]. We evalu-
ated the extended Geneva Minimalistic Acoustic Parameter Set
(EGEMAPS ), VGGFACE , FAUS , and FASTTEXT features,
which were provided and described by length as part of the
MuSe-Wild challenge [8] and extracted VGGISH embeddings
from the raw audio [33] and BERT embeddings from the video
transcriptions [34]. The high-level 128-wide VGGISH model
can be utilised as a feature extractor for deep acoustic repre-
sentations [33] based on an adjusted VGGNet [35] which was
trained for acoustic event detection classification employing
a large-scale audio dataset called AudioSet [36]. Another
option for well-established word-embeddings can be extracted
using the pretrained BERT model, a transformer model [34]
trained on English Wikipedia (2.5B words) and BooksCorpus
(800M words) in an unsupervised manner. In contrast to the

static word-embeddings, these word-vectors are dependent on
context; thus, they need to be calculated at run-time.

All models are trained using four NVIDIA Tesla V100 (32 GB)
from a DGX Station, which are specifically helpful when
dealing with multimodal-based architectures and very long
sequential data. Initially, we search for an effective emotion
recognition model architecture, which will later be used to
model the individual annotators. Based on findings and ar-
chitectures proposed in [8], [28], we evaluate a large set of
hyperparameters, features, and sampling methods for our new
data partition. To augment the data, we use the sliding window
approach to split the videos’ segments into smaller segments
of fixed length. As a result, the amount of training data is
substantially increased. The experiments are conducted using
a window size of 200 with a hop size of 100. Initially, we run
an extensive hyperparamter search to optimise our models1.
The best performing models used BERT input features with
hyperparameters hid size = 128, num layers = 2, and
n heads = 2 for the prediction of valence with .45 CCC on
the development and .58 on the test set. As to be expected
from previous work [8], [28], the next best FASTTEXT falls .25
behind (valence, test). For arousal prediction, features of the
VGGISH show that it is most effective to use hyperparameters
of hid size = 32, num layers = 2, and n heads = 4 with .50
CCC on development and .40 CCC on the test set, followed
by EGEMAPS with .40 CCC on development. We report all
following results using these two superior feature sets for each
prediction target and their network configurations.

V. EXPERIMENTS AND RESULTS

This section draws on previous findings and evaluates our
approach, which proposes an ensemble of rater-specific emo-
tion recognition models. Initially, we attempt to improve
the quality of the raw annotation signals and make learning
easier by using different smoothing filters. Furthermore, we
select the most effective ensembles and fuse their predictions
using different approaches. Note that, as explained in the
introduction, emotions are inherently subjective and finding
a gold standard which accurately reflects something similar to
a ground-truth is hard. Due to the lack of better alternatives,
we evaluate all annotator-specific models on their very own
(raw) annotations, and compare the fusion, independently of
our fusion method, to the EWE gold standard fusion.

A. Annotation Signal Prediction

An emotion recognition model is trained for each of the
five annotators. The models can be differentiated by their
training target which is equal to the raw annotation signal. We
analyse whether generalisation can be enhanced by applying
a smoothing filter to the ratings. To realise this objective, both
the cubic Savitzky-Golay and moving average filters are tested.

1We evaluate different hidden feature sizes of the LSTM-RNNs with
hid size ∈ {32, 64, 128} and a number of RNN layers num layers ∈
{1, 2, 3}. Additionally, we also test different counts of attention heads
n heads ∈ {2, 4, 8}. For these experiments, we only compare to the gold
standard labels using the Adam optimiser with α ∈ {0.001, 0.005, 0.0001}.

                                                                                                                                              



TABLE I: Rater-specific performance comparing no filter,
cubic Savitzky-Golay filter and moving average filter (mov-
ing) using different filter frame sizes. The experiments are
conducted on each of the chosen annotators and compared
to the rater annotation, reporting the CCC for the emotion
dimensions arousal and valence for the devel(opment) and test
partitions. The best frame sizes are 9 for arousal and 11 for
valence. The highest performances for individual raters and
across all raters are marked in bold.

sizef
2 4 5 7 8 mean

devel test devel test devel test devel test devel test devel test

8
Arousal – .40 .23 .45 .23 .06 .21 .48 .45 .15 .08 .33 .28
Valence – .42 .42 .40 .52 .17 .25 .13 .04 .15 .08 .25 .26

Sa
vi

tz
ky

-G
ol

ay Arousal

5 .43 .28 .45 .23 .06 .15 .29 .22 .49 .47 .34 .27
7 .41 .25 .45 .16 .10 .20 .29 .30 .48 .40 .35 .26
9 .43 .27 .45 .22 .10 .21 .31 .30 .47 .50 .35 .30

11 .44 .23 .45 .23 .06 .21 .27 .27 .48 .45 .34 .28

Valence

5 .45 .46 .42 .52 .17 .23 .14 .04 .20 .16 .28 .28
7 .47 .43 .42 .52 .15 .24 .14 .04 .19 .00 .27 .25
9 .46 .37 .41 .54 .15 .24 .15 .04 .20 .09 .27 .26

11 .44 .44 .43 .53 .19 .30 .17 .05 .19 .11 .28 .29

m
ov

in
g Arousal 3 .40 .23 .45 .23 .06 .21 .27 .27 .48 .45 .33 .28

5 .40 .23 .46 .21 .14 .20 .27 .27 .48 .45 .35 .27

Valence 3 .42 .42 .40 .52 .17 .25 .13 .04 .15 .08 .25 .26
5 .42 .42 .40 .52 .17 .25 .13 .04 .15 .08 .25 .26

The Savitzky-Golay filter is applied by using four different
filter frame sizes sizef ∈ {5, 7, 9, 11} and with a value
frequency of 4 Hz; a frame size of 5 corresponds to 1.25
seconds and 11 to 2.75 seconds. The convolutional nature of
the Savitzky-Golay filter makes it necessary to adopt an odd
sizef and set the order of polynomial to less than the filter
frame size. From this, we find that arousal sizef = 9 generates
the most effective recognition performance with a mean CCC
over the annotators of .35 and .30 for the development and
test partitions, respectively (cf. Table I). Accordingly, valence
sizef = 11 works effectively resulting in a mean CCC of .28
(devel) and .29 (test).

In the same setting, we apply the moving average filter using
frame sizes 3 and 5. While applying this filter, the larger frame
sizes were not considered to avoid severe smoothing. The two
frame sizes exhibit the exact same valence results. For arousal,
however, the average difference on the development partition
is .02CCC and .01CCC on the test partition (cf. Table I). As
such, it can be deduced that sizef = 5 is slightly better for
arousal, but the difference is negligible.

B. Ensemble Fusion

All the individual predictions from the rater-specific models
are combined to measure the final prediction against the gold
standard. The performances of the simple mean, EWE, and
second-level fusion models (LSTM and ATTN+LSTM) are
depicted in Table II. The fusion results are reported with
and without annotation smoothing, by using the filter con-
figurations that previously lead to the best generalisation. The
arousal models showed better performance when trained with
the smoothed training target (cf. Section V-A). Particularly the
ATTN+LSTM fusion yields the best results on test improving
the baseline by .05 CCC. Contrary, smoothing of the valence
signals does not yield better results. This may be attributed
to erased information after using the Savitzky-Golay filter
with a fairly large frame size of 11. Although the predictive

performance seems enhanced by smoothing, this may only be
achieved by over-smoothing (simplifying) the rating, however,
not by actually increasing the quality of the signal. Here, the
non-smoothed targets helped the model to perform slightly
better (.01 CCC on test using LSTM fusion) than the smoothed
annotations.

TABLE II: Fusion of rater-specific predictions using different
ensemble techniques. The annotator models were trained using
either raw or smoothed (Savitzky-Golay filter) annotations and
the results are reported in CCC scores on devel(opment) and
test set. In bold are the highest scores for both arousal and
valence.

smooth mean EWE LSTM ATTN+LSTM
devel test devel test devel test devel test

8
Arousal .26 .19 .36 NaN .50 .41 .51 .42
Valence .22 .34 .30 .43 .39 .57 .38 .55

4
Arousal .25 .19 .19 .23 .50 .47 .51 .47
Valence .25 .36 .32 .43 .39 .56 .37 .53

Additionally, we attempt to combine the predictions of the n
most successful rater-specific models, namely n ∈ {2, 3, 4, 5}.
For this, the ATTN+LSTM and LSTM fusions are used (cf.
Table III).

TABLE III: Combining the n best performing rater-specific
models. Reported are the CCC scores for devel(opment) and
test partitions.

n Arousal Valence
devel test devel test

2 .32 .42 .38 .53
3 .40 .44 .36 .50
4 .47 .46 .36 .52
5 .51 .47 .39 .57
Baseline .50 .40 .45 .58

For both dimensions, using all five models offers the best
results. However, when less rater models are made available,
the overall quality of the prediction is of very similar quality.
For instance, the top four models of arousal show a test
performance only .01 CCC lower than for the fusion of all
five. In comparison, the fifth best model for valence improves
the overall efficiency by .05 CCC on test compared to fusing
only the best four.

Lastly, we compare the performance of our ensemble with
that of models that have been solely trained on gold standard
annotations. Compared to the baseline, the rater ensemble
beats the arousal results by .07 CCC on test, showing .51 CCC
on the development partition and .47 CCC on the test partition.
For valence, the ensemble falls slightly below the performance
of the gold standard model by .01 CCC on test. Given that our
experimental setting entails vast data amounts and training
multiple models, we only relied on the hyperparameters of
the baseline hyperparameter search. Additional performance
enhancement can be expected after enhancing both single and
overall comparability, but this quantification is beyond the
scope of this work.

                                                                                                                                              



VI. DISCUSSION

We sought to determine whether subjective ratings can a)
effectively build emotion recognition systems, and b) how
beneficial they are. We initially established if models can be
trained based on individual rater’s emotional perception. Our
study results suggest that the performance of rater-specific
models can indeed be similar to models trained on the gold
standard. Annotator 8 had the highest arousal CCC on test with
.50 while annotator 4 achieved .54 CCC on test for valence.
When compared to the models trained based on the gold
standard; these results either fall in range or perform even
better. However, this is strongly dependant on the individual
annotator, indicated by rater models resulting in CCC scores as
low as .10 CCC. Of interest, we found that some annotators
such as annotator 8 yield very poor recognition results for
valence, yet very strong results for arousal. We assume this
might be connected to an annotator’s inability to understand
one of the dimensions, leading to non-systematic ratings from
which models fail to learn underlying patterns. Such patterns
might be interesting as an additional evaluation measure in the
future when evaluating (and eliminating) raters over several
annotation rounds.

Additionally, we assessed which fusion techniques efficiently
map the individual annotator ensembles for comparison onto
conventional approaches that use gold standard annotations
only. In Section V-B, different fusion techniques were tested,
including naive ways such as calculating the mean and using
the EWE. In addition, we tried to learn the importance of
each annotator as well as temporal interactions in the signal
dynamically by using an LSTM-RNN by itself and combined
with a prior attention encoding. We found that these two
models are superior when compared to mean calculation or
EWE fusion which provides overall better results as opposed
to averaging, but also occasionally fails entirely. The best
model, the ATTN+LSTM fusion, achieves a CCC of .47 on
the original test set. In fact, the results were nearly .20 better
having fewer training data (only the selected, crucial annota-
tors) available when compared to the challenge baselines [8],
and matches the MuSe-Wild winner [28]. Both techniques used
numerous modalities, while our performance is determined by
one modality only for every emotion dimension. For valence,
the ensemble of annotators records .57 CCC on test, which
is slightly lower when compared to the .60 achieved by the
MuSe-Wild winner fusion model. Owing to this slight dif-
ference, we omitted conducting an extensive hyperparameter
search for our approach. We assume that the valence results
can be enhanced.

Within the scope of this study, we were challenged to deter-
mine a ‘ground-truth’ to compare and define the success of our
ensemble approaches (cf. Section V-B). Since a real ‘ground-
truth’ is simply impossible for emotions, MuSe-CaR relies
on the EWE gold standard, a well-known annotation fusion
technique that weighs individual ratings based on inter-rater
agreements. While this technique is well established, it does

not deal with the systematic differences in annotation styles,
in turn leading to a loss of vital information. In contrast, our
ensemble of rater-specific models exploit the entire human
labelling information available. We are able to measure the
performance and success of the model in generalising to a
certain degree, by examining the ensemble predictions using
the gold standard. Better evaluation grounds for the ensemble
predictions can be realised by using different gold standards
that have been generated by more advanced and sophisticated
aggregation methods. Future research has to show if our
claims are still valid under other and new gold-standard fusion
methods.

VII. CONCLUSION

The purpose of this study was to explore the full potential of
the subjective information available from raw annotations to
predict emotions. By embracing the inherent subjectivity of
these annotations, we showed that also rater-specific emotion
ensemble models can model human emotions – without loss
of any subjective information. Identical concepts have also
been tested for emotion recognition systems that use discrete
emotions. As far as we are aware, however, we are the first to
apply rater-specific ensembles for emotion recognition using
the dimensional emotions for both arousal and valence. A key
obstacle is to show the full potential of our idea since the
success of our ensemble can only be measured against the
manufactured ground-truth, which is by nature biased towards
a simplification or even loss of information itself and not an
objective measure. On the other hand, it is very likely that a
less smoothed annotation curve and based on that, emotion
modelling, might neither represent the ‘ground truth’ which
might be more ordinal or even categorical – both in the
memory of the human generating these emotions and in the
one of the observers – and by that, more useful for further
processing in applications.

Notwithstanding these basic caveats, we have answered the
three research questions that we asked in section I:

1) We found that individual, subjective rater-specific models
that use smoothed trained targets can generalise better.
This helps explain why the Savitzky-Golay filter per-
formed better in removing incidental errors within the
annotation signals.

2) The performance of our rater-specific models is strongly
dependent on individual annotators, with some reaching
results of .54 for valence on test while others fail to learn
generalisable patterns.

3) We have shown that using an ensemble of models,
one model for every annotator, enhances the recognition
performance most when a neural-base fusion (LSTM,
ATTN-LSTM) and not the mean or EWE is used.

Furthermore, we have shown that exploiting individual human
annotations by simply fusing individual models is impossible
and more advanced architectures are needed for this task.
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