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Abstract  —Olfaction,  i.  e.,  the  sense  of  smell  is  referred  to  as
the  ‘emotional  sense’,  as  it  has  been  shown  to  elicit  affective
responses.  Yet,  its  influence  on  speech  production  has  not  been
investigated.  In  this  paper,  we  introduce  a  novel  speech-based
smell  recognition  approach,  drawing  from  the  fields  of  speech
emotion  recognition  and  personalised  machine  learning.  In
particular,  we  collected  a  corpus  of  40  female  speakers  reading  2
short  stories  while  either  no  scent,  unpleasant  odour  (fish),  or
pleasant  odour  (peach)  is  applied  through  a  nose  clip.  Further,  we
present  a  machine  learning  pipeline  for  the  extraction  of  data
representations,  model  training,  and  personalisation  of  the
trained  models.  In  a  leave-one-speaker-out  cross-validation,  our
best  models  trained  on  state-of-the-art  wav2vec  features  achieve
a  classification  rate  of  68  %  when  distinguishing  between  speech
produced  under  the  influence  of  negative  scent  and  no  applied
scent.  In  addition,  we  highlight  the  importance  of  personalisation
approaches,  showing  that  a  speaker-based  feature  normalisation
substantially  improves  performance  across  the  evaluated
experiments.  In  summary,  the  presented  results  indicate  that
odours  have  a  weak,  but  measurable  effect  on  the  acoustics  of
speech.
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I.  I  NTRODUCTION

Apart  from  its  major  role  in  food  intake,  olfaction,  i.  e.,  the
sense  of  smell,  is  associated  with  emotions  and  hedonics,  i.  e.,
the  perception  of  pleasant  and  unpleasant  sensations  [1].
Odours  can  evoke  emotional  memories  [2],  improve  mood  [3]
or  reduce  anger  [4].  Scent  has  further  been  shown  to  play  a
role  in  social  interactions,  such  as  reproductive  behaviour  and
emotional  contagion  [1].  Moreover,  olfactory  dysfunction  and
impairment  of  odour  memory  have  been  associated  with  major
depressive  disorder  [5].  Most  (experimental)  studies
concerning  the  relationship  of  emotional  states  and  olfaction
so  far  deal  with  cross-modality  and  perception  of  scents;  all  in
all,  they  agree  by  concluding  that  positive  scents  are
associated  with  brightness  and  higher  pitch  and  by  that,
positive  valence  in  emotions  [6–12].  Given  these

characteristics,  olfaction  is  an  interesting  topic  to  approach
from  an  affective  computing  point  of  view.  Sabiniewicz  et  al.
[13]  utilised  automatic  recognition  of  facial  expressions  to
measure  changes  in  emotional  state  according  to  four  basic
emotions  –  anger,  happiness,  sadness,  and  surprise.  In  the
context  of  automatic  emotion  recognition,  speech  has  long
played  an  important  role  [14,  15]  as  affective  states  are
mirrored  in  the  perception  of  the  acoustics  of  speech  [16].
From  this  perspective,  the  influence  of  scent  on  affective  states
might  affect  the  production  of  speech  as  well.  To  the  best  of
our  knowledge,  the  study  by  Millot  et  al.  [17]  is  the  only  one
addressing  the  influence  of  scents  on  speech  production.  They
conclude  that  the  pitch  of  the  voice  had  a  positive  correlation
with  the  pleasantness  of  scent,  i.  e.,  pitch  was  higher  in  the
pleasant versus the unpleasant odour condition.

Recently,  personalisation  approaches,  i.  e.,  strategies  that  aim
to  efficiently  adapt  machine  learning  models  to  individuals,
have  been  explored  in  the  context  of  digital  health
applications,  such  as  the  prediction  of  mood  and  stress  from
smartphone-collected  data  [18].  When  it  comes  to  low-data
speech  analysis  settings,  Triantafyllopoulos  et  al.  [19]  showed
the  significance  of  speaker-based  feature  normalisation  for  the
classification  of  pre-  and  post-treatment  speech  of  patients
with  chronic  obstructive  pulmonary  disease.  As  a  person’s
reaction  to  a  specific  scent  is  informed  by  previous
experiences  with  the  corresponding  odorous  item  and  thus
partly  driven  by  a  learning  process  [20,  21],  it  can  be  complex
and  highly  subjective  [13].  Consequently,  we  assume  that
scent-induced  variations  in  speech  production  will  be  hard  to
generalise  across  subjects  and  therefore  employ  the  same
paradigm.

In  the  present  study,  we  want  to  investigate  whether  smelling
pleasant  or  unpleasant  scents  –  in  relation  to  the  neutral
control  scenario  –  leaves  traces  in  the  acoustics  of  speakers
that  can  further  be  picked  up  by  an  automatic  paralinguistic
analysis in the form of personalised machine learning.

                                      

  
  

  
  

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
   

  
  

  
  

   
  

  
  

  
  

  
  

  
  

  
  

  
  

  

                                                                                                                                         



II.  DATASET AND EXPERIMENTAL DESIGN
A  total  of  40  healthy  female  speakers  (German  natives)  with  a

subjective  normal  sense  of  smell,  aged  19  to  39  years  (median:
25  years),  were  recruited.  They  were  mostly  students  and  were
renumerated/paid  for  their  participation.  The  speakers  were
randomly  assigned  to  two  groups,  G1  and  G2,  and  had  to  read
two  short  stories  in  German  and  retell  a  picture  book  in  four
rounds  R1-R4.  Each  round  lasted  around  five  minutes.  The
scents  applied  were  water  (neutral),  peach  (positive),  and  fish
(negative). Their order is different for the two groups:

• Group 1: R1 water, R2 peach, R3 fish, R4 water

• Group 2: R1 water, R2 fish, R3 peach, R4 water

After  each  round,  there  was  a  pause  of  approximately  5-10
minutes;  in  this  time,  the  speakers  answered  a  questionnaire
regarding  the  applied  scent.  The  recordings  took  place  in  a
quiet  office.  The  scents  were  applied  with  the  help  of  a
u-shaped  plastic  clip  (aspura  clip®  mini  inhalator).  Recordings
were  done  with  the  Smartphone  HUAWEI  Pro  lite  2017,
Model  PRA-LX1,  with  RecForge  II  Pro  –  Audio  Recorder  (44
kHz,  Mono),  using  the  Rode  smartLav  +  and  the  splitter  Rode
SC6  special  adapter.  As  we  want  to  employ  forced  alignment
in  the  present  study,  we  only  use  the  two  read  stories  and
disregard the retelling for the moment.

We  consider  the  dependent  variable,  scent,  with  three  classes,
neutral  (water),  positive  (peach),  and  negative  (fish).
Furthermore,  there  are  two  (possibly  interacting)  intervening
variables.  We  have  to  account,  firstly,  for  habituating  to
reading  the  same  stories  four  times  in  a  short  time,  and,
secondly,  for  the  probability  that  speakers  might  be  more  or
less  sensitive  towards  the  scents  applied.  Therefore,  we
carefully  select  the  set  of  experimental  configurations  not  to
confound  habituation  for  scent-induced  variations  in  speech
production  and  arrive  at  four  binary  classification  setups  that
can  further  be  summarised  in  two  groups.  First,  classifying
positive  vs  negative  scent  (peach  vs  fish),  and,  secondly,
classifying  non-neutral  scent  against  neutral  scent.  In  the
second  group,  we  evaluate  classifying  the  negative  and
positive  scents  against  neutral  scent  individually  (fish  vs
neutral, peach vs neutral) and combined (scent vs neutral).

III.  EXPERIMENTAL SETUP
Our  experimental  pipeline  consists  of  four  consecutive  steps.

The  speech  recordings  are  automatically  segmented  into
linguistic  phrases  via  forced  alignment  after  which  we  extract
paralinguistic  representations  from  these  segments  and  apply
one  of  two  different  normalisation  strategies.  Finally,  we  train
linear  Support  Vector  Machines  (SVMs)  on  the  data  to
perform the classification of applied scent.

A.  Segmentation

As  a  first  preprocessing  step,  we  segment  the  speech
recordings  into  prosodic  phrases  utilising  forced  alignment  to
the  transcriptions  with  the  Munich  Automatic  Segmentation
System  (MAUS)  [22].  The  first  story  (A)  contains  a  total  of  13
phrases  while  we  separate  story  B  into  24  phrases.  In  total,  this
results  in  6080  phrases  –  both  stories  are  read  in  each  of  the  4
rounds by each of the 40 speakers.

B.  Features

We  evaluate  and  compare  the  efficacy  of  two  audio  data
representations.  The  eGeMAPs  [23]  set  of  audio  functionals  is
handcrafted  for  the  task  of  Speech  Emotion  Recognition  and
provides  interpretability  due  to  its  comparatively  small  size
(88  numeric  features)  whereas  our  second  choice,  deep
features  extracted  from  a  pre-trained  wav2vec2  [24]  model,
sacrifice  post-hoc  feature  analysis  in  favour  of  modelling
phonological  information  –  representing  the  current
state-of-the-art  for  automatic  speech  recognition.  We  extract
eGeMAPs  and  wav2vec2  features  with  openSMILE  [25]  and
huggingsound [26], respectively.

C.  Normalisation

Two  different  z-score  normalisation  strategies  are  explored,
differing  in  the  subsets  of  data  over  which  the  statistics  are
computed.

Global  :  as  a  baseline,  we  perform  a  global  feature
normalisation  of  the  data,  i.  e.,  we  compute  feature  statistics
on  the  training  data  of  each  fold  and  apply  them  to  normalise
each partition.

Subject-level  :  The  second  procedure  is  based  on  computing
(and  applying)  mean  and  standard  deviation  normalisation  for
each  subject  independently,  using  samples  from  the  second  to
fourth  rounds.  We  do  not  include  the  first  round  in  the  data,  as
the  habituation  effect  is  especially  pronounced  when
comparing this round to all following rounds.

D.  Classification and Evaluation

To  perform  the  actual  classifications  of  applied  scent  and
habituation  from  speech  recordings  of  participants,  we  train
linear  support  vector  machines  (SVMs)  on  the  extracted  and
normalised  features,  optimising  the  cost  parameter  on  the
validation  data  (cf.  Section  III-D).  As  our  dataset  is  quite
small,  we  opt  for  a  Leave-One-Speaker-Out  (LOSO)
cross-validation  setup,  i.  e.,  in  each  fold,  we  leave  out  one
speaker’s  samples  as  testing  data  and  train  an  SVM  on  the
remaining  speakers’  data.  In  this  way,  we  generate  exactly  one
prediction  for  every  sample  in  our  dataset.  We  evaluate  our
models’  performance  based  on  the  unweighted  average  recall
(UAR)  computed  from  these  predictions  and  the  ground  truth.
Note  that,  in  our  case,  UAR  is  the  same  as  traditional  accuracy
in  all,  but  one  experimental  setup,  i.e.,  the  number  of  samples
in  the  classes  are  equal,  unless  we  consider  negative  and
positive odour together.

As  our  baseline  unit  of  analysis  are  individual  phrases  of  each
of  the  two  read  stories,  we  have  several  data  points  for  every
unique  combination  of  subject  and  round.  We  suspect  that  the
influence  of  specific  smells  or  habituation  on  a  subject’s  voice
might  vary  in  the  course  of  reading  the  short  stories,  e.  g.
because  the  reader  habituates  to  the  smell.  To  investigate  this,
we  aggregate  model  predictions  for  each  phrase  into  larger
units  via  a  majority  vote  to  receive  a  prediction  for  each
subject and round.

     



IV.  R  ESULTS

We  present  the  results  achieved  in  our  experiments  in  Table  I,
grouped  by  feature  representation  (eGeMAPs  and  wav2vec),
normalisation  strategy  (global-  and  subject-level),  and
experiment  setup.  Additionally,  we  perform  an  analysis  of
some individual audio functionals.

A.  Classification

In  general,  we  observe  low  performance  when  classifying
negative  (fish)  vs  positive  scent  (peach)  from  the  speech  of
participants,  only  slightly  above  chance  level  in  some  cases.
When  we  task  our  models  with  distinguishing  between
unaffected  speech  (neutral  scent)  and  speech  recorded  with
scent  applied,  more  pronounced  variations  seem  to  emerge,
leading  to  higher  performance.  Best  results  can  be  achieved
when  classifying  negative  against  neutral  scent,  reaching  a
UAR  of  68  %  with  speaker-normalised  wav2vec  features  and
after  majority  voting.  Comparatively,  the  detection  of  positive
scent  falls  behind  by  roughly  10  %  with  the  same
normalisation  and  features.  However,  this  discrepancy  cannot
be  found  when  using  eGeMAPs  where  performance  is  about
the  same.  As  a  handcrafted  set  of  audio  functionals,  eGeMAPs
was  specifically  designed  to  include  features  relevant  to

speech  emotion  recognition  [23]  whereas  wav2vec’s  training
and  downstream  applications  are  targeted  more  towards
speech  recognition  and  thus  capture  prosodic  information.  In
this  way,  our  results  suggest  that  negative  scent  affects
articulation more strongly than positive scent.

The  effect  of  our  normalisation-based  personalisation
approach  is  mostly  observed  when  we  look  at  the  results  after
applying  a  majority  vote  to  all  predictions  of  one  speaker  in  a
particular  round.  Here,  the  models  trained  on  wav2vec
features  to  classify  neutral  vs  non-neutral  scent  benefit  the
most with performance increases of up 13 %.

B.  Feature interpretation

Further,  we  perform  an  analysis  of  some  individual  features
that  have  a  large  impact  on  the  decisions  of  our  models
regarding  their  relationship  to  applied  scent.  As  we  found  that
classification  works  in  the  case  of  fish  vs  water,  we  focus  on
this  setting.  We  utilise  SHAP  (SHapley  Additive  exPlanations)
[27]  to  identify  each  feature’s  importance  for  the  classification
when  used  in  conjunction  with  the  rest  of  the  features.
Moreover,  we  consider  each  feature  in  isolation  to  train  a
model  according  to  the  experimental  setup  described  before.
We  then  choose  the  three  best-performing  features  and  plot  the
speaker-normalised  feature  means  against  the  respective
per-speaker  classification  performance  (measured  in  UAR).

                                                                                                                                         



This  visualisation  (cf.  Figure  1)  allows  us  to  compare  how  the
features  change  under  the  influence  of  negative  scent  and
further  analyse  how  these  changes  interact  with  the
performance  obtained  during  classification.  The  most
discriminating  features  are  found  with  the  standard  deviation
of  the  first  formant  (F1  standard  deviation),  the  alpha  ratio,
and  the  second  Mel-frequency  cepstral  coefficient  (MFCC  2).
We  observe  higher  deviations  in  the  frequency  of  the  first
formant  and  a  higher  alpha  ratio  when  a  negative  scent  (fish)
is  applied  during  the  readings.  Generally,  high  variance  in
formant  frequencies  can  indicate  voice  instabilities  [28]  and
increases  in  alpha  ratio  have  been  associated  with  fatigue  [29].
Lastly,  a  decrease  in  the  average  of  the  second  MFCC  across
voiced  segments  has  been  observed  in  depressed  individuals
where  reduced  muscular  tension  leads  to  a  more  closed  mouth
position  [30].  Note  that  all  these  effects  are  not  very
pronounced,  see  UAR  reported  in  Fig.  1.  However,  they  all
correspond  to  characteristics  of  negative  traits  and  states  such
as  voice  instabilities,  fatigue,  depression  --  and  obviously,
smelling unpleasant odours, i.e., fish.

V.  C  ONCLUSION

In  this  study,  we  investigated  the  effects  of  negative  and
positive  scents  on  the  production  of  speech  in  a  database  of  40
female  speakers.  We  applied  two  machine  learning  paradigms
originating  from  the  fields  of  speech  emotion  recognition  and
general  speech  recognition  in  four  carefully  chosen
experimental  setups.  Our  best  approaches,  based  on
state-of-the-art  wav2vec  features  could  achieve  the  best
classification  rate  of  68%  UAR  when  tasked  with
distinguishing  speech  produced  under  the  influence  of  fish
odour  from  recordings  where  no  scent  was  applied.  As
reactions  to  scent  are  highly  subjective,  our  applied
personalisation  strategy  was  further  shown  to  lead  to
substantial  performance  gains.  In  summary,  the  presented
results  indicate  that  odours  have  a  weak,  but  measurable  effect
on  speech.  In  the  future,  more  involved  personalisation
strategies  should  be  explored.  A  good  fit  could  be  found  with
enrolment-based  approaches,  utilising  samples  from  neutral
rounds  to  adapt  a  neural  network  to  each  speaker  [31].  Further,
low-resource  speech  processing  frameworks  such  as
DEEPSPECTRUMLITE  [32]  can  be  used  for  the  real-time
application  of  a  speech-based  scent  classifier  on  embedded
devices.
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