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Abstract
Due to their prognostic value, biomarkers can support physicians in making the
appropriate choice of therapy for a patient. In this thesis, several advanced sta-
tistical methods and machine learning algorithms were considered and applied to
projects in collaboration with departments of the University Hospital Augsburg. A
machine learning algorithm capturing hidden structures in binary immunohistolog-
ically stained images of colon cancer was developed to identify patients with a high
risk of occurrence of distant metastases. Further, generalized linear models were
used to estimate the probability of the need for a permanent shunt in patients af-
ter an aneurysmatic subarachnoid hemorrhage. Patients with oligometastatic colon
cancer were stratified by a score developed using approaches from survival analysis
to investigate which groups might benefit from surgical removal of metastases with
prolonged overall survival.

Another important point is the selection of suitable statistical models dependent
on the structure of the data. We found that a linear regression may only be suited
with a transformation of the response variable in the context of association of a
COVID-19 infection with lymphocyte subsets. In addition, modeling the course of
daily reported new COVID-19 cases is a relevant task and requires suitable statisti-
cal models. We compared non-seasonal and seasonal ARIMA models and examined
the performance of different log-linear autoregressive Poisson models. To add more
structure and enable theoretical prognosis for the further course depending on non-
pharmaceutical interventions, we fitted a Bayesian SEIR model with several change
points and set the determined change points in context with the distribution of
variants of the virus.





Zusammenfassung
Biomarker können Ärtze durch ihren prognostischen Wert bei der Auswahl geeigneter
Therapieoptionen unterstützen. In dieser Arbeit wurden mehrere fortgeschrittene
statistische Methoden sowie Algorithmen des maschinellen Lernens eingeführt und
in Zusammenarbeit mit verschiedenen Abteilungen des Universitätsklinikums Augs-
burg angewendet. Mit Hilfe eines Algorithmus des maschinellen Lernens, der ver-
steckte Strukturen in binären, immunhistologisch gefärbten Bildern von Darmkreb-
stumoren feststellen kann, wurden Patienten mit einem hohen Risiko für auftre-
tende Fernmetastasen identifiziert. Ebenso wurden Generalisierte Lineare Modelle
verwendet, um eine Vorhersage der Wahrscheinlichkeit für eine dauerhafte Shunt-
Anlegung nach einer aneurysmatischen Subarachnoidalblutung zu treffen. Patienten
mit oligometastastischen Darmkrebs wurden mittels eines Scores, der anhand von
Methoden der Survival Analysis entwickelt wurde, stratifiziert, um eine Gruppe zu
identifizieren, die von einer operativen Entfernung der Metastasen durch ein langes
Gesamtüberleben profitieren kann.

Ein weiterer wichtiger Punkt bei der Datenanalyse ist die geeignete Auswahl der
statistischen Methode abhängig von der Datenstruktur. Es konnten am Beispiel
der Assoziation einer Coronainfektion mit der Anzahl von Lymphozytensubpopu-
lationen gezeigt werden, dass eine Transformation der Zielvariable notwendig sein
kann, um die Voraussetzungen der linearen Regression zu erfüllen. Die Model-
lierung der Anzahl an täglichen Neuinfektionen stellt eine relevante Aufgabe dar
und benötigt passende statistische Modelle. Ein non-seasonal und ein seasonal
ARIMA-Model wurden ebenso wie mehrere log-linearen autoregressiven Poisson-
Modellen verglichen. Zusätzlich wurde ein weiterer Modellierungsansatz untersucht,
der die biologischen Mechanismen stärker einbezieht und eine theoretische Prognose
für den weiteren Verlauf unter verschiedenen Szenarien ermöglicht. Der Verlauf
wurde mittels eines bayesschen SEIR Modell mit mehreren Wendepunkten an die
Daten angepasst. Die gefundenen Wendepunkte wurden in Kontext der Verteilung
der Virusvarianten analysiert.
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Chapter 1

Introduction

1.1 Context
Statistical methods are an essential component of the analysis of medical data and
various approaches have been developed over the last several years. Improved qual-
ity as well as higher availability of data have increased the possibilities for data
analysis. A complex structured biological or medical research hypothesis must be
evaluated with an appropriate statistical method and thus requires intensive coop-
eration between statisticians and physicians.

Biomarkers can support the diagnosis of diseases and facilitate the prognosis of
the further course of a patient. The concept of personalized medicine is rapidly
rising based on the detection of biomarkers in a wide range of fields. Values of
blood parameters and scores based on sociodemographic characteristics of patients
or disease-specific metrics from a tumor are only a portion of the variables on which
a biomarker can be based.

An excellent example is the Framingham Risk Score, which identifies risk factors
and combines them into a score for the estimation of 10-year cardiovascular risk
(Wilson et al. (1998)). With this score, physicians can identify patients at high
risk and advise them regarding modifications of their lifestyle or treat them with
preventive drugs.

Another option to develop a biomarker is machine learning. Machine learning algo-
rithms have received increased interest due to their ability to accommodate highly
complex structures. Hidden features that are associated with the further course of
a patient can be detected in images by convolutional neural networks (CNNs) and
hence provide a prognosis based on an image, without previous manual detection of
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relevant features. Skrede et al. (2020) have presented a CNN that was trained on
H&E stained histological images of patients with colon cancer. They were able to
classify patients based on the output of their CNN. Improved technical possibilities
will enable more frequent use of machine learning to detect hidden structures in
data and images.

The importance of prediction of the future course of a disease can be seen not
only in the prognosis of patients with cancer but also in the behavior of the virus
SARS-CoV-2. Its onset had a significant influence on all aspects of daily life around
the world. Due to a high mortality rate, a higher transmission rate compared to
previously known viruses, and severe infections leading to long-term medical issues,
interventions needed to be implemented to protect elderly people and those with
underlying health problems. Models forecasting the future course of the incidence
of COVID-19 can help to estimate how the strength of interventions might affect
the future number of COVID-19 cases.

1.2 Structure of the thesis
This thesis provides an overview of different theoretical statistical concepts for
biomarkers and prognosis that can be applied in medical projects. We begin with
mathematical and statistical background to introduce relevant concepts of statisti-
cal modeling and machine learning. We then define linear and generalized linear
models (GLMs) due to their wide range of applications in several settings. One type
of analysis that is not covered by GLMs relates to studies concerning the survival of
patients, as censoring is often present and has to be taken into account. All methods
that are only used in a single chapter are presented in the statistical approaches of
that particular chapter.

Each chapter follows a similar structure. We provide the biological background
of the application and a detailed description of the statistical methods that were
used. Afterwards, we present the application in medical research and discuss the
results.

Chapter 3 addresses an application of machine learning algorithms for patients with
colon cancer and describes the development of a tool that can support treatment
decisions by estimating the risk of a short time until death and the occurrence of
metastases. When recurrence of the tumor is detected early, the therapy of a patient
can be adapted and hence improved.
The machine learning algorithm used stained histological images from a selected
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region of the tumor, binarized them into black-and-white images and assigned each
patient to either a high- or a low-risk group dependent on the predicted risk obtained
from the CNN.

Two medical studies in which scores were introduced for the prediction of the further
course of a disease are presented in chapter 4. The first study considered the ne-
cessity of a permanent shunt for patients with a hemorrhage located in their brain.
Clinical variables regarding the hemorrhage, the health conditions at admission to
the hospital, and measurements during the first days after admission were combined
to a score. Significant variables were determined in a generalized linear model with
a logit link function, and different weightings for relevant variables were compared.
In the second project, a score for overall and disease-free survival was developed
for patients with colon cancer and distant metastases at the time of diagnosis. We
performed a univariable preselection and a multivariable Cox proportional hazard
regression to determine risk factors for shorter overall survival. The score was vali-
dated in patients from an independent cohort and compared to another score. We
aimed to identify a group of patients that could benefit from surgical resection of
the metastases.

Chapter 5 considers the influence that a COVID-19 infection has on the counts
of lymphocytes. Measurements for multiple subsets of lymphocytes were collected
from healthy individuals and people infected with COVID-19. A univariable linear
regression was performed to determine differences between healthy and infected in-
dividuals. Because age and gender might have an impact on lymphocyte counts, we
included both factors in a multivariable linear regression model with the severity of
COVID-19 infection to adjust for them. All lymphocyte counts were logarithmically
transformed to ensure that the residuals are approximately normally distributed.

Chapter 6 compares different modeling approaches for daily incidence of COVID-19.
We fitted non-seasonal and seasonal ARIMA models and different log-linear autore-
gressive Poisson models. Furthermore, we fitted a compartment-based model with
change points to investigate whether a model with a mechanical structure would be
suited. We also examined whether change points might be explainable by changes
in variants of interest or changes in the severity of non-pharmaceutical interventions.

In chapter 7, we present other projects that were processed during statistical consult-
ing for the medical faculty of Augsburg University. Chapter 8 provides a summary
of results of this thesis.
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Chapter 2

Selected Theoretical Concepts of
Statistical Modeling

This chapter introduces the theoretical background of several mathematical ap-
proaches for modeling that are needed in the following chapters. Methods that are
used only in a single chapter are defined in that chapter. The definition of GLMs
is mainly based on Vittinghoff et al. (2006) and Dunn and Smyth (2018), and the
fundamentals of survival analysis are based on Kleinbaum and Klein (2012) and
Kalbfleisch and Prentice (2011).

2.1 Generalized linear models
Regression models are commonly used for statistical data analysis. In this section,
we present fundamental, theoretical concepts of linear regression and extend them
to generalized linear regression models. We provide definitions and details of the
estimation of parameters.

2.1.1 Linear regression

A linear regression aims to model a random variable Y denoted as response vari-
able with a set of k known variables x1, . . . , xk which are called explanatory vari-
ables with n data points. Our model consists of a systematic and a random compo-
nent. We expect the relationship between the explanatory variables and the response
variable for every data point to be linear except a normally distributed error term.
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For the linear regression model, the following assumptions are necessary:

Definition 2.1.1 (Assumptions of linear models).

1. Linearity: For each individual i with i = 1, . . . , n the relationship between
explanatory variables xi1, . . . , xik and response variable Yi has the form

Yi = β0 + β1xi1 + · · · + βkxik + ϵi

We call βi the coefficient for the i−th explanatory variable and ϵi should be
a random variable that satisfies E[ϵi] = 0. ϵi is also denoted as the error term.

2. Independence: All random variables ϵi are independent.

3. Variance homogeneity: All random variables ϵi have constant variance σ2.

4. Normality: The random variables ϵi are normally distributed.

From Definition 2.1.1 it follows directly that ϵi are independent and identically dis-
tributed with ϵi ∼ N (0, σ2).

To facilitate the notation, we introduce a vector notation of the linear regression.
We define a design matrix X ∈ Rn×(k+1) where the first column corresponds to
the intercept and all other columns correspond to the explanatory variables such
that each data point in the regression is represented by one row. The design matrix
has the following form:

X =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

...
1 xn1 xn2 . . . xnk


Furthermore we define

YYY = (Y1, . . . , Yn)T ∈ Rn

ϵϵϵ = (ϵ1, . . . , ϵn)T ∈ Rn

βββ = (β1, . . . , βk)T ∈ R(k+1).

With In indicating the n × n identity matrix, the linear model can be written as

YYY = Xβββ + ϵϵϵ with ϵϵϵ ∼ N (000, σ2In) (2.1)
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We are now interested in a parameter estimation of the coefficients and the variance
of the error term of our linear regression model. In the following, we call the obtained
estimates β̂ββ =

(
β̂0, . . . , β̂k

)T
. We use the maximum likelihood approach to estimate

β̂. By the assumptions in Definition 2.1.1 we know that our error term is normally
distributed with mean 0 and variance σ2 and that our independent variables are
known for each patient. Hence, the likelihood of (βββ, σ) given yyy as the vector of
observed values of the dependent variable can be expressed as

L(βββ, σ|yyy) = 1
(2πσ2)n/2 exp

(
− 1

2σ2 ∥yyy − Xβββ∥2
)

(2.2)

and the corresponding log likelihood as

g(βββ, σ|yyy) = n

2 log
(
2πσ2

)
− 1

2σ2 ∥yyy − Xβββ∥2. (2.3)

For the maximum likelihood estimate we need to derive the log likelihood given
in equation (2.3) with respect to βββ. This leads to an optimum when βββ fulfills the
normal equation

XT Xβββ = XTyyy.

When our matrix X is of full rank, we can obtain an estimate for βββ as β̂ββ =
(XT X)−1XTyyy. With a similar calculation we get σ̂2 = 1

n
∥rrr∥2, where rrr is called

raw residual vector and defined as:

rrr = yyy − ŷyy, where ŷyy = Xβ̂ββ.

Different models can be compared via the Akaike Information Criterion (AIC). AIC
measures how well the dependent variable is fitted by the model and penalizes the
number of parameters. Without the penalty, the value could not decrease even if
more unnecessary variables are integrated as independent variables.

Definition 2.1.2 (Akaike Information Criterion (AIC)). The Akaike Information
Criterion (AIC) for a model with k parameters is defined as

AIC = −2l(•) + 2 · k ,where l() is the loglikelihood function.

Besides point estimates of coefficients, we are also interested which of the indepen-
dent variables have a significant influence on the dependent variable. In the special
case of a hypothesis test for a single coefficient, the null hypothesis can be written
as

H0 : βj = 0 versus H1 : βj ̸= 0 for a fixed j ∈ 0, . . . , k.

We now need the distribution of β̂ββ = (XT X)−1XTyyy. It is known that yyy ∼ N (Xβββ, σ2)
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from the definition of our linear model. Since β̂ββ is only a transformed normally
distributed random variable, it is also normally distributed with

E[β̂ββ] = (XT X)−1XTE[yyy] = (XT X)−1XT Xβββ = βββ

and
Var[β̂ββ] = (XT X)−1XTVar[yyy]((XT X)−1XT )T = σ2(XT X)−1.

This implies that β̂j ∼ N
(

βj, σ2
(
(XT X)−1

)
jj

)
. As σ2 is in general unknown, we

can define
Tj = β̂j

ˆse(βj)

where ˆse(βj) is estimated as s
√

((XT X)−1)jj with s2 being the unbiased estimator
of σ2:

s2 = 1
n − k − 1∥rrr∥2.

Under the null hypothesis, it holds that Tj ∼ tn−k−1 which can now be used for a
test of the hypothesis and the calculation of confidence intervals. Furthermore, we
can perform a backwards selection by removing the parameter from the model with
the highest p value until all coefficients are significant.

Whether the model assumptions hold, can be checked by plotting the residuals.
For the linearity assumption a plot of the residuals against the explanatory vari-
ables should show no pattern. A present pattern would indicate that the linear
relationship is not appropriate for an explanatory variable.
The homogeneity assumption implies that the variance of the error term ϵ̂i is inde-
pendent of the expected value. Hence, we can plot the residuals against the fitted
values to see if a pattern is present.
For the normality assumption, we standardize the residuals and firstly calculate
their variance. It holds that:

Var[rrr] = Var[yyy − ŷ̂ŷy] = Var[(In − X(XT X)−1XT )yyy]
= (In − X(XT X)−1XT )T σ2(In − X(XT X)−1XT ) = σ2(In − X(XT X)−1XT ).

We define standardized residuals to ensure that residuals should have mean 0
and variance 1.

Definition 2.1.3 (Standardized Residuals).
The standardized residuals are defined as:

rj,st := rj√
1 − (X(XT X)−1XT )jjs

.
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2.1.2 Generalized linear models

In comparison to linear regression models, we are not restricted to a linear rela-
tionship between the explanatory and the response variable and the structure of the
error term is more flexible in GLMs. This allows our response variable to account for
binary and count variables. In this section, we define the class of GLMs and provide
details about parameter estimation and hypothesis testing. We also introduce more
details to the logistic and poisson regression.

The notation is identical to the previous section with a response variable Yi and
a vector of explanatory variables xixixi = (1, xi1, . . . , xik). We can expand the con-
cept that we have seen for the linear regression and define a GLM based on three
components:

Definition 2.1.4 (Components of generalized linear model).

1. Random Component: All responses Yi are independent and distributed
according to a probability density function or a probability mass function
from the exponential family with parameter θ and ϕ > 0 given by

f(y|θ, ϕ) = exp
(

θy − b(θ)
a(ϕ) + c(y, ϕ)

)
. (2.4)

ϕ is called the dispersion parameter and θ is called the canonical param-
eter. The functions a, b and c are known.

2. Systematic Component: We define the linear predictor as

ηi(βββ) := xixixi
Tβββ = β0 + β1xi1 + · · · + βkxik.

3. Parametric Link Component: The relationship between the linear predic-
tor and the mean µi of Yi is set by the link function:

g(µi) = ηi(βββ) = xixixi
Tβββ.

Many known distributions like the normal distribution, binary distribution or the
Poisson distribution belong to the exponential family. For a normal distribution
N (µi, σ2), we set θ = µi, ϕ = σ2, a(ϕ) = ϕ, b(θ) = θ2/2, and c(yi, ϕ) = −1

2 log (2πϕ)−
y2

i

2ϕ
to prove the property. This shows that the linear regression model is only a spe-

cial case of a GLM.

Definition 2.4 enables us for a closed form of the moments of a distribution from the
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exponential family. The expectation and the variance of Y satisfy:

E[Y ] = b′(θ)
Var[Y ] = b′′(θ)a(ϕ).

Link functions have no restrictions but are recommended to be monotone and real
valued functions of the mean µ. Some distributions, like the Poisson distribution,
require a transformation. A family of transformations that fulfill these conditions is
the Box-Cox transformation.

Definition 2.1.5 (Box-Cox transformation).
A Box-Cox transformation fα is defined for a real valued α as:

fα(µ) :=


µα−1

α
α ̸= 0

log (µ) α = 0.

The coefficients are estimated with a maximum likelihood estimation which will be
explained in detail. We assume that YYY follows a generalized linear model and that
xixixi is the explanatory variable of the i−th response Yi. Further, we define the inverse
mean function h(·) as the inverse of b′(·). Since µi = b′(θi), it holds that h(µi) = θi.

We consider the log likelihood function for MLE:

Definition 2.1.6 (Log likelihood in GLM).
For observed data yyy of YYY the log likelihood is defined by

l(βββ, ϕ|yyy) :=
n∑

i=1
li(µi, ϕ|yi) =

n∑
i=1

(
θiyi − b(θi)

a(ϕ) + c(yi, ϕ)
)

.

The derivatives of the log likelihood are given by

∂li
∂βj

= ∂li
∂µi

dµi

dηi

∂ηi

∂βj

= yi − µi

b′′(θi)a(ϕ)
dµi

dηi

xij

= Wi(yi − µi)
a(ϕ)

dµi

dηi

xij, with Wi =
(

dµi

dηi

)2

/b′′(θi).

Because the scaling has no impact on the estimation, we use the unscaled score
equations. These equations are non-linear in βββ and have in general no closed form
of solution but need to be solved with an iterative algorithm. One possibility is
the iterative weighted least squares (IWLS) algorithm. In every step of the IWLS
algorithm, based on the current linear predictor and the current fitted means, an
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intermediate dependent variable and intermediate weights are computed. The in-
termediate dependent variable is regressed on the explanatory variables with the
intermediate weights, and the value of the coefficient vector is updated until it
reaches convergence.
Shao has proven that the iterative, numerical solution leads to a maximum likelihood
estimate that is consistent and asymptotically normal under regularity conditions.
For further details we refer to Shao (2003). This asymptotic normality can be used
for the computation of confidence intervals and hypothesis testing.

The two following subsections provide more details regarding the logistic regres-
sion and the Poisson regression as specific regression models that we applied in
projects.

Logistic regression

In many applications, the response variable is not continuous but rather is binary, for
example whether a patient had a recurrence or whether a patient survived. Linear
regression models can not map the structure of responses. However, the exponential
family contains a suited distribution for binary responses. We use a similar notation
as above except from some small modifications. Yi can either be 0 or 1 and we define
the probability of an event as

p(xixixi) := P(Yi = 1|XiXiXi = xixixi).

Of the many different approaches to modeling this probability, only the logistic
regression is presented here. We assume that the probability can be expressed as
the logit-transformed linear predictor, which is given by

p(xixixi) = P(Yi = 1|XiXiXi = xixixi) = exp (xixixi
Tβββ)

1 + exp (xixixi
Tβββ) .

This model fulfills all requirements of a GLM. The Bernoulli distribution belongs to
the exponential family, there is a systematic component, and the parametric link is
provided by the inverse of the logit function g(µ) := log

(
µ

1−µ

)
.

For interpretation of the model, we evaluate the ratio of the probability of an event
to the probability of no event.
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Definition 2.1.7 (Odds of event).
The odds of event in a binomial regression model for X = x is defined as

o(x) = p(x)
1 − p(x) . (2.5)

We can describe a dependency between the response variable and the explanatory
variable by the odds ratio.

Definition 2.1.8 (Odds Ratio).
The odds ratio (OR) for a binomial regression with a binary explanatory variable
X is defined as

OR = o(1)
o(0) .

We can now reformulate this equation:

log OR = log
(

o(1)
o(0)

)
= log

 p(1)
1−p(1)

p(0)
1−p(0)

 = log
(

p(1)
1 − p(1)

)
− log

(
p(0)

1 − p(0)

)

= log (exp (β0 + β1)) − log (exp (β0)) = β1.

An odds ratio OR greater than 1 means that an observation with x = 1 has a OR-
times higher odds for an event than when x = 0. Similar calculations deliver odds
ratios when variables with multiple categories are included in the model. The odds
ratio is then computed against a reference category for each level. In the case of a
multiple logistic regression, the OR is calculated by fixing all other parameters to
their reference.

Poisson regression

Since count variables are often modeled by a Poisson distribution, a Poisson regres-
sion is suited when the response variables Yi are counts. An example is the number
of new registered COVID-19 cases each day which might be associated to the case
numbers of previous days.

We can prove that the Poisson regression belongs to the exponential family. We
can rewrite the probability mass function:

P(Yi = yi) = exp (−µi)
µyi

i

yi!
= exp yi log (µi) − µi − log yi!.

Now we chose θi = log (µi), b(θi) = exp (θi), c(yi, ϕ) = − log (yi!). In addition,
we can set ϕ = 1 and a(ϕ) = 1 and have proven the claim. Further, we select
g(µi) = log (xixixi

Tβββ) as link function. Thus, the Poisson regression is a GLM. The
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logarithmic link function enables the coefficients of the GLM to be interpreted as
multiplicative factors. Considering the systematic component we get:

µi = exp (β0 + β1xi1 + · · · + βkxik)
= exp (β0) + exp (β1)xi1 + · · · + exp (βk)xik .

If we increase xij by one unit µi is increased by a factor of exp (βj). βj > 0 leads to
an increased µi and vice versa.

2.2 Basic concepts of survival analysis
In addition to GLMs, survival analysis is a central concept for medical data analysis.
This is because time-to-event data are commonly used in research, for example for
validation of a drug or a therapy after a cancer diagnosis, influencing the survival.
In this section, fundamentals of survival analysis such as censoring and estimation
of survival times are introduced.
Survival analysis aims to analyze the time from a starting point such as a diagnosis
until a specified event occurs. This event can be death but can also be an adverse
reaction to a drug or the time until a drug takes effect. We consider here only one
possible event and no competing risk, which needs adapted methods for analysis.

2.2.1 Censoring

Censoring is a problem that occurs in many studies and reflects the condition that
the real survival time of some participants is unknown. There are three main reasons
that censoring occurs: no event until the end of the study, loss of follow-up, and
withdrawal from the study.
The first reason can arise if time until recurrence after a cancer therapy is of in-
terest. Patients who do not have a recurrence at the end of the study have an
unknown recurrence-free survival time because it is only known that the patient
was recurrence-free at least for the duration of study. In the other two scenarios,
patients either have not attended their control appointments or have withdrawn
from the study due to medical or personal reasons.

The following three different types of censoring can be distinguished:

• Right-censored: A survival time is right-censored when the true survival
time is greater than or equal to the observed survival time. This is the most
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common type of censoring and can be caused by the reasons described above.

• Left-censored: A survival time is left-censored when the true survival time
is less than or equal to the observed survival time. For example, if a person
has been tested positive for COVID-19, the exact time from infection to the
positive test is not known.

• Interval-censored: A survival time is interval-censored when the true sur-
vival time is within a known time interval. If the above mentioned person had
been tested at several time points, the interval in which the infection occurred
could be determined.

Commonly, three assumptions for censoring in a survival analysis are distinguished,
as follows:

• Independent censoring: Independent censoring is essential for survival
analysis and states that within any subgroup subjects who are censored at
time t should have the same failure rate as subjects in the subgroup who
remained at risk.

• Random censoring: Random censoring means that the failure rate for sub-
jects who are censored should be equal to the failure rate of subjects who are
not censored.

• Non-informative censoring: Non-informative censoring means that the dis-
tribution of the survival time T has no influence on the censoring time C, and
vice versa.

2.2.2 Notation

In this section, we present the general notation of survival analysis. For every subject
i (i = 1, . . . , n) in our study, we denote the random variable for the true survival
time as Ti, the random variable for the censoring time as Ci, and a random
variable for the status of each patient as Di. Because the patients are independent,
it can be assumed that all Ti and Ci are independent. The observed survival
time is denoted as T̃i and define as

T̃i = min{Ti, Ci}.

The status Di can be concluded from Ti and Ci as Di = I(Ti ≤ Ci) with I(·) the
indicator function. Di = 1 indicates that an event was observed and Di = 0 that
the individual was censored because no event occurred during the study period or
the person was lost of follow-up.
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We define the survivor function S(t) as S(t) := P(T > t) such that S is the
probability that the survival of an individual is longer than t. An accurate estima-
tion of our survival function is important to receive information for the study. The
survival function is non-increasing and fulfills S(0) = 1 and limt−→∞ S(t) = 0.

Furthermore, we define the hazard function λ(t) as

λ(t) = lim
∆t−→0

P(t ≤ T < t + ∆t|T ≥ t)
∆t

.

The hazard function λ(t) can be interpreted as the current rate of occurrence of
an event at time t under the condition that a person survived until time t. The
hazard function is always non-negative and is not bounded from above. Whereas
the survival function directly describes the survival, the hazard function is used for
modeling because specific parametric and non-parametric forms can be identified.

Despite this differences, survival and hazard function are connected. With the
knowledge of one function the other one can be derived with the equations:

S(t) = exp
(

−
∫ t

0
λ(u)du

)
λ(t) = −dS(t)/dt

S(t) .

For example, if we know that the hazard function is constant with λ(t) = λ∗ then
we can compute the survival function as S(t) = exp

(
−
∫ t

0 λ(u)du
)

= exp (−λ∗t).

For time points without an observed event, the hazard function is 0. To overcome
this issue, we consider the cumulative hazard function Λ(t) and define it as the
integral over the hazard function:

Λ(t) =
∫ t

0
λ(s)ds.

The cumulative hazard function is directly connected to the survival function as
S(t) = exp (−Λ(t)) and can be estimated by the Nelson-Aalen estimator.

2.2.3 Estimation of the survival function

The survival function can be estimated with either a parametric or a non-parametric
approach. Both have advantages and disadvantages. A parametric approach as-
sumes that the survival function and hence the hazard function have a parametric
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distribution. It can be seen from the above description that a constant hazard results
in an exponentially declining survival function. Other often used distributions are a
Weibull distribution or a lognormal distribution. However, it is essential to choose a
suitable distribution for the survival function, which can be difficult for applications
involving real projects. A more detailed overview for parametric survival functions
is provided by Kleinbaum and Klein (2012).

An alternative is the non-parametric estimation of the survival function by a Kaplan-
Meier curve (KM curve). A KM curve is a non-increasing step function starting with
a survival probability of 1 at time 0. The formula for the computation of the KM
curve includes ordered failure times and a product of conditional probabilities. Let
t(1), . . . , t(N) indicate the set of distinct failure times. For each failure time t(i), the
conditional probability of a survival time greater than t(i) can be computed given
that the probability that the individual is in the risk set at time t(i).

Definition 2.2.1 (Kaplan-Meier estimator). Let t(1), . . . , t(N) be the distinct and
ordered failure times in a dataset. Further, we denote d(i) as the number of events
at time t(i) and n(i) as the individuals at risk at t(i) (no event and no censoring up
to time t(i)). Then, the survival function can be estimated with the Kaplan-Meier
estimator as

Ŝ(t) =
∏

i:t(i)≤t

(
1 − di

ni

)
.

To test whether the KM curves are different, a log-rank test can be performed. The
log-rank test uses differences between observed and expected numbers of failures to
obtain the value of a statistic that is approximately chi-squared distributed. With
this statistic, the p value for the null hypothesis that both curves are equal can be
calculated.

Harrell Jr et al. (1996) have suggested the c-index as a measure that can be used
to validate the discrimination of survival curves and the predictive information of a
model. The c-index or concordance index is defined as the fraction of usable pairs of
patients for whom the outcome and the prediction are concordant, which is satisfied
if patient A is predicted to survive longer than B and actually survived longer than
B. A usable pair means that either both patients have died at different times or
patient A died and patient B survived longer than patient A. In all other cases, the
pair of patients cannot be compared. If the predicted survival times are equal, then
only 1/2 is added to the count of concordance. The c-index has a range between 0
and 1 with 1 indicating perfect discrimination.
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2.2.4 Cox proportional hazards model

The Cox proportional hazards model (Cox PH model) expresses the hazard at time
t for an individual depending on the explanatory variables. No distribution of data
is required compared to parametric models, but an underlying distribution can be
well approximated. If the real distribution is not known, the Cox PH model is
preferred as it provides reliable results. Denoting the explanatory variables as XXX =
(X1, X2, . . . , Xp) with XXX ∈ Rp and the vector of coefficients βββ = (β1, . . . , βp), the
hazard function can be expressed as

λ(t|XXX) = λ0(t) exp
( p∑

i=1
βiXi

)
. (2.6)

According to equation (2.6), the hazard at time t is split into a baseline hazard
λ0(t) which is independent of explanatory variables and a multiplicative term de-
pending on the explanatory variables but not on time t. Hence, the Cox PH model
is a semi-parametric model and the ratio of hazards between two groups remains
constant over time if XXX is time-independent. This justifies the requirement of pro-
portional hazards.

If two individuals are identical except an one unit change for variable Xk, k ≤ p,
then the hazard ratio is:

λ(t|XXX)
λ(t|X∗X∗X∗) = λ0(t) exp (∑p

i=1 βiXi)
λ0(t) exp (∑p

i=1 βiX∗
i ) = exp

( p∑
i=1

βi(Xi − X∗
i )
)

= exp (βk).

The coefficient βk can thus be interpreted as the change in the logarithm of the
hazard which is constant over time.

We do not estimate the coefficients with a full likelihood but use a partial likeli-
hood function based on the order of observed events. The conditional probability
of observing a specific failure is computed, conditioned on the current risk set and
that one event occurs.

Like above, we use the distinct ordered uncensored failure times t(1), . . . , t(N) and
define a risk set R(t) = {k : tk ≥ t} containing individuals that are at risk at time
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t. The likelihood is provided by

L =
N∏

i=1
P(Subject i has an event at t(i)|one event occurs in R(t(i)))

=
N∏

i=1

λ(t(i)|XXX(i))∑
k∈R(t(i)) λ(t(i)|XXX(k))

=
N∏

i=1

λ0(t(i)) exp
(
βββTXXX(i)

)
∑

k∈R(t(i)) λ0(t(i)) exp
(
βββTXXX(k)

)
=

N∏
i=1

exp
(
βββTXXX(i)

)
∑

k∈R(t(i)) exp
(
βββTXXX(k)

) .

The estimation is independent of λ0(t) and it is sufficient to consider the exponential
part of equation (2.6) for the coefficient estimation. An iterative Newton-Raphson
algorithm can be performed to detect a maximum of the partial log likelihood,
and the variance of the coefficients is obtained via the inverse observed information
matrix at the maximum partial likelihood estimate. Further details can be found in
Kalbfleisch and Prentice (2011) and Kleinbaum and Klein (2012).
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Chapter 3

Statistical Approaches for
Predicting Survival and
Metastasis in Colon Cancer
Patients using Machine Learning

Keywords: machine learning, VGG-net, InceptionResNetV2, prognostic biomarker,
risk prediction, survival analysis, colon cancer

3.1 Introduction
Colon cancer is a highly relevant field of research because of its prevalence, its sub-
stantial mortality risk and the probability for an onset of distant metastases in
the liver or lung. The German Robert-Koch Institute has stated that in 2016, every
eighth cancer patient suffered from colon cancer and that approximately 60,000 inci-
dents as well as approximately 25,000 deaths were recorded in connection with colon
cancer. Although the possibilities for treatment and therapy have been improved
in recent years, predictions of further course of the disease and patient’ survival are
still difficult. Nevertheless, they are necessary for suitable choices of therapy.

Currently, the classification of colon cancer and hence the stratification of patients
with regard to prognostic estimates is mainly based on the Union Internationale
Contre le Cancer (UICC) stage. This tool combines information regarding the lo-
cal extent of the tumor and the occurrence of regional or distant metastases (cf.
Brierley et al. (2017)). Thus far, most tissue samples have been treated in the same
manner whereby the tissue sample is first stained for example with H&E, which is
one of the most commonly applied histological stains and consists of hematoxylin
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and eosin. Hematoxylin highlights the cell nuclei with a blue color whereas eosin
is responsible for staining the cytoplasm (cf. Fischer et al. (2008)). The resulting
sample is then evaluated based on tumor-node-metastasis (TNM) staging. In this
way, three important properties are investigated by the pathologists: the size of the
tumor and whether nearby tissue is invaded, the status of nearby nodes and the
prevalence of metastasis. This information results in a UICC stage, which has been
shown to be suited for the classification of the tumor in many cases. Most patients
characterized as a stage II case have a good prognosis, whereas for stage III cases
additional therapy is often needed and recommended.

Despite its usefulness in general, the UICC staging also exhibits weaknesses in daily
routine. The assessment of TNM staging can be biased by inter-pathologist and
intra-pathologist variability. Specifically, the grading of the same tissue sample may
differ between two independently concerned pathologists, which might result in con-
tradictory statements about optimal therapy and survival chances. In comparison,
intra-pathologist variability involves different staging from the same pathologist if
the same tissue sample is graded twice. Both problems persist in many pathological
grading tasks and remain an impediment in diagnosis. High reproducibility and a
comparable standard across different institutes would be preferable.

Another problem is the time-consuming task of grading a tumor manually. Here, a
computer-driven approach could facilitate the work of pathologists and could help
to improve the quality of prediction by incorporating hidden structures and small
parts of the tumor that cannot be detected by humans.

Although UICC staging is still seen as a start-of-the-art method to classify tu-
mors, there are cases in which predictions and the real course of the disease do not
coincide. To improve the stratification of patients and support physicians in their
decisions, reliable biomarkers that can easily be integrated into the daily routine are
urgently needed.

In recent years, several promising biomarkers were found, for example based on
the microsatellite stability status and cells from the immune system. However, only
a few of these have been established in practical use. Tumor budding and the
tumor-stroma-ratio (TSR) are examples of recently developed biomarkers that have
obtained increased attention (cf. Lugli et al. (2017), Huijbers et al. (2013), and
Mesker et al. (2007)). TSR is defined as the ratio between the area of invasive neo-
plastic cells and the surrounding nonneoplastic tissue and is often estimated based
on of the H&E-stained slides. The estimation process can also be accomplished by

19



advanced methods to increase the quality of the estimate, as shown by Geessink
et al. (2019) and Martin et al. (2020). A threshold of 50% is commonly used for
separation of two groups. One fundamental idea of the TSR is to integrate not only
TNM staging but also information regarding the tumor structure into the predic-
tion. This approach can be further extended if methods of artificial intelligence are
included in the process to identify complex prognostically meaningful patterns that
have not been detected by humans thus far.

Machine learning algorithms are a modern approach for the classification of im-
ages in different research fields (cf. Goodfellow et al. (2016)). The basic approach
is based on predefined features, for example tumor proportions, extracted from im-
ages. Rather than manual review of images, algorithms can find useful properties of
a tumor. These features can be combined with known data from the patient such as
age or gender and used as input for regression models chosen in dependence of the
target variable. Logistic regression modeling of a binary outcome or Cox Regres-
sion modeling of survival probability are common choices. Besides classic statistical
methods, machine learning approaches are also suitable for the classification of the
input variables. Typical examples are support vector machines, neural networks,
and random forests.

In recent years, convolutional neural networks (CNNs) and machine learning algo-
rithms have opened new and wider possibilities for image analysis (cf. Krizhevsky
et al. (2012)). Instead of relying on predefined features for a specific medical task,
the algorithm itself finds representative, complex, hidden structures in a labeled
training set of images. Several studies have shown that CNNs can outperform other
algorithms in many different applications of medical imaging such as classification
of cell types and grading of tissue samples. In recent years, an increasing number
of algorithms and architectures have been made available for an improved perfor-
mance. CNNs have learned to quantify the TSR in tumor slides (cf. K. Zhao et al.
(2020)) and are also able to determine tumor budding (cf. Weis et al. (2018)).

Several studies have investigated the application of a CNN for predicting a pa-
tient’s prognosis and have proved the prognostic value of an artificial intelligence
approach. Kather et al. (2019) have presented a CNN that can distinguish between
different tissue types in H&E-stained colon cancer tissue and can decompose a given
image into its constituent parts. The fractions of the tissue types are used to build
a weighted sum, which leads to a calculated prognostic score that could improve
state-of-the-art methods. Jiang et al. (2020) have followed a similar approach in
their work.
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Instead of segmentation of the image, Bychkov et al. (2018) have fine-tuned a pre-
trained CNN to identify hidden structures in H&E-stained colon cancer tissue images
in a so called feature vector and have investigated the impact of different machine
learning approaches on the performance of the model to predict the 5-year survival
of patients by this feature vector. Their algorithm generated appropriate results for
classification, and their predicted survival was a useful predictor in survival analysis.
Skrede et al. (2020) followed the same approach and fitted a model directly onto
image data, without a previous classification of tissue and computation of tissue
proportions.

We refer to Pacal et al. (2020) for a comprehensive review of machine learning
in colon cancer. Despite great progress in research for deep learning methods for
the classification of medical images, algorithms predicting the further course of a
patient’s disease based on histological tumor images are rare.

The aim of our work was to investigate and compare different statistical approaches
for the prediction of survival of colon cancer patients. Therefore, we trained mul-
tiple logistic regression models and derived a convolutional neural network-based
approach for binary images to classify colon cancer patients according to their 5-
year overall-survival. We selected a pre-trained convolutional neural network called
VGG-net to extract hidden features of binary images and a neural network struc-
ture for the classification layers for the model. The model’s architecture is based on
VGG-net which is commonly used in the context of images and consists of several
convolutional and pooling layers (cf. Simonyan and Zisserman (2014)).
In the second part of this chapter, we used the occurrence of distant metastases in-
stead of overall survival as our primary endpoint and expanded the structure of the
algorithm through further measures to avoid overfitting. As in the first approach,
labeled pure black-and-white histological images were the input for the training such
that the algorithm could not include any morphological features in the prediction.
We examined if a machine learning algorithm could predict the occurrence of distant
metastases, and compared the prediction with established criteria.
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3.2 Theoretical concepts: machine learning
This section is mainly based on Goodfellow et al. (2016).

Neural networks

Several machine learning algorithms are based on neural networks (NN) due to the
ability of these constructs to model complex structured data better than other ap-
proaches. A NN consists of different types of layers. In an initial step, an input
layer provides data that should model the target variable to an inner layer of the
model. These layers consist of many neurons that form hidden layers and that are
mostly not connected within the same layer. Finally, a probability distribution or a
prediction at the output layer is obtained.

If we denote a neuron as al,n, where l is an index for the layer and n is an in-
dex for the neurons within a layer, then the value of al+1,n can be computed by a
weighted sum wl,n of the neurons of the previous layer as

wl+1,m :=
n∑

i=1
ωl,n,mal,n.

In our notation ωl+1,m represents a weight which needs to be optimized during the
training process.

Subsequently, the weighted sum is transformed with an activation function g(x)
such that we obtain:

al+1,m = g(wl+1,m) = g(
n∑

i=1
ωl,n,mal,n).

Two common choices for the activation function are the rectified linear unit (ReLU)
and the softmax function.
The ReLU for an input x is defined as:

f(x) = max(0, x).

The softmax function can normalize the output vector of length L of a NN such
that its entries sum up to 1 and lie between 0 and 1. Hence, we can interpret this
vector as the probabilities that a patient belongs to a certain class. The softmax for
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an input vector x = (x1, x2, ..., xL) is defined as

(f(x))j = exj∑L
i=1 exi

.

Convolutional neural networks (CNN)

Convolutional neural networks (CNNs) represent a state-of-the-art method in im-
age analysis. Instead of manually defined features, more complex structures can
be captured. A CNN is composed of a series of convolutions, pooling and further
operations.

Convolutions are discrete operators and can be defined by a discrete function
F : Z2 −→ R and a filter k of size (2r + 1)2. This filter can be represented by a
mapping k : Ωr −→ R, where Ωr = [−r, r]2. Combining the discrete function and the
filter, results in an equation for the convolution which is given by

(F ◦ k)(p) :=
∑

s+t=p

F (s)k(t).

Pooling layer

Pooling layers are necessary to reduce the information within a network so that
important features can be focused. Although some information is lost, the entire
network benefits of pooling layers because the number of parameters as well as
calculations can be reduced. Hence, the training process can be accelerated. Fur-
thermore, the risk of overfitting can be lowered. Overfitting is a problem often faced
in machine learning algorithms in which the generality of the model is lost because
the number of parameters is too high.

There are different options for a pooling layer. In a max-pooling layer, the im-
age is split into quadratic tiles with fixed and constant side lengths a such that
every pixel belongs to one tile. All pixels in each tile are replaced by one pixel
whose value is assigned as the maximum value of the previous tile. A regular choice
for the value of a is 2, but higher values are also possible.
Another pooling layer for CNN is an average pooling layer. Rather than the maxi-
mum of a tile, the average of the tile is assigned as the value of the new pixel in this
option.
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3.3 Machine learning for prognosis of overall sur-
vival

This section was based on a collaboration between the pathology of Augsburg Uni-
versity Hospital (Bruno Märkl, Benedikt Martin) and the Institute of Mathematics
(Gernot Müller, Stefan Schiele). Pathologists prepared the tumor images and math-
ematicians processed them, trained the model and fitted statistical models.

3.3.1 Data and statistical approaches

Case collective

For this study we included patients with colon adenocarcinomas of no special type
that were assigned by the pathology of the University Hospital Augsburg as pT3/pT4
without metastasis at the time of diagnosis. The term pT3 specifies the severity of
the tumor and is composed of three components. The first letter, p, stands for
”pathological” and expresses that the classification is based on a pathological ex-
amination. The second letter indicates that the extent of the primary tumor is
concerned. Finally, the number indicates the severity of the extent. pT3 means that
the tumor has grown through the inner parts of the tumor and into the subserosa.
In a pT4 case the tumor has grown through all layers of the colon (cf. Greene et al.
(2006)).

Figure 3.1: Example of tumors assigned with severe staging pT3 (left) and pT4
(right). On the left, the tumor has grown into the subserosa or adventitia. On the
right, the tumor has passed through the serosa and all layers of the colon. This
image has been adapted from Greene et al. (2006).

The sample had been used in another study by Martin et al. (2020) at the University
Hospital Augsburg, but here we restricted the sample further such that the patients
had to be less than or equal to 70 years old and their survival status five years after
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diagnosis had to be known. For all cases, clinical-pathological information as well as
a histopathological image of the invasive front of the tumor were available. All pa-
tients underwent surgery at the University Hospital Augsburg. Follow-up data were
provided by the Tumor Data Management of the University Hospital Augsburg.

Preprocessing of images

The following procedure was applied by the pathologists to preprocess the images
and is similar to that of Martin et al. (2020). The entire H&E slide was viewed, and
the best-fitting region that contained no artifacts of blood vessels, necrosis or other
special type was selected. In the next step, a rectangular region with a field size of
3.58 mm2 was extracted from the entire slide, containing tumor cells at all borders
of the image field. The selected regions were digitized with a computer connected
camera attached to the microscope. All images were immunohistochemically stained
with cytokeratin (cytokeratin AE1/AE3) in order to highlight tumor tissue.

In further steps, the obtained image was processed with the open-source image
software ImageJ (Version 1.48 v) (cf. Abràmoff et al. (2004) and Rasband et al.
(1997)). Tumor-containing tissue reacted immunohistochemically and was marked
in brown. The differentiation between tumor and stroma could be accomplished via
binary coding. After translation of the image into a binary color, holes were filled
and the images were reviewed by a pathologist. If necessary, the resulting image
was manually improved by filling gaps that had not been closed by the software
algorithm. This image was used as input for our machine learning model.

For further analysis, the images were measured and the tumor proportion of the
image was calculated as the sum of all tumor areas divided by the area of the whole
image.

Feature extraction

The binary images were resized by a factor of 3 to 840 × 680 pixels to improve the
learning performance of the algorithm. The images were split into a training and
a validation set (80%/20%). The training images were then input to a pretrained
VGG-neural network with removed classification layers to extract important features
of the histological images. These features where used in a fully connected neural
network with two hidden layers and an additional SoftMax activation to obtain the
associated class probabilities. We trained only the classification part of the model
and used binary cross entropy as the loss function and the Adam optimizer with a
step size of τ = 10−3 for the optimization process.
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Figure 3.2: Structure of the VGG-net which is a convolutional neural network con-
sisting of multiple convolutions and max pooling layers to reduce the size of the
image and simultaneously increase the channel size. This figure is an adapted ver-
sion of a corresponding figure in Loukadakis et al. (2018).

VGG-Neural network

The architecture of our neural network was a VGG neural network. VGG is often
used for the classification of images and was used for example in the ImageNet
competition. It consists of multiple convolution layers of 3 × 3 filter with a stride
of 2. Each convolution operator is followed by a ReLu activation. Between the
convolution blocks a maxpool layer of 2 × 2 filter and stride 2 is executed, reducing
the size of the image and extracting hidden features of the original image. For
the entire architecture, the number of channels is increased. We removed the fully
connected part at the end of the network to use the extracted features.

Transfer learning

The weights of this neural network have been trained on the images of the ImageNet
challenge, which is one of best known challenges concerning the classification of
images. Other studies have proven that neural networks trained on this dataset can
be used for other tasks, especially in medical and digital pathology. In the medical
context, in which datasets from a large number of patients are very difficult to
obtain, training from scratch or fine-tuning of the parameters is generally impossible.
Further, we were not focused on a classification of the tissue as malignant or benign,
in which case every pixel could be annotated and small patches of the entire slide
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could be used to generate many images for training the model. Instead, only the
5-year survival outcome of the patient was available. As this outcome could not be
referred to a special part of the entire slide, generating patches was impossible for
this task.

Variable description

Several predefined variables were extracted from the tissue images. For each mea-
sured variable and for each patient, the median, mean and the standard deviation
were computed. These values could be used in a logistic regression model to analyze
the impact of measurements of the tumor. According to Zdilla et al. (2016), we
evaluated the roundness, the circularity, the solidity and the aspect ratio (AR) of
every tumor region as explained in the following:

• Roundness: Roundness measures how similar the tumor region is to a circle
by using the major axis of the best fitting ellipse of the tumor region and is
calculated as:

4 · Area

π · [Major axis]2

• Circularity: Similar to the roundness, circularity measures the degree of
similarity of the tumor region to a perfect circle, but this time by using the
perimeter of the best fitting ellipse of the tumor region. The circularity is
calculated as:

4 · π
Area

[Perimeter]2

• Solidity: Solidity of the tumor area describes how convex or concave the
tumor area is. Its value ranges between 0 (high concave) and 1 (absolutely
convex).

Area

Convex Area

• Aspect Ratio: Aspect Ratio is computed as the ratio of the major and the
minor axis of the best fit ellipse

Major axis
Minor axis

Statistical analysis

All statistical analysis was performed using the statistics software R 4.1.0. We
analyzed clinical parameters of patients descriptively and divided the patients into
two groups dependent on their 5-year survival. Patients with unknown status were
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removed. We performed univariate logistic regression models with 5-year survival
as response variable.

3.3.2 Results

Sample description

We enrolled 69 patients in our analysis. 51 (73.9%) survived longer than 5 years
after diagnosis. The mean age was 60.0 years, and only 21.7% were less than or
equal to 50 years old. The tumor was graded as pT4 in 14.5% and pN-positive in
44.9% of all cases. For the categorization of the tumor-stroma-ratio (TSR), we used
previously stated cutoffs determined by the Institute of Pathology in Augsburg ac-
cording to Martin et al. (2020). They identified three groups: low tumor proportion
(≤ 15%), medium tumor proportion (15% to < 54%), and high tumor proportion
(≥ 54%). With this partitioning, nearly 15% of the patients had a high tumor ratio
and 15% had a low tumor ratio (Table 3.1).

Building two groups dependent on the patient’s 5-year-survival, we found differ-
ences between the group of survivors versus non-survivors. Non-survivors had a
higher mean age (62.2 vs. 59.3 years) and a tumor that had been graded as more
severe, with a higher fraction of pT4 (22.2% vs. 11.8%), a higher fraction of positive
pN (55.6% vs. 41.2%), a higher fraction of a high grading (50% vs. 27.5%), and more
often a low or high tumor-stroma-ratio (Table 3.2).
We further compared the two groups concerning their measurements of properties
concerning the tumor shape. These were calculated for all tumor areas of a patient
and its individual mean, median, and standard deviation over all tumor areas. The
results of all patients were visualized via boxplots (Figure 3.3). We found only minor
differences between both groups.

Generalized linear regression models

As a first step, we analyzed whether a generalized linear regression model as a clas-
sical statistical approach could predict the probability of survival of a patient if
clinical data were available. For each variable, a separate univariate logistic regres-
sion model was fitted for all patients. The response variable was 5-year survival.
We found no significant association between the survival and tumor-stroma-ratio,
age, sex, pT, pN and L status. It is conceivable that age has no influence because
of the restriction in the sample. Furthermore, the clinical parameters pT and pN
showed no association, but the grading dividing low and high showed a trend that
was not significant.
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Table 3.1: Patient characteristics of the study sample
Variable N %
5 yr-Survival

No 18 26.1
Yes 51 73.9

Age mean: 60.0 ± 9.4
≤ 50 15 21.7
> 50 to ≤ 60 12 17.4
> 60 to ≤ 70 42 60.9

pT
3 59 85.5
4 10 14.5

pN
positive 31 44.9
negative 38 55.1

Grading
low 46 66.7
high 23 33.3

MSI
positive 8 11.6
negative 61 88.4

V
0 60 87.0
1 9 13.0

L
0 56 81.2
1 13 18.8

Tumor Ratio
≤ 0.15 11 15.9
> 0.15 to < 0.54 48 69.6
≥ 0.54 10 14.5
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Table 3.2: Comparison of patient characteristics stratified by their 5yr-survival
5 yr-Surv 5 yr-Surv no
n = 51 n = 18

Variable N % N %
Age mean: 59.3 ± 9.6 62.2 ± 9.0

≤ 50 13 25.5 2 11.1
> 50 to ≤ 60 10 19.6 2 11.1
> 60 to ≤ 70 28 54.9 14 77.8

pT
3 45 88.2 14 77.8
4 6 11.8 4 22.2

pN
positive 21 41.2 10 55.6
negative 30 58.8 8 44.4

Grading
low 37 72.5 9 50.0
high 14 27.5 9 50.0

MSI
positive 8 15.7 0 0.0
negative 43 84.3 18 100.0

V
0 47 92.2 13 72.2
1 4 7.8 5 27.8

L
0 43 84.3 13 72.2
1 8 15.7 5 27.8

Tumor Ratio
≤ 0.15 7 13.7 4 22.2
0.15 to < 0.54 38 74.5 10 55.6
≥ 0.54 6 11.8 4 22.2
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Figure 3.3: Boxplots for the distribution of mean, median and standard deviation
of four measurements (circularity, AR, roundness, solidity) of patients tumor areas
stratified by their 5-year-survival

From the inspected parameters, the V status and the existence of metastases were
associated with a lower chance of survival five years after diagnosis.

We repeated the same analysis for the measurements from the tumor (roundness,
circularity, aspect ratio, and solidity). For each property, we used the mean, the
median and the standard deviation as covariates such that twelve univariate models
were computed.
There was no association between the 5-year survival and the measurements of the
tumor, with the exception of the mean of the aspect ratio. The higher the aspect
ratio, the lower was the odds of survival, with an odds ratio of 0.76 for every 0.1
increase of the aspect ratio.

Finally, we performed a multiple logistic regression model by incorporating all vari-
ables with a p-value < 0.1 in one logistic regression model. These variables were
grading of the tumor, V status, metastasis, and the mean of the aspect ratio. We
performed a backward elimination based on the Akaike Information Criterion (AIC)
to remove variables. In this process, only the V status was left in the final model.
Another model without metastasis was also computed, as metastases occur only on
follow-up rather than at diagnosis. Again, only grading and the mean of the aspect
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Table 3.3: Factors associated with the 5-year survival from a multiple logistic re-
gression with AIC-based backward elimination (without metastases)

Variable OR CI p-value
Grading high(ref: low) 0.21 [0.04-0.89] < 0.001
Aspect ratio mean (continuous with on unit=0.1) 0.73 [0.62-0.84] 0.04

ratio were left in the model. We found that high grading and a higher mean of the
aspect ratio of tumor areas were associated with a lower odds of survival at least 5
years after diagnosis.

CNN

To investigate whether we could make a prediction based only on images, we de-
veloped a CNN approach using the images of the patient to capture more complex
structures. We extracted the features with a pre-trained VGG network and only
fine-tuned the classification layer. The patients were divided into two groups (train-
ing and validation).

Different parameters were used to fine-tune the classification layer of the network.
Finally, a model with satisfactory performance on the training and validation set
was trained. In both, an accuracy of approximately 85% was reached. When we
investigated the performance of the model using an independent test set, we reached
an accuracy of only 56%.

3.3.3 Discussion

We investigated the ability of different approaches to classify patients regarding
their 5-year survival probability. In general, prediction was more difficult for our
sample because of the restrictions on the age and the pT status. To ensure that the
analysis of overall survival was less influenced by side-effects such as other diseases,
we defined an age of 70 years or younger as an inclusion criterion. Furthermore, all
patients in the sample had been diagnosed with a pT3 or pT4 cancer, leading to
some similarities within the patients as compared to a sample containing all four
subtypes.
A large difference between the models concerning interpretability could be observed.
Whereas the classical statistical model provides pathologists with an insight on the
decision process, the machine learning models have more of a black box character.
This might be an impediment for wider usage of machine learning algorithms for all
applications.
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In spite of restrictions on age, we could see that the prediction of overall survival
based only on histological images remains difficult due to other causes of death aside
from colon cancer. These effects could not be taken into account.

3.4 Machine learning for a prognosis of metastasis-
free survival

Because of restrictions in the overall survival and a low rate of cancer specific deaths
we restricted the analysis on occurrence of distant metastases. This project was
based on a collaboration between the pathology of Augsburg University Hospital
(Bruno Märkl, Benedikt Martin) and the Institute of Mathematics (Prof. Gernot
Müller, Tobias Arndt, Stefan Schiele). Pathologists prepared the tumor images, and
the mathematicians processed those images, trained the model and fitted statistical
models. Tobias Arndt and I worked on the machine learning algorithm. Tobias
Arndt provided the main part of the model training, whereas I focused on the
statistical analysis of the data. The developed methodology of the algorithm as
well as results of the model performance for the classification of patients with colon
cancer resulted in the publication Schiele et al. (2021).

3.4.1 Data and statistical approaches

Case collectives

We investigated our new hypothesis on a larger sample than the first one. Re-
strictions on age were not necessary in this case because the occurrence of distant
metastasis could clearly be related to the primary tumor.

Both case collectives consisted of locally advanced colon adenocarcinomas of no
special type, pT3/4, N±, M0, and R0 that were treated in the University Hospital
Augsburg. For the training cohort (n = 163), we included patients whose surgery
had been performed between 2012 and 2016 and the occurrence of distant metas-
tases or documented metastasis-free survival of at least five years. The validation set
fulfilled the same inclusion criteria and consisted of 128 patients (surgery between
January 2002 and December 2011). Follow-up data for all cases were provided by the
Tumor Data Management of the University Hospital Augsburg and complemented
with data from patient files. The patients were treated in accordance with valid
guidelines at that time.
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Sample preparation

Sample preparation was performed in exactly the same manner as described above.
In this case, we further investigated whether the automatically selected threshold
of the software could influence the resulting images. A sensitivity analysis showed
that deviations of the threshold could introduce noise into the images, impeding
the classification. The problem was that either pixels of the background had been
classified incorrectly as tumor due to a lower threshold or parts of the tumor had
been assigned to the background due to a higher threshold. Overall, the software
algorithm performed well.

Architecture of machine learning algorithm

The neural network described in the following section was similar to the one shown
above, but extended to an additional preparation of the images before the network
and layers to avoid overfitting. All implementations were performed in Python 3.6.9
using the Keras framework supplied by the TensorFlow 2.3.1 platform and trained
using a Nvidia Tesla V100 GPU.

Our model was based on the InceptionResNetV2 (cf. Szegedy et al. (2017)) and
was not trained from scratch but only the initial convolution layer and the fully
connected layers at the end while the parameters of the InceptionResNetV2 were
maintained. The model was optimized for 300 epochs with batches of 21 by the
RMSprop with a learning rate of 0.0005. We chose the categorical cross entropy as
loss function. After every epoch the model was validated using test data and the
best performing model was finally selected. Tobias Arndt was responsible for the
implementation and training of the algorithm.

Feature extraction

As previously, all images were downscaled by a factor of three to 680 × 840 pixels
to ensure a satisfactory performance during training. We normalized the images to
obtain binary images with pixel values between 0 and 1. The images of the training
and testing sets were split (80%/20%). With a convolution layer consisting of three
20 × 20 filters with a stride of three, padding as well as a hyperbolic tangent acti-
vation function, the images were reduced to a size of 216 × 287 with three channels.
In comparison to above, we extracted the features with a pretrained InceptionRes-
NetV2 network. The weights of the network had been previously trained on the
ImageNet challenge. Afterwards, the resulting 1536 feature maps with a size of
5 × 7 were pooled with GlobalAveragePooling with a stride of two. The final output
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of our neural network was obtained by two fully connected layers with Relu activa-
tion functions, containing 256 nodes in the first layer and 64 nodes in the second
layer, and a fully connected output layer containing two nodes with a SoftMaxacti-
vation function. This algorithm provided a predicted probability for the occurrence
of metastasis and the absence of metastasis to classify the images.

Measures against overfitting

Overfitting can occur during the training of a neural network, especially when the
dataset contains a low number of samples. The algorithm then loses the ability to
generalize the prediction from the training sample because data points have been
fitted too closely during the training. Hence, the algorithm must be adapted to
ensure that the model can provide satisfactory predictions in general and not only
for the training dataset. During the training, we presented the same images multi-
ple times each time with small geometric changes (rotation, shifting, mirroring) as
described by Shorten and Khoshgoftaar (2019). The prediction of the model should
be identical because the structure had been maintained under all modifications. We
generated altered images with random augmentations in each training epoch based
on the ImageDataGenerator implemented in Keras to reduce overfitting.

We set a range of possible parameters for each transformation from which the al-
gorithm uniformly sampled. The images were rotated between −15 and 15 degrees,
shifted between −10 and 10 percent in width and height, and sheared in the interval
of [0, 1] degrees. If present, voids were filled by reflecting the image to obtain the
right format. We chose random rectangular sections of the image and substituted
them with uniformly distributed and smoothed noise to create additional modifica-
tions and avoid overfitting (cf. Zhong et al. (2020)). Examples of augmentations in
the images are provided in Figure 3.4.

Another important tool to reduce the risk of overfitting is dropout. During the
training phase in each step, a fraction of layers was chosen and set to 0. This
reduced the number of parameters adapted in this step and could thus assist in
improving the training of the model. We selected a dropout of 10% for the output
of the InceptionResNetV2, 20% for the first fully connected layer, and 10% for the
second layer.

Statistical analysis

All statistical analyses were conducted using R 4.1.0. The performance of the model
was validated on an external dataset of patients that was not incorporated during
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Figure 3.4: Different augmentations of the original image (A) through rotation (B),
shearing (C), shifting (D), random erasing (E), and a combination of all methods
(F). Adapted from Schiele et al. (2021)

the training process. We aimed to split the patients into two groups according to
the trained model. A histological image was provided to the trained model and the
outcome of the model, namely the probability for the occurrence of metastasis, was
used for further analysis. We decided to use 0.5 as a cutoff value because patients
above this value were more likely to experience a recurrence than to be metastasis-
free (high-risk group). All other patients were assigned to the low-risk group. In
the following text, the model as well as the prediction of the risk group is termed
Binary ImaGe Colon Metastasis classifier (BIg-CoMet) reflecting that we used a
black-and-white image of the tumor section.

The sample was characterized by counts and percentages for categorized variables
and mean as well as standard deviation for continuous variables. The high-risk
and the low-risk group were compared with a t-test or a Wilcoxon-Mann-Whitney
test for continuous variables and a chi-squared test or a Fisher’s exact test for cate-
gorical variables to identify differences in age, sex, or clinicopathological parameters.

Our main focus was on the occurrence of metastasis after diagnosis, and we per-
formed a survival analysis with time until metastasis. We computed Kaplan-Meier
curves for both risk groups and compared them with a log-rank test. The aim was
to identify a significant separation between both groups, which would indicate that
BIg-CoMet had provided accurate results and was capable of the prediction.
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Figure 3.5: Different steps of the image preprocessing; (A) shows the selected stained
region of the tissue sample and (B) a zoomed section where the difference between
lumen (L) and stroma (S) is visible as lumen remains white whereas stroma is stained
with blue dots. All stained images are translated into binary images and lumen is
tried to be closed with ImageJ (C). The remaining lumen, which is marked with an
arrow in (C) and (D) needs to be treated manually. (E) shows the slide of a patient
without metastasis and the preprocessed image (F) predicted as low-risk with a risk
of distant metastasis of 9.6%. (G) shows the slide of a patient with metastasis and
the preprocessed image (H) which was predicted as high-risk with a predicted risk
of distant metastasis of 85.5% by BIg-CoMet. Adapted from Schiele et al. (2021)

In the last step, we adjusted our stratification against several clinical parameters in
a Cox proportional hazard regression. Due to the size of the sample, we previously
fitted univariate Cox proportional hazard regression models for metastasis-free sur-
vival for each clinicopathological parameter and included only parameters with a
p-value < 0.3 in the multivariable model. We computed the hazard ratio and the
corresponding 95% confidence intervals as well as the p-value. Schoenfeld residu-
als were checked for the model to ensure that the proportional hazards assumption
had been fulfilled. In a subgroup analysis, we repeated the above analysis for the
subgroups of the UICC staging.

3.4.2 Results

Characteristics of the validation and the training sample

The training sample (TS) consisted of 163 patients, and the validation sample (VS)
contained 128 patients. An overview of both groups is provided in Table 3.4. The
patients were nearly the same age in both groups with a mean age of 69 years, and
were mostly male (TS: 58%, VS: 61%). In nearly one of three cases, metastases had
occurred during the follow-up period. The training sample had a median follow-up
period of 5.2 years and the validation sample a slightly longer follow-up period of
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5.8 years.

The clinicopathological characteristics of both samples were comparable. In the
training sample, 113 cases (69%) had been classified as pT3, 78(48%) had a positive
nodal status, and in 76 cases (59%) the tumor was located on the right side. The
validation set had a higher fraction of pT3 (85%) and a lower number of patients
with positive nodal status (41%) but nearly the same number of tumors on the right
side (59%). During follow-up 43 patients in the training set and 53 patients in the
validation set had died, with approximately one third of deaths attributed to the
tumor.

Comparison of the risk groups

All 128 patients in the validation collective received a predicted risk of occurring
metastases during follow-up by BIg-CoMet and were classified as either low-risk
(59%) or high-risk (41%). In the low-risk group, metastasis was detected in 10 of 76
patients (13%), whereas 31 out of 52 patients (41%) developed a metastasis in the
high-risk group. Of note, the fraction of patients with metastasis in the high-risk
group was similar to the corresponding fraction in the training sample.

We calculated several performance indicators to judge the performance of BIg-
CoMet in terms of classification. The proportion of correctly classified patients
(accuracy) was 75.8% (95% CI: 67.4–82.9%). The specificity was 75.9% (95% CI:
66.9 − 84.9%) and the sensitivity was 75.6% (95% CI: 62.5–88.8%). This result
indicates that 75% of patients who had developed metastasis were classified as a
high-risk patient and 75% of patients without the occurrence of a metastasis were
assigned to the low risk group.
The positive predictive value of 59.6% (95% CI: 49.5–69.0%) can be interpreted
as the fraction of patients in the high-risk group who had developed a metastasis,
whereas the negative predictive value of 86.8% (95% CI: 79.2–92.0%) means that
86.8% of patients with low-risk had remained without a metastasis.

The two risk groups of BIg-CoMet were compared for all characteristics (Table
3.5). No differences in age, sex, and many clinicopathological characteristics were
observed between the low-risk group and the high risk group. The high risk group
showed a higher fraction of deceased patients (56% vs. 32%, p=0.011) and a higher
proportion of patients with metastasis (60% vs. 13%, p< 0.001). Furthermore, the
tumor proportions were lower in the medium category and higher at the tails in the
high-risk group.
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Table 3.4: Patient characteristics in training and validation set
Variable Validation set (n=128) Training set (n = 163)
Sociodemographic factors

Age, mean (SD), y 69 (12) 69 (11)
Sex, n (%)

Female 50 (39) 68 (42)
Male 78 (61) 95 (58)

Follow-up duration, median, years 5.8 5.2
Clinicopathological characteristics

Tumor stadium, n (%)
pT3 109 (85) 113 (69)
pT4 19 (15) 50 (31)

Nodal status, n (%)
Negative 75 (59) 85 (52)
Positive 53 (41) 78 (48)

Mean lymph node harvest (n) 21 (11) 43 (20)
Positive lymph nodes (n) 1.2 (2.3) 2.0 (3.5)
UICC, n (%)

II 75 (59) 85 (52)
III 53 (41) 78 (48)

Grading, n (%)
Low grade 76 (59) 138 (85)
High grade 52 (41) 25 (15)

Vascular invasion, n (%)
Negative 114 (89) 140 (86)
Positive 14 (11) 23 (14)

Lymphovascular invasion, n (%)
Negative 104 (81) 122 (75)
Positive 24 (19) 41 (25)

Tumor budding, n (%)
Bd 1 103 (80) 104 (64)
Bd 2 15 (12) 36 (22)
Bd 3 10 (8) 23 (14)

Location of tumor, n (%)
Right 76 (59) 91 (56)
Left 52 (41) 72 (44)

Microsatellite status, n (%)
MSS 115 (90) 137 (85)
MSI 13 (10) 24 (15)

Died, n (%)
Yes 53 (41) 43 (26)
No 75 (59) 120 (74)

Died of tumor, n (%)
Yes 21 (16) 18 (11)
No 107 (84) 145 (89)

Distant Metastasis, n (%)
Yes 41 (32) 64 (39)
No 87 (68) 99 (61)

Tumor proportion, mean (SD) 0.358 (0.184) 0.507 (0.111)
Tumor proportion, n (%)

Low 21 (16) 0 (0)
Medium 80 (63) 105 (65)
High 27 (21) 57 (35)

Adjuvant Chemotherapy, n (%)
Yes 66 (52) 69 (42)
No 62 (48) 94 (58)
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Table 3.5: Comparison of patient characteristics in the validation set stratified by
the predicted risk group from BIg-CoMet
Variable BIg-CoMet Low risk (n=76) BIg-CoMet High risk (n=52) p-value
Sociodemographic factors

Age, mean (SD), y 69 (12) 69 (12) 0.753
Sex, n (%) 0.764

Female 31 (41) 19 (37)
Male 45 (59) 33 (64)

Follow-up duration, median, years 5.9 5.5 0.780
Clinicopathological characteristics

Tumor stadium, n (%) 0.056
pT3 69 (91) 40 (77)
pT4 7 (9) 12 (23)

Nodal status, n (%) 0.278
Negative 48 (63) 27 (52)
Positive 28 (37) 25 (48)

Mean lymph node harvest (n) 20 (9) 21 (12) 0.911
Positive lymph nodes (n) 0.9 (1.7) 1.6 (2.9) 0.110
UICC, n (%) 0.278

II 48 (63) 27 (52)
III 28 (37) 25 (48)

Grading, n (%) 0.819
Low grade 44 (58) 32 (62)
High grade 32 (42) 20 (38)

Vascular invasion, n (%) 1.000
Negative 68 (89) 46 (88)
Positive 8 (11) 6 (12)

Lymphovascular invasion, n (%) 1.000
Negative 62 (82) 42 (81)
Positive 14 (18) 10 (19)

Tumor budding, n (%) 0.328
Bd 1 64 (84) 39 (75)
Bd 2 8 (11) 7 (13)
Bd 3 4 (5) 6 (12)

Location of tumor, n (%) 0.614
Right 47 (62) 29 (56)
Left 29 (38) 23 (44)

Microsatellite status, n (%) 0.896
MSS 69 (91) 46 (88)
MSI 7 (9) 6 (12)

Died, n (%) 0.011
Yes 24 (32) 29 (56)
No 52 (68) 23 (44)

Died of tumor, n (%) 0.004
Yes 6 (8) 15 (29)
No 70 (92) 37 (71)

Distant Metastasis, n (%) <0.001
Yes 10 (13) 31 (60)
No 66 (87) 21 (40)

Tumor proportion, mean (SD) 0.376 (0.171) 0.326 (0.199) 0.143
Tumor proportion, n (%) 0.002

Low 6 (8) 15 (29)
Medium 56 (74) 24 (46)
High 14 (18) 13 (25)

Adjuvant Chemotherapy, n (%) 0.431
Yes 37 (49) 29 (56)
No 39 (51) 23 (44)
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Prognostic analysis of BIg-CoMet

In addition to a comparison between the risk groups, we were interested in the prog-
nostic capabilities of BIg-CoMet and performed an survival analysis of metastasis-
free survival. BIg-CoMet demonstrated a high capability of prognosis, as the Kaplan-
Meier curves of the low- and high-risk groups were clearly separated (Figure 3.6A;
log-rank-test: p < 0.001). We further performed a univariable Cox regression. The
risk group classification was a significant factor, with a hazard ratio of 6.9 (95% CI:
3.4–14.2, p < 0.001).
In comparison, we conducted the same analysis for the UICC staging that is com-
monly used as an important tool to classify patients into risk groups. The Kaplan-
Meier curve showed less separation between both groups than in the BIg-CoMet
setting (Figure 3.6B).

Figure 3.6: (a) Kaplan-Meier curves for occurrence of metastasis based on the clas-
sification of BIg-CoMet (p < 0.0001); (b) Kaplan-Meier curves for occurrence of
metastasis based on the different UICC stages (p = 0.18). Adapted from Schiele
et al. (2021)

We investigated whether BIg-CoMet remains a prognostic factor even if adjusted
for other clinicopathological variables. In an initial step, we performed a univariable
Cox regression for each of the variables of interest. Our BIg-CoMet risk group, age,
tumor proportion, tumor budding, and tumor staging had a p-value < 0.05 (Table
3.6). We further considered all variables with a p-value < 0.3 and enhanced the set
of parameters with sex, nodal status, lymphovascular invasion status, location of
the tumor and microsatellite status.
A higher risk for the occurrence of metastasis was associated with the high-risk group
classified by BIg-CoMet (HR = 5.4, 95% CI: 2.5–11.7, p-value < 0.001) and pT4
tumor staging (HR = 2.6, 95% CI: 1.1–6.0, p-value = 0.029). Patients with medium
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Table 3.6: Univariate Cox PH regression for occurrence of metastasis.
Variable p-value
Sociodemographic factors

Age (continuous) < 0.001
Sex (ref.: female) 0.287

Clinicopathological factors
Big-CoMet risk group (ref.: low) < 0.001
Tumor proportion (ref.: High) 0.003
Tumor stadium (ref.: pT3) 0.001
Nodal status (ref.: negative) 0.183
Lymphovascular invasion (ref.: negative) 0.059
Tumor budding 0.014
Location of tumor (ref: right side) 0.079
Microsatellite status (ref.: MSS) 0.094
Mean lymph node harvest (n) 0.373
Grading 0.722
Vascular invasion 0.315
Adjuvant Chemotherapy 0.750

tumor proportion had a lower risk for metastasis compared to patients with high
tumor proportion (HR = 0.4, 95% CI: 0.2–0.99, p-value = 0.047). Microsatellite
instable tumors showed a non-significant trend toward a lower risk for metastasis
(p= 0.076) (Table 3.7).

Subgroup analysis for UICC

We performed an additional subgroup analysis, in which both UICC subgroups were
considered separately. We computed sensitivity as well as specificity and performed
a survival analysis similar to the metastasis-free survival analysis as above.

BIg-CoMet performed well in the UICC II group, with an area under the curve
of 0.76, a sensitivity of 55.0% and a specificity of 70.9%. Although the sensitivity
was relatively low, patients without a metastasis were mainly correctly classified.
For UICC II, the risk groups differed significantly according to metastasis-free sur-
vival (log-rank-test, p = 0.016) and the risk group assignment was shown to be a
prognostic predictor in a univariable Cox regression with a hazard ratio of 2.9 (95%-
CI: 1.2 − 7.0, p= 0.021).

BIg-CoMet demonstrated better ability to stratify patients correctly for patients
with a UICC III classified tumor with a high area under the curve (AUC = 0.927)
and a sensitivity of 95.2% as well as a specificity of 84.4%. This result suggests that
BIg-CoMet may be especially helpful for UICC III tumors. Only few patients had
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Table 3.7: Multivariable Cox PH regression for occurrence of metastasis.
Variable HR (95% CI) p-value
Sociodemographic factors

Age (continuous) 1.01 (0.98–1.04) 0.592
Sex (ref.: female) 1.2(0.6–2.6) 0.626

Clinicopathological factors
Big-CoMet risk group (ref.: low) 5.4(2.5–11.7) < 0.001
Tumor proportion (ref.: High)

Medium 0.4(0.2–0.99) 0.047
Low 0.7(0.3–1.7) 0.410

Tumor stadium (ref.: pT3) 2.6(1.1–6.0) 0.029
Nodal status (ref.: negative) 0.9(0.5–1.8) 0.838
Lymphovascular invasion (ref.: negative) 1.3(0.6–3.2) 0.517
Tumor budding 1.6(0.96–2.7) 0.069
Location of tumor (ref: right side) 1.5(0.7–3.2) 0.245
Microsatellite status (ref.: MSS) 0.2(0.02–1.2) 0.076

developed metastasis during the follow-up period in the low-risk group. However,
of patients with a high predicted risk, 80% had developed a metastasis.
Metastasis-free survival differed between both risk groups (log-rank-test, p< 0.001).
BIg-CoMet was a prognostic predictor in the UICC III subgroup, although the re-
sults must be interpreted carefully due to the small sample size (HR = 45.2, 95%
CI 6.0–340.8, p < 0.001)(Figure 3.7).

Figure 3.7: (a) Kaplan-Meier curves for occurrence of metastasis based on the clas-
sification of BIg-CoMet for UICC II cases (p = 0.016); (b) Kaplan-Meier curves for
occurrence of metastasis based on the classification of BIg-CoMet for UICC III cases
(p < 0.001). Adapted from Schiele et al. (2021)
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3.4.3 Discussion

In this study, we have presented an application of modern statistical methods, espe-
cially artificial intelligence, to stratify patients with locally advanced colon cancer
according to their risk of occurrence of metastasis. In comparison to many others
applications, we aimed to provide a prognosis for the further course of the disease
instead of a prediction of whether an illness is currently present. The decision of our
algorithm, BIg-CoMet, was based on a selected and preprocessed region of a histo-
logical slide of the tumor area, which could be easily accessed, and the predicted
probability for metastasis of a trained deep learning network for the image.

With this combination, we found a low-risk and a high-risk group, which are well
separated based on metastasis-free survival. The accuracy of the classification was
better for BIg-CoMet than for other established criteria such as UICC staging. Fur-
thermore, even after adjustment for other clinically important factors, our risk group
prediction remained an independent risk factor in a multivariable Cox regression.
This quality of BIg-CoMet could be confirmed for both UICC subgroups.

To date, only a few studies by Bychkov et al. (2018), Kather et al. (2019), and
Skrede et al. (2020) have investigated models based on deep learning for prognosis
of metastasis occurrence in patients with colon cancer. All of these studies used
H&E stained images, in contrast to our immunohistochemical staining.
Kather et al. (2019) performed a tissue classification of images in which they divided
each image into several small tiles and predicted the type of tissue with a trained
CNN. The proportions of different tissue types were then summarized in a score
that could be used for prognosis. Another approach trained a deep learning model
on the whole slide image without any prior tissue classification. Skrede et al. (2020)
and Bychkov et al. 2018 trained their algorithm with large sample sizes of 828 and
280, respectively, and presented results indicating that their risk classification is a
promising risk factor for metastasis-free survival (HR= 3.04, 95% CI: 2.07–4.47 and
HR= 2.3, 95% CI: 1.79–3.03). BIg-CoMet could also be shown as a significant pre-
dictor, with a hazard ratio of 5.4 (95% CI: 2.5–11.7) in a smaller sample size of 163
patients but using binary images containing less information than an H&E image.

Our findings suggest that the structure of the tumor contains a sufficiently high
amount of information for appropriate stratification. Because only black-and-white
histological tumor images were used for the training, other components such as
the nuclear configuration of the tumor cells or presence of tumor-infiltrating lym-
phocytes could not influence the algorithm. In our view, reducing the information
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during the training of an algorithm is beneficial to focus on certain facets associated
with a poor prognosis, such as the tumor architecture.

If algorithms such as BIg-CoMet could be implemented in daily routine, physicians
would be supported in their decision making and the subsequent therapy decisions
could be improved as follow-up intervals of patients in the high risk group could be
shortened or further medical interventions could be recommended. The subgroup
analysis suggests that in addition to already established criteria, BIg-CoMet can be
an additional tool to further improve the classification of patients.

One limitation of our approach is that we can reduce the field of attention of the
algorithm but still do not know which exact feature or structure might have led
to the classification. One widely discussed issue is whether the difficult interpreta-
tion of such algorithms presents an obstacle to further dissemination, particularly
in health science and how this problem might be solved (cf. F. Wang et al. (2020)
and Castelvecchi (2016)). Applications that are not traceable by physicians may
suffer from a lack of acceptance despite their strong performance and benefit for
daily routine.
Furthermore, it must be recognized that all patients had been treated at the same
center and their histological images had been prepared by the same pathologist. A
wider application might introduce interobserver variability into the process. How-
ever, H&E staining is also not standardized and exhibits variability among different
laboratories.

To address these issues, it will be necessary to validate our findings independently
on another sample and also to investigate the performance in a prospective study
to further implement BIg-CoMet in clinical routines. An important question is
whether BIg-CoMet can be applied to other cancer entities, for example gastric can-
cer, without changing the structure of the algorithm or whether the type of staining
must be changed to produce an accurate prognosis for the further course of a patient.

BIg-CoMet has demonstrated that a deep learning algorithm based on binary his-
tological tumor images can stratify patients with colon cancer with regard to their
risk of occurrence of metastasis. Further validation using other samples is needed
to provide insight regarding important structures in the image and ensure its wider
application.
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Chapter 4

Development of Scores for Medical
Research with Generalized Linear
Regression Models and Methods
from Survival Analysis

Keywords: prognostic score, generalized linear models, optimal cutoff determina-
tion, survival analysis, risk groups, aneurysmatic subarachnoid hemorrhage,
oligometastatic colon cancer

4.1 Development of a score for prediction of shunt
risk for patients after an aSAH with general-
ized linear regression models

One major task of statistics in medicine concerns the development of appropriate
predictive models and scores by using measured patient characteristics. These pre-
dictions can be the survival time of a patient, the patient’s risk for a disease or an
information useful for the treatment of the patient. Dependent on the task, there
is a high number of options for statistical models. Generalized linear models and
particularly logistic regressions are often the basis of statistical models. As an ex-
ample, in this chapter, we introduce the theory of the development of a score by a
logistic regression and applied this in the context of patients with an aneurysmatic
subarachnoid hemorrhage (aSAH), which is a special kind of cerebral hemorrhage.
For patients suffering from an aSAH, a statistical model should help to predict the
risk of a shunt implantation. Further, we built a score based on predictors from
the derived model to ensure an easy and traceable usage in hospitals. The appli-
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cation arose from a collaboration with Bastian Stemmer from the Department of
Neurosurgery at the University Hospital Augsburg.

4.1.1 Biological background

Around 5% of all strokes are caused by an aSAH, according to Bederson et al. (2009).
In nearly 80% of cases, the initial event of an aSAH is the rupture of an aneurysm
in the basal arteries of the brain. Consequently, the intracranial pressure increases
immediately and leads to a wide range of symptoms from sudden severe headache
and nausea to unconsciousness in critical cases (cf. Spendel (2008)).

Because of the high mortality rate of 50% for patients suffering from an aSAH,
an immediate treatment is important to decrease the risk for possible consequential
damages. One possible complication is the build-up of a hydrocephalus that occurs
in around 25% of all patients within a few days after the aSAH. A hydrocephalus
is a collection of cerebrospinal fluid that cannot be dissolved and hence leads to
an increased pressure in the brain. For treatment, a temporary shunt is implanted
to avoid further neurological damages as explained by Hasan et al. (1989). If the
ability to transport the liquor in the brain is not improved during the follow-up pe-
riod, a permanent shunt must be implanted. However, this implant reduces the life
quality of a patient and should therefore only be done if it is absolutely necessary.
To support physicians in their decisions, a statistical model is developed to predict
the risk for a permanent shunt implantation.

4.1.2 Data

For this study, patients who had suffered from an aSAH and underwent an en-
dovascular treatment between January 2010 and July 2015 at the Department of
Neurosurgery of the University Hospital Augsburg were included. Furthermore, pa-
tients had to have received a cerebrospinal fluid drainage via an external ventricular
drainage within three days after a beginning treatment, and patients who were not
alive 12 months after aSAH were removed from the sample. The outcome was the
defined as whether a patient obtained a shunt or not within 12 months after their
diagnosis to avoid patients who received a shunt not at the hospital but at a later
point in time. For each patient, demographical variables (age, sex), clinical variables
(shunt, different scores concerning the health status), radiological variables (mea-
surements of the ventricle extracted from CT imaging of the brain), and volume of
cerebrospinal fluid loss for each day were available and are described below in detail.
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Duty of shunt implantation

The duty of a shunt was modeled as a binary variable, where 0 indicated the absence
of an implanted shunt within 12 months after an aSAH and 1 indicated that the
course of the disease necessitated a permanent shunt either during hospitalization
or during the first year after an aSAH. This decision was made according to medical
guidelines.

Further variables

Hunt and Hess grading

The Hunt and Hess-Grading is used to judge the severity of an aSAH and the
perioperative mortality according to patients symptoms (cf. Hunt and Hess (1968)).
The scale can be divided into five grades between 1 (best health status) and 5 (worst
health status)(Table 4.1).

Table 4.1: Criteria of the five grades of the Hunt and Hess-Grading
Category Criteria
Grade I Asymptomatic, or minimal headache and slight nuchal rigidity
Grade II Moderate to severe headache, nuchal rigidity, no neurological deficit

other than cranial nerve palsy
Grade III Drowsiness, confusion, or mild focal deficit
Grade IV Stupor, moderate to severe hemiparesis, possibly early decerebrate

rigidity and vegetative disturbances
Grade V Deep coma, decerebrate rigidity, moribund appearance

Glasgow Coma Scale

The Glasgow Coma Scale is used to assess a person’s consciousness according to
three items: motor response, verbal response, and eye response. The items are
scored according to Table 4.2, and the sum of these items builds the Glasgow Coma
Scale with a range between 3, negative status, and 15, positive status (Teasdale and
Jennett (1974)).

Vasospasms

Especially in the context of aSAH, there is an increased risk for a Vasospasm, which
is an arterial spasm that leads to vasoconstriction. As a result, tissue ischemia and,
hence, tissue death can occur. The variable was binary encoded.
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Table 4.2: Criteria of the Glasgow Coma Scale

Score Eye Response Verbal Response Motor Response
1 point Does not open eyes Makes no sounds Makes no movements
2 points Opens eyes in response to

pain
Makes sounds Extension to painful stimuli

(decerebrate response)
3 points Opens eyes in response to

voice
Words Abnormal flexion to painful

stimuli (decorticate re-
sponse)

4 points Opens eyes spontaneously Confused, disoriented Flexion / Withdrawal to
painful stimuli

5 points Oriented, converses nor-
mally

Localizes to painful stimuli

6 points Obeys commands

mRS at admission

Rankin (1957) introduced the modified Rankin Scale (mRS) that can be used to
determine the severity of a patient’s disability after a stroke or another neurological
disease. Low values indicate no or a few symptoms for a disability, whereas values of
4 to 5 are assigned for (moderately) severe disabilities. The highest possible rating,
6, is equal to the death of the person.

Fisher Grading Scale

The Fisher Grading Scale judges the amount of subarachnoid hemorrhage on CT
images. The scale possesses four different levels with Grade 1 indicating the lowest
amount and Grade 4 indicating the most severe level (cf. Fisher et al. (1980)).

Size and region of aneurysm

For every patient, the size and the region of the aneurysm were determined. The
aneurysm reasoning the SAH is mainly located in four regions: the anterior cere-
bral artery (ACA), the middle cerebral artery (MCA), the internal carotid artery
(ICA), and the basilar artery or vertebrobasilar We included the location to examine
whether this variable was associated with the outcome.

Measurements resulting from CT imaging

Based on a CT image, relevant properties of ventricles were measured and labeled
with letters A to F (Figure 4.1). For example, C measured the width of the third
ventricle.
We further calculated indices with the taken measurements for further analysis.:

• Evans ratio = A
E
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Figure 4.1: CT image of the brain with annotations for the measurements A-F. This
image was taken at the University Hospital Augsburg and is adapted from Stemmer
(2019)

• Third-ventricle-index = C
E

• Cella-media-index = D
F

• Ventricular score = [(A + B + C + D)/E]

4.1.3 Statistical approaches

All statistical analysis were conducted with the free-available software R (version
4.1.1). In the following subsections, the different steps of the analysis are described
in detail.

Descriptive statistics and comparison of patients dependent
on the duty of shunt

To describe the characteristics of the sample, we calculated the counts and percent-
age of categorized variables and means as well as standard deviations for continuous
variables. We split the sample into two groups dependent on the implantation of a
permanent shunt and investigated whether there are differences between these two
groups by conducting statistical tests. For the comparison of a categorized variable,
we used chi-squared tests and Fisher’s exact tests. Further, in case of continuous
variables, we chose t-tests if the data was normally distributed or Wilcoxon-Mann-
Whitney tests.

Cutoff determination

Because the developed score should be widely and easily applicable at hospitals,
we decided to dichotomize continuous variables to facilitate the computation and
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increase its comprehensibility for not only the doctors but also the patients. Like
in many other tasks, the acceptance of a score is improved if it can be explained in
a few simple words to patients. To find optimal cutoff values for all variables, we
developed Algorithm 1.

First, we defined a suitable discrete parameter space Θxi
= {θ0, θ1, ...} for each

Algorithm 1: Optimal cutoff determination
Result: Determine of the optimal cutoff-value
Initialization of a suitable parameter space Θxi

for θ ∈ Θxi
do

Define a binary variable xθ

Fit a univariate logistic regression and calculate AICθ

end
return Select θ∗ as argminθ∈ΘAICθ

variable xi according to the range of xi. Then, for every θ in Θxi
, we created a

binary variable xθ based on the concerned variable xi:

xi,θ =

0 for x ≤ θ

1 for x > θ

With the calculated xi,θ as an independent variable, we fitted a univariate logistic re-
gression model for the duty of shunt implantation. The different models and ,hence,
cutoff values were evaluated based on the Akaike Information Criterion (AIC). As
a lower AIC value represents a better cutoff, we finally assigned the cutoff value as
those with the lowest AIC. For this selected model, we reported the odds ratio (OR),
the 95% confidence interval (CI), and the p-value of the independent variable.

Generalized linear model

In a next step, we determined significant predictors within a multiple generalized
linear model (GLM) using the binary variables with the determined cutoffs as inde-
pendent variables. As the output (shunt implantation) is binary, a logistic regression
model was suitable. Because of the small sample size, we pre-selected candidates
from the whole set of variables. Our choice was reasoned by the AIC of the univari-
ate logistic model such that we took those variables whose univariate model had the
lowest AIC. To remove variables without significant association from the multivari-
able model, we performed an AIC backwards-stepwise selection. We reported the
results of the final model by ORs with 95%-CI and p-values. Further, we visualized
the ORs with a forest plot.
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Furthermore, we repeated Algorithm 1, but this time with a high-dimensional pa-
rameter space of all k parameters of the final model, Θ̂ = Θx1 × Θx2 × ... × Θxk

,
to check whether our choice of cutoffs could be improved. For every θ ∈ Θ̂, we
fitted a logistic regression model based on the binary variables x1,θ1 , x2,θ2 , ..., xk,θk

and compared the resulting AIC. The optimal parameter θ∗ was chosen from the
model with the lowest AIC.

Development and evaluation of a score

The final model built the origin for developing a score. For every binary variable
xi,θ∗

i
, we decided whether a value of 0 or a value of 1 is awarded with one point based

on the OR. If the variable had an OR > 1 in the multiple model then xi,θ∗
i

= 1 showed
a worse prognosis and hence one point was added to the score. In case of OR < 1
we took the other decision.

With this procedure, we obtained three different scores that were computed for
every patient:

1. sdis, which is a discrete score like the one described above,

2. spro, which is based on the predicted probability of the model,

3. swdis, which is a discrete score, but this time the variables are weighted by
their OR in the multivariable model.

The performance of classification between the three scores was compared by their
area under the ROC curve (AUC).

4.1.4 Results

The sample of patients satisfying the inclusion criteria consisted of 91 patients of
whom 64% (n = 58) underwent a permanent shunt implantation. The average age of
patients in this sample was 55.3±14.0 years of age. 35.2% were assigned a Hunt and
Hess grading of > 3, which is associated with a severe status, and 38.5% obtained a
score of 9 or less on the Glasgow Coma Scale, showing an impaired consciousness.
In nearly half of all treated patients (45.1%), a severe disability was diagnosed at
admission. Moreover, a vasospasm was present in 46.2% and an intraventricular
hemorrhage was found in 68.1%.
During the first seven days of treatment the daily volume of liquor drainage of all
patients was measured and listed. Their individual mean of the first seven days
was calculated. On average, the computed mean of volume was 229.5ml ± 76.9ml.
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Furthermore, the aneurysm of the patients had a mean size of 8.0mm ± 2.7mm and
the third ventricle was wider than 6 mm for 73.6%. On average, the determined
ventricular score was 0.71 ± 0.13.

Comparison between the two groups

After a description of the whole sample, we divided the patients into two groups
dependent on their need for a permanent shunt implantation. We found differences
between both groups, especially for clinical parameters and CT measurements from
the aneurysm. There were no differences between the groups concerning the intra-
ventricular hemorrhage, but the group without the implantation of a permanent
shunt was on average younger (51.5 years vs. 57.4 years, p < 0.001 and had a
wealthier health status at admission with a lower fraction on the modified Rankin
Scale > 4 (18.2% vs. 60.3%, p < 0.001)), a lower fraction of GCS ≤ 9 (15.2% vs.
51.7%, p < 0.001), and a lower fraction of HH > 3 (15.2% vs. 65.9%, p = 0.005).
Moreover, the fraction of patients for whom a vasospasm was diagnosed was lower
than for patients with a shunt (21.2% vs. 60.3%).

Patients with a shunt had a mean daily volume of liquor drainage of 243.7 ml during
the first week, whereas without a shunt only 204.4 ml was measured. In a compari-
son, we found differences between the groups for parameters of the aneurysm. The
third ventricle was wider (mean: 8.6 mm vs. 6.9 mm; p=0.003) and the ventricular
score was higher (mean: 0.74 vs. 0.65; p=0.003) with a shunt implantation, but no
differences in the location of the aneurysm could be observed (Table 4.4).

Determination of optimal cutoff values

According to Algorithm 1, we started the procedure by choosing an appropriate pa-
rameter grid Θxi

for each variable xi. Then, we followed the steps described above
to obtain the best suited cutoff for the parameter. In case of GCS, we made an ex-
ception and took not the optimal but a value with an AIC close to the optimal. This
is reasoned by its common use as the threshold for GCS and the habit of physicians
in their daily routine. A change could lead to reduced acceptance for the developed
score. Because there is hardly a difference between both parameters with respect to
the AIC, our approach was acceptable.

We performed univariate logistic regression models to investigate associations be-
tween several parameters and the implantation of a permanent shunt. Sex was not
associated with a shunt. However, greater odds for implantation were associated
with a higher age (OR: 5.88[2.20–16.91]), a higher HH grading (OR: 4.88[1.76 −
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Table 4.3: Characteristics of the sample
Variable N %

Shunt implantation
Yes 58 64.0
No 33 36.0

Sociodemographic factors
Age 55.2 ± 14.0

≤ 45 years 24 26.4
> 45 years 67 73.6

Sex
Female 63 69.2
Male 28 30.8

Clinical data
Hunt & hesse grading

≤ 3 59 64.8
> 3 32 35.2

Fisher
≤ 3 28 30.8
> 3 63 69.2

GCS
≤ 9 35 38.5
> 9 56 61.5

Modified Rankin Scale at admission
≤ 4 50 54.9
> 4 41 45.1

Vasospasm
No 49 53.8
Yes 42 46.2

Liquor (CSF)-Drainage [Mean over first 7 days] 229.5 ± 76.9
≤ 180 ml 23 25.3
> 180 ml 68 74.7

Intraventricular Hemorrhage
No 29 31.9
Yes 62 68.1

Aneurysm
Size 7.1 ± 3.6
Region

MCA 9 9.9
ACA 37 40.7
ICA 24 26.4
Vertebrobasilar 21 23.1

Measurements from CT imaging
Width of third ventricle 8.0 ± 2.7

≤ 6 mm 24 26.4
> 6 mm 67 73.6

Ventricle Score 0.71 ± 0.13
≤ 0.6 17 18.7
> 0.6 74 81.3

Evans Index 0.28 ± 0.04
Third-Ventricle-Index 0.06 ± 0.02
Cella-Media-Index 0.19 ± 0.04
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Table 4.4: Comparison of patient characteristics stratified by the duty of a perma-
nent shunt implantation

Shunt No Shunt
n = 58 n = 33

Variable N % N % p-value
Sociodemographic factors
Age 57.4 ± 13.0 51.5 ± 15.0

≤ 45 years 8 13.8 16 48.5 < 0.001
> 45 years 50 86.2 17 51.5

Sex
Female 38 65.5 25 75.8 0.435
Male 20 34.5 8 24.2

Clinical data
Hunt & hesse grading

≤ 3 31 34.1 28 84.8 0.005
> 3 27 65.9 5 15.2

Fisher
≤ 3 16 27.6 12 36.4 0.261
> 3 42 72.4 21 63.6

GCS
≤ 9 30 51.7 5 15.2 < 0.001
> 9 28 48.3 28 84.8

Modified Rankin Scale at admission
≤ 4 23 39.7 27 81.8 < 0.001
> 4 35 60.3 6 18.2

Vasospasm
No 23 39.7 26 78.8 < 0.001
Yes 35 60.3 7 21.2

Liquor (CSF)-Drainage [Mean over first 7 days] 243.7 ± 80.7 204.4 ± 63.4
≤ 180 ml 8 13.8 15 45.5 0.002
> 180 ml 50 86.2 18 54.5

Intraventricular Hemorrhage
No 17 29.3 12 36.4 0.645
Yes 41 70.7 21 63.6

Aneurysm
Size 7.5 ± 4.0 6.4 ± 2.5 0.383
Region

MCA 4 6.9 5 15.2 0.096
ACA 25 43.1 12 36.4
ICA 12 20.7 12 36.4
Vertebrobasilar 17 29.3 4 12.1

Measurements from CT imaging
Width of third ventricle 8.6 ± 2.8 6.9 ± 2.1 0.003

≤ 6 mm 8 13.8 16 48.5 < 0.001
> 6 mm 50 86.2 17 51.5

Ventricle Score 0.74 ± 0.13 0.65 ± 0.11 0.003
≤ 0.6 4 6.9 13 39.4 < 0.001
> 0.6 54 93.1 20 60.6

Evans Index 0.29 ± 0.04 0.26 ± 0.04 0.002
Third-Ventricle-Index 0.07 ± 0.02 0.05 ± 0.02 0.003
Cella-Media-Index 0.20 ± 0.04 0.18 ± 0.03 0.003
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Table 4.5: Determination of optimal cutoff values for continuous parameter and
univariable logistic regression for the duty of a permanent shunt
Variable Optimal cutoff AIC OR [CI] p-value
Sociodemographic factors

Age > 45 110.45 5.88[2.20 − 16.91] < 0.001
Sex 122.10 n.s.

Clinical data
Hunt & hesse grading > 3 113.38 4.88[1.76 − 15.94] 0.004
Fisher > 3 122.44 n.s.
GCS ≤ 9 110.34 6.00[2.17 − 19.62] 0.001
Modified Rankin Scale at admission > 4 107.13 6.85[2.58 − 20.74] < 0.001
Vasospasm 109.59 5.65[2.20 − 16.11] < 0.001
Liquor (CSF)-Drainage [Mean over first 7 days] > 180 112.32 5.21[1.93–14.97] 0.001
Intraventricular Hemorrhage 122.72 n.s.

Aneurysm
Size > 10 113.50 8.35[1.53 − 155.86] 0.047
Width of third ventricle > 6 113.35 4.52[1.75–12.22] 0.002
Evans Index > 0.29 115.19 4.24[1.53–13.88] 0.009
Ventricle Score > 0.6 108.91 8.77[2.75–34.14] < 0.001

15.94]), a lower GCS (OR: 6.00[2.17 − 19.62]), a severe disability (mRS > 4) (OR:
6.85[2.58–20.74]), and a higher daily mean liquor drainage during the first seven
days (OR: 5.21[1.93–14.97]). On the other hand, there was no association with the
Fisher score or the intraventricular hemorrhage.
Finally, measurements of the tumor and CT-based imaging were explored. From the
analysis, we found that the more severe the aSAH is, the higher the odds for a shunt
implantation can be estimated. In detail, the following parameters showed signifi-
cant associations with an increased odds of a permanent shunt: a greater size of the
aneurysm (OR: 8.35[1.53 − 155.86]), a wider third ventricle (OR: 4.52[1.75–12.22]),
a higher Evans index (OR: 4.24[1.53–13.88]), and a higher ventricular score (OR:
8.77[2.75–34.14]).

Multiple model

The score was developed by fitting a multiple model. Although a higher sample size
would be necessary to obtain more precise results, the multivariable model contained
eight variables with the lowest AIC. In our example, this was smaller than 113.50. Of
note, according to this approach, the selection was not focused on a special group of
parameters but composed of variables distributed across parameter categories such
as sociodemographic parameter (age), clinical data (HH grading, GCS, mRS, va-
sospasm, and mean daily volume of liquor drainage during the first seven days after
implantation of a temporary shunt), and measurements of the aneurysm (width of
the third ventricle and the ventricular score).
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We removed non-significant variables via an AIC based stepwise backward selec-
tion that resulted in five remaining variables. Risk factors for a shunt implantation
were a higher age (OR: 8.10 [2.04–38.44]), a smaller GCS (OR: 8.88 [1.81–74.13]),
a vasospasm (OR: 4.43 [1.32 − 16.60]), a higher mean volume of liquor drainage
during the first seven days (OR: 7.88 [2.03–36.49]), and a higher ventricular score
(OR: 15.23 [2.76–133.41]) (Figure 4.2).

Figure 4.2: Forestplot of all variables remaining in the multiple logistic regression
model for the duty of a permanent shunt after selection

Furthermore, we repeated the analysis of suitable cutoffs again but simultaneously
for all parameters remaining in the final model. Θ̂ = Θx1 × Θx2 × Θx3 × Θx4 × Θx5

was defined as the parameter space for Algorithm 1. We obtained the same result
like the combination of the univariate cases, which underlines that the choice of
thresholds was suitable for the parameters.

Score and evaluation

Based on the fitted multiple model, we experienced three different approaches for
calculating a risk prediction score for shunt implantation.

1. sdis: For every of the five dichotomized risk factors (age, GCS, vasospasm,
mean daily liquor, and ventricular score) one point was awarded if the risk
factor was present for a patient and its sum was assigned as the final score.
The score has a range of 0 to 5.

2. spro: We took the outcome of the fitted logistic regression model as score. This
was possible since the model predicts the probability for a shunt implantation

57



Table 4.6: Weighting of the factors of the score in three different variants
Variable Score sdis Coefficient for spro Score swdis

Age > 45 1 point 2.09 2 points
Vasospasm 1 point 1.49 1 point
GCS ≤ 9 1 point 2.18 2 points
Mean of daily volume of liquor > 180 1 point 2.06 2 points
Ventricular score > 0.6 1 point 2.72 4 points
Range of the score 0 − 5 0 − 1 0 − 11

based on independent variables, so all predictions stayed in the interval [0, 1].
Because of the use of binary predictors, the outcomes from this model are also
discrete but with more differentiation.

3. swdis: We created a discrete score that is a combination of sdis and spro. Every
of the five dichotomized risk factors received a score, but in comparison to
sdis, not only one point is awarded, but this time the score is dependent on
the OR from the multiple model. We divided the OR by 4 and rounded the
result, so we obtained one point for the presence of a vasospasm, two points
for age above the cutoff, GCS below the cutoff, mean of the daily volume of
liquor drainage above the cutoff, and four points for a ventricular score above
the cutoff.

To evaluate the described scores, we calculated the AUC. We found that all three
scores demonstrated an accurate predictive power with an AUC over 0.90 and hardly
differed from each other (Table 4.7). This was a strong indication that all three
scores are useful for clinical prediction. As we are interested in a score with a simple

Table 4.7: Comparison of the scores with respect to the AUC
Type of score AUC 95 %-Confidence Interval
Score sdis 0.90 [0.84,0.96]
Score spro 0.91 [0.85,0.96]
Score swdis 0.90 [0.85,0.95]

calculation and a tractable explanation for the patient, we decided to use the sdis as
the final score. Its performance with respect to AUC was on the same level as the
other tested scores, but its interpretability was higher.

To show that the selected score is suitable to predict the risk, we computed the
fraction of patients with a shunt implantation for every level of the score. With a
score of 0 or 1, hardly any patient needed the implantation of a permanent shunt.
However, this risk increased with an increased score, as patients with a score of 2
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received a shunt in 30% of cases and patients with a score of 3 in 62.5%. Moreover,
a score greater than or equal to 4 resulted in an implantation in nearly all cases.

Figure 4.3: Fraction of patients receiving a permanent shunt for every level of the
final score.

4.1.5 Discussion

In this section, we presented a score to predict the risk of shunt implantation for
patients suffering from an aSAH. To incorporate continuous variables in the score,
we determined optimal cutoff values for those with respect to the AIC. We iden-
tified risk factors in a multiple logistic regression model via AIC-based backward
selection. Finally, we included the age, the GCS, the presence of a vasospasm, the
mean drainage, and the ventricular score in the score.

We compared three different approaches for the calculation of a score: assigning
one point to every identified risk factor, assigning each patient the predicted proba-
bility from the logistic regression model, and assigning a weight proportional to the
computed OR to each variable. We found that, in our setting, there were hardly
any differences and decided to score each risk factor with one point. Patients with a
score of 4 or 5 received a shunt in nearly 100%, whereas the percentage of patients
with a shunt was low for patients with a low score.

Moreover, this study has some limitations. The low case number was a restric-
tion for our study. Due to a small sample size, we could not split the sample into a
validation and exploration set, which denies an evaluation of the developed score for
a separate data set. Hence, the score should be tested further for an independent
set of patients to prove its predictive power and enable a general use.
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4.2 Development of a score for stratification of
patients according to their survival using
methods from survival analysis

This project was based on a cooperation between the III. Medical Clinic at the Uni-
versity Hospital Augsburg (Giuliano Velazquez and Rainer Claus) and the Institute
of Mathematics (Gernot Müller and Stefan Schiele). The method that is described
on the following pages was applied to develop a score in Velázquez et al. (2022).

4.2.1 Biological background

Patients who have been diagnosed with colorectal cancer are likely to develop metas-
tases in the lung or liver, which often causes death. If multiple and widespread
metastases are already present at the time of diagnosis, the therapy becomes par-
ticularly complicated, and a surgical resection is often impossible. Patients with
low-stage liver metastases, who are called oligometastatic, might benefit from resec-
tion (cf. Tomlinson et al. (2007)). Although this state is not uniformly defined, it
is characterized as an intermediate stage between the localized and the widespread
form of the disease, in which only a few metastases are present. This definition was
introduced by Weichselbaum and Hellman (2011).

Whether performing surgery on an oligometastatic patient is desirable depends on
their chances of survival after the surgery. When the primary cancer is treated and
all metastases can be detected and ablated, a long disease-free period is possible.
However, if the survival time is short, a medical intervention might not be justi-
fied because of the high physical burden of surgery. Therefore, in this study we
attempted to find a score that can help physicians to assess overall survival time
and disease-free survival time preoperatively. A newly introduced score is employed
to identify subgroups which are likely to benefit from a surgical resection.

Malik et al. (2007) and Fong et al. (1999) found several variables that exert a
significant influence on the overall survival of patients. They found that the nodal
status of the primary tumor, the number of metastases that are detected in a patient
at diagnosis, the size of the tumor, and inflammatory response to the tumor (IRT),
among others, are important risk factors for overall and disease-free survival. De-
spite detecting patients who might benefit from a surgery in a satisfactory manner,
those factors are still not reliable enough for clinical application, as explained by
Schreckenbach et al. (2015).
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Our sample consists of patients from several hospitals who had undergone a sur-
gical resection of liver metastases from colorectal cancer. We investigated which
variables are associated with overall survival in course of a survival analysis. The
set of variables includes previously identified risk factors as well as new variables
such as the sidedness of the tumor. We used the variables that we identified as
relevant to develop a score. This score stratifies the patients into subgroups, and
we validated it on an independent set of patients that was not considered during
training.

4.2.2 Data

A total of 512 patients with metastatic colorectal cancer who had been treated for
a primary tumor and had undergone surgical resection of de novo liver metastases
between January 2006 and December 2016 at 16 different hospitals were enrolled in
this study. The patients had mainly been treated at the University Hospital Augs-
burg (n=92), at the University Hospital Regensburg (n=186), and at the Katharinen
Hospital Stuttgart (n=44) as well as at 13 smaller hospitals. Patient data from these
smaller hospitals were documented by the Center of Tumor Registry at the Univer-
sity of Regensburg. Patients with extrahepatic metastases were excluded from the
study.

Tumors in the ascending colon and in the colon transversum were defined as right-
sided and tumors in the beginning of the left colon flexure were defined as left-sided.
Furthermore, patients with a CRP level of ≥ 1mg

dl
were considered positive for IRT.

Physicians collected all medical data. Informed consent was obtained from all pa-
tients. All analyses were performed according to the terms of the declaration of
Helsinki.

4.2.3 Statistical approaches

The 512 patients were split into a training set and a validation set to ensure that
the score could be validated on an independent group of patients. The applicability
of an appropriate score should not depend on the hospital at which the patients in
the training set are treated. We built the training set (n = 282) from the data of the
University of Augsburg and the Tumor Registry, whereas the validation set contains
230 patients from the Regensburg and Stuttgart hospitals.

The two endpoints were disease-free survival (DFS) and overall survival (OS). DFS
is the period from the date of the surgery to the recurrence of disease. If there had
been no recurrence at the most recent follow-up, the patient would be censored at

61



this point for the analysis. OS is defined similarly, but it terminates with the death
of the patient.

Differences between the training and the validation group were tested statistically
with chi-squared test for categorical variables and with a t-test for continuous vari-
ables. All tests were two sided and with a significance level of 5%. We used the
statistical computing program R (version 4.0.2.).
We performed the following steps, which we describe in detail on the following pages,
in order to develop the score:

1. Searching for an optimal cutoff for continuous variables,

2. Developing univariable regression models for OS and DFS

3. Fitting a multivariable model and assigning a score to risk factors

4. Validating the score

Search for optimal cutoff for continuous variables

Because age must be translated into a discrete variable to be included in a score, we
used the training set to find an optimal cutoff value. We selected a range of possible
thresholds and performed a simple univariable Cox regression for OS for every split.
The best-performing threshold was chosen for further analysis.

Univariable regression model for OS and DFS

Since only relevant variables should be included in the multivariable model, we fitted
a separate univariable proportional hazards model for DFS and OS for every variable.
We only included variables in the next step if the p-value from the univariable
regression was below 0.15.

Multivariable model and assigning a score to risk factors

We performed a multivariable Cox proportional hazard regression with the remaining
variables. A backward selection based on the p-value was chosen to determine the
final model. We verified the assumption of proportional hazards via Schoenfeld
residuals. We computed hazard ratios and 95% confidence intervals for both models.
We computed the quotient of hazard ratios and the smallest hazard ratio of the
model, rounded these values and assigned each risk factor its corresponding points.
The sum of present risk factors was calculated for each patient.
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Validation of the score

The validation set was stratified according to risk scores. DFS and OS were esti-
mated from Kaplan-Meier curves and compared via log-rank tests. Median OS and
DFS were calculated with confidence interval for each subgroup. We compared our
predicted score with the score from Malik et al. (2007).

4.2.4 Development of score

A total of 512 patients, 68.9% of whom were male, were enrolled in the study. The
median age at the time of liver surgery was 66 years. The median number of liver
metastases was two, and 267 patients (52.1%) had more than one liver metastasis.
Among the patients, 59.6% had synchronous disease, 64.3% had a positive nodal
status, and 22.3% had an IRT. The tumor was located on the right side in 133 cases
(26.0%) and had positive resection margins in 53 cases (10.4%)(Table 4.8). The
median follow-up period was 81.2 months, and the median OS and DFS were 60.4
months (95%-CI 52.2−68.5 months) and 17.0 months (95%-CI 14.3−19.8 months),
respectively.
Patients were split into a training set (TS) and a validation set (VS), and the two
groups were compared (Table 4.9). The two groups were not different in terms of
gender (fraction of males: TS:67.4%; VS:70.9%), IRT status (TS:23.0%; VS:21.3%),
primary tumor side (right side: TS:23.8%; VS:28.7%), and nodal-positive tumors
(TS:63.5%; VS: 65.2%). The patients in the training set were older than those in the
validation set (median age: TS:68 years; VS:65 years; p< 0.001), and the training set
contained a higher proportion of patients over the age of 72 (TS:30.5%; VS:22.2%;
p= 0.044). The validation cohort had a slightly higher proportion of patients with
multiple metastases (TS:48.2%; VS:57.0%; p= 0.041). The median follow-up period
was 83.2 months for the TS and 70.3 months for the VS.

Cutoffs and univariable regression

In an initial step, we inquired whether continuous variables and categorical variables
with multiple groups can be dichotomized to facilitate the calculation of a score. The
number of liver metastases and age at the time of surgery were relevant to our study.

In our sample, only a few patients had four or more metastases. Therefore, we
bundled those patients into one group. We compared different patient stratifica-
tions, which were based on the number of metastases, and found that all yielded
almost identical results. When we only used two groups (one metastasis and mul-
tiple metastases), it emerged that a higher number of metastases leads to a higher
risk of recurrence (HR= 1.5) or death (HR= 2.1). When we split the group with
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Table 4.8: Patient characteristics in the whole sample
Variable Total (%) (n=512)
Sociodemographic factors

Sex
Female 159 (31.1 %)
Male 353 (68.9 %)

Median age at time of surgery (range) 66y (27-89)
Age at time of surgery

< 72 years 375 (73.2 %)
≥ 72 years 137 (26.8 %)

Inflammatory response to tumor (IRT)
No IRT 398 (77.7 %)
IRT 114 (22.3 %)

Primary tumor side
Left 379 (74.0 %)
Right 133 (26.0 %)

Median number of liver metastases 2 (1-14)
Solitary vs multiple liver metastases

Solitary 242 (47.3 %)
Multiple 267 (52.1 %)
Missing data 3 (0.6 %)

Node positive primary tumor
Negative 168 (32.8 %)
Positive 329 (64.3 %)
Missing data 15 (2.9 %)

Synchronous vs metachronous disease
Metachronous 207 (40.4 %)
Synchronous 305 (59.6 %)

KRAS
Wildtyp 136 (26.6 %)
Mutated 68 (13.3 %)
Missing data 308 (60.2 %)

Resection margin status
R0 411 (80.3 %)
R1 53 (10.4 %)
Missing data 48 (9.4 %)
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Table 4.9: Patient characteristics compared between training and validation set
Variable Training (n=282) Validation (n=230) p-value
Sociodemographic factors

Sex 0.451
Female 92 (32.6 %) 67 (29.1 %)
Male 190 (67.4 %) 163 (70.9 %)

Median age at time of surgery (range) 68y (31-89) 65y (27-88) <0.001
Age at time of surgery 0.044

< 72 years 196 (69.5 %) 179 (77.8 %)
≥ 72 years 86 (30.5 %) 51 (22.2 %)

Inflammatory response to tumor (IRT) 0.715
No IRT 217 (77.0 %) 181 (78.7 %)
IRT 65 (23.0 %) 49 (21.3 %)

Primary tumor side 0.244
Left 215 (76.2 %) 164 (71.3 %)
Right 67 (23.8 %) 66 (28.7 %)

Median number of liver metastases 1 (1-9) 2 (1-14) 0.009
Solitary vs multiple liver metastases 0.041

Solitary 146 (51.8 %) 96 (41.7 %)
Multiple 136 (48.2 %) 131 (57.0 %)
Missing data 0 (0.0 %) 3 (1.3 %)

Node positive primary tumor 0.816
Negative 94 (33.3 %) 74 (32.2 %)
Positive 179 (63.5 %) 150 (65.2 %)
Missing data 9 (3.2 %) 6 (2.6 %)

Synchronous vs metachronous disease 0.525
Metachronous 110 (39.0 %) 97 (42.2 %)
Synchronous 172 (61.0 %) 133 (57.8 %)

KRAS 0.875
Wildtyp 91 (32.3 %) 45 (19.6 %)
Mutated 44 (15.6 %) 24 (10.4 %)
Missing data 147 (52.1 %) 161 (70.0 %)

Resection margin status 0.336
R0 227 (80.5 %) 184 (80.0 %)
R1 25 (8.9 %) 28 (12.2 %)
Missing data 30 (10.6 %) 18 (7.8 %)
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Table 4.10: Univariable analysis of overall survival and disease-free survival
Variable p-value from log-rank test for OS p-value from log-rank test for DFS

Male sex 0.225 0.016
Age at time of surgery (> 72 years) <0.001 0.400
Inflammatory response to tumor (IRT) <0.001 <0.001
Right-sided primary tumor 0.015 0.016
Solitary vs Multiple Metastases <0.001 0.005
Node positive primary tumor 0.021 0.149
Synchronous disease 0.014 0.143
Resection margin status (R1) 0.082 0.003
KRAS-mutated 0.055 0.016

multiple metastases into a subgroup of patients with two metastases and a subgroup
of patients with more than two metastases, the two hazard ratios remained almost
identical. Therefore, we only differentiated between patients with a single metasta-
sis and patients with multiple metastases.

In order to categorize patients by age at surgery, we performed a univariable re-
gression model for OS and DFS and selected the cutoff with the lowest p-value. For
DFS, no model yielded a statistically significant p-value. For OS, we reached opti-
mal separation by differentiating between patients with an age ≤ 72 and patients
with an age > 72 years, with a p-value of less than 0.001 and a HR of 1.7.

After a description of the training and validation sample and preparations of vari-
ables, we performed a simple univariable Cox proportional hazard regression for
every important variable with DFS and OS as endpoints (Table 4.10).

The factors that were associated with OS were age at surgery (p < 0.001), pres-
ence of IRT (p < 0.001), primary tumor side (p = 0.015), presence of more than one
metastasis (p < 0.001), node status (p = 0.021) and synchronous disease (p = 0.014).
The variables that emerged to be associated with DFS were sex (p = 0.016), pres-
ence of IRT (p < 0.001), primary tumor side (p = 0.016), presence of more than one
metastasis (p = 0.005), resection margin status (p = 0.003), and KRAS-mutation
(p = 0.016). Due a high proportion of missing values for KRAS and resection margin
status, we excluded them from further analysis and did not take them into account
in the multivariable model. Further studies of their roles must be conducted in the
future. Variables with p-value p < 0.15 were considered in the multivariable model.

Due to their high importance for the characterization of a tumor, primary tumor
side and IRT-status were investigated further. The median OS for patients with
left-sided primary tumors was 62.0 months (95%-CI: 50.5 − 75.5 months). It was
40.4 months (95%-CI: 30.7 − 64.6 months) for patients with right-sided primary

66



++++++
++

+++++

+
++

++++++++
+++++++

++++++++++++++++++++ +++++
+++++++++++

+++++++++++++ +++++++

+
++

+ + +

+++
++

+

++

+

+

++

+++
+

++++
+

+++
p = 0.015

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48 60 72 84 96 108 120 132 144

Time since liver surgery in months

O
ve

ra
ll 

s
u
rv

iv
a
l 
(O

S
)

Risk Factors + +left right

215 192 160 130 100 79 59 36 30 17 8 6 1

67 56 42 29 22 17 12 9 4 0 0 0 0right

left

0 12 24 36 48 60 72 84 96 108 120 132 144

Time since liver surgery in months

R
is

k
 F

a
c
to

rs

Number at risk

+
+
+

+

+
+++

+

+

++++

+
++

++
+++++

+++++ ++ ++ ++++++++++ +++++ ++ + +

+

+
+

++

+

+
+

+ + + + +

p = 0.015

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48 60 72 84 96 108 120 132 144

Time since liver surgery in months

D
is

e
a
s
e
−

fr
e
e
 s

u
rv

iv
a
l 
(D

F
S

)

Risk Factors + +left right

215 106 67 52 37 31 25 20 17 9 4 4 1

67 23 11 5 4 4 3 3 1 0 0 0 0right

left

0 12 24 36 48 60 72 84 96 108 120 132 144

Time since liver surgery in months

R
is

k
 F

a
c
to

rs

Number at risk

Figure 4.4: Kaplan-Meier curves for OS and DFS in the training sample stratified
by the tumor sidedness of the patient (right side in yellow and left side in blue).

tumors. OS differed between the two groups (p= 0.015, log-rank-test).
Patients whose primary tumor was located on the left side had a median DFS of 19.6
months, with a 95% confidence interval from 15.1 to 26.3 months. In comparison,
patients with a right-sided tumor had a median DFS of 15.0 months (95%-CI:7.4 −
20.2 months). Once more, there were differences between the two groups (p= 0.015,
log-rank-test) (Figure 4.4. Median OS and DFS differed between patients with and
without IRT. Patients with a positive IRT status survived for a shorter period, with
a median survival of 30.9 months (95%-CI: 24.1-44.0) compared to a median survival
of 68.4 months (95%-CI: 58.5−79.5 months) without IRT (p < 0.001, log-rank-test).
A positive IRT status was also associated with shorter DFS, with a median of 11.5
months (95%-CI: 8.6 − 15.2), whereas patients with a negative IRT status had a
median DFS of 20.3 months (95%-CI: 16.7 − 26.9 months). This difference was
statistically significant in a log-rank-test with a p-value < 0.001 (Figure 4.5.

Multivariable analyses

Based on the results of the univariable analysis, we conducted a multivariable anal-
yses with backward selection in order to identify the variables for our score. A
lower OS was associated with the presence of IRT (HR= 1.92; 95%-CI: 1.35 − 2.75,
p < 0.001), a right-side primary tumor (HR= 1.63; 95%-CI: 1.14 − 2.34, p = 0.008),
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Figure 4.5: Kaplan-Meier curves for OS and DFS in the training sample stratified
by presence of inflammatory response to tumor (IRT) (IRT in yellow and no IRT in
blue).

multiple metastases (HR= 1.75; 95%-CI: 1.27 − 2.42, p < 0.001), a node-positive
primary tumor (HR= 1.49; 95%-CI: 1.05−2.13, p = 0.026), and age at surgery > 72
years (HR= 1.74; 95%-CI: 1.24 − 2.44, p = 0.001).

As far as DFS is concerned, a higher risk was associated with the presence of IRT
(HR= 1.74; 95%-CI: 1.23−2.47, p = 0.002), a right-sided primary tumor (HR= 1.56;
95%-CI: 1.09−2.21, p = 0.014), multiple metastases (HR= 1.46; 95%-CI: 1.07−1.98,
p = 0.016), and male sex (HR= 1.44; 95%-CI: 1.03 − 2.03, p = 0.035) (Table 4.11).
When developing the score, we mainly focused on OS as an important indicator
of the benefits that can accrue to a patient as a result of surgery. Three variables

Table 4.11: Multivariable Cox PH regression for overall survival and disease-free
survival
Variable Overall Survival Disease-free Survival

p-value Hazard ratio (CI 95%) p-value Hazard ratio (CI 95%)
Inflammatory response to tumor <0.001 1.92 (1.35-2.75) 0.002 1.74 (1.23-2.47)
Right-sided primary tumor 0.008 1.63 (1.14-2.34) 0.014 1.56 (1.09-2.21)
Solitary vs multiple liver metastases <0.001 1.75 (1.27-2.42) 0.016 1.46 (1.07-1.98)
Node positive primary tumor 0.026 1.49 (1.05-2.13) — —
Age at time of therapy (> 72y) 0.001 1.74 (1.24-2.44) — —
Male sex — — 0.035 1.44 (1.03-2.03)
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Figure 4.6: Kaplan-Meier curves of OS of all five risk groups for the training sample
(left) and the validation sample (right).

that were significantly associated with OS remained in the final model of DFS.
Hence, IRT status, with a HR of 1.92, sidedness of the primary tumor, with a HR
of 1.63, and number of metastases, with a HR of 1.75 were included in the score.
Furthermore, we decided that node status should be included in the final score as an
important characteristic of the tumor. Age at surgery is not part of our prognostic
score because it is not a cancer-specific risk factor. Adjusting for age differences is
helpful in our model but not suitable for clinical decision-making.
Due to the comparable HRs of the four selected variables, which are between 1.49
and 1.92, each variable was assigned one point when the risk factor was present in a
patient. This enables the score to be computed in a simple manner. Patients were
stratified into five different risk groups according to the number of risk factors that
they exhibited, which ranged between 0 and 4.

4.2.5 Validation of a prognostic score

When validating our score, we focused primarily on OS. However, we conducted
the same analysis for DFS, and present the two together. The OS and DFS of
all five groups was displayed with Kaplan-Meier curves, which showed satisfactory
separation between the risk groups (p < 0.001) (Figure 4.6,4.7).
Importantly, the group with no risk factors exhibited a median OS of 133.8 months
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Figure 4.7: Kaplan-Meier curves of DFS of all five risk groups for the training sample
(left) and the validation sample (right).

Table 4.12: Median OS of risk groups stratified according to prognostic score
Risk Group Number of patients Median OS (months)

Training (CI 95%) Validation (CI 95%)
0 risk factors 35/29 133.8 (81.2-nr) Not reached (95.2-nr)
1 risk factor 92/60 74.4 (65.3-93.7) 91.6 (69.0-nr)
2 risk factors 96/80 44.4 (34.7-54.9) 58.8 (41.5-91.4)
3 risk factors 45/45 29.0 (22.1-44.0) 35.7 (26.8-72.7)
4 risk factors 5/7 14.3 (10.5-nr) 16.6 (14.6-nr)

(95%-CI: 81.2 − nr) in the training sample, which is longer than that of the other
groups. The median value for DFS was not reached in the training sample. Patients
with three risk factors had a median OS of 29.0 months (95%-CI: 22.1 − 44.0), and
patients with four risk factors, who were few in number, had a median OS of 14.3
months.
The results for the validation cohort were similar. Patients with no risk factors did
not reach the median survival time. Patients with three or four risk factors had a
median OS of 35.7 months (95%-CI: 26.8 − 72.7 months) and 16.6 months (95%-CI:
14.6 − nr), respectively (Table 4.12).
We repeated the analysis for DFS and found that our score can distinguish between
patients appropriately. Patients without risk factors exhibited the highest median
survival or did not reached the median. In the validation group, the median DFS
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Table 4.13: Median DFS of risk groups stratified according to prognostic score
Risk Group Number of patients Median DFS (months)

Training (CI 95%) Validation (CI 95%)
0 risk factors 35/29 Not reached (22.1-nr) 80.2 (60.0-nr)
1 risk factor 92/60 21.7 (15.3-37.2) 29.7 (15.9-68.4)
2 risk factors 96/80 12.4 (10.1-20.2) 21.5 (10.0-35.2)
3 risk factors 45/45 15.0 (5.3-26.7) 10.7 (6.7-18.7)
4 risk factors 5/7 9.3 (4.2-nr) 3.7 (2.9-nr)

was 80.2 months (95%-CI: 60.0 − nr).
Patients with three or four risk factors had a shorter disease-free survival. When
three risk factors were present, patients had a disease-free period of 15.0 months
(95%-CI: 5.3 − 26.7 months) in the training sample and of 10.7 months (95%-CI:
6.7 − 18.7 months) in the validation sample (Table 4.13).
The group of patients with four risk factors that was used for the purposes of this
model was small (n = 5 for the training cohort and n = 7 for the validation cohort).
Due to the similarities between patients with two and three risk factors, we decided
to combine the three risk groups and classified patients according to the presence
of risk factors: “low-risk” = no risk factors, “intermediate-risk” = one risk factor,
“high-risk” = 2, 3, or 4 risk factors.

The Kaplan-Meier analyses of OS and DFS demonstrated relevant stratification
between the risk groups in the training sample, which could be reproduced in the
validation sample (Table 4.14). In the training sample, low-risk patients had a
median OS of 133.8 months (95%-CI: 81.2−nr months), whereas patients in the in-
termediate and high-risk groups had median survival times of 74.4 months (95%-CI:
65.3 − 93.7 months) and 40.4 months (95%-CI: 31.8 − 47.3 months), respectively.
The median OS for the low-risk group in the validation sample was not reached. For
the intermediate-risk group, the median OS was 91.6 months (95%-CI: 69.0 − nr

months) and for the high-risk group the median OS was 41.9 months (95%-CI:
32.9 − 63.8 months). The score distinguished the patients regarding OS in the two
samples (p < 0.001)(Figure 4.8).
The capacity of our score to stratify patients could also be shown for DFS (Table
4.15). The low-risk group did not reach the median DFS (95%-CI: 22.0−nr months)
in the training sample. In comparison, patients with one risk factor had a lower
median DFS of 21.7 months (95%-CI: 15.3 − 37.2 months) and patients with more
than one risk factor had the lowest median DFS (13.0 months; 95%-CI: 10.2 − 17.4
months).
The similar results that we obtained from the analysis of the validation cohort
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Table 4.14: Median OS of low, intermediate, and high risk group for the training
sample (left) and the validation sample (right).
Risk Group Number of patients Median OS (months)

Training (CI 95%) Validation (CI 95%)
Low risk
(0 risk factors) 35/29 133.8 (81.2-nr) Not reached (95.2-nr)
Intermediate risk
(1 risk factor) 92/60 74.4 (65.3 -93.7) 91.6 (69.0-nr)
High risk
(2 - 4 risk factors) 146/132 40.4 (31.8-47.3) 41.9 (32.9-63.8)
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Figure 4.8: Kaplan-Meier curves of OS of low, intermediate, and high risk group for
the training sample (left) and the validation sample (right).
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Table 4.15: Median DFS of low, intermediate, and high risk group for the training
sample (left) and the validation sample (right).
Risk Group Number of patients Median DFS (months)

Training (CI 95%) Validation (CI 95%)
Low risk
(0 risk factors) 35/29 Not reached (22.0-nr) 80.2 (60.0-nr)
Intermediate risk
(1 risk factor) 92/60 21.7 (15.3-37.2) 29.7 (15.9-68.4)
High risk
(2 - 4 risk factors) 146/132 13.0 (10.2-17.4) 12.0 (9.7-21.5)

highlight the performance of our score (median DFS: low-risk group: 80.2 months
(95%-CI: 60.0 − nr months); intermediate-risk group: 29.7 months (95%-CI: 15.9 −
68.4 months); high-risk group: 12.0 months (95%-CI: 9.7 − 21.5 months). The three
risk groups differed significantly (p < 0.001, log-rank-test) (Figure 4.9).
Beyond the stratification capability of our score, we also examined its performance
by reference to sensitivity, specificity and area under the curve (AUC). AUC is a
measure of the capacity of a score to discriminate between two groups. Patients
with censored survival within 12 months after diagnosis were excluded from the
analysis to guarantee that the follow-up period would be sufficient for classification.
Furthermore, the values of the score had to be dichotomized for a calculation of
sensitivity and specificity.
We obtained an AUC of 0.652 for OS in the validation cohort. If one supposes that
patients with a score of 2 or more are likely to die, our score exhibits a sensitivity
of 73.1% and a specificity of 53.1%. For DFS, we obtained an AUC of 0.670 for the
validation cohort. If one supposes that patients with a score of 2 or more are likely
to have a recurrence, our score exhibits a sensitivity of 63.4% and a specificity of
59.4%. Remarkably, with a cutoff of 1, sensitivity is high (OS: 95.2%, DFS: 93.8%),
while specificity remains close to 20% (OS: 19.4%, DFS: 28.1%). This finding shows
that our low-risk group contained a certain fraction of patients with satisfactory
courses of illness and only a few with dissatisfactory courses of illness.

Finally, we compared the performance of our score to that of Malik et al. (2007).
They used IRT status and the number of metastases and assigned one point for a
positive IRT status and one point for having more than eight metastases. Since the
patients in our sample rarely had more than eight metastases, only a few patients
had a score of 2.
We computed the c-index for OS and DFS in the validation sample for both scores.
The c-index is a commonly used measure that describes how adequately groups can
be separated by a score. It ranges between 0 and 1, with 1 denoting a perfect sepa-
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Figure 4.9: Kaplan-Meier curves of DFS of low, intermediate, and high risk group
for the training sample (left) and the validation sample (right).

ration.

For OS our score, which is based on five risk groups, achieved a c-index of 0.676.
In comparison, the score of Malik et al. (2007) had a c-index of 0.616. For DFS
our score had a c-index of 0.629 and performed better than the score of Malik et al.
(2007) (c-index 0.572).

4.2.6 Discussion

This study concerns patients with colon cancer whose disease has produced metas-
tases, which complicate the treatment. Our aim was to identify a score that is based
on relevant variables that can support clinical decisions about surgical resections of
metastases. We included the preoperative available parameters in our final score
and tested its performance with predictions about the OS and DFS.

Our score evaluates for each patient the number of risk factors that are present
in each patient. Positive IRT status, tumor located on the right side, multiple
metastases, and node-positive primary tumor could be identified as risk factors. Pa-
tients without any of these four risk factors exhibited a longer OS and DFS than
those in other risk groups. This particular group might benefit from surgery, and
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thus physicians should considered patient in this group for a treatment.

Intermediate-risk patients, who exhibited one risk factor, had a shorter OS and
DFS than patients without risk factors. However, they may still benefit from surgi-
cal resection.
In contrast, patients in the high-risk group showed short OS and, moreover, DFS.
The presence of at least two risk factors is indicative of an illness that would be
difficult to address surgically. In many cases, multiple metastases have already oc-
curred, which makes curing the disease more difficult. Although it is not exceedingly
likely that the lives of such patients would be prolonged by surgery, it is question-
able whether they can be deprived of its potential benefits. One solution would be
to treat high-risk patients with additional, perioperative chemotherapy to increase
their chances of survival.

We also compared our score to that of Malik et al. (2007), whereby one point is
allocated to a patient for the presence of IRT and one point is allocated to them
if they have a high number of metastases. Our score accounts for the sidedness of
the tumor and its nodal status as additional risk factors. We showed that our score
outperforms the score of Malik et al. (2007) and that the addition of two risk factors
improves the stratification. Our score could identify a high-risk group, which is not
possible with the score of Malik et al. (2007), at least for our sample.

A limitation of our study was the high number of missing data for KRAS and
the resection margin so that they could not be incorporated into the score. Further
studies should examine the importance of those for prognostic scores. In addition,
the present study is based on retrospective data, which is also a limitation. A
prospective study should be conducted to evaluate the quality of our score. The
evaluation was conducted with an independent sample here. Although comparisons
with other established score are important, we could only refer to Malik et al. (2007)
because many of the parameters that would be necessary to compute other scores
were not available in our retrospective sample.

Our score is based on variables which are easily accessible for every patient. We
established the stratification capacity of the score by using an independent valida-
tion sample, which comprises data from multiple hospitals. Therefore, our score has
the potential to be implemented widely in clinical practice and to identify patients
who can benefit from a surgical resection of metastases.
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Chapter 5

Modified Linear Regression
Models for Associations between
Lymphocytes and COVID-19

This project was based on a collaboration between the III. Medical Clinic of Augs-
burg University Hospital (Andreas Rank and Phillip Löhr) and the chair of Com-
putational Statistics and Data Analysis (Gernot Müller, Stefan Schiele, and Tobias
Arndt). The application of the methodology that was developed resulted in a pub-
lication (Löhr et al. (2021)).

Keywords: multivariable linear regression, transformed response variable, distri-
bution of residuals, COVID-19

5.1 Introduction
Coronaviruses in general are highly transmissible and are present in many ani-
mals. They are known to have non-severe effects on humans, normally causing
only common colds and infections of the respiratory tract. The risks mainly concern
elderly individuals and those with comorbidities. However, especially in the last
decades, two novel coronaviruses, namely severe acute respiratory syndrome coro-
navirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-
CoV), have exhibited increased morbidity and case-fatality ratios that are signifi-
cantly higher than those of previous coronaviruses. In 2019, a new and even more
dangerous human pathogenic coronavirus, SARS-CoV-2, emerged in Wuhan, China,
and spread quickly in several countries due to its high transmission rate (cf. N. Zhu
et al. (2020)). For a more profound introduction to the biological characteristics of
SARS-CoV-2, we refer to Hu et al. (2021) and Felsenstein et al. (2020).
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SARS-CoV-2 often causes an acute respiratory tract infection that is called coro-
navirus disease 2019 (COVID-19). Many cases of SARS-CoV-2 are either asymp-
tomatic, which means that a person is infected but does not develop any symptoms,
or see the infected suffer from a moderate infection without needing to be hospi-
talized. However, some individuals, in particular patients with comorbidities, need
further treatment for more severe symptoms such as acute respiratory distress syn-
drome (ARDS) (cf. Schaller et al. (2020)). Several studies, such as W. Huang et al.
(2020) and G. Chen et al. (2020), have shown that severe COVID-19 infection is
related to lower lymphocyte counts than those found in mildly affected patients.

Lymphocytes are a central part of the human immune system (cf. Murphy and
Weaver (2016)). The immune system is necessary for protection against harmful
and dangerous substances. It detects many of them, which enables an infection to
be avoided. The immune system relies on two connected systems. The first defense
mechanism is innate immunity, which is present since birth and can initiate inflam-
matory responses from specific cells, such as NK cells, macrophages, and dendritic
cells, causing typical symptoms such as fever. The second mechanism is adaptive
immunity, which develops as a suitable response to pathogens. Specific cells handle
those pathogens and present antigens to initiate an immune response.

T and B lymphocytes are the main adaptive immunity cells and perform differ-
ent tasks during an immune response. Two types of T cells are involved, namely
helper T cells (CD4+ cells) and cytotoxic T cells (CD8+ cells). The helper T cell is
activated when a pathogen is extra cellular and recognized by a B cell. The helper
T cell interacts with a B cell and stimulates the B cell to produce antibodies that
immobilize the pathogen so that the innate immunity can destroy it. In contrary, a
cytotoxic T cell can recognize a cell that has already been infected through specific
antigens and then destroy it. Both cell types proliferate into short-living effector
cells and long-living memory cells. Effector cells are involved in a current immune
response. Memory cells create an immunological memory in order to prevent re-
peated infection by inducing more rapid reactions.

The correlation of age or sex with lymphocyte counts is important. Many stud-
ies have compared lymphocyte counts across different groups, but have not adjusted
their analyses for other influencing variables such as age. Age needs to be consid-
ered because it is mainly older patients who suffer severely. Older individuals have
a lower number of näıve T cells and an increased number of memory cells. Sex can
also have an influence on the count of lymphocytes (cf. Kverneland et al. (2016)).
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Therefore, pronounced differences in age and sex might bias comparisons between
those who are infected with COVID-19 and healthy individuals.

On the following pages, we only present the results for the main types of lympho-
cytes (total lymphocytes, total T cells (CD3+ cells), helper T cells (CD4+ cells),
cytotoxic T cells (CD8+ cells), natural killer cells (NK cells), and total B cells
(CD19+ cells). We analyzed the influence of a COVID-19 infection on the count of
lymphocytes after adjustment for age and sex.

5.2 Data
This study covers patients with a COVID-19 infection that was confirmed by a pos-
itive PCR test between April and October 2020. Patients for whom the onset of
COVID-19 symptoms occurred more than 28 days prior to the date of the obser-
vation, pregnant individuals, and patients with severe comorbidities of the immune
system, such as malignancies or autoimmune disorders, were excluded. The study
was conducted in line with the declaration of Helsinki. Signed informed consent
was obtained from all patients, and the research was approved by the internal ethics
committee.

A total of 50 healthy individuals were included in our study to provide bench-
mark counts of lymphocytes in the absence of COVID-19 infection. Their counts of
lymphocytes were collected and analyzed before the first onset of SARS-CoV-2 in
order to avoid hidden infections within the group.
The patients who were infected with SARS-CoV-2 were divided into two groups de-
pending on the severity of their infections. Following the World Health Organization
(WHO), we classified SARS-CoV-2 infections as either moderate (uncomplicated up-
per respiratory tract infection or pneumonia without supplemental oxygen) or severe
(pneumonia with additional oxygen, ARDS, sepsis, or septic shock).
Every blood sample was analyzed with flow cytometry in order to measure total
lymphocyte counts as well as several subsets.

5.3 Statistical approaches
We presented the characteristics of the sample with counts and percentages. Counts
of every lymphocyte subset were expressed as median, first quartile, and third quar-
tile and comparisons are drawn between healthy individuals and patients with mod-
erate or severe COVID-19 infection by using Wilcoxon-Mann-Whitney tests. We
ran univariable linear regression models for each subset of lymphocytes in order to
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examine associations with age and sex, and we examined differences in cell counts
over 10-year steps. A multivariable linear regression model was fitted to each sub-
set of lymphocytes, with severity of COVID-19 as explanatory variable and with
adjustments for age and sex. The variance inflation factor (VIF) was calculated for
each model to ensure that the explanatory variables are not collinear.

We also inspected the residuals of each regression model. A necessary requirement
for a linear regression is that the residuals follow a normal distribution. The resid-
uals in our study did not, for the most part, approximate a normal distribution, in
particular in the tails. Therefore, we modified the counts of lymphocytes by apply-
ing a logarithmic transformation (cf. Bland and D. G. Altman (1996) and Keene
(1995)). A logarithmic transformation is a special case of a Box-Cox transformation.
Instead of

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + ϵ

we model
log(Yi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + ϵ. (5.1)

Here, Yi is the count of a subset of lymphocytes for the i-th patient, β0 is the inter-
cept, and βk is the coefficient of xik. In our case, xi1 is the age of patient i, xi2 is
the sex of patient i, and xi3, xi4 are dummy-coded for the severity of COVID-19. xi3

takes a value of 1, when the infection is moderate, and xi4 takes a value of 1, when
an infection is severe. If both take values of 0, the patient is in the healthy control
group. ϵ is approximately normally distributed.

The transformation of our dependent variable means that, the coefficients must ei-
ther be interpreted on the log-scale or transformed into the original one. It should be
noted that the means on the log-scale do not coincide with the arithmetic mean but
the geometric mean after an inverse transformation, because exp( 1

n

∑n
i=1 log(yi) =

exp(log(∏n
i=1 yi

1
n )) = ∏n

i=1 yi

1
n .

On the original scale, an exponentiation of (5.1) leads to

Yi = exp(β0) exp(β1)xi1 exp(β2)xi2 exp(β3)xi3 exp(β4)xi4 ∗ exp(ϵ) (5.2)

For every unit increase in age, our count of lymphocytes is multiplied by a factor
exp(β1). In comparison to the reference group, moderate and severe COVID-19
infections are linked with a multiplication of the counts of lymphocytes by exp(β3)
and exp(β4), respectively.

Beyond the afore mentioned condition of normally distributed residuals, another

79



Table 5.1: Median count of lymphocytes and subsets stratified by the severity of
COVID-19 infection

Healthy controls Moderate COVID-19 p-value Severe COVID-19 p-value
(n = 50) (n = 11) (n = 22)

Total lymphocytes 1884 (1439–2288) 1120 (867–1390) 0.002 730 (463–1043) < 0.001
Total T cells 1175 (839–1675) 879 (576–971) 0.017 380 (263–547) < 0.001
Cytotoxic T cells cells 292 (209–488) 219 (118–354) 0.058 112 (71–179) < 0.001
T helper cells 782 (554–993) 523 (388–554) 0.016 209 (113–277) < 0.001
Natural killer cells 226 (143–300) 127 (85–197) 0.017 81 (60–166) < 0.001
Total B cells 211 (149–274) 59 (43–87) < 0.001 71 (42–161) < 0.001

justification of the use of log-transformation in our study is that we had to ar-
rive at a biologically meaningful interpretation. Applying the obtained estimate
of the coefficient of age in a linear regression without transformation, would entail
adding or subtracting a certain amount of lymphocyte counts. In the worst case,
this could lead to a subgroup with a negative count of lymphocytes, which would
have no biological interpretation. A logarithmic transformation that is combined
with an inverse transformation guarantees that the count of lymphocytes is always
multiplied so that it remains positive.

5.4 Results
The median age of the 83 participants was 54 years, ranging between 17 and 94
years. A total of 50 patients were allocated to the healthy control group, and 33
had suffered COVID-19 infections, of which 33% were classified as moderate and
66% were classified as severe. There were 29 female and 54 male participants.

Those with COVID-19 infections were older than the healthy individuals (median
age: 71 years vs. 43 years, p < 0.001). The proportion of female participants was
similar in both groups. On average, the patients had developed COVID-19 specific
symptoms four days before lymphocytes were measured.

The healthy individuals had a median count of 1884/µl, whereas patients with a
moderate or severe COVID infection had much lower counts (moderate: 1120/µl;
severe: 730/µl). In general, patients with a moderate or severe COVID-19 infection
had lower lymphocyte counts in nearly all subsets. In particular, patients with a
severe infection had significantly lower amounts of lymphocytes (all p < 0.001)(Table
5.1).
The distribution of each subset of lymphocytes is displayed in Figure 5.1.
We performed univariable regressions for log-transformed counts of lymphocytes in
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Figure 5.1: Boxplots of considered subsets of lymphocytes for healthy, moderate
infected, and severe infected individuals: (A) Total lymphocytes, (B) Total T cells,
(C) Cytotoxic T cells, (D) T helper cells, (E) Natural killer cells, and (F) Total B
cells
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Figure 5.2: Comparison of the distribution of residuals without a transformation
(black) and with a logarithmic transformation (green) of the response variable

the entire cohort, with age as the only explanatory variable, and found a significant
reduction of the geometric mean for all subsets of lymphocytes in older patients.
The reduction in total lymphocytes was 12.5% for every 10 years, and total T cells
were 14.1% lower for every 10 years. We observed a similar trend for cytotoxic T
cells (−19.1% per 10 years), helper T cells (−14.8% per 10 years), natural killer cells
(−13.6% per 10 years), and B cells (−14.4% per 10 years).

Multivariable analyses

In the next step, we examined the association between moderate or severe COVID-19
infections and the lymphocyte counts in a multivariable linear regression, including
sex and age. All measured counts of subsets were logarithmically transformed, and
the coefficient of age was examined over 10-year steps. In all models, the VIF was
small enough to assume the absence of collinearity. The resulting coefficients are
presented as multiplicative factors after inverse transformation.

Figure 5.2 displays the standardized residuals from a linear regression model with
and without a transformation of the total count of B cells as response variable. The
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Table 5.2: Multivariable linear regression of logarithmic transformed counts of lym-
phocytes under adjustment for gender and age
Subset of Lymphocytes Variables Multiplicative Coefficient (95%-CI) p-value
Total lymphocytes moderate COVID-19 0.640 (0.463 − 0.885) 0.008

severe COVID-19 0.427 (0.318 − 0.574) < 0.001
gender 1.176 (0.935 − 1.478) 0.163
age per 10 years 0.958 (0.899 − 1.020) 0.174

Total T cells moderate COVID-19 0.723 (0.519 − 1.006) 0.054
severe COVID-19 0.395 (0.292 − 0.534) < 0.001
gender 1.291 (1.022 − 1.632) 0.033
age per 10 years 0.941 (0.883 − 1.004) 0.064

Cytotoxic T cells moderate COVID-19 0.738 (0.470 − 1.160) 0.185
severe COVID-19 0.472 (0.312 − 0.714) 0.001
gender 1.121 (0.814 − 1.544) 0.478
age per 10 years 0.876 (0.803 − 0.957) 0.004

helper T cells moderate COVID-19 0.686 (0.466 − 1.011) 0.057
severe COVID-19 0.320 (0.225 − 0.457) < 0.001
gender 1.363 (1.036 − 1.793) 0.027
age per 10 years 0.952 (0.883 − 1.027) 0.202

Natural killer cells moderate COVID-19 0.707 (0.470 − 1.062) 0.094
severe COVID-19 0.499 (0.344 − 0.723) < 0.001
gender 1.151 (0.863 − 1.535) 0.334
age per 10 years 0.929 (0.859 − 1.006) 0.068

Total B cells moderate COVID-19 0.335 (0.201 − 0.556) < 0.001
severe COVID-19 0.503 (0.316 − 0.801) 0.004
gender 1.156 (0.807 − 1.657) 0.425
age per 10 years 0.930 (0.842 − 1.026) 0.147

black dots that show the standardized residuals of the model without transforma-
tion do not approximate a normal distribution. However, transformation provides
a superior approximation of a normal distribution.
All subsets of lymphocytes had lower counts in patients with severe COVID-19
infection, even after adjustment (Figure 5.3 and Table 5.2).
Total lymphocyte count was 32.0% lower (95%-CI:11.5 − 53.7%, p = 0.008) in pa-
tients with moderate infection and 57.3% lower (95%-CI:42.6 − 68.2%, p < 0.001)
in patients with severe infection. Age and sex were not associated with total lym-
phocyte count.
Total T cell populations were lower, but not significant, when the COVID infection
was classified as moderate (p = 0.054). However, a severe infection was associated
with a reduction in T cells of 60.5% (95%-CI:46.6−70.8%, p < 0.001). Furthermore,
female sex was associated with a higher count of T cells than male sex (increase of
29.1% (95%-CI:2.2 − 63.2%, p = 0.033).

In comparison with healthy individuals, patients with severe COVID-19 infection
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Figure 5.3: Transformed coefficients of moderate/severe COVID-19 infection in a
linear multivariable regression for lymphocytes subsets with adjustment for gender
and age. For each subset the multiplicative coefficient is depicted with 95% confi-
dence interval.
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had 52.8% (95%-CI:28.6 − 68.8%, p = 0.001) fewer cytotoxic T cells. Patients with
a moderate infection had no reduced counts. This was the only subset in which the
age was significantly associated with a decrease. We found reductions that were not
significant in all other subsets.
Helper T cells behaved similarly to T cells as a whole, and the same patterns could
be observed: counts were 68.0% (95%-CI:54.3 − 77.5%, p < 0.001) lower in patients
with severe COVID-19 infection and 36.3% (95%-CI:3.6 − 79.3%, p = 0.027) higher
among women.
A severe COVID-19 infection was also associated with a 50.1% (95%-CI:27.7−65.6%,
p < 0.001) decrease in the number of natural killer cells and a 49.7% (95%-CI:19.9−
68.4%, p = 0.004) decrease in the number of total B cells .

5.5 Discussion
We examined the influence of a COVID-19 infection on several subsets of lympho-
cytes by measuring counts in infected and healthy individuals. A univariable analysis
showed that the counts of nearly all subsets are lower in patients with a COVID-19
infection, relative to healthy controls. If the infection is classified as severe, the
reduction is even higher than in the case of a moderate one. These results could
also be confirmed by a multivariable linear regression on logarithmically transformed
lymphocyte counts.

It may seem contradictory that an infection leads to a lower lymphocyte count
because infections generally cause an activation of the human immune system. How-
ever, a reduction in lymphocytes is evidence, among others, in Diao et al. (2020).
Furthermore, after recovery from a mild infection, the original counts of lymphocytes
can be restored (cf. Rank et al. (2021)). The exact reason has not been identified
yet, but defense against the virus in several parts of the body might require a high
number of T cells, which affects the observed behavior. Further research is needed
to investigate this hypothesis.

We decided to apply a logarithmic transformation to the dependent variable for
two reasons. Firstly, the conditions of the linear regression model are such that
normally distributed error is required. Thus, the residuals have to be transformed
if they do not approximate a normal distribution. Using B cells as an example, we
showed that additional transformation can improve the distribution of the residuals.

Secondly, we think that our choice is justified by the biological nature of our prob-
lem. It is more realistic to assume that the effect of age is multiplicative than to
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assume that it is additive. Negative predicted values for certain age ranges were
thus avoided.

Transformations are often criticized for using data in a manner that does not ensure
that a normal distribution is approximated accurately or for being susceptible to
misinterpretation (cf. Feng et al. (2013)). However, we have shown the benefits of
adopting the approach in question for our particular regression model.
Xiao et al. (2011) and Changyong et al. (2014) inquired whether non-linear regres-
sion models or general estimation equations can outperform linear regressions on
transformed data and yield more reliable results because the interpretation of re-
sults complicates without an inverse transformation. Although a non-linear model
might not be as dependent on parametric assumptions, it is questionable whether
interpretation is facilitated. Furthermore, overfitting is a possibility in applications
with few samples.

The small number of participants with a COVID infection is a limitation of our
study. We could only include 11 individuals with moderate symptoms. The large
confidence intervals may have resulted from this limitation. Even with this low num-
ber of patients, we could still observe a decrease in the counts of nearly all subsets of
lymphocytes. In particular, patients with severe COVID-19 had significantly lower
counts for all subsets.

In summary, patients with COVID-19 infections have lower total lymphocyte, T
cell, B cell, and natural killer cell counts. This effect is still present when adjust-
ments are made for age and sex. Due to some associations of age and sex with
lymphocytes, the two factors must be considered in estimates of the influence of
COVID-19 on the immune system.

86



Chapter 6

Statistical Models for the
Incidence of COVID-19 in
Germany

We have shown in chapter 5 that a COVID-19 infection is associated with a reduc-
tion of lymphocytes and thus affects the human immune response. In this chapter,
we focus on different approaches to model the time series of daily reported new
infections and compare their performance. We first use a non-mechanistic approach
without additional information and investigate whether the model assumptions are
fulfilled for each model. Subsequently, we employ a mechanistic approach based on
a structured compartment model.

Keywords: ARIMA, log-linear autoregressive Poisson model, compartment model,
change points, Bayesian analysis, non-pharmaceutical interventions, COVID-19

6.1 Comparison of modeling approaches for inci-
dence of COVID-19

6.1.1 Introduction and background

General information concerning SARS-CoV-2 and a COVID-19 infection were al-
ready covered in Chapter 5. In this chapter we discuss the course of incidence in
more detail. The first infection in Germany was detected at the end of January 2020.
In the early phase of the pandemic, a lack of tests and limited information about
the virus impeded a detailed registration of infections. The first wave of infections
with exponentially increasing case numbers of new infections happened in March
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Figure 6.1: Number of daily reported new cases of COVID-19 (smoothed)

2020. Since then, several non-pharmaceutical interventions have been implemented
in order to avoid the risk of a collapsing medical system and to protect elderly people
as well as people with preconditioned illnesses.

Interventions have to be tailored to the actual situation and the danger that COVID-
19 pose. Thus, they were reduced or completely lifted when the number of new
infections lowered. Measures must be adapted to the situation because all of them
influence the economy and society. Therefore, they should only be implemented if
needed. Variants of the virus in combination with less restrictive interventions led
to multiple waves with high incidence, hospital admissions, and deaths (Figure 6.1
and Figure 6.2). After the initial wave in March 2020, further peaks were registered
between October 2020 and January 2021 (Second Wave) as well as between February
2021 and June 2021 (Third Wave) as described by Salzberger et al. (2021).
Models of daily COVID-19 incidence are important for forecasting the future devel-
opments, judging the expansion in the population, and reacting immediately when
case numbers are rising in order to prevent high number of infections that might
exceed the capacity limit of the German health system. In particular, when no
vaccination was available and the dominant virus variant had a high fatality, non-
pharmaceutical interventions needed to be well timed.
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Figure 6.2: Cumulative number of reported deaths related to COVID-19

Several articles have focused on statistical methods for modeling daily reported
new COVID-19 infections. Because the data is collected on a daily basis, meth-
ods from time series analysis are well suited. For example, Benvenuto et al. (2020)
applied an Autoregressive Integrated Moving Average (ARIMA) model to predict
COVID-19 case numbers. Barrıa-Sandoval et al. (2021) compared a wide range of
different techniques including an ARIMA model, a Poisson process with a linear
trend, a GLARMA model, and an adaptation of the Holt-Winters method. The
ARIMA model showed the best performance for predicting case numbers.

In contrast to these techniques, Agosto and Giudici (2020) presented a log-linear
autoregressive Poisson model of daily new observed cases which combined a short-
term component that referred to the previous day and a long-term component that
referred to the predicted value of the previous day. Therefore, their prediction indi-
rectly incorporated data from all past days.

In this section, we develop and compare several models of COVID-19 incidence
following the approach of a log-linear autoregressive Poisson model. Furthermore,
we fit non-seasonal and seasonal ARIMA models and evaluate the performance dif-
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ferences. Many published articles make no statement whether model assumptions
could be verified in their model, and focus only on the quality of their prediction.
However, it is important for an accurate model that all assumptions are fulfilled.
We examine the residual structure of all models in detail.

6.1.2 Data: incidence

For our analysis, we used data from the period between July 28, 2020 and May
09, 2022. All data were obtained from a data repository from Our World in Data
which collects data from several source such as the Johns Hopkins University and
provides daily updates on new cases and deaths. It also reports on a stringency
index (Oxford COVID-19 Government Response Tracker (OxCGRT)) and the num-
ber of vaccinations (cf. Ritchie et al. (2020)). The distribution of the variants of
interest in Germany was obtained from the website of the Robert Koch Institute
(RKI). Because the information is only published on a weekly basis, we assigned to
all days of the week the same value.

Reported case numbers exhibit high variance because not all cases are registered
on weekends. We did not include a multiplicative factor to adjust for this effect
but used a smooth version of the case number in some applications. Instead of the
reported number of cases we used the average number of cases during the last 7 days
and rounded them to an integer.

6.1.3 Statistical approaches

ARIMA model

An Autoregressive integrated moving average model (ARIMA) is used often for time
series analysis and can be applied to many situations. We assume that the current
value of a variable xt at time t depends on the previous values of that variable
(xt−1, xt−2, . . . ). We give here only a short introduction and refer to Shumway et al.
(2000) and Brockwell and Davis (2002) for details.
An ARIMA model is composed of three main parts: an autoregressive model, a mov-
ing average model, and an integrated model. For the definition of an autoregressive
model, we introduce a stationary process.

Definition 6.1.1 (Stationary Process).
A time series xt is called stationary if

1. the mean value µt = E[xt] is constant over time and
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2. the autocovariance function γ(s, t) = E[(xs − µs)(xt − µt)] depends on s and t

only through their difference |s − t|.

In the following definitions of the autoregressive model and the moving average
model, we assume that the mean of xt is 0. If the mean is unequal 0, the mean is
subtracted to obtain a time series with mean 0. We define an autoregressive model
of order p (AR(p)) as

ϕ(B)xt = wt,

where xt is stationary, wt is white noise. Furthermore,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 − . . . ϕpBp,

with B defined as the backward shift operator (BjXt = Xt−j , j ∈ N) and ϕ1, . . . , ϕp

are coefficients that need to be estimated. This model includes p previous values
into the model of xt and adds a white noise.

Another class of models is a moving average model of order q (MA(q)) that is
defined as

xt = θ(B)wt,

where wt is white noise. Furthermore, we define

θ(B) = 1 − θ1B − θ2B
2 − . . . θqB

q,

with B as backward shift operator and θ1, . . . , θq are coefficients. Instead of a linear
combination of history values of xt, the previous white noise values are weighted
and summed up for xt.

These two models are often combined into an ARMA(p, q) model that is defined
as

ϕ(B)xt = θ(B)wt,

where βp ̸= 0, θq ̸= 0 and wt is white noise. The parameters p and q are called au-
toregressive and moving average orders, respectively. The full model can be written
as

xt = ϕ1xt−1 + ϕ2xt−2 + · · · + ϕpxt−p + wt + θ1wt−1 + θ2wt−2 + · · · + θqwt−q.

So far, we have assumed that the distribution of xt is stationary. If instead non
stationary trend is included, we can consider an integrated model which combines
an ARMA(p, q) process and the differencing of xt. The differencing removes linear
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or higher order as well as non stationary trends from the time series so that we
obtain a stationary time series on which we can apply an ARMA model.

Definition 6.1.2 (ARIMA(p,d,q) model).
A process xt is called ARIMA(p,d,q) if
∆dxt := (1 − B)dxt is a ARMA(p,q) model. B is the backward shift operator.

The ARIMA model can be further expanded by adding an additional component to
eliminate seasonal effects. Seasonal effects can be reduced with additional differenc-
ing of the series xt.

Definition 6.1.3 (ARIMA(p, d, q) × (P, D, Q)s model).
A process xt is called ARIMA (p, d, q) × (P, D, Q)s if the differenced series ∆d(1 −
Bs)Dxt = (1 − B)d(1 − Bs)Dxt is an ARMA process defined by

ϕ(B)Φ(Bs)(1 − B)d(1 − Bs)Dxt = θ(B)Θ(Bs)wt,

ϕ(B) = 1 − ϕ1B − ϕ2B
2 − . . . ϕpBp,

Φ(Bs) = 1 − Φ1B
s − Φ2B

2s − . . . ΦP BP s,

θ(B) = 1 − θ1B − θ2B
2 − . . . θpBp,

Θ(Bs) = 1 − Θ1B
s − Θ2B

2s − . . . ΘpBQs,

where B is the backward shift operator and wt is white noise.

Generalized linear autoregressive models

We focus on modified versions of a linear and a log-linear Poisson GLM which was
introduced by Fokianos and Tjøstheim (2011). We used the R package tscount that
was developed by Liboschik et al. (2017) for the implementation.
For a log-linear autoregressive Poisson model we assume that xt is approximately
Poisson distributed with a parameter λt being the expected mean of the current
incidence from day t. This estimation is based on r previous values xt−t1 , . . . , xt−tr as
well as on s previous expected mean values λt−t1 , . . . , λt−ts . Since previous expected
values depend on previous case numbers, our prediction accounts for all reported
case numbers indirectly.
Furthermore, we apply a logarithmic transformation to the previous values and add
1 for the Poisson regression, with a log-link function such that all counts of reported
new cases are on the same scale and days with 0 new cases can be included. All in
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all, a log-linear autoregressive Poisson model can be written as:

xt|Ft−1 ∼ Poisson(λt) (6.1)

log(λt) = α0 +
r∑

i=1
(αi log(1 + xt−ti

)) +
s∑

j=1

(
βj log(λt−tj

)
)

, (6.2)

where Ft−1 denotes the σ-field generated by {x0, . . . , xt−1} and xt ∈ N, ω ∈ R,

αi ∈ R, βj ∈ R.

Our model incorporates an intercept term (α0), terms that reflect the historical
observed values multiplied by a coefficient (α1, . . . , αr), and terms that reflect long-
term behavior via the expected historical values multiplied by a coefficient
(β1, . . . , βs). Because we have to ensure that our model has a stationary and ergodic
solution, the parameters of the model need to be constrained. They must fulfill:

|β1|, . . . , |βs|, |α1|, . . . , |αr| < 1∣∣∣∣∣
s∑

k=1
βk +

r∑
l=1

αl

∣∣∣∣∣ < 1.

We investigated two modifications in this thesis. First, we considered the use of
the identity function as link function instead of a logarithmic function. This change
results in a model:

xt|Ft−1 ∼ Poisson(λt)

λt = α0 +
r∑

i=1
(αixt−ti

) +
s∑

j=1

(
βjλt−tj

)
,

where Ft−1 denotes the σ-field generated by {x0, . . . , xt−1} and xt ∈ N, ω ∈ R,

αi ∈ R, βj ∈ R.

Compared to the log-linear autoregressive Poisson model, the identity link func-
tion needs further constraints to guarantee that all estimated means are positive.
The logarithmic link function yields positivity automatically. The parameters in the
setting of the identity link function must fulfill:

β0 > 0
β1, . . . , βs, α1, . . . , αr ≥ 0

s∑
k=1

βk +
r∑

l=1
αl < 1.
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A disadvantage of the Poisson distribution assumption is that the estimated mean
is equal to the estimated variance. This could be problematic for applications where
overdispersion or underdispersion is present. A negative binomial distribution pos-
sesses more flexibility, and can thus support the modeling of overdispersion. We
used a parametrization of the negative binomial distribution in terms of estimated
mean and a dispersion parameter ϕ ∈ (0, ∞). The variance of xt conditional Ft−1

can be written as λt + λ2
t /ϕ instead of λt.

To account for external influences, we modified equation (6.2) to incorporate ad-
ditional covariates. We selected the stringency of NPIs and the distribution of
variants at each time point because the transmission rate is dependent on variants.
A shift in the distribution also influences COVID-19 incidence. We focused only on
the main variants for the model (Wildtype, Alpha variant, Delta variant, Omicron
BA.1 variant, Omicron BA.2 variant, and Omicron BA.5 variant). The relative fre-
quency zi,t for every variant i at every time point t lies in the range of 0 and 1 and
sums up to 1 over all variants at each time point. The stringency of NPIs is rated on
a scale between 0 and 1 at each time point and denoted by ut. With this definition,
the second part of our model can be written as:

log(λt) = α0 +
r∑

i=1
(αi log(1 + xt−ti

)) +
s∑

j=1

(
βj log(λt−tj

)
)

+
5∑

i=1
ηizi,t + νut. (6.3)

Measurements for model evaluation

The performance of these models were mainly evaluated bases on the mean abso-
lute error (MAE) and the mean absolute percentage error (MAPE). Both provide a
measure how well the data approximate the observed data.
When the observed incidences are denoted by Ct, the estimated incidences are de-
noted by Ĉt, and n data points are considered, we can define the both measures

MAE = 1
n

n∑
t=1

|Ct − Ĉt|, (6.4)

MAPE = 1
n

n∑
t=1

|Ct − Ĉt|
Ct

. (6.5)

6.1.4 Non-seasonal and seasonal ARIMA models

First, we examined the autocorrelation function (ACF) of the smoothed COVID-
19 incidence and the ACF of the smoothed COVID-19 incidence after a first order
differencing (Figure 6.3). The smoothed incidence values were highly correlated
because we used the average of the last seven days instead of the observed value.
We used the method auto.arima from the package forecast in R to detect the optimal
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Figure 6.3: ACF of the COVID-19 smoothed incidence (left) and of the smoothed
COVID-19 indicence after differencing (right)

ARIMA model regarding AIC. The algorithm identified p = 5, d = 1, q = 2 and
no seasonal component as optimal parameters. The model yielded a MAE of 1413
and a MAPE of 4.25%. Figure 6.4 shows the course of fitted values in comparison
to that of the observed ones. Although the result was a relatively close fit, the

Figure 6.4: Fitted values of the optimal ARIMA model (blue line) compared with
the actual reported numbers (black)
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distribution of the residuals could not be approximated by a normal distribution
(Figure 6.5). Problems arose from the number of infected individuals in different
COVID-19 waves. Whereas during the initial waves, the number of daily reported
cases was below 50, 000, the numbers increased in 2022. This behavior was also
present in the residuals, with small values around 0 at the beginning and higher
values at the end. Furthermore, in the selected model there was still a correlation
between the residuals. These problems with the correct distribution of residuals

Figure 6.5: Residuals of fitted ARIMA Model over all data points

made the model unusable. A high correlation induced by the smoothing of the
curve through the replacement of the reported case number by the mean of the last
7 days was another problem. To improve the distribution of residuals and reduce
the correlation, we analyzed every wave of COVID-19 separately and used the daily
incidence without a smoothing.

6.1.5 Models for incidence without smoothing

The ACF plot of the incidence without smoothing emphasised that the correlation
between the actual and previous values is smaller than the correlation with smooth-
ing (Figure 6.6). We found the highest correlation at lag 7 which is an indicator for
a seasonal component in our model. The same structure is also present when a first
order differencing is applied. However, the correlations are lower after differencing.
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Figure 6.6: ACF of the COVID-19 incidence (left) and of the COVID-19 indicence
after differencing (right)

Although a seasonal component is reasonable from the ACF plot, we fitted for
each COVID-19 wave a non-seasonal and one seasonal ARIMA model. We used
auto.arima to find the optimal ARIMA model regarding AIC. The aim of this section
was also to investigate whether model assumptions are fulfilled for different models
because often only the results of prediction are presented without any information
about model assumptions.

Second COVID wave

For the second COVID wave (09/28/2020 until 02/28/2021), the optimal parame-
ters were chosen as ARIMA(3,1,2) without a seasonal component. This resulted in
the following measures: AIC = 2847.7, MAE = 1848.8, and MAPE = 15.3. Figure
6.7 shows the analysis of the residuals. Although the residuals approximated the
normal distribution well except outliers, the middle part of the analyzed time period
showed high standardized residuals. Furthermore, this model still contains a certain
degree of correlation between residuals, in particular at lag 7. This correlation could
be reduced with an additional seasonal component (Figure 6.8). The optimal model
according to auto.arima had parameters ARIMA(1, 1, 1)×(0, 1, 2)7. This model out-
performed the non-seasonal model in all measurements in the dataset. The model
had an AIC of 2708.8, a MAE of 1533.5, and a MAPE of 11.6.
We also accounted for the high variability in the variance and applied a logarith-
mic transformation to the daily incidence numbers and selected the best seasonal
ARIMA model. The analysis of the residuals of this ARIMA(0, 1, 1) × (0, 1, 2)7 is
shown in Figure 6.9. The variance of this transformed model is more homogeneous
than without a transformation. Another benefit of the transformation is that the
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Figure 6.7: Analysis of residuals for non-seasonal ARIMA model for second wave

correlation between residuals could be reduced and that the residuals are closer to
a normal distribution. The fit of the model was also most accurate, with a MAE
of 1498.9 and a MAPE of 10.4. This means a slightly better result than the model
without transformation (Figure 6.10).

Third COVID wave

The third COVID-19 wave lasted from 03/01/2021 until 06/13/2021. The optimal
parameter for the non-seasonal model was ARIMA(2,1,2). Whereas the residuals
approximated the normal distribution well, residuals were correlated at several lags
and the incidence could be modeled accurately. The model had an AIC of 1949.7, a
MAE of 2110.8 and a MAPE of 23.7.

We further fitted an ARIMA model with a seasonal component, and obtain the
optimal model as ARIMA(2, 1, 1) × (0, 1, 1)7. The performance could be improved
compared to the previous model. The model had a lower AIC (1773.8), a lower MAE
(1427.9), and a reduced MAPE of 18.6. The residuals approximated the normal dis-
tribution well and only slight correlation between the residuals could be observed
(Figure 6.11). High residuals could be detected in the middle of the analyzed time
period and at point around 90 days since the beginning of the wave. The residual
showed some heterogeneous variance, in particular in the middle of the wave.

98



Figure 6.8: Analysis of residuals for seasonal ARIMA model for second wave.

Figure 6.9: Analysis of residuals for seasonal log-transformed ARIMA model for
second wave.
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Figure 6.10: Fitted COVID-19 incidence of a seasonal ARIMA model without trans-
formation (blue) and with logarithmic transformation (green) compared to the ob-
served values (black) in the second wave.

We applied a logarithmic transformation to the daily incidence of COVID-19, and
fitted a seasonal ARIMA model. Figure 6.12 shows the analysis of the residuals for
the optimal ARIMA model (ARIMA(3, 1, 0) × (0, 1, 1)7). The variance of the resid-
uals was more homogeneous than before and the correlation between the residuals
could be further reduced. The p-values for the Ljung-Box statistic indicated that
the residuals are independent. The distribution of the standardized residuals was
closer to a normal distribution. Compared to a model without transformation, the
model with transformation improved the MAE (1427.9 to 1346.6) and MAPE (18.6
to 12.4). The fitted value of both models are visualized in Figure 6.13.

Fourth COVID-19 wave

We repeated a similar analysis for the fourth COVID-19 wave that lasted from
08/02/2021 until 12/26/2021. We selected ARIMA(2,1,2) as the best model with-
out a seasonal component regarding AIC. Similar problems like for the second and
third wave arose. This model could not approximate the data adequately. AIC was
2886.9, MAE was 3178.2, and MAPE was 20.7. The residuals approximated the
normal distribution relatively well but the residuals showed correlation, especially
at lag 7. This indicated that a seasonal component could improve the model.
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Figure 6.11: Analysis of residuals for seasonal ARIMA model for third wave.

Figure 6.12: Analysis of residuals for seasonal log-transformed ARIMA model for
third wave.
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Figure 6.13: Fitted COVID-19 incidence of a seasonal ARIMA model without trans-
formation (blue) and with logarithmic transformation (green) compared to the ob-
served values (black) in the third wave.

An ARIMA model with seasonal component (ARIMA(1, 1, 1) × (1, 1, 0)7) had a
better fit to the observed daily incidence. AIC was 2685.6, MAE was 2254.9, and
MAPE was 11.4. Despite this fit, several problems were present in the analysis of
residuals (Figure 6.14). The distribution of the residuals was not gaussian and a
slight correlation between residuals was present. Moreover, the residuals showed a
higher variance at the second half of the time period compared to the variance at
the first half.

We addressed this issue with a logarithmic transformation and obtained an
(ARIMA(0, 1, 1)×(1, 1, 0)7) model. This model had the highest benefit from a trans-
formation of the incidence among all COVID-19 waves. The variance of residuals
was homogeneous over the whole interval, and the residuals were less correlated. In
addition, the residuals could be well approximated by a normal distribution. The
model fit was comparable to the other model without transformation, with a MAE
of 2306.5 and a MAPE of 10.3.
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Figure 6.14: Analysis of residuals for seasonal log-transformed ARIMA model for
fourth wave.

6.1.6 Log-linear autoregressive Poisson model

We developed and examined a log-linear autoregressive Poisson model and adaptions
for each wave and compared them in this section.

Second COVID-19 wave

We used the second COVID-19 wave to examine the general performance of different
settings to model the incidence of COVID-19. Many articles such as Agosto and
Giudici (2020) build their model based on the observed value and the estimated
mean from the previous day. However, the analysis was not performed on data from
Germany. We assumed that our model is defined as

xt|Ft−1 ∼ Poisson(λt)
log(λt) = α0 + α1 log(1 + xt−1) + β1 log(λt−1).

The ACF plot of the residuals indicated that there was a weekly correlation in
the data that needed further observed values to be integrated (Figure 6.16). We
expanded the model to include the observed value one week ago and could reduce
the correlation between the residuals. The identity link function is an alternative
to the logarithmic link function for the Poisson model. We examined whether the
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Figure 6.15: Fitted COVID-19 incidence of a seasonal ARIMA model without trans-
formation (blue) and with logarithmic transformation (green) compared to the ob-
served values (black) in the fourth wave.

Figure 6.16: ACF plot of a log-linear autoregressive Poisson model with information
from prior day only (left) and in addition with the observed value one week before
(right).

performance improved by using the identity link function. The coefficients of all
parameters need to be positive to ensure a stable solution in this model. This
condition caused problems with the fit in the application and could not be used
for modeling (Figure 6.17). Hence, we relied on the logarithmic link function for
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further models. In addition to previous requirements, it is also important that the

Figure 6.17: Fitted COVID-19 incidence of a log-linear autoregressive Poisson model
with identity link function (blue) and with logarithmic link function (green) com-
pared to the observed values (black) in the second COVID-19 wave

predictive performance of a model is correct. We define Pt(y) = P(Yt ≤ y|Ft−1) the
cumulative density function of a predictive distribution. We can judge the predictive
distribution by examining whether the probability integral transform (PIT) follows
a uniform distribution. Czado et al. (2009) defined the PIT value for count data for
the observed value yt and the predictive distribution Pt(y) by

Ft(u|y) =


0, for u ≤ Pt(y − 1)

u−Pt(y−1)
Pt(y)−Pt(y−1) , for Pt(y − 1) < u < Pt(y)

1, for u ≥ Pt(y).

(6.6)

Furthermore, the mean PIT is defined by

F̄ (u) = 1
n

n∑
t=1

Ft(u|yt), 0 ≤ u ≤ 1. (6.7)

Czado et al. (2009) suggest to plot a histogram with 10 bins to check that the mean
PIT is uniformly distributed. If the model is well suited, a histogram of PIT should
consist of equal high bars. In contrast, a U-shape indicates dispersion.
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Because the PIT distribution showed high tails and a strong U-shape, the predictive
distribution needed further parameters for dispersion. We fitted a model with the
same parameters but a negative binomial function and found that the distribution
of PIT was closer to a uniform distribution than the distribution for a Poission dis-
tribution function (Figure 6.18). We further explored if the estimated mean seven

Figure 6.18: Comparison of PIT distribution between a log-linear autoregressive
model with Poisson distribution (left) and with negative binomial distribution (right)

days prior can improve the estimation and the analysis of the residuals. This showed
only little effect and was neglected. Because the daily COVID-19 incidence is influ-
ence by non-pharmaceutical interventions and the current distribution of COVID-19
variants, we included the stringency of interventions and the variants of interest as
internal factors in the model. During the second wave only the wildtype and the
Alpha variante was present. Both expansions showed an improvement for the model
compared to other settings (Table 6.1). We drop the first observed values from
the calculation to avoid errors through the first estimates because they cannot be
estimated with the model. Thus, a comparison with the ARIMA models based on
this measures would be biased. Of note, the point estimation of incidence is inde-
pendent of the chosen distribution function. The distribution has only influence on
confidence intervals.

Considering the residuals (Figure 6.19), the distribution of Pearson residuals was
approximately normal and the PIT of the model was uniformly distributed. The
model still had some correlation in the residuals that persisted even after adding
more observed values. Here should be noted that many articles do not present the
correlation structure of their investigated models but only rely on the fitted values
and their prediction so that a comparison with other articles is not available.
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Table 6.1: Comparison of log-linear autoregressive Poisson models for the second
wave

Model Setting MAPE ME MAE
x1, λ1 27.7 -15.2 2990
x1, x7, λ1 14.5 -0.04 1932
x1, x7, λ1, λ7 14.7 -5.5 1927
x1, x7, λ1 + stringency index 13.5 -7.0 1797
x1, x7, λ1 + SI + VOI 13.1 -8.9 1780

Figure 6.19: Analysis of the residuals of the log-linear autoregressive negative bino-
mial model with stringency and distribution of variants; shown is the QQ plot of
the pearson residuals, the ACF plot of the response residuals and a histogram of the
PIT.

Third COVID-19 wave

We compared different models for the third COVID-19 wave, and found similar re-
sults like for the second COVID-19 wave (Table 6.2). The stringency of interventions
did not improve the model, whereas the VOIs (here the Alpha and Delta variante)
led to a reduction in MAE and MAPE. Because the model had high correlation of
residuals, we included the observed value of the incidence two days ago. The model
performance on the data set remained equal, with a slight increase in the MAPE
from 19.5 for the model without x2 to 20.3. However, the correlation between the
residuals could be reduced (Figure 6.21). The PIT distribution was close to a uni-
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Figure 6.20: Fitted COVID-19 incidence of a log-linear autoregressive negative bino-
mial model with logarithmic link function and included stringency and distribution
of variants, compared to the observed values (black) in the second COVID-19 wave.

Table 6.2: Comparison of log-linear autoregressive Poisson models for third wave
Model Setting MAPE ME MAE
x1, x7, λ1 20.1 70.7 1807
x1, x7, λ1 + stringency index 26.8 84.0 2127
x1, x7, λ1 + SI + VOI 19.5 0.3 1738
x1, x2, x7, λ1 + SI + VOI 20.3 -16.9 1741

form distribution and the pearson residuals had an accurate approximation to a
normal distribution in a QQ plot. The fitted model was close to the observed data
(Figure 6.22).

Fourth COVID-19 wave

We fitted different models for the fourth COVID-19 wave (Table 6.3). When we
fitted similar models like for the second and third COVID-19 wave, the residuals
of all these models were highly correlated, even for higher lags. In order to reduce
this correlation, we included the observed incidence two weeks prior in our model.
This improved the performance of the model and reduced the correlation (Figure
6.23. Although also other observed values and estimated means were included, the
correlation of the residuals could not be further improved. The PIT distribution was
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Figure 6.21: Analysis of the residuals of the log-linear autoregressive negative bi-
nomial model with stringency and distribution of variants in the third COVID-19
wave; shown is the QQ plot of the pearson residuals, the ACF plot of the response
residuals and a histogram of the PIT.

Table 6.3: Comparison of log-linear autoregressive Poisson models for fourth wave
Model Setting MAPE ME MAE
x1, x7, λ1 16.8 17.1 3373
x1, x7, λ1 + stringency index 16.9 -53.2 3282
x1, x7, λ1 + SI + VOI 18.2 30.0 3366
x1, x7, x14, λ1 15.9 -0.1 3117

close to a uniform distribution and the pearson residuals could be approximated by
a normal distribution. The fitted model was close to the observed data (Figure
6.24).

6.1.7 Discussion

In this section, we compared non-seasonal and seasonal ARIMA models for each
COVID-19 wave and analyzed their residuals. The seasonal ARIMA model had a
better fit than a non-seasonal ARIMA model, in particular with a logarithmic trans-
formation that stabilizes the variance of the time series. Some articles have tried to
fit ARIMA models to predict COVID-19 cases. In many cases, this was done during
the first COVID-19 wave only. Although model assumptions should be considered
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Figure 6.22: Fitted COVID-19 incidence of a log-linear autoregressive negative bino-
mial model with logarithmic link function and included stringency and distribution
of variants, compared to the observed values (black) in the third COVID-19 wave.

during the development of a model, many articles present no analysis whether model
assumptions could be verified in their model. If a model does not fulfill the assump-
tions the model is not adequate and cannot be used for forecasting.
As future work it might improve the seasonal ARIMA model to include external
covariates such as temperature.

We also examined a log-linear autoregressive Poisson model with several adaptions
for COVID-19 incidence. We have shown that for the modeling of COVID-19 inci-
dence a logarithmic link is important because negatively correlated parameters can
be included. Furthermore, the negative binomial distribution improved the distri-
bution of the PIT, and thus the predictive distribution, through a higher flexibility
in dispersion than the Poisson distribution.

Agosto and Giudici (2020) also used log-linear autoregressive Poisson regressions.
They trained their model based on the previous day and the estimated mean of the
previous day and showed promising results. However, in this analysis, seasonal ef-
fects remained in the model such that further previous observed values were needed
in the model.
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Figure 6.23: Analysis of the residuals of the log-linear autoregressive negative bi-
nomial model in the fourth COVID-19 wave; shown is the QQ plot of the pearson
residuals, the ACF plot of the response residuals and a histogram of the PIT.

A prediction with several days ahead is complex because the development of daily in-
cidence has a high variability and external influences affect the course. We included
the relative frequency of variants in the model and improved the performance of the
fit. This approach enables a prediction of the further course some days in advance
since the distribution of variants remains relatively stable. Models including a time
component as external covariate were also introduced by Agosto and Giudici (2020).

Liboschik et al. (2017) underlined in their work the possibility to include differ-
ent types of interventions in the model. They distinguished between an outlier at
only one point, a decreasing effect of an intervention, and a constant shift through
external effects. A closer fit to the data might be reached in further work by apply-
ing interventions, in particular to capture outliers in the dataset.

One major limitation is the quality of the data. In particular, at the start of the pan-
demic, a high number of unreported asymptomatic cases arose which caused a bias
of case numbers. Furthermore, cases are often reported lately such that the number
might increase after publishing. Preprocessing the data and using them to nowcast
the actual number of cases could be an interesting aspect. Studies have shown that
this could be achieved either with a method using time-series like Alaimo Di Loro
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Figure 6.24: Fitted COVID-19 incidence of a log-linear autoregressive negative bino-
mial model with logarithmic link function, compared to the observed values (black)
in the fourth COVID-19 wave.

et al. (2021) or with Bayesian hierarchical models like Günther et al. (2021).

6.2 Semi-mechanistic SEIR model with change
points

All of the models that were presented on the preceding pages relied only on case
numbers but did not focus on any biological meaningful interpretation. Due to the
importance of this, another type of model was now investigated.

6.2.1 Background of interventions against COVID-19

At the beginning of the pandemic in 2020 no vaccine was available and other inter-
ventions were implemented in order to reduce the spread of the virus and avoid a high
number of deaths. Different statistical models were employed to generate prognoses
about the further course of the epidemic and the impact of non-pharmaceutical
interventions (NPIs). In the first period a lack of data as well as the systematic
under-reporting of cases impeded the estimation of parameters. Several statistical
approaches were introduced with the aim of estimating the main parameters of the
pandemic and of simulating the course of the pandemic to investigate which mea-
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sures mitigate the spread of the virus. At present, more and better-quality data is
available due to reliable tests. Several NPIs have been introduced. An index that
summarizes many interventions is provided by the Oxford COVID-19 Government
Response Tracker (OxCGRT). It covers the current interventions in Germany on a
daily record basis.

Several parameters other than NPIs have influenced the course of the pandemic
and the characteristics of the virus. Like many viruses, SARS-CoV-2 tends to mu-
tate to improve its conditions and to increase its transmission rate.

In December 2020, the European Medicines Agency approved the first vaccines
against COVID-19 which could be shown to deliver a significant protection against
severe courses. The first vaccines were released from Pfizer, Moderna, and Jansen.
An vaccine from AstraZeneca became available later. During time, the vaccine from
Pfizer was mainly used because the vaccine from Jansen and AstraZeneca had po-
tential security issues. Due to the low amount of available vaccines, the elderly and
individuals with severe preexisting conditions were prioritized initially. After the
administration of a low number of doses at the beginning of 2021, a peak of daily
vaccinations could be reached in July 2021. Two doses were needed at first. After
the wildtype mutated, three doses became necessary for full immunization. For a
detailed overview of COVID-19 vaccines, we refer to Desson et al. (2022).

A large number of statistical approaches were employed to estimate important char-
acteristics from small samples and to provide an outlook on the development of the
incidence of COVID-19. The SIR model was the starting point for several models. It
is used often for epidemic outbreaks. A mechanical model with the underlying struc-
ture of the classic SIR model is suitable when a new virus is in its initial, exponential
growth. Then, the inclusion of biological knowledge can help to reduce overfitting
compared to other models with more degrees of freedom. Multiple COVID-19 waves
made it impossible to focus exclusively on the classical SIR model without further
expansions.

Unlike several other authors, Dehning et al. addressed this problem and intro-
duced a novel version of the SIR that relies on a Bayesian framework combined
with Markov Chain Monte Carlo (MCMC) sampling. Furthermore, they introduced
change points to capture changing properties of the virus and the pandemic. Mul-
tiple change points can thus be used to model the reaction of the government, say
at the beginning of the pandemic. They can also be employed to capture changes
in the transmission rate of the virus.
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Bayesian analysis is beneficial due to multiple reasons. One can use priors for the
parameters to incorporate prior knowledge about them, which is relevant mainly to
the later phases of the pandemic when more information about the virus is available.
Prior knowledge is important for the forecast and the estimation of the parameters.
Another advantage is that Bayesian inference is not bounded by a density assump-
tion but complex models can be implement more easily.

Xu and Tang (2021) expanded the SIR system with a further compartment and
showed that multiple change points can enable the modeling of a long-term period
with multiple waves. They also added vaccination to the SEIR model because of its
impact on susceptible individuals.

In this section we expand the approach of Dehning et al. (2020) and Xu and Tang
(2021) by fitting a SEIR model with multiple change points over a long period.
Furthermore, we inspect whether changes that we identify can be explained by the
variants of interest.

6.2.2 Statistical approaches

Estimation with Bayesian MCMC

Bayesian inference is applied for the estimation of parameters in many situations
and for nearly all types of models. For the theoretical aspects, we refer to Gelman
et al. (1995). The method are intended to combine the likelihood of observed data
and knowledge about the parameters (in the form of priors) in order to obtain a
posterior distribution of the parameters. All considerations are based on the Bayes
Theorem which yields the following:

P(θθθ|XXX, M) = P(XXX|θθθ, M)P(θθθ)
P(XXX) ∝ P(XXX|θθθ, M)P(θθθ).

P(θθθ|XXX, M) is the posterior distribution of parameter vector, P(XXX|θθθ, M) is denoted as
the likelihood of the observed data Ct, and P(θθθ) is denoted as prior of the parameter
vector.

A major concern in Bayesian inference is that the posterior distribution may not be
expressed in an analytical form, thus, we cannot draw samples directly but need an
algorithm to sample from the posterior distribution. For posterior inference of our
parameter vector, we drew random samples from the conditional distribution of the
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given number of real cases at a specific day t. In the present case, we obtain

P(θθθ|Ct) ∝ P(Ct|θθθ)P(θθθ).

NUTS algorithm

In this section, we introduce the No-U-Turn Sampler (NUTS) algorithm that is
capable to overcome these sampling issues and which was introduced by Hoffman,
Gelman, et al. (2014). It is a special case of the Markov Chain Monte Carlo (MCMC)
algorithm and creates a Markov chain in which the probability of θθθ at time t + 1
depends only on the value at t and not on other historical values such that

P(θθθt+1|θθθ1, θθθ2, . . . , θθθt) = P(θθθt+1|θθθt).

Many applications of the MCMC rely on the Metropolis-Hastings algorithm to sam-
ple from the posterior distribution and to generate a sequence whose distribution
converges against the target. Every new generated sampled value of the posterior
distribution is accepted with a ratio:

P(accept(θθθt)) = min
(

1,
P(θθθt|Ct)P(θθθt|θθθt−1)
P(θθθt−1|Ct)P(θθθt−1|θθθt)

)

The Hamiltonian Monte Carlo algorithm (HMC) can outperform the commonly used
symmetric random walk in the generation of new values of the posterior distribution.
According to Neal et al. (2011), it can often solve the problem of a low acceptance
rate by providing a more directed search in the parameter space. The concept is
based on Hamiltonian dynamics. We denote the parameter space as θθθi and introduce
an auxiliary variable ri in every step. We use the current gradient to guide the next
state of the Markov chain to a value with a high probability of acceptance. We
define the Hamiltonian H(θθθ, rrr) = U(θθθ) + K(rrr) = log p(θθθ, rrr) + K(rrr), where U(θθθ)
is the negative log-likelihood of the posterior distribution and K is an additional
function that is needed for the direction that is specified by a Gaussian kernel with
a covariance matrix Σ and defined as:

K(r) = rrrT Σ−1rrr

2 .

HMC uses a leapfrog integrator that performs a half step in the direction of rrr, a full
step with stepsize ϵ in the direction of θθθ and another half step in the direction of rrr.
Then, the newly obtained parameter vector is accepted with a probability

P(accept(θθθ∗)) = min
(

1,
P(θθθ∗|Ct, H(θθθ, rrr))
P(θθθ|Ct, H(θθθ, rrr))

)
.
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Selecting suitable parameters is essential for the performance of the algorithm. The
NUTS algorithm is an extension of the HMC whereby the discretization stepsize ϵ

and the trajectory length L are tuned automatically. The stepsize ϵ is optimized
during an initial burn-in phase by setting a target mean acceptance probability, and
L is chosen by adding steps iteratively until the trajectory begins to retrace itself.
For further details, we refer to Hoffman, Gelman, et al. (2014).

Compartment models

SIR model

A classical SIR model is a compartment model which consists of three different
compartments. Susceptible individuals (S) can be infected by others and have not
been infected so far. Infected individuals (I) have been in contact with the virus
and can transmit the virus to other individuals. Recovered individuals (R) have
experienced the virus and are immune to reinfection. We assume that the disease
infects susceptible individuals with a rate β. Therefore, β SI

N
individuals are moved

from the S to the I compartment at every time point. Furthermore, the recovery
rate is denoted by γ.

The compartment model that describes the spread of the disease can be formulated
with ordinary differential equations:

dS

dt
= −β

SI

N
dI

dt
= β

SI

N
− γI

dR

dt
= γI.

(6.8)

SEIR model

Beyond the classical SIR model, further compartments can be included to generate
a four state Markov chain model. In the case of COVID-19, patients can be exposed
to the virus, but are not infective because of a latent period of time. Therefore,
exposed individuals should be considered alongside susceptible, infected, and recov-
ered ones.

When a susceptible individual is in contact with an infected one, it becomes an
exposed individual and is only infectious after an incubation period. This extension
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can be modelled by the following equations:

dS

dt
= −β

SI

N
dE

dt
= β

SI

N
− σE

dI

dt
= σE − γI

dR

dt
= γI.

(6.9)

β is the transmission rate, γ the recovery rate, σ is the incubation rate.

Figure 6.25: Compartments of a SEIR model with transition rate

6.2.3 Modifying SEIR system with multiple change points

State-of-the-Art

Our modeling approach follows an article from Dehning et al. (2020) which is ex-
plained here in more detail. They started with a basic SIR model and introduced
multiple change points. Because measurements are taken on a daily basis, we can
reformulate system (6.8) on a discrete time scale, such that we obtain the following
system, where St denotes the number of susceptible individuals at day t:

St+1 − St = −β
StIt

N

It+1 − It = β
StIt

N
− γIt

Rt+1 − Rt = γIt.

(6.10)

It should be noted that the size of the population N is set to be constant because
we ignore the number of deaths and newborn offspring.

Based on equations (6.10) we can define the number of newly infected persons by

Inew
t := β

StIt

N
.

Dehning et al. (2020) propose incorporating a time delay between the time when
a new infection occurred and when it is reported. They defined Ct := Inew

t−D as the
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number of newly reported cases on day t.

One reason for the introduction of change points into the model was to investigate
the effect of non-pharmaceutical interventions. At the beginning of the epidemic
this was reasonable because only a few measures were implemented such that their
impact could be more easily tracked. Furthermore, only the wildtype virus was
present and no mutations to the virus had occurred. During the further course, a
direct association between measures and case numbers is more difficult to be esti-
mated. A SIR model with potential change points can include a changed spreading
rate of the virus via governmental interventions or mutations of the virus over a
period of time. Thus, a higher number of change points is necessary for a long-term
modeling of the number of newly reported cases.

Dehning et al. (2020) introduced a weekly modulation due to the unevenly dis-
tributed number of cases. At weekends, low case numbers are reported because the
registration of the infection occurs on the following days. They propose to multiply
the delayed number of new infections by a factor (1 − f(t)), such that we obtain

Ct = Inew
t−D(1 − f(t)),

f(t) = (1 − fw)
(

1 −
∣∣∣ sin(π

7 t − 1
2Φw

)∣∣∣) .
(6.11)

Here, fw and Φw are estimated using the given data.
For the likelihood function they chose a Student’s t distribution with a location
parameter µ, a scale parameter σ and ν degree of freedom. We set ν = 4 due to
a higher stability than Gaussian, in particular if the tails are heavy and neglected
noise in the dynamic process. The likelihood function can be written as

P(Ct|θθθ) ∼ Student-t(ν, µ = Ct(θθθ), σ = η
√

Ct(θθθ)). (6.12)

The priors were either based on previous studies or if no information was available,
chosen as a wide, uninformative prior.

Xu and Tang (2021) further enhanced this model by using a SEIR model with an
additional status for exposed people to incorporate the latent time from contact
with an infected person to the status where the disease can be transmitted. They
also added the exact number of vaccinated people and two coefficients α1 and α2,
for the efficiency of the vaccination, whereby they assumed it was no longer possible
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to become infected. Their system is described by the following equations:

dS

dt
= −β

SI

N
− α1V1,t − α2V2,t

dE

dt
= β

SI

N
− σE

dI

dt
= σE − γI

dR

dt
= γI + α1V1,t + α2V2,t.

(6.13)

SEIR with change points for long-term modeling

Our aim was to fit a SEIR model with multiple change points over a long period of
time to examine the connection between changes in the distribution of variants or
the stringency of NPIs and the number of newly reported cases. The introduction
of time points can help to identify points where the characteristics of the pan-
demic changed and might be reasoned by changes in variants or stringency of non-
pharmaceutical measures. The Oxford Coronavirus Government Response Tracker
(OxCGRT) project provides a Stringency Index which summarizes nine central mea-
sures and judges the strength of the interventions. Incorporated interventions are
school closures, workplace closures, cancellation of public events, restrictions on
public gatherings, closures of public transport, stay-at-home requirements, public
information campaigns, restrictions on internal movements, and international travel
controls. In Figure 6.26 the OxCGRT-score is shown during the period of the pan-
demic. This underlines the fact that change points can only be used approximately to
determine the effectiveness of measures since interventions were frequently changed.
We waived the modification of daily case numbers with a multiplicative factor by
using the mean value of newly reported cases for the prior 7 days and hence did not
apply a delay. The number of new infected people at day t was defined as:

Ĉt = Et−1 − Et + St−1 − St. (6.14)

Further, we assume that the likelihood belongs to the family of Student’s t distri-
butions such that

P(Ct|θθθ) ∼ Student-T(ν, µ = Ct(θθθ), σ =
√

Ct(θθθ)). (6.15)

We fitted the SEIR model with change points with RStan, a package for Bayesian
Analysis in R. After a burn-in of 1000 iterations, 1000 iterations were sampled from
the posterior distribution. In total, 4 chains were sampled to analyze whether the
chains mixed and a convergence was obtained.
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Figure 6.26: Course of the Stringency of Interventions measured with OxCGRT-
Score over Time

We included 13 change points, and for the time of changes, we chose a prior nor-
mal distribution around roughly estimated values according to the course of cases,
and the transmission rate for all parameters was said to be normally distributed
with mean 0.4 and standard deviation 0.1. The transition around a change point
was modeled by a smooth function to avoid indicator functions. All parameters
were also assumed to be approximately normally distributed. The final model is
described below:
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Ct ∼ Student-T(ν = 4, µ = Ĉt(θθθ), σ =
√

Ĉt(θθθ) + 1)
βi ∼ N (0.4, 0.1) i ∈ {1, . . . , 13}

γ ∼ N (0.35, 0.03)
ω ∼ N (0.3, 0.05)
i0 ∼ N (8000, 500)
e0 ∼ N (2000, 500)
t1 ∼ N (65, 3)
t2 ∼ N (105, 3)
t3 ∼ N (170, 3)
t4 ∼ N (210, 3)
t5 ∼ N (280, 3)
t6 ∼ N (355, 3)
t7 ∼ N (405, 3)
t8 ∼ N (450, 3)
t9 ∼ N (491, 3)

t10 ∼ N (525, 3)
t11 ∼ N (562, 3)
t12 ∼ N (588, 3)
t13 ∼ N (610, 3)
S1 = N − i0 − e0

I1 = i0

E1 = e0

βt = β0

1 + 8 exp (t − t1)
+

12∑
i=1

βi

(
(1 − 1

1 + 8 exp (t − ti)
) − (1 − 1

1 + 8 exp (t − ti+1)
)
)

+ β13(1 − 1
1 + 8 exp (t − t13)

)

St+1 = St − βt
StIt

N

Et+1 = Et + βt
StIt

N
− ωEt

It+1 = It + ωEt − γIt

Ĉt = Et−1 − Et + St−1 − St

We also provided starting values to the change points which had previously been
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Table 6.4: Parameter setting for two SEIR models with change points
Parameter model 1 model 2
γ 0.1 0.17
β0 0.2 0.34
β1 0.35 0.59
β2 0.2 0.34
t1 80 80
t2 120 120
i0 3 1.66
e0 1 1
ω 0.15 0.10

tested and shown to be in the correct range. A significant impediment in our model
was that different parameter settings can produce similar results, and this made
the optimization of our model more difficult. Chains of the MCMC algorithm can
become stuck at different local optima, and hence the chains might not mix. We
illustrate this behaviour with an example of two situations with different parameters
(Table 6.4), which lead to nearly the same result even if the change points occur
at the same time (Figure 6.27). If we consider model 1 as the reference, the mean
error of model 2 was 0.08 and the absolute mean error of model 2 was 1.00. This
problem of the difficult identification of parameters shows that the impact between
an association of a single intervention and the incidence cannot be determined en-
tirely or with certainty.

Parameters from the final fitted model are displayed in Table 6.5. The fitted values
were close to the actual values (Figure 6.28) and showed a good performance.
If we plot the distribution of important variants of the virus against the time, we
can see how the pandemic developed. Interestingly, five of our determined change
points coincide with a peak of a variant and the following descent (Figure 6.29).
In all cases, the spreading rate decreases to a lower level and after some time rises
again. This might be understood from the circumstance whereby the old variant
has evolved and the new one needs to develop.

6.2.4 Discussion

In this section, we provided a SEIR model with several change points to depict not
only a short phase of the pandemic but to provide an expanded discussion of the
development of COVID-19 incidence. Compared to the previous section, our model
contained more underlying background, resulting from the movement of individuals
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Table 6.5: Parameters of the fitted Bayesian SEIR model with change points
Parameter Mean 95%-credible interval
γ 0.36 [0.33, 0.40]
β0 0.41 [0.39, 0.45]
β1 0.65 [0.60, 0.69]
β2 0.37 [0.34, 0.41]
β3 0.28 [0.23, 0.32]
β4 0.44 [0.41, 0.47]
β5 0.20 [0.14, 0.25]
β6 0.57 [0.53, 0.60]
β7 0.35 [0.31, 0.39]
β8 0.56 [0.52, 0.59]
β9 0.30 [0.24, 0.34]
β10 0.65 [0.61, 0.69]
β11 0.39 [0.35, 0.43]
β12 0.55 [0.51, 0.59]
β13 0.38 [0.30, 0.44]
ω 0.17 [0.11, 0.22]
i0 4955 [3937, 6220]
e0 1065 [348, 2067]
t1 72.1 [71.7, 72.6]
t2 100.9 [100.6, 101.2]
t3 173.8 [173.1, 174.6]
t4 209.3 [208.9, 209.7]
t5 281.7 [281.4, 282.1]
t6 345.2 [344.7, 345.5]
t7 403.6 [402.9, 404.7]
t8 444.8 [444.4, 445.2]
t9 493.8 [493.6, 494.1]
t10 526.0 [525.7, 526.3]
t11 559.3 [559.1, 559.6]
t12 586.5 [586.4, 586.7]
t13 610.5 [609.4, 613.4]
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Figure 6.27: Comparison of the simulated course of COVID in two different param-
eter settings: model 1 (blue line) and model 2 (orange line)

between compartments. We were able to show that an approximation of the course
via our model is possible and that the change points show an association with a
change in the distribution of variants.

Due to the high multimodality and the combination of different interventions at
every time point the interpretation of single measurements does not seem possible
and we rely on associations. Besides the considered factors, many other parameters
could be influencing the course of the incidence. The longer the duration of the
pandemic, the more testing capacities have been available, and this has led to a
more reliable overview of the number of cases. Furthermore, even with implemented
NPIs it cannot be stated to what degree the interventions are being adhered to. As
a result of this impact of external, non-measurable factors, not every change point
can be interpreted.

Many different approaches have been suggested for the estimation of the effects
of NPIs. Flaxman et al. (2020) and Brauner et al. (2021) introduced renewal equa-
tions to model the process of infections which is also based on Bayesian hierarchical
models and comparable to a SIR model but not as restricted. They created their
model on the basis of a range of countries and the number of new cases and deaths.
Furthermore, they transformed the basic reproduction rate into daily growth and
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Figure 6.28: Fitted values of the Bayesian SEIR model with change points (blue
line) compared with the actual reported numbers (black)

obtained the expected number of daily confirmed cases via a discrete convolution
with a relevant delay distribution. So far, there have been only analyses of the first
phase of the virus but no further investigation about later waves. Flaxman et al.
(2020) could show an effect of gatherings limited to 10, 100, 1000, schools closed,
business closed, most businesses closed, universities closed, and stay-at-home or-
ders. However, as mentioned above, it remains questionable if all important facts
have been incorporated and how well individual interventions can be identified.

SIR models have been expanded by several additional components to included dif-
ferent situations such as a reinfection, vaccination, and other compartments. Y. Li
et al. (2021) provided a time-dependent SEIR model with incubation period, immu-
nity, reinfection, and vaccination and developed a new model named SEVIS. With
this model, the trajectories of time-changing parameters (transmission rate, recovery
rate, basic reproduction number) could be analysed. Poonia et al. (2022) enhanced
a SEIR model with vaccination and introduced several adaptions of these models
(with quarantined, hospitalized, vaccinated,...). It is questionable whether models
with more compartments are better suited than the classic SEIR model because
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Figure 6.29: Distribution of Variants over time with selected change points from the
SEIR model: Wildtype (blue), Alpha variant (brown), Delta variant (purple), Omi-
cron BA.1 variant (green), Omicron BA.2 variant (orange), Omicron BA.5 variant
(cyan)

these models need a higher number of parameters and hence more identification
problems might arise. Further studies are needed to examine complex compartment
models and compare their capability to model the course of disease incidence with
measures like AIC.

Finally, we compared the models introduced in this chapter. All introduced mod-
els have their specific advantages and a comparison of their performance is difficult
because of their diverse structure. External variables can be easier included into a
log-linear autoregressive Poisson model than in change point models. By expanding
the model equation with terms for external variables, a detection of associations be-
tween variables and the course of disease incidence is possible. Another advantage of
a log-linear autoregressive Poisson model can be the missing structure that is given
in a SEIR model. In particular, when several external factors influence the disease
incidence, a high number of change points is needed to provide an approximation of
the disease incidence course.
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However, change point models are more flexible for external factors through the
introduction of change points and can incorporate factors that are unknown so far
or are not measurable such as the acceptance of interventions. The location of
change points can then be used to search for relevant factors.

Further, a SEIR model with change points facilitates a long-term prognosis. We
can predict the further course of disease incidence in case of more restrictive or less
restrictive interventions directly through a changed transmission rate. This enables
the simulation of different scenarios and an assessment of how strict interventions
might be necessary to avoid an exceeding of the clinical capacity limit.

In summary, we have presented several statistical models based on different concepts
which are helpful for the modeling of newly reported case numbers of COVID-19.
This can help to predict the further course of the disease.
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Chapter 7

Further Studies

This chapter presents further studies which are based on a collaboration with the
University Hospital Augsburg. Because similar methods are already presented in
this thesis, only an overview of biological background and of used methods is pro-
vided.

Keywords: biomarker, survival analysis, generalized linear models, sensitivity and
specificity

7.1 Autopsies of COVID-19 patients
COVID-19 has been a central part of multiple projects for data analysis. At the ini-
tial phase hardly any characteristics of COVID-19 were known and research groups
in all fields collected information about the virus. In this project, the analysis was
focused on the consequences of an infection for the organs. This work resulted in a
publication: Hirschbühl et al. (2021). The Institute of Pathology of University Hos-
pital Augsburg performed autopsies for 19 deceased patients and investigate in which
organs SARS-CoV-2 could be detected. These autopsies were able to demonstrate
that the lungs in particular showed relevant histological changes. These changes
were scored according to their severity. We developed a linear regression model to
identify variables which are associated with a higher severity of lung damage.

7.2 New biomarker for gastric and colon cancer
Biomarkers have an important role for detection of cancer and the prognosis of its
further course. A prognosis has a significant value for decisions concerning a pa-
tient’s therapy. Biomarkers should be easily accessible and inexpensive, so that they
can be used in a daily routine. Together with the Institute of Pathology, we worked
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on a new biomarker for gastric and colon cancer (Grosser et al. (2022) and Martin
et al. (2021)). A histological sample is labeled positive if a cluster of tumor gland-
s/cells comprising at least five tumor cells and inconspicuous surrounding adipose
tissue are noted at the invasion front. This biomarker is named SARIFA, i.e. Stroma
AReactive Invasion Front Areas. SARIFA was investigated in two samples: one for
gastric cancer and one for colon cancer.

In a sample of 480 adenocarcinomas of the stomach and the gastroesophageal junc-
tion, 20% tested positive for SARIFA with a high level of agreement between different
pathologists, who had each independently judged each tissue sample (Kappa values:
0.74 and 0.78). A survival analysis showed that patients classified as SARIFA-
positive had a shorter overall survival compared to patients that were SARIFA-
negative. A Cox proportional hazards regression confirmed SARIFA as an im-
portant and independent prognostic factor for the prediction of overall survival
(HR= 1.64; 95%-CI 1.15 − 2.33 ;p= 0.006). Furthermore, a transcriptome analy-
sis was performed to identify associated genes.

We found similar results in another analysis for colon cancer (n = 449). This
time, 25% of all histological samples were SARIFA-positive, and the interobserver
variability was low (Kappa: 0.77 and 0.87). We performed a survival analysis to
compare patients for their SARIFA status. Patients that were SARIFA-positive
had a shorter disease-specific survival, a shorter absence of metastasis and a shorter
overall survival. Likewise, we conducted a Cox proportional hazard regression which
showed SARIFA as an independent prognostic parameter for colon-cancer-specific
survival.

Overall, we were able to conclude that SARIFA is a promising biomarker for gastric
cancer and colon cancer. Further studies are required to examine the performance
of SARIFA in other types of tumors.

7.3 Lymphocyte subsets in patients with colorec-
tal carcinoma

We have already presented an analysis of lymphocyte subsets in a previous chapter.
We applied these methods not only for COVID-19, but also for the immune response
for colon cancer. Our collaboration with the Second Medical Clinic of University
Hospital Augsburg led to another publication: Waidhauser et al. (2021). The re-
search focused on the manner in which a carcinoma influences the immune system
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of a patient with cancer compared to that of a healthy individual. The sample
consisted of 47 patients and 50 healthy individuals, in whom different lymphocyte
subsets were measured by flow cytometry. Characteristics such as age, gender, tu-
mor stage, sidedness of the tumor and microsatellite instability status (MSI) were
collected.

We performed unadjusted and adjusted linear regression models on the
log-transformed lymphocyte measurements to obtain a closer approximation of the
residuals to the normal distribution. Moreover, this transformation led to a more
realistic interpretation of the results because the baseline value was multiplied by
factor which enabled us to maintain the positivity of the response variable. The
adjusted model contained age and gender for the basic analysis, as well as other
tumor characteristics for further analysis. We were able to show that B cells, helper
T cells and NK cells were lowered for individuals with cancer.

7.4 Comparison of surgery techniques for paroti-
dectomy

Generalized linear models are an important tool in medical research. We applied
these in a project that compared different surgery techniques according to their
complication rate (cf. Thölken et al. (2021)). This prospective study was a col-
laboration with the Department of Otorhinolaryngology – Head and Neck Surgery
and included 300 patients who had been treated for benign neoplasms. A part of
the sample received an extracapsular dissection (ECD), whereas others underwent
a surgery with a standard surgery technique. Primary endpoints were the incidence
rates of transient and permanent (18 months after surgery) facial palsy. Simple and
multiple logistic regressions were performed for both endpoints, with the parame-
ters age, number of lesions, size of lesions, duration of surgery, and type of surgery.
All parameters except age were dichotomized in the model. We were able to show
that ECD had lower incidence rates for complications compared to other surgery
techniques, even after adjustment for other variables.

7.5 Accuracy of ultrasound-guided core needle
biopsy

Diagnostic tools which can be used preoperatively to diagnose patients are of signifi-
cant importance for the medical treatment. In a collaboration with the Department
of Otorhinolaryngology – Head and Neck Surgery, we investigated the accuracy of
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an ultrasound-guided core needle biopsy of a parotid lesion in a retrospective study.
Our work led to a publication: Jering et al. (2021). A core needle biopsy was con-
ducted in patients, and the results of the biopsy were verified either in a necessary
surgery or during the follow-up. Sensitivity as well as specificity were computed for
the group and showed high values, indicating the suitability of a core-needle biopsy
for diagnosis. In addition, the accuracy of the histological classification was high and
only a small proportion of all patients suffered from post-procedural complications.

7.6 Survival analysis for parotid gland
Studies are not only needed to evaluate diagnostic tools but also for analysis of
overall survival and cancer-specific survival of patients in order to support the iden-
tification of relevant risk factors. In a retrospective study with the Department
of Otorhinolaryngology – Head and Neck Surgery, the survival of patients with pri-
mary malignancies and metastatic cutaneous squamous cell carcinoma of the parotid
glands during follow-up was investigated (cf.Jering et al. (2022)). 94 patients with
a follow-up of at least two years were included. The mean follow-up according to
the inverse Kaplan-Meier method was 50 months.
We tested for differences between patients with a primary malignancy and those
with a metastatic malignancy using chi-squared tests or Fisher’s exact tests, as well
as t-tests or Wilcoxon-Mann-Whitney tests. Overall and disease-free survival was
compared with Kaplan-Meier curves and results were presented for two years and
five years after diagnosis. Univariable Cox proportional hazard regressions were per-
formed to determine factors associated with disease-free survival in both subgroups
of tumor types separately. Schoenfeld residuals were examined to ensure propor-
tional hazards. Patients with metastatic malignancies had a low survival rate, and
such patients might benefit from an earlier diagnosis of the metastases.

7.7 VR-based relaxation for enhancement of pe-
rioperative well-being

Hospital stays, and surgeries, in particular, cause a lot of stress for a patient and
can also have an impact on their well-being. Patients would benefit from approaches
that can reduce stress and increase quality of life. Listening to classical music might
be a possible measure, but there are also new tools such as an intervention based on
virtual reality (VR). In collaboration with the Department of General, Visceral and
Transplantation Surgery, we evaluated the impact of a VR intervention on patients
with colorectal cancer and compared the performance to a music intervention and
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a control group without any intervention. This work resulted in a publication:
Schrempf et al. (2022). Patients were assigned randomly to a study group. Due to
the varying number of interventions the measurements of each patient were averaged.
We used non-parametrical tests to compare patients before and after an intervention.
After the intervention, patients showed a reduction in heart rate and respiratory
rate. Furthermore, their overall mood improved. Quality of life was similar across
all groups. Patients with a VR intervention experienced a greater improvement in
mood and vital signs than those in the music group.
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Chapter 8

Summary

In this thesis, several methods from machine learning and advanced statistical meth-
ods have been presented for the development of biomarkers and for models of the
course of disease incidence. Theoretical concepts were applied in projects with Uni-
versity Hospital Augsburg.

Machine learning has acquired importance in research because of its algorithms
that are able to approximate complex structures and hidden features. In this the-
sis, a biomarker for patients with colon cancer was developed based on a machine
learning algorithm, and this was shown to be well suited for classifying the risk of
the occurrence of metastases. We used histologically stained images of tumor tissue,
binarized the images, and trained a CNN to predict the probability of the occur-
rence of metastases. Patients in the high-risk group had a shorter metastases-free
survival and our risk factor was an independent prognostic factor. As the number of
digital histological images and the computing performance further increase, machine
learning algorithms will be possible for many different applications, and these will
help physicians not only with patient diagnoses but also with their prognosis.

Scores are essential in clinical routine since they are easily accessible and able to
distinguish patients. This thesis introduced two theoretical concepts for scores. The
first was based on GLMs and was applied to the risk of a permanent shunt implan-
tation. Parameters of the patient captured during admission or measurements in
the brain were shown to be relevant for a prognostic score.
The second project used approaches from survival analysis to stratify patients with
oligometastatic colon cancer according to their overall survival after the surgical
removal of metastases. Risk factors could be identified that enable the identification
of a subset of patients who are likely to benefit from a surgery. Applications such as
this underline the value of scores for patient treatment and how they can support
the formulation of a prognosis.
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The COVID-19 pandemic has caused many infections and deaths. In this thesis,
we examined how lymphocyte counts are affected by a COVID-19 infection. Nearly
all subsets were reduced in patients with an infection compared to a healthy control
group. We observed that the lymphocyte counts needed to be transformed with a
logarithmic function to ensure a normal distribution of the residuals of the regres-
sion model.
Furthermore, we compared different strategies to model the daily reported number
of new infections. Non-seasonal and seasonal ARIMA models as well as a log-linear
autoregressive Poisson model showed an adequate approximation of the actual case
numbers. We included the distribution of variants at each time point as an external
covariate.
All these models performed well but encountered problems with the simulation of
different settings of non-pharmaceutical interventions. We relied on a Bayesian
SEIR model, which has a mechanistic structure and incorporated several change
points to account for changes in the virus variants and the stringency index. The
obtained fit was close to the actual case numbers and changes in the variants of
interest could be found as change points in our model. This method enabled the
simulation of effects of interventions according to influences on the transmission rate.

In summary, all these theoretical concepts underline the importance of advanced
statistical methods in medicine for the development of biomarkers and models of
the evolution of disease incidence.
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List of abbreviations

ACA anterior cerebral artery

ACF autocorrelation function

AIC akaike information criterion

ARDS acute respiratory distress syndrome

AUC area under the receiver operator curve

aSAH aneurysmatic subarachnoid hemorrhag

BIg-CoMet Binary ImaGe Colon Metastasis classifier

CI confidence interval

CT computer tomography

CNN convolutional neural network

COVID-19 Corona Virus Disease 2019

Cox PH model Cox proportional hazards model

DFS disease-free survival

GCS Glasgow-Coma-Scale

GLM generalized linear model

H&E haematoxylin and eosin stain

HR hazard ratio

ICA internal carotid artery

IRT inflammatory response to the tumor

KM Kaplan-Meier curve

MCA middle cerebral artery
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MERS-CoV Middle east respiratory syndrome coronavirus

MLE maximum likelihood estimator

NN neural network

OR odds ratio

OS overall survival

OxCGRT Oxford COVID-19 Government Response Tracker

PACF partial autocorrelation function

RKI Robert Koch Institute

ROC receiver operator curve

SARS-CoV-2 Severe acute respiratory syndrome coronavirus type 2

SIR Susceptible-Infected-Recovered Model

SEIR Susceptible-Exposed-Infected-Recovered Model

TNM Tumor-Node-Metastasis classification

TS training sample

TSR tumor-stroma ratio

UICC Union for International Cancer Control

VS validation sample
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Appendix A

Software Code

A.1 Software code used for chapter 3 - training
of CNN for images of tumor sections

For the implementation of our CNN we used keras which is a software package for
programming in python. The CNN consists of a pretrained VGG19-net model to
extract features from the images. These features are then provided to fully connected
layers and a final softmax layer to predict the probabilities of survival/occurrence
of metastasis. To avoid overfitting, the Image Generator implemented in keras was
used to generated augmented images for training of the model.

import t en so r f l ow
from keras . p r ep ro c e s s i ng . image import ImageDataGenerator
from keras . models import Sequent i a l
from keras . l a y e r s import Conv2D , MaxPooling2D
from keras . l a y e r s import Activat ion , Dropout , F lat ten
from keras . l a y e r s import Dense , Softmax
from keras import backend as K
from t en so r f l ow import keras

model = keras . a p p l i c a t i o n s . vgg19 .VGG19( i n c l ude t op=False ,
weights=’ imagenet ’ ,
i npu t t en s o r=None ,
input shape =(860 ,648 ,3) ,
poo l ing=None ,
c l a s s e s =2)

model . t r a i n a b l e = False
for l a y e r in model . l a y e r s :
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l a y e r . t r a i n a b l e = False

g l a v l a y e r = ten so r f l ow . keras . l a y e r s . GlobalAveragePooling2D ( )
p r e d l a y e r 1 = keras . l a y e r s . Dense (16 , a c t i v a t i o n = ’ r e l u ’ )
p r e d l a y e r 2 = keras . l a y e r s . Dense (16 , a c t i v a t i o n = ’ r e l u ’ )
p r e d l a y e r 3 = keras . l a y e r s . Dense (2 , a c t i v a t i o n = ’ softmax ’ )

m o d e l f u l l = t en so r f l ow . keras . Sequent i a l ( [
model ,
g l a v l a y e r ,
p r ed l aye r 1 ,
p r ed l aye r 2 ,
p r e d l a y e r 3
] )

m o d e l f u l l . compile ( l o s s=’ s p a r s e c a t e g o r i c a l c r o s s e n t r o p y ’ ,
opt imize r=ten so r f l ow . keras . op t im i z e r s . RMSprop( l r =0.001)
metr i c s =[ ’ accuracy ’ ] )

t r a in da tagen = ImageDataGenerator ( r o t a t i o n r a ng e =50,
w i d t h s h i f t r a n g e =0.3 ,
h e i g h t s h i f t r a n g e =0.3 ,
shea r range =0.01 ,
h o r i z o n t a l f l i p=True ,
v e r t i c a l f l i p=False ,
f i l l m o d e=’ r e f l e c t ’ ,
data format=’ c h a n n e l s l a s t ’ )

t r a i n g e n e r a t o r = tra in6 datagen . f l o w f r o m d i r e c t o r y (
’ d i r e c t o r y to images f o r t r a i n i n g ’ ,
t a r g e t s i z e =(860 ,648) ,
b a t c h s i z e =16,
c lass mode=’ binary ’ )

va l datagen = ImageDataGenerator ( )

v a l i d a t i o n g e n e r a t o r = va l datagen . f l o w f r o m d i r e c t o r y (
’ d i r e c t o r y to images f o r t r a i n i n g ’ ,
t a r g e t s i z e =(860 ,648) ,
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b a t c h s i z e =14,
c lass mode=’ binary ’ )

checkpo inte r = keras . c a l l b a c k s . ModelCheckpoint (
f i l e p a t h=’ f i l e p a t h to save checkpoint ’ ,
verbose =1, s a v e b e s t o n l y=True )

m o d e l f u l l . f i t g e n e r a t o r (
t r a i n g ene r a t o r , s t ep s pe r epoch =10,
v a l i d a t i o n d a t a=v a l i d a t i o n g e n e r a t o r ,
v a l i d a t i o n s t e p s =1,
epochs =30, c a l l b a c k s =[ checkpo inte r ] )

m o d e l f u l l . save ( ” f i l e to save f i n a l model” )

A.2 Software code used in chapter 6 - Bayesian
SEIR model with change points

The following programming code was used to define the Bayesian SEIR model with
change points in RStan. The code consists of multiple blocks. The data block
contains all variables which are provided by the dataset. All parameters and their
data type are defined in the parameter block. Newly calculated parameters and
variables such as the components of the SEIR model are defined in the section
transformed parameters. The model section contains the priors and the sampling
distribution of the reported number of new cases. Finally, the predicted number of
cases can be obtained from the generated quantities section.

data {
i n t n days ;
i n t N;
i n t ca s e s [ n days ] ;

}

parameters {
real<lower=0, upper=1> gamma;
real<lower=0, upper=2> beta 0 ;
real beta 1 ;
real beta 2 ;
real beta 3 ;
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real beta 4 ;
real beta 5 ;
real beta 6 ;
real beta 7 ;
real beta 8 ;
real beta 9 ;
real beta 10 ;
real beta 11 ;
real beta 12 ;
real beta 13 ;
real<lower=0, upper=1> a ;
real<lower=0> i 0 ; //
real<lower=0> e0 ;
real t1 ;
real t2 ;
real t3 ;
real t4 ;
real t5 ;
real t6 ;
real t7 ;
real t8 ;
real t9 ;
real t10 ;
real t11 ;
real t12 ;
real t13 ;

}

transformed parameters {
real S [ n days ] ;
real E[ n days ] ;
real I [ n days ] ;
real i n c i d enc e [ n days − 1 ] ;
real beta [ n days −1] ;

S [ 1 ] = (N − i 0 − e0 ) ;
I [ 1 ] = i 0 ;
E [ 1 ] = e0 ;
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for ( i in 1 : ( n days −1)) {
beta [ i ] = beta 0∗(1/(1+8∗exp ( ( i−t1 ) ) ) ) +
beta 1 ∗ ((1−1/(1+8∗exp ( ( i−t1 )))) −
(1−1/(1+8∗exp ( ( i−t2 ) ) ) ) )+
beta 2 ∗ ((1−1/(1+8∗exp ( ( i−t2 )))) −
(1−1/(1+8∗exp ( ( i−t3 ) ) ) ) )+
beta 3 ∗ ((1−1/(1+8∗exp ( ( i−t3 )))) −
(1−1/(1+8∗exp ( ( i−t4 ) ) ) ) )+
beta 4 ∗ ((1−1/(1+8∗exp ( ( i−t4 )))) −
(1−1/(1+8∗exp ( ( i−t5 ) ) ) ) )+
beta 5 ∗ ((1−1/(1+8∗exp ( ( i−t5 )))) −
(1−1/(1+8∗exp ( ( i−t6 ) ) ) ) )+
beta 6 ∗ ((1−1/(1+8∗exp ( ( i−t6 )))) −
(1−1/(1+8∗exp ( ( i−t7 ) ) ) ) )+
beta 7 ∗ ((1−1/(1+8∗exp ( ( i−t7 )))) −
(1−1/(1+8∗exp ( ( i−t8 ) ) ) ) )+
beta 8 ∗ ((1−1/(1+8∗exp ( ( i−t8 )))) −
(1−1/(1+8∗exp ( ( i−t9 ) ) ) ) )+
beta 9 ∗ ((1−1/(1+8∗exp ( ( i−t9 )))) −
(1−1/(1+8∗exp ( ( i−t10 ) ) ) ) )+
beta 10 ∗ ((1−1/(1+8∗exp ( ( i−t10 )))) −
(1−1/(1+8∗exp ( ( i−t11 ) ) ) ) )+
beta 11 ∗ ((1−1/(1+8∗exp ( ( i−t11 )))) −
(1−1/(1+8∗exp ( ( i−t12 ) ) ) ) )+
beta 12 ∗ ((1−1/(1+8∗exp ( ( i−t12 )))) −
(1−1/(1+8∗exp ( ( i−t13 ) ) ) ) )+
beta 13 ∗ (1−1/(1+8∗exp ( ( i−t13 ) ) ) ) ;
S [ i +1] = S [ i ] − beta [ i ] ∗ S [ i ] /N ∗ I [ i ] ;
E [ i +1] = E[ i ] + beta [ i ] ∗ S [ i ] /N ∗ I [ i ] − a ∗ E[ i ] ;
I [ i +1] = I [ i ] + a ∗ E[ i ] − gamma ∗ I [ i ] ;
i n c i d enc e [ i ] = (−E[ i +1] + E[ i ] − S [ i +1] + S [ i ] ) ;
}

}

model {
// p r i o r s

beta 0 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 1 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 2 ˜ normal ( 0 . 4 , 0 . 1 ) ;
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beta 3 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 4 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 5 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 6 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 7 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 8 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 9 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 10 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 11 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 12 ˜ normal ( 0 . 4 , 0 . 1 ) ;
beta 13 ˜ normal ( 0 . 4 , 0 . 1 ) ;
gamma ˜ normal ( 0 . 3 5 , 0 . 0 3 ) ;
a ˜ normal ( 0 . 3 , 0 . 0 5 ) ;
i 0 ˜ normal (8000 , 500 ) ;
e0 ˜ normal (2000 , 500 ) ;
t1 ˜ normal ( 6 5 , 3 ) ;
t2 ˜ normal ( 1 0 5 , 3 ) ;
t3 ˜ normal ( 1 7 0 , 3 ) ;
t4 ˜ normal ( 2 1 0 , 3 ) ;
t5 ˜ normal ( 2 8 0 , 3 ) ;
t6 ˜ normal ( 3 5 5 , 3 ) ;
t7 ˜ normal ( 4 0 5 , 3 ) ;
t8 ˜ normal ( 4 5 0 , 3 ) ;
t9 ˜ normal ( 4 9 1 , 3 ) ;
t10 ˜ normal ( 5 2 5 , 3 ) ;
t11 ˜ normal ( 5 6 2 , 3 ) ;
t12 ˜ normal ( 5 8 8 , 3 ) ;
t13 ˜ normal ( 6 1 0 , 3 ) ;
//sampling d i s t r i b u t i o n
for ( i in 1 : ( n days −1)) {
ca s e s [ i ] ˜ student t (4 , i n c i d enc e [ i ] ,

sqrt ( i n c i d enc e [ i ]+1 ) ) ;
}

}

generated q u a n t i t i e s {
//real R0 [ n days ] ;
real pred ca s e s [ n days −1] ;
for ( k in 1 : ( n days −1)) {
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pred ca s e s [ k ] = student t rng (4 , i n c i d enc e [ k ] ,
sqrt ( i n c i d enc e [ k ]+1 ) ) ;

}
}
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