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ABSTRACT
The probability per unit time for a thermally activated Brownian particle to escape over a potential well is, in general, well-described by
Kramers’s theory. Kramers showed that the escape time decreases exponentially with increasing barrier height. The dynamics slow down
when the particle is charged and subjected to a Lorentz force due to an external magnetic field. This is evident via a rescaling of the diffusion
coefficient entering as a prefactor in the Kramers’s escape rate without any impact on the barrier-height-dependent exponent. Here, we show
that the barrier height can be effectively changed when the charged particle is subjected to a vortex flow. While the vortex alone does not affect
the mean escape time of the particle, when combined with a magnetic field, it effectively pushes the fluctuating particle either radially outside
or inside depending on its sign relative to that of the magnetic field. In particular, the effective potential over which the particle escapes can be
changed to a flat, a stable, and an unstable potential by tuning the signs and magnitudes of the vortex and the applied magnetic field. Notably,
the last case corresponds to enhanced escape dynamics.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139830

I. INTRODUCTION

A Brownian particle undergoes an erratic motion as a result of
its collisions with the solvent molecules. If the particle is being ini-
tially put at the bottom of a potential well, the thermal activation
of the particle may cause an escape from the potential well over an
energetic barrier. Using the flux-over-population method,1 Kramers
first derived the escape rate of a Brownian particle over an energy
barrier moving in a bistable potential, regardless of what happens
after this escape.2 He showed that the probability per unit time for
the particle to escape the potential well exponentially decays with the
height of the energy barrier. Kramers derived limiting expressions
for weak friction and strong damping and realized a global maxi-
mum at some intermediate value of the damping, which is known as
Kramers’s turnover.3–5 The problem has been generalized to include
memory friction6–8 and athermal fluctuations9–13 and was extended
to quantum field theory.14,15

While Kramers’s framework and its extensions have thor-
oughly been studied with the relevant deterministic potential force

fields,16–21 much less is known when the deterministic force is
nonconservative, namely when it is not of potential type.22–24

Recently, by taking into account a nonconservative force in the
form of Lorentz force, we have studied the escape dynamics of
a two-dimensional Brownian system with a broken spatial sym-
metry via two noises with different strengths.25 We have shown
that while the escape process becomes anisotropic (i.e., particles
tend to escape the potential well more along the axis with a larger
noise strength) due to two different noises, when subjected to an
external magnetic field, the spatial symmetry can be restored.25

However, to our knowledge, it is expected that the escape process
is reduced (or unaffected in the direction of the applied magnetic
field) by external constant magnetic fields,24,25 which is evident
via a rescaling of the diffusion coefficient. It has been shown that
the combined influence of a nonconservative force and a mag-
netic field may cause an instability in the system.26 Here, taking
advantage of such an instability, we show that the Lorentz force
due to a constant magnetic field can result in enhanced escape
dynamics.
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In this paper, we study the escape dynamics of a Brownian par-
ticle from a harmonic trap, which is cut off at a certain distance, in
the presence of a vortex and the Lorentz force due to an external
constant magnetic field. Taking advantage of the spatial isotropy in
the system, we derive an exact expression for the mean first passage
time. While the vortex alone does not affect the escape dynamics,
we observe a nontrivial result when an external magnetic field is
present: the mean first passage time can be reduced or enhanced.
This is attributed to the shape change of the effective potential well.
By tuning the external magnetic field or alternatively the strength
of the vortex, the effective potential can change shape to a flat, a
stable, or an unstable potential. This means that by tuning either
parameter, the barrier energy over which the particle may escape
can be effectively altered to a smaller or larger one whose origin can
be understood as follows: the combination of the vortex flow and
the magnetic field effectively pushes the fluctuating particle either
radially outside or inside depending on their signs. In other words,
the combination of the two fields, which individually induces no
radial force, gives rise to a radial force. There are systems where
exactly this kind of dynamics can be studied, including skyrmions,
which have a strong Magnus force, which can lead to driven parti-
cles more easily escaping a trap than the overdamped case, and act
like charged particles in magnetic fields27–31 and dusty plasmas.32,33

In what follows, we first introduce the model. Next, we calculate
the mean first passage time, which can be written in terms of an
effective potential. We then study the trends of the escape time with
respect to the magnetic field strength and the vortex flow, and finally,
we discuss several experimental realizations of the setup considered
here.

II. MODEL
We consider an overdamped charged Brownian particle with

the charge q subjected to an external magnetic field B in the −ẑ
direction. Since the Lorentz force due to the field does not affect
the motion of the particle in the z direction, we effectively reduce
the system to a two-dimensional one and study the motion of the
particle in the xy plane. The particle is trapped in an isotropic poten-
tial U(x, y) = k(x2

+ y2
)/2 and undergoes a vortex flow due to the

nonconservative force Fnc = ε(−y, x)⊺. Here, k and ε are the stiff-
ness of the potential and the strength of the nonconservative force,
respectively. A schematic of the system is shown in Fig. 1. It is
experimentally and theoretically known that even statically opti-
cally trapped Brownian particles in the overdamped limit represent
nonequilibrium behavior characterized by Brownian vortices. This
is due to the nonconservative forces generated by optical scattering
forces.34–37 Moreover, by applying a prescribed vortex flow field such
as a rotating bucket to an underdamped Brownian particle, one can
induce similar terms to the nonconservative force, i.e., −εy and εx.38

The combination of the vortex flow and the magnetic field gives rise
to a radial force, resulting in a quasipotential that, when combined
with the isotropic potential, acts as an effective potential. The effec-
tive potential can be a stable one, a flat one, or an unstable one, which
can be quantitatively exactly derived as follows.

It has been shown that the overdamped dynamics of the par-
ticle derived by simply setting the inertia term to zero can yield an
incorrect description in the presence of a magnetic field.39 In this

FIG. 1. A single charged particle diffusing in a two-dimensional harmonic potential
U(x, y) = k(x2

+ y2
)/2, shown by concentric contours, with k being its stiffness.

The particle is subjected to an external magnetic field B in the −ẑ direction and a
nonconservative force Fnc = ε(−y, x), with ε being its strength. The nonconser-
vative force is shown for ε > 0. The particle can escape the trap when reaches the
boundary, truncated at r = a, shown by a dashed circle, where r =

√

x2
+ y2 is

the distance from the origin.

case, the overdamped Langevin equation describing the dynamics of
the system can be derived using the low-mass approach,25,40,41 which
can be written as

ẋ =
1

γ(1 + κ2
)
[−kx − εy + kκy − εκx] + ξx(t), (1)

ẏ =
1

γ(1 + κ2
)
[−ky + εx − kκx − εκy] + ξy(t), (2)

where γ is the friction coefficient and κ = qB/γ is the diffu-
sive Hall parameter quantifying the strength of the Lorentz force
relative to the frictional force. We note that κ can be posi-
tive or negative depending on the sign of the applied mag-
netic field. Here, ξ(t) = (ξx, ξy)

⊺ is the Gaussian nonwhite noise
with zero mean and time correlation ⟨ξ(t)ξ⊺(t′)⟩ = TG−1δ+(t − t′)

+ T(G−1
)
⊺δ−(t − t′), where T is the temperature; G = γ( 1 κ

−κ 1
);

and the notations δ±(s = t − t′) are the modified Dirac delta func-
tions, which are zero for s ≠ 0, while ∫

∞

0 dsδ+(s) = ∫
0
−∞

dsδ−(s) = 1
and ∫

∞

0 dsδ−(s) = ∫
0
−∞

dsδ+(s) = 0. Throughout this work, we set
the Boltzmann constant kB to unity. Length and time are measured
in units of

√
T/k and γ/k, respectively.

We use the Itô calculus to reduce the Langevin equations in
Eqs. (1) and (2) to a one-dimensional problem for the variable

r =
√

x2
+ y2, which is given as42

ṙ =
1

1 + κ2 [−
k + εκ

γ
r +

D
r
] +

√
2D

1 + κ2 η(t), (3)

where D = T/γ is the coefficient of a freely diffusing particle and η(t)
is Gaussian white noise with zero mean and the Dirac delta time
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FIG. 2. Effective potential from Eq. (4) for different values of the stiffness keff
= k + εκ. By varying the parameter κ (or ε), the effective potential can change
shape to a stable one if keff > 0, a flat one if keff = 0, or an unstable one if keff < 0.

correlation ⟨η(t)η(t′)⟩ = δ(t − t′). The terms in the square brackets
on the right-hand side of Eq. (3) describe the force on the particle
due to an effective potential, given as

Ueff (r) =
keff

2γ(1 + κ2
)

r2
−

D
1 + κ2 log(r), (4)

where keff = k + εκ is the stiffness of the effective potential. As it is
evident from the effective stiffness, in the absence of the vortex flow,
the potential simply gets rescaled by the factor 1/(1 + κ2

), as we have
shown in the supplemental information of Ref. 25. Moreover, in the
absence of the magnetic field, there is no effect of the vortex flow on
the effective potential and Eq. (4) reduces to the well-known results
in Ref. 42 for a rotationally symmetric Ornstein–Uhlenbeck process
in two dimensions. The second term on the right-hand side comes
from the transformation to r and corresponds to an extremely repul-
sive potential at the origin due to the reduced number of states on the
circle of radius r. This term influences the motion of the particle only
near the origin and is negligible for larger distances as compared to
the first term.

Figure 2 represents the scaled effective potential from Eq. (4)
for different values of the parameter keff without the logarithmic
term. By tuning the diffusive Hall parameter or, alternatively, the
strength of the nonconservative force, the effective potential changes
shape: the potential is stable if keff > 0, flat if keff = 0, and unstable if
keff < 0. It becomes a simple quadratic potential in the absence of ε
and/or κ.

III. MEAN ESCAPE TIME
We consider a particle that is trapped in an isotropic poten-

tial U(x, y) which takes advantage of the spatial symmetry whose
distance from the origin, r = ∣r∣, can be described by Eq. (3). We
are interested in the mean time at which the particle reaches the
boundary, truncated at r = a, as shown in Fig. 1. As we show in
the Appendix, the mean escape time can be exactly calculated from
Eq. (3), which reads

⟨t⟩ =
γ(1 + κ2

)

2keff
[Ei(βΔEeff ) − log(βΔEeff ) − γEM], (5)

if keff > 0 corresponding to the effective stable potential, and

⟨t⟩ =
γ(1 + κ2

)

2keff
[−Ei(−β∣ΔEeff ∣) + log(β∣ΔEeff ∣) + γEM], (6)

if keff < 0 corresponds to the unstable effective potential, where β
is the inverse of the temperature, γEM is the Euler–Mascheroni
constant, and Ei(x) is the exponential integral. Here, ΔEeff = ΔE
+ εκa2

/2 is the effective barrier energy, which is the real barrier
height ΔE = ka2

/2 augmented by the coupling between the magni-
tude of the applied magnetic field and the strength of the vortex.
Using the series expansion of the exponential integral at keff = 0 for
Eqs. (5) and (6), the mean escape time for the effective flat potential
reads

⟨t⟩ ∼
(1 + κ2

)

4D
a2, (7)

which is the mean escape time for a freely diffusing particle scaled by
1 + κ2. In the limit of large barrier heights, the exponential integral in
Eq. (5) can be expanded and, as a consequence, the mean escape time
reduces to ⟨t⟩ ∼ γ(1 + κ2

)exp(βΔEeff )/(2keff βΔEeff ). In the absence
of the vortex, which corresponds to ε = 0, the result reduces to the
Kramers’s result rescaled by 1 + κ2 arising from the trivial rescaling
of the diffusion coefficient. The expression becomes the same as the
Kramers’s one when the magnetic field is absent κ = 0. This confirms
that the vortex field alone does not affect the mean escape time. The
intuitive reason for that can be understood as follows: for κ = 0, the
presence of a vortex field only changes the azimuthal motion but not
the radial one, which leaves the radial particle escape unaffected.

Figure 3 shows the mean escape time with respect to the dif-
fusive Hall parameter κ. Obviously, it takes a longer time for the

FIG. 3. Mean escape time as a function of the diffusive Hall parameter κ from
Eqs. (5) and (7) for different values of the scaled barrier height βΔE with β = 1.0,
γ = 1.0, and ε = 0.2. Obviously, the mean escape time increases with increasing
barrier height. It can increase or decrease by tuning the parameter κ: the presence
of a vortex field can work together with the applied magnetic field to effectively push
the fluctuating particle either radially outside, if κ < −k/ε, or inside, if κ > −k/ε.
The former corresponds to the case in which the combination helps the particle to
escape. The point κ = 0 corresponds to unaffected escape time by the vortex (i.e.,
keff = k). In the inset, we show the mean escape time which is scaled by the mean
escape time in the absence of the vortex ⟨t0⟩, where the subscript 0 indicates
the zero strength length of the vortex flow. It implies that the mean escape time
can decrease with increasing κ as compared to the mean escape time without the
vortex flow.
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FIG. 4. Mean escape time with respect to the strength of the conservative force ε
from Eqs. (5) and (7) for different values of the scaled barrier heights with β = 1.0
and γ = 1.0. The lines with circles and squares correspond to the results with
κ = 2.0 and κ = −2.0, respectively. The mean escape time can increase or
decrease with increasing strength of the vortex flow, which depends on its
sign relative to that of κ and their magnitude compared to the stiffness of the
potential k.

particle to escape over larger barrier heights as is evident in the
figure. The magnetic field together with the vortex flow creates addi-
tional fluctuations in the radial direction which can be directed
either outward or inward depending on its sign. The former corre-
sponds to the case in which the combination of the vortex flow and
the magnetic field helps the particle to escape. The inset shows the
mean escape time scaled by the mean escape time in the absence of
the vortex, which is indicated by the subscript 0. The mean escape
time can decrease with increasing magnetic field as compared to
the mean escape time without the vortex flow and remains almost
constant for small barrier heights.

In Fig. 4, we show that tuning the strength of the vortex flow is
an alternative way to vary the mean escape time, which is evident in
Eqs. (5) and (6) via the product of the two parameters, i.e., εκ. There-
fore, similar trends are expected. The figure represents the mean
escape time with respect to the parameter ε for a system with κ = 2.0,
denoted by lines with circles, and a system with κ = −2.0, denoted
by lines with squares. Our results imply that the mean escape time
can be decreased or increased by tuning the vortex flow strength
depending on its sign relative to that of the magnetic field and their
magnitude compared to the stiffness of the potential k.

IV. DISCUSSION
In this work, we studied the effect of a vortex flow on the

escape dynamics of a Brownian magneto-system made of a single
charged Brownian particle subjected to an external magnetic field.
We expressed the potential in an effective form, which can change
the shape to a stable, a flat, or an unstable potential depending on
the stiffness of the effective potential. Taking advantage of the spa-
tial isotropy in the system, we obtained an exact expression for the
mean escape time. In the absence of the vortex, exerted by the non-
conservative force, the Lorentz force due to the external magnetic
field slows down the dynamics of the system without any qualita-
tive change, which is evident via the trivial rescaling of the diffusion
coefficient. We showed that while the vortex alone does not affect
the mean escape time, when coupled to the magnetic field, it can

enhance or reduce the escape time: this is intuitive as the magnetic
field together with the vortex flow creates additional fluctuations in
the radial direction, which can be directed either outward or inward
depending on its sign. In other words, the combination of the two
fields, which individually induce no radial force, gives rise to a radial
force. We showed that the barrier over which the particle escapes
can be effectively changed to a larger or smaller one depending on
the relative signs of the strength of the vortex flow and the applied
magnetic field and their magnitude compared to the stiffness of the
potential in which the particle is trapped. Moreover, the trap can
be effectively switched off by an appropriate sign and value of the
magnetic field.

A possible experimental realization is to trap the particle
using optical tweezers either in a radio-frequency plasma sheath
with a vertical magnetic field44,45 or in a rotating frame of ref-
erence. By rotating the reference frame, a Coriolis force can be
induced, which acts the same as the Lorentz force due to an
external magnetic field.46–48 As it has been shown that even stat-
ically optically trapped Brownian particles undergo a nonconser-
vative force induced by optical scattering forces,34–37,43 we expect
that the study of the enhanced escape dynamics does not require
an additional vortex. Another possibility is to apply a rotat-
ing bucket to an underdamped Brownian particle, which induces
similar terms to the nonconservative force in the overdamped
limit.38

From a future perspective, it could be interesting to study
the escape dynamics of an oppositely charged dimer whose cen-
ter exhibits strongly enhanced dynamics.49 We have recently shown
that the diffusive dynamics of a charged particle can be enhanced by
collisions. It is interesting to investigate how crowding effects can
facilitate the escape dynamics in an interacting crowded system of
charged Brownian particles.50 Some of the next features could be to
study skyrmions in nonconservative traps or landscapes that could
be useful for steering and controlling their motion.27–31 In the limit
of a low persistence length, an active chiral particle follows curved
trajectories, similar to the Brownian motion of a charged particle51,52

under a magnetic field. Therefore, another study of interest would be
the escape dynamics of a chiral active Brownian particle in the pres-
ence of a vortex. It could be interesting to study how an external
magnetic field can affect an active turnover for an active particle in
a bistable potential53—an optimal correlation time where the transi-
tion rate is maximized—and how a vortex influences new turnovers
observed in the presence of a fluctuating magnetic field.22,23 Finally,
it is interesting to study the escape dynamics in a sheared, charged
colloidal system.54,55
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APPENDIX: DERIVATION OF THE MEAN ESCAPE TIME

The main purpose of this Appendix is to derive the mean
escape time in Eq. (5) to Eq. (7). We start with the underdamped
Langevin equation describing the dynamics of a charged Brownian
particle with mass m and charge q subjected to a magnetic field B
in the −ẑ direction. The velocity Langevin equation for the posi-
tion r = (x, y)⊺ and the velocity v = (vx, vy)

⊺ of the particle under
the effect of the linear nonconservative force Fnc = ε(−y, x)⊺ and
the conservative force Fc = −k(x, y)⊺ due to the isotropic potential
U(x, y) = k(x2

+ y2
)/2 can be written as

mv̇ = −Kr −Gv(t) +
√

2γTη(t), (A1)

where η(t) = (ηx(t), ηy(t))⊺ is the Gaussian white noise with zero
mean and Dirac delta correlation ⟨η(t)η⊺(t′)⟩ = δ(t − t′) with γ
being the friction coefficient and T being the temperature. The
matrices G and K are defined as

G = γ
⎛
⎜
⎝

1 κ

−κ 1

⎞
⎟
⎠

, K =
⎛
⎜
⎝

k ε

−ε k

⎞
⎟
⎠

, (A2)

with κ = qB/γ being the diffusive Hall parameter that quantifies the
strength of the Lorentz force relative to the frictional force. Using
the low-mass approach, the corresponding overdamped Langevin
equation can be written as25,40,41

ṙ = Ar + ξ(t), (A3)

where A = G−1K and ξ(t) = (ξx, ξy)
⊺ is the Gaussian nonwhite noise

with

⟨ξ(t)⟩ = 0, (A4)

⟨ξ(t)ξ⊺(t′)⟩ = TG−1δ+(t − t′) + T(G−1
)
⊺δ−(t − t′), (A5)

where δ±(s = t − t′) are the modified Dirac delta functions,
which are zero for s ≠ 0, while ∫

∞

0 dsδ+(s) = ∫
0
−∞

dsδ−(s) = 1 and

∫
∞

0 dsδ−(s) = ∫
0
−∞

dsδ+(s) = 0.
Equation (A3) can be rewritten as Eqs. (1) and (2) in the

Cartesian coordinates and, thereafter, using the Itô calculus, can be
reduced to a one-dimensional equation for the variable r, which is
the distance from the origin and is given by Eq. (3). It has been

shown that using the backward Fokker–Planck equation, the mean
escape time for a Brownian particle from the initial position xi to the
final position xf can be written as42

⟨t⟩xi→x f =
2
D∫

x f

xi

exp[
U(y)

D
]dy∫

y

−∞
exp[−

U(z)
D
]dz, (A6)

where D = T/γ is the diffusion coefficient for a freely moving particle
and U(x) is a double well potential. Thus, the mean time for the
particle to escape the trap, truncated at r = a, can be obtained from
Eq. (A6) with the following replacements:

U(x)→
keff

2γ(1 + κ2
)

r2
−

D
1 + κ2 log(r), (A7)

D→
2D

1 + κ2 , (A8)

xi → 0, (A9)

x f → a, (A10)

−∞→ 0, (A11)

which reads

⟨t⟩ =
1 + κ2

D ∫

a

0
y−1 exp[

keff

2γD
y2
]dy∫

y

0
z exp[−

keff

2γD
z2
]dz. (A12)

This equation can be exactly solved: using a change of
variables, the second integral on the right-hand side gives
(γD/keff )[1 − exp(−keff y2

/2γD)]. By substitution of this solution
into Eq. (A12), the resulting integral can be exactly solved, which
gives Eqs. (5) and (6).
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of skyrmions interacting with disorder and nanostructures,” Rev. Mod. Phys. 94,
035005 (2022).
32Y. Huang, W. Li, C. Reichhardt, C. J. O. Reichhardt, and Y. Feng, “Phonon spec-
tra of a two-dimensional solid dusty plasma modified by two-dimensional periodic
substrates,” Phys. Rev. E 105, 015202 (2022).
33K. Wang, W. Li, D. Huang, C. Reichhardt, C. Reichhardt, M. Murillo,
and Y. Feng, “Structures and diffusion of two-dimensional dusty plasmas on
one-dimensional periodic substrates,” Phys. Rev. E 98, 063204 (2018).

34B. Sun, D. G. Grier, and A. Y. Grosberg, “Minimal model for Brownian
vortexes,” Phys. Rev. E 82, 021123 (2010).
35B. Sun, J. Lin, E. Darby, A. Y. Grosberg, and D. G. Grier, “Brownian vortexes,”
Phys. Rev. E 80, 010401 (2009).
36Y. Roichman, B. Sun, A. Stolarski, and D. G. Grier, “Influence of nonconser-
vative optical forces on the dynamics of optically trapped colloidal spheres: The
fountain of probability,” Phys. Rev. Lett. 101, 128301 (2008).
37H. W. Moyses, R. O. Bauer, A. Y. Grosberg, and D. G. Grier, “Perturbative
theory for Brownian vortexes,” Phys. Rev. E 91, 062144 (2015).
38B. Liebchen and H. Löwen, “Optimal navigation strategies for active particles,”
Europhys. Lett. 127, 34003 (2019).
39H. D. Vuijk, J. M. Brader, and A. Sharma, “Anomalous fluxes in overdamped
Brownian dynamics with Lorentz force,” J. Stat. Mech.: Theory Exp. 2019,
063203.
40H.-M. Chun, X. Durang, and J. D. Noh, “Emergence of nonwhite noise in
Langevin dynamics with magnetic Lorentz force,” Phys. Rev. E 97, 032117
(2018).
41I. Abdoli, R. Wittmann, J. M. Brader, J.-U. Sommer, H. Löwen, and
A. Sharma, “Tunable Brownian magneto heat pump,” Sci. Rep. 12, 13405
(2022).
42C. Gardiner, Stochastic Methods (Springer, Berlin, 2009), Vol. 4.
43M. Mangeat, Y. Amarouchene, Y. Louyer, T. Guérin, and D. S. Dean, “Role of
nonconservative scattering forces and damping on Brownian particles in optical
traps,” Phys. Rev. E 99, 052107 (2019).
44J. Carstensen, F. Greiner, L.-J. Hou, H. Maurer, and A. Piel, “Effect of neutral gas
motion on the rotation of dust clusters in an axial magnetic field,” Phys. Plasmas
16, 013702 (2009).
45A. Piel, Plasma Physics: An Introduction to Laboratory, Space, and Fusion
Plasmas (Springer, 2017).
46H. Kählert, J. Carstensen, M. Bonitz, H. Löwen, F. Greiner, and A. Piel,
“Magnetizing a complex plasma without a magnetic field,” Phys. Rev. Lett. 109,
155003 (2012).
47P. Hartmann, Z. Donkó, T. Ott, H. Kählert, and M. Bonitz, “Magnetoplasmons
in rotating dusty plasmas,” Phys. Rev. Lett. 111, 155002 (2013).
48P. Hartmann, J. C. Reyes, E. G. Kostadinova, L. S. Matthews, T. W. Hyde, R. U.
Masheyeva, K. N. Dzhumagulova, T. S. Ramazanov, T. Ott, H. Kählert et al., “Self-
diffusion in two-dimensional quasimagnetized rotating dusty plasmas,” Phys.
Rev. E 99, 013203 (2019).
49R. Shinde, J. U. Sommer, H. Löwen, and A. Sharma, “Strongly enhanced dynam-
ics of a charged Rouse dimer by an external magnetic field,” PNAS Nexus 1,
pgac119 (2022).
50E. Kalz, H. D. Vuijk, I. Abdoli, J.-U. Sommer, H. Löwen, and A. Sharma,
“Collisions enhance self-diffusion in odd-diffusive systems,” Phys. Rev. Lett. 129,
090601 (2022).
51S. Van Teeffelen and H. Löwen, “Dynamics of a Brownian circle swimmer,”
Phys. Rev. E 78, 020101 (2008).
52C. Scholz, A. Ldov, T. Pöschel, M. Engel, and H. Löwen, “Surfactants and rotelles
in active chiral fluids,” Sci. Adv. 7, eabf8998 (2021).
53A. Militaru, M. Innerbichler, M. Frimmer, F. Tebbenjohanns, L. Novotny, and
C. Dellago, “Escape dynamics of active particles in multistable potentials,” Nat.
Commun. 12, 2446 (2021).
54A. Zaccone, H. Wu, D. Gentili, and M. Morbidelli, “Theory of activated-rate
processes under shear with application to shear-induced aggregation of colloids,”
Phys. Rev. E 80, 051404 (2009).
55B. Ó Conchúir and A. Zaccone, “Mechanism of flow-induced biomolecular and
colloidal aggregate breakup,” Phys. Rev. E 87, 032310 (2013).

J. Chem. Phys. 158, 101101 (2023); doi: 10.1063/5.0139830 158, 101101-6

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0139830/16790343/101101_1_online.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1103/PhysRevE.95.012115
https://doi.org/10.1103/PhysRevE.100.012601
https://doi.org/10.1063/1.5080537
https://doi.org/10.1103/physrevd.100.076005
https://doi.org/10.1103/physrevd.100.096012
https://doi.org/10.1103/physreva.26.1168
https://doi.org/10.1063/1.451294
https://doi.org/10.1063/1.456837
https://doi.org/10.1063/1.4802010
https://doi.org/10.1063/1.4811363
https://doi.org/10.1016/j.physa.2018.02.110
https://doi.org/10.1209/0295-5075/77/30008
https://doi.org/10.1209/0295-5075/ac7c31
https://doi.org/10.1103/PhysRevE.99.052142
https://doi.org/10.1103/PhysRevLett.125.027206
https://doi.org/10.1103/physrevapplied.15.044029
https://doi.org/10.1103/physrevlett.116.147203
https://doi.org/10.1103/physrevlett.116.147203
https://doi.org/10.1088/1361-648x/aaefd7
https://doi.org/10.1103/revmodphys.94.035005
https://doi.org/10.1103/PhysRevE.105.015202
https://doi.org/10.1103/physreve.98.063204
https://doi.org/10.1103/PhysRevE.82.021123
https://doi.org/10.1103/PhysRevE.80.010401
https://doi.org/10.1103/physrevlett.101.128301
https://doi.org/10.1103/PhysRevE.91.062144
https://doi.org/10.1209/0295-5075/127/34003
https://doi.org/10.1088/1742-5468/ab190f
https://doi.org/10.1103/PhysRevE.97.032117
https://doi.org/10.1038/s41598-022-17584-3
https://doi.org/10.1103/PhysRevE.99.052107
https://doi.org/10.1063/1.3063059
https://doi.org/10.1103/physrevlett.109.155003
https://doi.org/10.1103/physrevlett.111.155002
https://doi.org/10.1103/PhysRevE.99.013203
https://doi.org/10.1103/PhysRevE.99.013203
https://doi.org/10.1093/pnasnexus/pgac119
https://doi.org/10.1103/PhysRevLett.129.090601
https://doi.org/10.1103/PhysRevE.78.020101
https://doi.org/10.1126/sciadv.abf8998
https://doi.org/10.1038/s41467-021-22647-6
https://doi.org/10.1038/s41467-021-22647-6
https://doi.org/10.1103/PhysRevE.80.051404
https://doi.org/10.1103/PhysRevE.87.032310

