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C
omplications of a malignant tumor can be

either (1) local due to direct effects of the

primary tumor or metastatic lesions on the
surrounding tissues, or (2) systemic. Tumors may

cause systemic effects by releasing soluble factors

into blood or lymph vessels1 or via immune reac-
tions caused by cross-reactivity between cancer cells

and normal tissues.2 Some of these systemic compli-

cations can be categorized under the well-known
paraneoplastic syndromes.2 Perhaps the most com-

mon effect tumors exert on their macroenvironment

is cancer-associated cachexia. Other systemic
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changes, though pathological, are subclinical and

might not only be beneficial as clinical markers for

prognosis and therapy prediction3 but also may help
to understand the mechanisms causing systematic

complications.

With recent advances in cancer therapy, patients
live longer and, therefore, it is of utmost importance

to improve the quality of life during this time. In this

context, addressing systemic complications as a
target for intensive research and development of

treatment options is imperative. This review aims to

introduce the concept of tumor macroenvironment,
explore it in the context of the tumor microenviron-

ment, and discuss the clinical and therapeutic impli-

cations of this concept.
TUMOR MICROENVIRONMENT

Before discussing a definition of the tumor macro-

environment, we will briefly explore the cellular
elements of the tumor microenvironment and con-

sider their local and systemic interactions.

Tumor-Associated Inflammation and
Angiogenesis

As early as 1863 Rudolf Virchow observed that

tumor tissues are infiltrated by immune cells; he was
281

dx.doi.org/10.1053/j.seminoncol.2014.02.005
dx.doi.org/10.1053/j.seminoncol.2014.02.005
dx.doi.org/10.1053/j.seminoncol.2014.02.005
mailto:gerald.hoefler@medunigraz.at
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


W. Al-Zhoughbi et al282
also the first to hypothesize a direct link between

inflammation and cancer.4 This hypothesis is now
widely accepted and a large body of research sup-

ports this fact. About 15% of human cancers are

estimated to arise from sites of infection or chronic
inflammation.5 Moreover, the majority of solid

tumors exhibit infiltration by immune cells and

release pathological levels of cytokines into the
surrounding tissue and/or into the bloodstream.

The local effect of cytokines released into the

tumor microenvironment has been reviewed exten-
sively.6 The interaction between these cytokines and

the tumor microenvironment affects tumor growth

and remodeling of the tumor microenvironment.
Critical components of the tumor microenvironment

are newly synthesized blood and lymph vessels,

which represent key events in tumor growth that
are driven by the metabolic needs of proliferating

cells, including oxygen and nutrients, and are medi-

ated by pro-inflammatory cytokines. A key event that
initiates or enhances the angiogenic process is

stabilization of hypoxia inducible factor 1-alpha

(HIF1α) in the hypoxic tumor microenvironment.7

Interleukin-1 beta (IL-1β) is an important mediator of

tumor angiogenesis.8 Together with prostaglandin

E2 (PGE2), IL-1β upregulates HIF1α protein levels
and activates vascular endothelial growth factor

(VEGF), a reaction that is mainly mediated by the

nuclear factor κB (NFκB) pathway.9 This cascade of
gene activation illustrates one important example of

a mechanistic explanation for the role of inflamma-

tion in tumor development. Other mechanisms
supporting angiogenesis have been reviewed else-

where.10 The newly synthesized blood and lymph

vessels not only contribute to delivery of oxygen
and nutrients to tumor cells thereby supporting

tumor growth10 but also allow tumor cells to release

a wide range of soluble factors into the bloodstream.
Mechanistically, this represents the key event con-

necting the tumor microenvironment with the

whole body of the patient exerting systemic bio-
logical effects. We suggest using the term “tumor

macroenvironment” to define the pathological inter-

action between the tumor cells, as well as the tumor
microenvironment with other organs and systems of

the body.
TUMOR MACROENVIRONMENT VERSUS
TUMOR MICROENVIRONMENT

Unlike in normal tissue, cellular proliferation in

tumors is an uncontrolled process. During the early

stages of tumorigenesis, two main signaling types
dominate in the tumor microenvironment to support

tumor cell proliferation. The first type of signaling

increasing proliferation constitutes autocrine stimu-
lation among tumor cells themselves. Tumor cells
may release growth factor ligands that bind to

receptors on the surface of tumor cells, thereby
stimulating proliferation.11 The second type of sig-

naling constitutes paracrine interaction between

tumor cells and other components of the micro-
environment. Factors released from tumor cells can

stimulate normal cells to produce growth factors to

which tumor cells respond subsequently.12 When
the size of the tumor reaches the oxygen and

nutrient diffusion limit, tumor cells encounter not

only a profound metabolic challenge but also hypo-
xia and nutrient deprivation.13

To survive in this hostile environment, tumor cells

deregulate their intrinsic metabolic machinery and,
via paracrine signaling, remodel the tumor micro-

environment to activate tumor-associated angiogen-

esis. Though tumor cells are master regulators of the
tumor microenvironment, each type of cell in this

environment may interact with other neighboring

cells.14 Soluble factors released, such as chemokines,
cytokines, and growth factors, (1) recruit inflamma-

tory cells, fibroblasts, and myeloid cells; (2) reshape

the extracellular matrix; and (3) initiate and support
neo-vascularization. On the one hand, tumor-

induced angiogenesis supports tumor growth, but

on the other hand the newly formed blood vessels
are tortuous and leaky. This, again, results in a

hostile microenvironment that may induce even

more aggressive properties of cancer cells. The
imperfectly formed network of newly formed blood

vessels in close proximity to tumor cells and inflam-

matory cells results in accumulation and/or release
of soluble factors from the tumor microenvironment

into the circulation at high levels. This leads to

pathological endocrine effects and interaction
between the tumor microenvironment and the

patient’s organs and systems, resulting in the devel-

opment of cancer-associated systemic syndromes in
the tumor macroenvironment (Figure 1).
METABOLISM OF THE TUMOR
MACROENVIRONMENT

Protein and Amino Acid Metabolism

Increased whole-body protein turnover is often

associated with tumor growth. This has been well
documented in cachectic15 and non-cachectic can-

cer patients.16 The decrease in protein synthesis17

and the increase in muscle protein degradation in
cancer patients18 imply that tumors are able to

mobilize muscle proteins. Indeed, several studies

demonstrated a direct relationship between tumor
growth and host protein metabolism. The concept of

tumors as “nitrogen traps” was described as early as

in 1951 by Mider.19 Nitrogen mobilized from tissues
represents a potential source of building blocks for



Figure 1. The tumor macroenvironment concept. A simplified schematic of the tumor micro- and macroenvironment:
tumor development is a multi-step process that may take place over several years. Transition from normal cell(s) to
genetically abnormal cell(s) occurs at the beginning. This transition is a relatively slow process and often clinically silent.
When transformed cells start dividing and invade the neighboring tissues, the tumor microenvironment evolves. At this
step, cancer cells may face destructive effects of the innate and adaptive immune systems. However, selected cancer cells
are able to escape the antitumor immune response, resume growth, proliferate and shape their microenvironment.
Importantly, the reciprocal—but abnormal—interactions between cancer cells and the surrounding tissue are mainly
localized and limited to the microenvironment at this stage (left). If cancer cells remain undetected and untreated, cancer
progresses to advanced stages. As a consequence of (1) abnormal localized interaction and (2) uncontrolled cancer cell
proliferation and resulting necrosis, several soluble factors are released from the tumor microenvironment. They may
function as proangiogenic factors that stimulate recruitment of endothelial progenitor cells to the tumor microenviron-
ment and induce angiogenesis. Tumor-induced angiogenesis is a critical process in tumor development, as it not only
supplies the tumor with required nutrients but also allows soluble factors released by the tumor and the microenvironment
to enter the blood and/or lymph stream. This leads to an increased complexity of systemic interactions between the tumor
and other organs and systems in the body. In contrast to the tumor microenvironment, where the localized auto and
paracrine types of interaction are dominating, the systemic pathological interactions constitute the fundamental
mechanism of the tumor macroenvironment concept in cancer biology (right).
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rapidly growing tumors.20 Tumor growth in fasted

rats was similar to that in fed animals, while their

body and liver weights were reduced.21 Radioactivity
from 14C-glycine decreased in normal tissues during

the rapid growth phase of Flexner-Jobling carci-

noma. Conversely, total radioactivity in tumors
increased both in fasted and fed animals, indicating

that tumors do not lose protein content during

starvation, forming a “one-way passage”.21

On the cellular level, protein and amino acid

metabolism is also deregulated in cancer cells. In

contrast to decreased protein synthesis in muscle
cells, tumor cells exhibit increased protein synthe-

sis.22 mTORC1 is one of the key players involved in

phosphorylation of the translational regulators 4E-
binding protein 1 and S6 kinase 1.22 One of the key

changes in cancer cell metabolism is known as

“glutamine addiction” since many types of cancer
cells require exogenous supply of this non-essential

amino acid. The importance of non-essential amino

acids in tumor metabolism surpasses glutamine
addiction since several recent studies have
highlighted the importance of serine and glycine

pathways in tumorigenesis.23,24 Because these find-

ings are derived from in vitro experiments or animal
models, it was important to assess the relationship

between tumors and changes in free amino acids

(FAA) profiles of blood or serum of cancer patients.
It is worth acknowledging that such a global

approach had not been possible without recently

developed technology. Cancer cells have unique
metabolic requirements25,26 and exhibit a deregu-

lated metabolic phenotype. Recent advances in

studying metabolomics has helped to gain a compre-
hensive look at global changes in metabolites, such

as FAA and free fatty acids (FFA). However, an in-

depth review of metabolic profiles of tumor samples
is beyond the scope of this review. Therefore, we

will focus on FAA profiling of blood and serum

samples of cancer patients.
In line with the experimental observations men-

tioned above showing that amino acids are impor-

tant building blocks for tumors, several reports
demonstrate that tumors directly influence plasma
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free amino acid (PFAA) profiles. Threonine, serine,

and glycine are significantly reduced in the serum of
lung cancer patients. PFAA are tumor type–specific,
as there was no decrease in these three FAA in breast

cancer patients.27 In fact, other groups report similar
observations demonstrating that different types of

cancer were associated with specific PFAA pro-

files.28,29 Proenza et al described that lung and breast
cancer patients exhibit a decrease in blood FAA

content, including decreased glutamine, serine, and

glycine levels.30 The authors suggested that such
alterations might be due to increased amino acid

demand of cancer cells. Miyagi et al confirmed

altered PFAA profiles in lung, gastric, colorectal,
breast, and prostate cancer patients.31 Interestingly,

changes in PFAA were already observed in patients

with early-stage tumors. This might indicate that the
effects observed are due to a direct relationship

between the tumor and the host metabolism rather

than a reflection of the patient’s nutritional status.
Thus it is tempting to speculate that tumor cells

consume and take advantage of specific FAA from

the plasma pool.
Taken together, the experimental findings from

in vitro and in vivo studies using 14C-glycine,19–21 as

well as FAA metabolic profiling from blood and
serum samples of cancer patients,27–31 provide evi-

dence that protein and FAA metabolism are impor-

tant features of the cancer macroenvironment.
Importantly, changes in amino acid serum profiles

might have a potential for early cancer detection.
Lipid Metabolism

Dysregulated lipid metabolism is a hallmark of
cancer. Lipids serve as the structural and functional

domains on the scaffold of proteins, as fat depots,

and as signaling molecules. Functions of lipids are
critical in malignant tumors as they are necessary not

only for providing the membrane constituents of

proliferating cells but also for energetic, biophysical,
and signaling pathways that drive tumorigenesis.32

In addition, cancer-specific modifications of the lipid

metabolism can affect the production of specific
signaling lipids, such as factors derived from poly-

unsaturated fatty acids (FA) and alter the availability

of specific FA pools required for protein modifica-
tion. These changes may profoundly affect the tumor

macroenvironment.

In 1953 Medes et al found that cancer tissues are
able to synthesize lipids de novo, in particular

enormous amounts of FA and phospholipids. They

also demonstrated that the amount of lipid synthesis
in cancer tissue is comparable to that in liver.33

Recently, Nieman et al34 described that adipocytes

sustain human ovarian cancer peritoneal metastases
by providing energy for rapid tumor growth.
Omental adipocytes promote homing, migration,

and invasion of ovarian cancer cells. Co-culture of
adipocytes and ovarian cancer cells demonstrated

transfer of lipids from adipocytes to cancer cells,

enhanced lipolysis in adipocytes, and elevated β-
oxidation in cancer cells. Metastasized ovarian cancer

cells showed upregulation of fatty acid binding

protein 4 (FABP4), especially in the adipocyte–tumor
interface and pharmacological inhibition of FABP4

substantially impaired ovarian metastases in mice.34

Since the pivotal observation of the important role
of fatty acid synthase in cancer cell growth,35 numer-

ous studies have confirmed increased de novo lipo-

genesis in neoplastic tissues. These effects can be
reversed through inhibition of enzymes involved in

FA biosynthesis pathways.36 Various pharmacological

inhibitors of fatty acid synthase were shown to be
effective in the chemoprevention of breast cancer in

HER2/neu transgenic mice. Inhibition of FA desatura-

tion following the ablation of stearoyl-CoA desatur-
ase-1 caused ER stress, cell cycle inhibition, and

apoptosis of cancer cells.37 ATP-citrate lyase is the

rate-limiting cytosolic enzyme responsible for the
synthesis of acetyl-CoA in many tissues. It is also an

essential regulator in histone acetylation, thereby

linking FA metabolism to gene regulation.38 Inhib-
ition of ATP-citrate lyase was found to reduce hepatic

cholesterol levels and FA synthesis39 and to decrease

tumor formation in lung and prostate xenografts.40

Monoacylglycerol lipase (MAGL) has been shown to

be associated with aggressive properties of cancer

cells. It hydrolyzes 2-arachidonyl glycerol of the endo-
cannabinnoid pathway and other monoacylglycerols.

Inhibition of MAGL causes accumulation of mono-

acylglycerols and reduction of FFA. Overexpression
of MAGL in human cancer cell lines increased the

aggressive properties of cancer cells, which were

reversed by MAGL inhibition. Importantly, human
high-grade ovarian cancers are associated with

enhanced expression and elevated MAGL activity.41
Plasma Lipids

De novo lipogenesis is considered to be the
primary source of FA available for lipid synthesis in

cancer cells. However, cancer cells do not solely rely

on de novo lipogenesis but also use exogenous FA
for membrane synthesis and for the synthesis of

oncogenic signalling lipids such as ceramide-1-

phosphate (C1P), platelet-activating factor (PAF),
diacylglycerol (DAG), and lysophosphatidic acid

(LPA).42–44 Using an isotopic fatty acid labeling

strategy coupled with metabolomic profiling, Louie
et al demonstrate that cancer cells also use exoge-

nous fatty acids such as palmitic acid to generate

lipids required for proliferation and pro-tumorigenic
lipid signaling.45
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Breast cancer has been shown to be associated

with increased plasma FFA concentrations. Linoleic
acid does not only induce PAI-1 (a prognostic marker

for breast cancer) secretion through SMAD4 (similar

to mothers against decapentaplegic-4) but also
enhances the migratory potential of the highly

invasive MDA-MA-468 breast cancer cell line.46 FFA

secreted by primary breast cancer into the interstitial
fluid were found to inhibit the cytolytic activity of

the infiltrating cytotoxic T lymphocytes (CTLs),47

providing yet another example of tumor lipid metabo-
lism effecting the tumor micro- and possibly also macro-

environment. A large multicenter study revealed a

positive association between serum palmitic acid
with a high relative risk of 1.90 for prostate cancer

and an inverse association with stearic acid, respec-

tively.48 However, despite the increasing evidence
for the important role of lipid metabolism in cancer,

the mechanisms by which specific lipid species

affect incidence and progression of various types of
cancer remain elusive.
Plasma Lipoproteins

Since lipids play a substantial role in maintaining

cellular integrity, it is not surprising that altered
lipoprotein patterns also have been associated with

malignancies. Patients suffering from various types

of hematological neoplasia exhibit significantly
lower plasma cholesterol, high-density lipoprotein-

cholesterol (HDL-C), and low-density lipoprotein-

cholesterol (LDL-C) levels and higher triglyceride
(TG) concentrations than body mass index (BMI)-

matched healthy controls.49 A similar reduction in

total cholesterol (TC), HDL-C, and very-low-density
lipoprotein-cholesterol (VLDL-C) was observed in

patients with oral50 and head and neck cancers.51

The role of plasma lipids in breast cancer is a subject
of controversy. Plasma TC and LDL-C were found to

be elevated in breast cancer patients52 and were

associated with tumor progression,53 whereas other
studies showed increased TG and VLDL-C but

reduced TC, HDL-C, and LDL-C in patients with

advanced compared to early-stage breast cancer.54

In patients with metastatic disease, a similar reduc-

tion of TC, LDL-C, HDL-C, and BMI was observed in

comparison to patients with non-metastatic tumors.
However, serum TG was also decreased in these

patients.55

In general, low plasma LDL-C levels are robustly
correlated with cancer. Surprisingly, however, genet-

ically decreased LDL-C in patients with three

polymorphic genotypes—proprotein convertase
subtilisin/kexin (PCSK) type 9, ATP-binding cassette

sub-family G (ABCG) member 8, and apolipoprotein

(APO)E—was not seen.56 In addition, meta-analyses
of randomized controlled trials of cholesterol
reduction found no significant rise in cancer mortal-

ity.57 It seems, therefore, that low LDL-C levels
per se do not cause cancer. It is conceivable that

low LDL-C levels might be caused by tumor effects

on the macroenvironment.
EFFECTS OF CANCER ON THE
MACROENVIRONMENT: CANCER-
ASSOCIATED CACHEXIA

Cancer-associated cachexia (CAC) is a multi-

factorial syndrome characterized by progressive loss
of skeletal muscle mass with or without loss of fat

mass that cannot be reversed by conventional nutri-

tional support.58 CAC is characterized by anorexia,
anemia, lipolysis, and insulin resistance. It is esti-

mated that 15%–20% of deaths of cancer patients can

be attributed to cachexia. The highest prevalence is
seen in patients suffering from gastrointestinal and

pancreatic adenocarcinoma with 80%–90% inci-

dence followed by prostate and lung cancer.59

Clinically, cachexia should be suspected if an

involuntary weight loss of 45% of the premorbid

weight occurs within a 6-month period. While
anorexia also may occur concomitantly, the drop in

caloric intake alone does not explain the body

composition changes seen in cachexia. Moreover,
cachexia may progress even in the absence of

anorexia.60 The major influence of the tumor on

the macroenvironment appears to be related to
excess of cytokines in the serum: (1) many tumors

secrete pro-inflammatory factors (eg, tumor necrosis

factor alpha [TNFα], IL-6) and pro-catabolic factors
(eg, zinc α2-glycoprotein [ZAG]); and (2) factors

released by the host as a response (eg, interferon

gamma [IFNγ] and ZAG),61 which are responsible for
promoting degradative pathways in skeletal muscle

and adipose tissue. In the following sections we

delineate the effects a cachexia-inducing tumor
exerts on the host via several mechanisms.

Systemic Inflammation

Many lines of investigations prove beyond a
reasonable doubt that a multifactorial in situ net-

work of inflammation governs various intricate sig-

naling processes that advance tumor development
and progression. In addition to microenvironmental

effects, inflammatory responses in the macroenviron-

ment are associated with increased levels of inflam-
matory mediators (eg, IL-6, TNFα, IL-1, and IFNγ)62

and acute-phase proteins that lead to hypermetabo-

lism and weight loss in patients with CAC.63 Based
on these findings, many studies attempted to define

potential diagnostic markers for CAC. It has been

shown that in advanced stages of cancer, IL-1β is
more strongly associated than other cytokines with
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clinical features of cachexia such as general weak-

ness, loss of appetite, weight loss, and sarcopenia.64

Interestingly, despite the high levels of plasma TNFα
and IL-6 in patients with non-small cell lung cancer

compared with healthy volunteers, the difference in
plasma TNFα and IL-6 between cachectic and non-

cachectic patients is not significant.65 It seems

possible that a set of cytokines has to work in
concert to induce CAC and that a single factor might

therefore be poorly predictive of CAC.

The mechanistic interaction between systemic
inflammation and tumor development in patients

has not yet been fully elucidated. There is, however,

increasing experimental evidence for a causal rela-
tionship between systemic inflammation and fea-

tures of CAC. In experimental CAC models,

administration of many of the cytokines listed above
led to anorexia, weight loss, acute-phase protein

response, protein and fat breakdown, and increased

levels of cortisol and glucagon, as well as decreased
insulin levels, insulin resistance, anemia, fever, and

elevated energy expenditure.66 Increased levels of

IL-6 in a murine colon carcinoma model correlated
with the development of cachexia, whereas treat-

ment with monoclonal antibody to murine IL-6 sup-

pressed it.67 Similarly, neutralizing endogenous
TNFα/cachectin production with antibodies reduced

tissue wasting and tumor weights of methylcho-

lanthrene-induced sarcoma (MCG-101), as well as
Lewis lung carcinoma.68
Adipose Tissue Depletion and
Hypermetabolism

Loss of adipose tissue is one of the hallmarks of
CAC. A remarkable decrease in size of adipocytes

was observed in cachectic mice69 and patients.70 TG

depletion in adipose tissue is caused by aberrant
production of several factors derived from tumors

and/or host tissues.61 These factors include inflam-

matory cytokines such as TNFα and pro-lipolytic
factors such as lipid-mobilizing factor and ZAG,

which have a direct lipolytic effect and also sensitize

adipocytes to lipolytic stimuli.71 Both lipid-
mobilizing factor and ZAG induce lipolysis through

the canonical adenylyl cyclase-cAMP–mediated

mechanism and subsequent activation of hormone-
sensitive lipase (HSL).61 Remarkably, elevated levels

of ZAG, as well as TNFα and IL-6, did not induce

depletion of adipose tissue in Lewis lung carcinoma–
bearing mice lacking adipose tissue triglyceride

lipase (ATGL), pointing to a central role of ATGL in

the pathogenesis of CAC.72 In addition to lipolysis as
the most predominant cause, decreased lipogenesis

and FA uptake could partially explain TG depletion.

Essential transcript factors (eg, C/EBP, SREBP69) and
lipogenesis enzymes (eg, fatty acid synthase, citrate
cleavage enzyme73) are associated with tumor pro-

gression in mouse cachexia models.
Adipose tissue is a potent source of energy,

constituting about 90% of adult fuel reserves. Instead

of being viewed as a passive calorie reservoir, it is
now recognized as a highly active metabolic as well

as endocrine organ profoundly impacting on the

host energy metabolism via adipokines.74 It is well
established that loss of adipose tissue results in

extensive fatty acid and glycerol mobilization and

circulation in cachectic patients due to increased
lipolysis compared with patients with non-cachectic

cancer or healthy subjects.75,76 Increased oxidation

of fat and glucose along with elevated energy
expenditure is frequently observed in a wide spec-

trum of different cancers,75 whereas impaired

capacity to oxidize lipids also was found in weight-
losing gastrointestinal cancer patients.76 Increased

energy expenditure also could arise from tumor-

derived factors irrespective of their pro-lipolytic
activity. For example, injection of lipid-mobilizing

factor from cachectic cancer patients promotes

whole body fatty acid oxidation in mice.77 Tumors
are metabolically active and since they have the

potential to adapt rapidly they might even take

advantage of metabolic changes. Considering the
potential use of lipoproteins by tumors in cancer

patients and in experimental models,78 it is conceiv-

able that the increased flux of lipids into circulation
due to loss of adipose depots is not entirely wasted

in the “hyper-metabolic sink” but might in part be

used by the tumor itself.
Muscle Atrophy

Cachexia-related muscle wasting results from a

disturbance of the tightly regulated balance of

muscle protein breakdown and synthesis.79 Intra-
cellular protein degradation involved in cachexia can

be mediated by three processes: the lysosomal

mechanism, a Ca2þ-dependent mechanism, and the
ATP-ubiquitin–dependent proteolytic pathway

(UPP). The latter is considered to be preferentially

activated.80 Several mechanisms may trigger the
ATP-ubiquitin–dependent proteolytic pathway such

as a set of cytokines found in CAC (eg, TNFα, IL-1,
IL-6, and IFNγ). NFκB, a central mediator down-
stream of various pro-inflammatory factors, regu-

lates muscle protein degradation and expression of

the ubiquitin-proteasome proteolytic pathway in
response to proteolysis-inducing factor (PIF).81

Muscle STAT3 activation by IL-6 is a common feature

of cancer-associated muscle wasting.82 Inhibition of
IL-6/JAK/STAT3 reduced muscle atrophy in cancer,

indicating that IL-6/STAT3 is a critical mediator axis

of muscle wasting in cancer cachexia induced by
high levels of IL-6.82
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Cytokines such as those mentioned above induce

systemic inflammation. Indeed, insulin resistance
and sensitivity to systemic inflammation were

observed in patients with various types of tumors

and were associated with CAC.83 There also is
evidence that cachexia-associated insulin resistance

could result in increased protein degradation of

skeletal muscle.83 Increased energy expenditure in
cachectic cancer patients suffering from gastrointes-

tinal adenocarcinoma might, at least in part, be

related to increased expression of uncoupling
protein-3 in muscle, which may contribute to tissue

catabolism.84

Besides protein breakdown, a reduction in the
rate of muscle protein synthesis in weight-losing

cancer patients also has been described in cancer

patients. In some cases, muscle protein synthesis
decreased dramatically compared with healthy con-

trols, whereas whole body rates of protein synthesis

and degradation do not differ significantly.85
SYSTEMIC METABOLIC DISEASES WITH
POSSIBLE INFLUENCE ON TUMOR
DEVELOPMENT

Obesity

Human obesity is a complex disease resulting

from a combination of elevated caloric intake and a
relative lack of physical activity. Hippocrates was the

first one to note the relation between obesity and

reduced life expectancy. In one of his medical works
he stated that “Sudden death is more common in

those who are naturally fat than in the lean”. Various
studies have provided ample evidence that obesity is
risk factor linked with chronic illnesses, and is not

only restricted to diabetes, heart diseases, dyslipide-

mia, inflammatory diseases, and hypertension. In
2003, a landmark study was performed by the

American Cancer Society analyzing the influence of

excess body weight on the risk of cancer-related
deaths in a large population of 900,000 American

adults. The prospective investigation showed that

men and women with a BMI of at least 40.0 had a
death rate from all cancers combined of 52%, which

was 88% higher than their normal-weight counter-

parts.86 Additional studies demonstrate an increased
risk for various cancer types such as colon and renal

cancers, leukemia, non-Hodgkin lymphoma, and

esophageal adenocarcinoma in both sexes; endome-
trial, ovarian, gallbladder, breast, and pancreas carci-

nomas in women; colon, breast, and endometrial

cancers in postmenopausal women87; and malignant
melanoma, and stomach, prostate, and rectal cancers

in men.88

The basic mechanism(s) linking obesity to tumor-
initiating events remain largely elusive. Two main
mechanistic connections have been suggested that

may causally link obesity and increased fat mass with
cancer progression: (1) altered signaling events, and

(2) changes in the local and systemic levels of

adipocyte-derived factors. This altered physiological
state may induce an enhanced mitogeneic effect

shaping the tumor microenvironment through auto-

crine and paracrine signaling combined with infiltra-
tion of immune cells and inflammation.89 Adipose

tissue secretes various polypeptide hormones, adi-

pokines, leptin, and plasminogen activation inhibior-
1 (PAI-1), which have been reported to be involved

in cancer development and progression.90 Cancer

progression could be induced by the activation of
PI3K, MAPK, and STAT3 pathways, respectively.91

Excess adipose tissue in obesity is associated with

higher levels of pro-inflammatory cytokines, includ-
ing TNFα, IL-2, IL-6, IL-8, IL-10, PGE2, and monocyte

chemoattractant protein-1 (MCP-1). Activation of

NFκB also may play a major role through various
inflammatory mechanisms.92 Though there are sev-

eral mechanisms proposed to be involved in obesity-

associated cancer, the exact molecular events
remain unclear.
Diabetes

Epidemiological data suggest that there is an

association between the incidence of a wide variety
of malignancies and diabetes. A causative relation-

ship has not been proven so far, but biological

mechanisms that support this theory have been
found. However, it has to be kept in mind that

diabetes and malignant tumors have common risk

factors.93 A large number of cohort and case-control
studies, as well as meta-analyses of these studies,

support the evidence that the incidences of

many different cancers are increased in diabetic
patients.94

A meta-analysis of case-control and cohort studies

indicated an association of diabetes mellitus with an
increased risk for colon cancer in both men and

women, whereas rectal cancer showed this associa-

tion only in male patients. Analysis of the seven
studies that controlled for known confounders such

as smoking or obesity still showed this association,

which was also independent of physical activity.95

A meta-analysis of 21 studies, including case-control

and cohort studies, demonstrated a statistically sig-

nificant association between diabetes and colorectal
cancer incidence without heterogeneity between

the different studies. In this analysis the risks for

colon cancer and rectal cancer were similar. Even
the analysis of studies correcting for the well-known

confounders, physical activity and BMI resulted in a

positive association between diabetes and colorectal
cancer.96 In addition, a meta-analysis including more
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than 3 million patients showed that diabetic patients

had a significantly higher risk of colorectal cancer;
even when only studies controlling for BMI and

smoking were included, an association between

diabetes and risk of colorectal cancer was found.97

In a meta-analysis of 36 studies stratified by study

design, diabetes mellitus was associated with a

higher incidence of bladder cancer in case-control
and cohort studies with an even higher risk within

the first 5 years.98 An association between breast

cancer and diabetes was demonstrated in a meta-
analysis of 20 studies with a significantly increased

risk of 20% of diabetic women developing breast

cancer. In an additional analysis stratified for meno-
pausal status, diabetes was shown to be associated

with breast cancer only in postmenopausal

women.96 However, type I diabetes and diabetes in
premenopausal patients did not exhibit an increased

risk of breast cancer.99

The association of diabetes mellitus and malignan-
cies of the gastrointestinal tract also has been inves-

tigated in a large number of studies. In a cohort

study of 929 diabetic patients and 1,126 controls, a
2.75-fold increase of gastrointestinal malignancies,

including gastric, hepatic, colon, and pancreatic

cancers, was demonstrated.100 A meta-analysis of
30 studies showed an increased risk for pancreatic

cancer in diabetic patients, especially for those with

a history of diabetes of less than 5 years duration101;
this also was confirmed in another meta-analysis of

20 studies.102 An increased risk of gallbladder cancer

and extrahepatic cholangiocarcinoma was found in a
meta-analysis of 21 studies including eight case-

control and 13 prospective cohort studies. Studies

controlling for the two most important confounders
of biliary tract cancer showed an increased, but not

statistically significant association, of diabetes melli-

tus with biliary tract cancer.103 In a meta-analysis of
18 cohort studies, 13 studies showed an increased

risk of hepatocellular cancer in diabetic patients.

This positive association was even found when only
studies controlled for the most important confound-

ing factors, including hepatitis B and C infection

or alcohol consumption.104 A meta-analysis of 16
studies showed that the risk of endometrial cancer

was increased in diabetic patients, with a stronger

association in the case-control studies in comparison
to cohort studies.105 In a prospective cohort study

of 36,773 women, a diabetic condition was associ-

ated with a twofold increased risk even when
adjusted for confounders like age, MI, and total

physical activity 106.

The mechanisms leading to this increased risk of
malignant tumors in the diabetic population have

been investigated and a number of genetic pathways

have been implicated in this process. Hyperglycemia
itself, however, also interacts with tumor cells. High
glucose levels have a direct effect on cancer cells

leading to increased proliferation, inducing muta-
tions of various genes, augmenting invasion and

migration, and resetting signaling pathways in tumor

cells.107 Hyperglycemia, hyperinsulinemia, and
chronic inflammation have been discussed as mech-

anisms by which diabetes might promote growth of

malignant tumors.108 The dependence of malignant
cells on glycolysis has been described as the War-

burg hypothesis.108,109 On the other hand, cell

culture results indicate that the glucose transporter
GLUT1 is upregulated and that cells have an

enhanced glucose uptake even in a low glucose

environment.110 Transcriptional profiling of a cell
line model of transformation showed a significant

correlation of 54 genes between cancer and meta-

bolic conditions. In the same model, 11 of 13
medications for treatment of metabolic disease sup-

pressed colony formation; however, they did not

affect cellular growth.111

In contrast to the large number of studies

described above, diabetes appears to have an oppo-

site effect on the pathogenesis of prostate cancer. In
a prospective cohort study, a diabetic metabolic

state was associated with a risk reduction of 25%

of prostate cancer.93 The risk for developing pros-
tate cancer declined briefly after the onset of dia-

betes mellitus and this reduction continued for the

following 15 years. This declining risk might be
caused by a drop in testosterone levels.112 Consid-

ering the ample evidence associating diabetes with

cancer, it is clear that more investigations are needed
to clarify the mechanism by which diabetes can

cause or, in some circumstances, even prevent

cancer.
CLINICAL IMPLICATIONS OF THE TUMOR
MACROENVIROMENT

Macroenvironment and Impact on Patient’s
Clinical Outcome

Until now, cancer-staging systems and prognostic

stratification tools for patients exclusively rely on
tumor-related clinical or histopathological factors.

Tumor size, number, and location of metastatic

lesions, tumor grading, or other histomorphological
features like vascular invasion or tumor necrosis

provide the basis for individual risk assessment in

daily clinical routine.113 However, in addition to
novel molecular markers and multi-gene assays, the

simple observation that patients with nearly identical

tumor burden show different clinical signs, including
thromboembolic events, fever, or tumor cachexia,

suggests that the interaction between the tumor and

its macroenvironment influences life quality and
survival of cancer patients. In this context, the
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systemic inflammation that is determined by pro-

duction and systemic secretion of soluble factors of
the tumor cells and the tumor microenvironment

has been previously reported as a potentially useful

indicator of the patient’s clinical outcome. More
than 10 years ago, the first study reported that an

elevated C-reactive protein level, a commonly used

surrogate marker indicating the degree of systemic
inflammatory response, is predictive for the dura-

tion of cancer-specific and non-cancer survival in

patients suffering from colorectal, gastric, breast,
or lung cancer.114 A long list of other studies

confirmed these findings in different cancer entities

and under different clinical scenarios, which
established the systemic inflammatory response as

a potentially prognostic indicator in cancer

patients.115,116 In addition to the originally used C-
reactive protein, a series of other blood-based

markers or combinations have been proposed as

possible indicators of the systemic inflammatory
response. These include the modified Glasgow

prognosis score, a combination of albumin and C-

reactive protein levels, which divides patients into
different risk groups.117 Other useful markers indi-

cative for the systemic inflammatory response

include the neutrophil to lymphocyte ratio,118 the
lymphocyte to monocyte ratio,119 and other plasma

proteins like fibrinogen levels.120 As already men-

tioned above, the systemic inflammatory response
is also strongly and causally linked to CAC. Taken

together, several lines of evidence support the

theory that the systemic inflammatory response
impacts the clinical course of cancer patients.

Therefore, integrating blood-based surrogate

markers into established clinical staging systems
might improve the predictive ability of currently

used prognostic risk assessment tools.
Solid Pediatric Tumors—A Special Case?

Basic principles of adulthood cancer do not
necessarily apply to solid pediatric tumors such as

hepatoblastoma (HB), the most common liver tumor

in infancy, or neuroblastoma (NB), the most com-
mon extracranial solid tumor in children. These

entities are of embryological origin, and have distinct

genetic alterations, unique growth patterns, and
specific prognoses. NB may have different genetic

clones within one individual lesion and either may

progress to a chemotherapy-resistant malignancy or
mature to a “benign” ganglioneuroma. Consequently,

it must be assumed that environmental factors

influencing each specific lesion could be distinctly
different from adulthood cancer. This section eluci-

dates current knowledge about the macro- and

microenvironment in children with solid pediatric
tumors and focuses on major principles and
potential therapeutic strategies for pediatric oncol-

ogy in the future.

The Metabolic Environment

As early as 1930 Warburg described the depend-
ence of tumors cells on glycolysis even in the

presence of adequate oxygen supply (“aerobic gly-

colysis”). Today we understand that this dispropor-
tional metabolism of glucose into lactate121 is

mediated by upregulation of glycolysis in the cytosol

and downregulation of glucose oxidation by the
mitochondria.122 Molecular abnormalities of glucose

metabolism have been investigated in solid pediatric

tumors. Park et al123 showed that hypoglycemia
increased induction of VEGF expression via the

protein kinase C pathway in human hepatoblastoma

cells. It is well known that VEGF plays a central role
in angiogenesis and that VEGF expression can be

influenced by a variety of environmental stresses

such as nutrient deprivation and hypoxia. Terashima
et al124 supported this finding of increased VEGF

expression under glucose deprivation in HepG2

cells. Like adulthood cancers, this pediatric tumor
obviously can initiate molecular strategies to escape

metabolic deprivation.

Using neuroblastoma cells (SH-SY5Y and SK-N-BE)
Navratilova et al demonstrated that tetrathiomolyb-

date (TMD), a drug that exhibits anti-angiogenic and

tumor-suppressing effects increased glucose uptake,
production of lactate, and activation of Akt and

AMPK signaling pathways as angiogenic “escape
strategies” of NB cells under low glucose condi-
tions.125 Under low glucose conditions, these effects

lead to a significant decrease of intracellular ATP

supply and apoptosis. The authors concluded that
TMD in combination with dietary restrictions could

be a suitable agent for the treatment of NB.
CAC represents a hypercatabolic syndrome char-

acterized by depletion of adipose and protein tis-

sues.72,126 Recent studies in adulthood cancer
unraveled novel mediators with the potential for

pharmacological inhibition.127 In childhood oncol-

ogy, severe CAC does not seem to be a major clinical
problem. Thus in the literature there are almost no

reports about the energy homeostasis in solid pedia-

tric tumors. It remains rather unclear which molec-
ular strategies these unique embryologic tumors

employ to harvest energy. Nevertheless, such studies

could reveal subclinical interactions with the host’s
energy homeostasis or uncover distinct metabolic

pathways for each tumor entity.

The Immunologic Environment

Tumor cells can manage to escape the anti-tumor

immune responses. Revealing the underlying mech-
anisms for solid pediatric tumors could foster
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development of tumor-specific and immunologic

anti-cancer therapies. The tumor microenvironment
certainly plays a central role in this context as it

presents the “stage” for the interaction between

proliferating tumor cells, tumor stroma on the one
hand and blood vessels supplying soluble anti-cancer

factors or inflammatory cells on the other hand.

For NB, Pistoia et al128 recently described several
immune escape mechanisms. These include (1) an

impaired expression of HLA class I antigens leading

to a defective antigen presentation and immune
response by the host, (2) expression of several

immunosuppressive molecules, and (3) recruitment

of immunosuppressive cells impairing anti-tumor
immune responses. Such immunological escape

mechanisms could be treated pharmacologically.129

Immunotherapy with lenalidomide enhanced activa-
tion of natural killer cells and inhibited their sup-

pression by NB induced IL-6 or transforming growth

factor-ß1 within the tumor environment.

The Metastatic Environment

The fate of tumor cells reaching distant organs

depends on local factors within the “new” micro-
environment. Such tissue-derived factors can influ-

ence the viability, proliferation, cell adhesion and

motility, chemotaxis, or apoptosis.130 In children
with high-risk NB, pulmonary metastases are crucial

for the long-term outcome. In an orthotopic mouse

model for human neuroblastoma metastases (Mhh-
NB11 and SH-SY5Y), Maman et al131 showed that

lung-derived factors significantly reduced the viabil-

ity of micro-NB cells by upregulating the expression
of pro-apoptotic genes, inducing cell cycle arrest and

decreasing ERK and FAK phosphorylation. The

authors concluded that further insights into distant
organ environment could reveal therapeutic options

against NB metastases. In conclusion, various meta-

bolic and immunologic factors of the macro- and
microenvironment within the tumor or distant

organs seem to play an essential role for the morbid-

ity and mortality of children with NB and HB.

Targeting the Tumor Macroenvironment

In the previous sections we delineated various

tumor-induced effects on the macroenvironment,
such as tumor-induced systemic inflammation, that

potentially modulate metabolism and induce

cachexia. Therapeutic efforts to block the actions
of, for example, macrophage-secreted substances,

may slow the progression of tumor effects on

the macroenvironment such as cachexia. Anti-
inflammatory compounds, such as cyclo-oxygenase

2 inhibitors, appear to be efficacious in the reduc-

tion of cachexia in animals,132 as well as in
patients.133 Resveratrol, an inhibitor of NFκB
activation, can inhibit muscle protein degradation

in experimental CAC.134 Genetic ablation of IL-6 in
mice has been shown to suppress both tumor

growth and weight loss in an experimental cachexia

model, implying that host-derived cytokines also
could be considered as therapeutic targets.135 Tar-

geting the tumor macroenviroment in patients suf-

fering from cachexia through anti-inflammatory
therapy not only may ameliorate the physical con-

dition of patients but might also disrupt the feedback

of the macroenvrionment to the tumors thus provid-
ing novel therapeutic targets.

Dietary modification such as caloric restriction

has been shown to decrease tumor initiation and
progression in model systems of cancer. In breast

tumor-bearing mice, it induced metabolic and signal-

ing changes that affect stroma and tumor cells,
resulting in reduction of tumor proliferation and

consequent metastases.136 In murine models of

triple-negative breast cancer, a 30% reduction in
daily total caloric intake provided significant tumor

regression compared to alternate-day feeding, and

greater regression when combining radiation and
dietary modification.137 However, despite several

efforts, no solid evidence exists to substantiate that

caloric restriction or other dietary interventions can
reduce tumor growth in cancer patients.

HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A)

reductase is the rate-limiting enzyme in the biosyn-
thesis of isoprenoid compounds, including choles-

terol, dolichol, and ubiquinone.138 Its inhibitors,

statins, have been used to treat hypercholesterole-
mia but also display anti-tumor effects against various

types of cancer in tumor models.139 Anti-tumor

properties of statins have not been fully elucidated
but might be attributed to (1) blocking of the de

novo cholesterol synthesis, which is crucial in the

maintenance of cellular membrane and integrity;
(2) impeding the transition of G1-S in the cell cycle;

(3) interference with cell signaling (eg, Ras and Rho

family GTPases dependent on isoprenoids for mem-
brane anchoring140); and (4) apoptosis induction

through depletion of geranylgeranylated proteins
141 or deregulation of pro-apoptotic BAX and anti-
apoptotic BCL-2 expression.142 Intracellular choles-

terol levels are tightly regulated by a homeostasis

network, including LDL uptake, which could com-
pensate for a high cholesterol demand while cellular

cholesterol supplied from de novo synthesis is

insufficient. In fact, the importance of the LDL
receptor in tumorigenesis is generating increasing

interest.143 Thus, reduction of circulating lipids

might reduce nutrient supply to the tumor and
thereby lead to tumor suppression. In fact, we

recently were able to show that the lipid-lowering

drug fenofibrate suppresses B-cell lymphoma growth
via a systemic mechanism.78
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CONCLUSION

This review is intended to provide convincing

arguments for the tumor macroenvironment con-
cept since we believe it to be very useful to explore

the effects tumors exert on the entire complex

organism. The multiple interfaces between tumor
cells, tumor stroma, including vasculature and

immune cells, and the surrounding tissue and organs

are a fascinating environment to study the interplay
of the various components. This will help to under-

stand the biology and the properties of malignant

tumors much better and will undoubtedly support
the establishment of new therapy and prevention

concepts.
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