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1 Introduction 

In 1971 Green and Rao introduced conjoint analysis in the marketing literature. Since then, 

conjoint analysis has become a widely applied marketing tool for measuring and analyzing 

consumer preferences. The commercial use of choice-based conjoint (CBC) analysis, the most 

widely used variant of conjoint analysis, goes back to Louviere and Woodworth [1983] and 

became increasingly popular in the 1990s. The main advantage of CBC in contrast to traditional 

conjoint analysis is that preferences for attributes and attribute levels are collected through 

choice decisions rather than by ranking or rating competing alternatives. The primary reason 

for the increasing dominance of the CBC approach over time has been that simulating choice 

decisions closely mimics the real choice behavior of consumers. Precisely, in CBC studies 

respondents are asked repeatedly to choose their preferred alternative from sets of several 

offered alternatives (choice sets). The CBC approach is widely used in practice for pricing and 

product design decisions, for product positioning objectives as well as for market segmentation.  

The simplest choice modeling approach to analyze CBC data would be to estimate an aggregate 

(simple) multinomial logit (MNL) model. However, the aggregate MNL model does not 

account for any consumer heterogeneity. It assumes homogeneous preferences across 

consumers and carries the danger to model an average consumer who actually does not exist in 

the real market. Because of that researchers pushed the development of advanced modeling 

approach to address heterogeneous consumer preferences, leading to conjoint choice models 

with different representations of consumer heterogeneity. The marketing literature 

distinguishes between continuous and discrete representations of consumer heterogeneity 

[Wedel et al. 1999; Wedel and Kamakura 2000; Wedel and Kamakura 2002]. On the one hand, 

the finite mixture MNL approach, firstly proposed by Kamakura and Russell [1989] for the 

analysis of panel data, was applied to CBC data [Kamakura et al. 1994; DeSarbo et al. 1995; 

Moore et al. 1998]. The finite mixture MNL model, also known as latent class (LC) MNL 

model, divides the market into a manageable number of homogeneous segments with different 

preference and elasticity structures. On the other hand, Allenby et al. [1995], Allenby and Ginter 

[1995] and Lenk et al. [1996] published milestone articles for the application of models with 

continuous representations of heterogeneity to CBC data using hierarchical Bayesian (HB) 

estimation techniques. Using a normal distribution became the standard procedure to represent 

preference heterogeneity, referred to as HB-MNL model in the following [e.g., Chiang et al. 

1998; Wedel et al. 2000; Andrews et al. 2008; Gilbride and Lenk 2010; Kurz and Binner 2016; 

Aribarg et al. 2017; Voleti et al. 2017; Akinc and Vandebroek 2018; Hein et al. 2019a, 2019b]. 
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The HB-MNL model allows the estimation of part-worth utilities at the individual respondent 

level, even when there are insufficient degrees of freedom [Lenk et al. 1996]. Although the 

“true” distribution of consumer heterogeneity is often continuous, the concept of the existence 

of a discrete number of market segments is more attractive and easier to understand especially 

from a managerial point of view [e.g., Tuma and Decker 2013]. Whereas discrete approaches 

often over-simplify the concept of heterogeneity distributions, continuous approaches 

especially in form of an assumed single normal distribution may not be flexible enough to 

reproduce consumer heterogeneity (distribution of response coefficients) appropriately 

[Allenby and Rossi 1998; Rossi et al. 2005; Rossi 2014]. Further, the thin tails of a normal 

distribution tend to shrink unit-level estimates toward the center of the data. This shrinkage, 

especially in multimodal data settings, could mask important information (e.g., new or different 

market structures) [Rossi et al. 2005]. 

As a generalization of the finite mixture model, the mixture-of-normals (MoN) approach avoids 

the drawbacks of both the finite mixture model and the HB model, respectively [Lenk and 

DeSarbo 2000]. In a discrete choice situation, a mixture of several multivariate normal 

distributions representing consumer heterogeneity is applied to a choice model (e.g., the MNL 

model) here [Allenby et al. 1998]. Using a sufficient number of components, any desired 

heterogeneity distribution can be approximated using a MoN (e.g., heavy-tailed, multimodal 

and skewed distributions) [Rossi et al. 2005; Train 2009]. In an empirical application, Allenby 

et al. [1998] found strong support for the MoN-MNL approach regarding model fit and 

predictive performance in comparison to LC-MNL and HB-MNL models. 

The Dirichlet Process Mixture (DPM) MNL model allows for a countable infinite mixture of 

normal components by supplementing the component parameters with additional priors [e.g., 

Gilbride and Lenk 2010]. The DPM-MNL model also draws the part-worth utilities from 

continuous distributions (in this thesis from a mixture of multivariate normal distributions), 

where population means and covariances follow a Dirichlet Process. In other words, the 

continuous distributions are centered around the discrete part-worth utilities of the Dirichlet 

Process Prior (DPP) [e.g., Voleti et al. 2017]. With a DPP the researcher is able to model 

heterogeneity of an unknown form [Rossi 2014]. The application of DPPs and the usage of 

DPM-MNL models in in the context of CBC data has been proposed only recently [Voleti et 

al. 2017]. An advantage of the DPM-MNL model is that the number and composition of 

components are determined as a result a posteriori. Post hoc procedures [e.g., Andrews and 

Currim 2003] to find the optimal number of segments − like in LC-MNL or MoN-MNL models 

− are no longer required [Kim et al. 2004; Voleti et al. 2017].  
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However, statistical findings on the comparison of these models are ambiguous. Moore et al. 

[1998], Allenby et al. [1998], Pinnell [2000], Natter and Feurstein [2002] and Moore [2004] for 

example showed that HB models outperformed aggregate models or LC models applied to CBC 

data. Other studies showed that HB models did not lead to any substantial improvement [Pinnell 

and Fridley 2001; Andrews et al. 2002a]. In an empirical comparison on the basis of eleven 

CBC data sets Voleti et al. [2017] found out that DPM-MNL models had a better predictive 

validity than common choice models with either a discrete or a continuous representation of 

consumer heterogeneity. Importantly, on average, the HB-MNL model provided the second-

best predictive performance in the study of Voleti et al. [2017] whereas the empirical findings 

of Allenby et al. [1998] speak in favor of the MoN-MNL model, as mentioned above (compared 

to LC-MNL and HB-MNL models).  

While the previously cited articles mainly focused on the comparison of different extensions of 

the standard MNL model to capture preference heterogeneity, the marketing literature also 

addresses further limitations of the (simple) MNL model. One of the major limitations of the 

MNL model is its Independence of Irrelevant Alternatives (IIA) property. The IIA property 

states that the ratio of choice probabilities of two alternatives remains constant independent of 

other available alternatives and hence implies proportional substitution patterns as well as 

constant cross-elasticities across alternatives. Because in real choice situations the ratio of 

choice probabilities of two alternatives should be dependent of the appearance of other 

alternatives (e.g., if competing brands belong to different price-quality tiers), these constant 

cross-elasticities can lead to biased predictions. The most famous example illustrating this 

anomaly is the “red-bus/blue-bus paradox” [Debreu 1960; Hausman and Wise 1978; Ben-Akiva 

and Lerman 1985]. It is well-known that accounting for random taste variation in extensions of 

the standard MNL model can strongly soften the IIA property [Brownstone and Train 1998; 

Train 2009; Elshiewy et al. 2017]. A different approach to soften the IIA property is the nested 

multinomial logit (NMNL) model. The NMNL assumes that consumers follow a sequential or 

hierarchical decision making process, that way enabling a partial relaxation of the IIA property. 

Here, the ratio of choice probabilities between two alternatives within a predefined nest (subset 

with similar alternatives) is independent of the availability of other alternatives so that the IIA 

property holds within nests. Accordingly, the ratio of choice probabilities of two alternatives in 

different nests can depend on other alternatives, which belong to either nest containing these 

alternatives. While the simple MNL model is fully prone to the IIA property over all 

alternatives, the standard NMML model only suffers from the IIA property over alternatives 

within each nest [Ben-Akiva and Lerman 1985]. Ailawadi et al. [2007] combined both 
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approaches to relax the IIA, i.e. they accounted for random taste variation and considered nested 

structures. A heterogeneous NMNL model (i.e., accounting for random taste variation) was 

proposed to analyze promotion-induced consumer stockpiling in an integrated brand 

choice / purchase incidence / purchase quantity model. In particular, the purchase incidence and 

brand choice parts were treated in the nested logit framework, assuming that a household 

chooses a specific brand on her/his shopping trip given that the household decided to make a 

purchase in the product category considered. Model estimation was performed in a frequentist 

setting using simulated maximum likelihood [Train 2009]. Nevertheless, the number of studies 

exploring or applying a heterogeneous NMNL model is limited in the marketing literature, 

especially in the context of CBC analysis. 

In the present thesis, we focus on the comparison of Bayesian choice models with different 

representations of heterogeneity (discrete vs. continuous) and with different substitution 

patterns. Using both synthetic data and empirical data, we compare simple MNL, LC-MNL, 

HB-MNL, HB-NMNL, MoN-MNL and DPM-MNL models with respect to parameter 

recovery, goodness-of-fit and predictive accuracy. In particular, we focus on multimodal 

preference structures as well as on nested preference structures and want to investigate how 

robust the HB-MNL model works under these conditions. Therefore, the statistical performance 

of the HB-MNL is of special interest (as compared to the other choice models).  

Related studies in the context of CBC analysis and model comparisons are summarized in table 

1. The HB-MNL as well as the LC-MNL model represent the state-of-the-art approaches for 

analyzing CBC analysis. Both models are implemented in Sawtooth Software [Sawtooth 

Software 2016, 2017]. In particular, the estimation of part-worth utilities at the individual 

respondent level using HB-MNL models enjoys great popularity in marketing theory and 

practice. The most recent publications here dealt with the prior settings of HB-MNL models 

[Akinc and Vandebroek 2018; Hein et al. 2019b]. It turned out that the prior settings of the HB-

MNL model are very robust as a rule but can have a big impact on the estimates under special 

conditions. Further, Voleti et al. [2017] compared advanced choice models and reported that 

DPM-MNL models outperform the more established choice models in predictive validity. 

However, the authors only examined the predictive capabilities of these models. This raises the 

question whether the empirical findings of Voleti et al. [2017] can be generalized in terms of 

predictive accuracy, and how the DPM-MNL models perform with regard to goodness-of-fit 

and especially parameter recovery. On the contrary, in marketing contexts NMNL models have 

been mainly applied to investigate sequential or hierarchical decision making processes (e.g., 

purchase incidence-brand choice models) [Elshiewy et al. 2017]. Empirical studies by e.g. Bhat 
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[1997] or Hoffman and Duncan [1988] showed that an appropriate nested structure can lead to 

a better model performance and to a more sensible model interpretation. This raises the further 

question whether an additional relaxation of the IIA property by accommodating heterogeneity 

in the NMNL model has further advantages over the HB-MNL model.  

To the best of our knowledge, there are no previous Monte Carlo studies related to conjoint 

choice data that have systematically explored and compared the performance  of the simple 

MNL, LC-MNL, HB-MNL, MoN-MNL and DPM-MNL models for multimodal preference 

structures, or the performance of the HB-MNL and HB-NMNL models for nested preference 

structures. 
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r d
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 d
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 b
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f p
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ra
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 o
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 p
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s b
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s f
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 b
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 d
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l c
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 b
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 m
ix

tu
re

 
m

od
el

s i
n 

te
rm

s o
f p
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s f
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l c
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at
es

 
• 

B
ot

h 
N

M
N

L 
m

od
el

s s
ho

w
 a

 
be

tte
r f

it 
th

an
 th

e 
ag

gr
eg

at
e 

M
N

L 
m

od
el

 
B

ur
da

 e
t a

l. 
[2

00
8]

 
Lo

gi
t c

ho
ic

e 
m

od
el

s 
Sy

nt
he

tic
 d

at
a/

Em
pi

ric
al

 d
at

a 
• 

D
PM

 m
od

el
s 

• 
H

B
-M

N
L 

m
od

el
s 

• 
D

PM
 m

od
el

s a
re

 m
or

e 
ap

pr
op

ria
te

 to
 u

nc
ov

er
 sk

ew
ed

 
an

d 
m

ul
tim

od
al

 p
re

fe
re

nc
e 

st
ru

ct
ur

es
 

C
on

le
y 

et
 a

l. 
[2

00
8]

 
In

st
ru

m
en

ta
l v

ar
ia

bl
es

 m
od

el
s 

Sy
nt

he
tic

 d
at

a/
Em

pi
ric

al
 d

at
a 

• 
B

ay
es

ia
n 

se
m

i-p
ar

am
et

ric
 

ap
pr

oa
ch

 w
ith

 a
 D
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The present thesis will show that the HB-MNL model appears to be highly robust against 

violations in its assumption of a single normal distribution of consumer preferences. HB-MNL 

models are able to uncover multimodal preference structures and to handle different similarities 

between alternatives within nests similarly well or better compared to other (advanced) choice 

models. Incorporating of both more flexible prior distributions to represent consumer 

heterogeneity and more parameters to capture some amount of correlation between alternatives 

is not always beneficial.  

Objectives and outline 

In chapter 2, the main focus lies on the comparative performance of the HB-MNL versus the 

HB-NMNL for nested preference structures. Although accounting for random taste variation in 

choice models can strongly soften the IIA property [e.g., Brownstone and Train 1998; Elshiewy 

et al. 2017], we investigate whether an additional relaxation of the IIA property by 

accommodating heterogeneity in the NMNL model (leading to the HB-NMNL model) has 

further advantages over the HB-MNL model. We conduct a Monte Carlo study in order to 

analyze the capabilities of the HB-MNL model and the HB-NMNL model under varying data 

conditions. Using statistical criteria for parameter recovery, goodness-of-fit and predictive 

accuracy we evaluate the comparative performance of the HB-MNL versus the HB-NMNL 

model under varying nest sizes, different nested structures, different levels of preference 

heterogeneity, varying numbers of alternatives within choice sets and different numbers of 

parameters to be estimated at the individual respondent level (model complexity).  

In chapter 3, we deal with multimodal and segment-specific preference structures. More 

precisely, to carve out differences between the classes of models with different representations 

of heterogeneity, we specifically vary the degrees of within-segment and between-segment 

heterogeneity. We compare the simple MNL, LC-MNL, HB-MNL, MoN-MNL and DPM-

MNL models under varying experimental conditions with respect to parameter recovery, 

goodness-of-fit and predictive accuracy. We manipulate the number of segments (including 

symmetric versus asymmetric masses), the levels of between-segment heterogeneity (i.e., 

separation of segments) and within-segment heterogeneity, the number of attributes and 

attribute levels (model complexity) and the number of choice sets per respondent. The number 

of choice sets per respondent addresses the implementation of CBC studies in market research 

practice and the related problem that clients want to incorporate more and more attributes while 

the choice task should be kept manageable for respondents [e.g., Hauser and Rao 2004; Hein et 

al. 2019a]. By varying the length of the choice task we are able to analyze the statistical effects 
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of shorter-than-optimal designs (regarding the criterion of orthogonality on the individual 

respondent level) on the model performance.  

In chapter 4, we apply the previously presented choice models to a real-life CBC data set 

sourced from a known market research institute. In particular, we assess the comparative 

performance of simple MNL, HB-MNL, LC-MNL, MoN-MNL, DPM-MNL and HB-NMNL 

models in terms of goodness-of-fit and predictive accuracy. Hence, all the choice models with 

continuous and discrete representations of heterogeneity employed and analyzed in the two 

Monte Carlo studies before (chapter 2 and chapter 3) are now compared in an empirical study. 

That way, it can be assessed whether our findings for synthetic CBC data also hold for (our) 

empirical data. 

The experimental designs of the Monte Carlo studies (chapter 2 and chapter 3) lean on the 

designs of Vriens et al. [1996], Andrews et al. [2002a], Andrews et al. [2002b] and Wirth 

[2010]. The advantage of using synthetic data is that experimental factors that are assumed to 

affect the model performance can be varied systematically, and undesirable confounding factors 

can be held constant. A synopsis of the findings from our Monte Carlo studies and from the 

empirical analysis in chapter 4 should enable us to answer the research questions (1) which 

representation of heterogeneity is favorable for analyzing CBC data, (2) if there is a clear 

recommendation toward one model for discovering multimodal heterogeneous preference 

structures, and (3) whether an additional relaxation of the IIA property by accommodating 

heterogeneity in the NMNL model has important advantages over the HB-MNL model or other 

state-of-the-art (LC-MNL) or advanced (MoN-MNL, DPM-MNL) choice models for nested 

preference structures. Moreover, we can use our Monte Carlo designs to check (4) whether the 

findings on the research questions depend on specific experimental factors that are believed to 

affect model performance. Finally, we are particularly interested in (5) how robust the HB-

MNL model performs especially in terms of parameter recovery and predictive accuracy 

compared to the other heterogeneous models. 

Last, the findings of the Monte Carlo studies in chapters 2 and 3 and the results of the empirical 

study in chapter 4 will be summarized and discussed in chapter 5. We used the R software [R 

Core Team 2017] for data generation, model estimation and model evaluation. The choice 

designs were constructed using SAS software1. 

 

                                                      
1 Copyright © 2013 SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA. 
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5 Concluding discussion 

5.1 Summary of results 

In marketing research, choice models are widely used for measuring consumer preferences. The 

simple MNL model, the most frequently used discrete choice model (especially for CBC data), 

suffers from two main limitations: 1) It implies proportional substitution patterns across 

alternatives, also known as IIA property, and 2) it does not account for unobserved consumer 

heterogeneity. In the present thesis, we focused on the comparison of CBC choice models, 

which solve (at least partially) these limitations. We studied the statistical performance of 

choice models with different representations of heterogeneity (discrete vs. continuous) and 

models with different substitution patterns across alternatives to relax the IIA property. In 

particular, we investigated how robust the HB-MNL model works to violations in its 

assumption of a single multivariate normal distribution of consumer preferences. 

In chapter 2, the focus was on the comparison of the performance of HB-MNL and HB-NMNL 

models under experimental varying conditions (especially under experimental varying nested 

preference structures). We investigated whether an additional relaxation of the IIA property by 

accommodating heterogeneity in the NMNL model has further advantages over the HB-MNL 

model. We conducted a Monte Carlo study in order to analyze the capabilities of the HB-MNL 

model (as compared to the HB-NMNL) under varying data conditions. Using statistical criteria 

for parameter recovery, goodness-of-fit and predictive accuracy we evaluated the comparative 

performance of the HB-MNL versus the HB-NMNL under (a) varying nest sizes, (b) different 

degrees of similarity between alternatives, (c) different levels of preference heterogeneity, (d) 

varying number of alternatives offered per nest, and (e) different numbers of parameters to be 

estimated at the individual respondent level (model complexity). Our results showed that there 

seems to be no major differences between both types of models with regard to goodness-of-fit 

measures and in particular their ability to predict respondents’ choice behavior, despite the 

underlying bimodal distribution of preference structures and the varying scenarios with respect 

to the correlations assumed for the unobserved portions of utilities between alternatives. It could 

therefore be concluded that the HB-MNL model is also able to uncover bimodal preference 

structures and to handle different similarities between alternatives within nests similarly well 

compared to the HB-NMNL model. The second major finding was that the similarity between 

alternatives in the nests plays a key role for the performance of the choice models with regard 

to all performance dimensions (parameter recovery, model fit, and predictive validity). 
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Regarding parameter recovery measured in absolute errors (RMSE, MAE) the HB-MNL model 

performed increasingly worse when correlation in at least one nest was higher, while the HB-

NMNL model was only marginally affected by the size of the log-sum parameters (degree of 

similarity) and adapted to the degree of similarity between alternatives, as expected. 

Consequently, we concluded that the HB-NMNL model has advantages as far as parameter 

recovery is concerned. Furthermore, a high similarity between alternatives improved the fit and 

the prediction accuracy of both models positively. Further drivers for the performances of both 

models were the model complexity (parameter recovery measures), the level of heterogeneity 

(parameter recovery and predictive accuracy measures) and the number of alternatives offered 

per nest (fit and predictive accuracy measures). Overall, we summarized that the HB-MNL 

model fits and predicts equally well for the considered nested structures compared to the HB-

NMNL model, but that the HB-NMNL model shows the expected advantages for parameter 

recovery. 

In chapter 3, we studied the statistical performance of choice models with different 

representations of heterogeneity (discrete vs. continuous) in a further Monte Carlo study. In 

particular, we compared the simple MNL, LC-MNL, HB-MNL, MoN-MNL and DPM-MNL 

models under varying experimental conditions with respect to parameter recovery, goodness-

of-fit and predictive accuracy. To carve out differences in the statistical performance between 

the classes of models with different representations of heterogeneity, we varied (a) the number 

of segments (including (b) symmetric versus asymmetric masses), (c) the level of between-

segment heterogeneity (i.e., separation of segments), (d) the level of within-segment 

heterogeneity, (e) the number of attributes and attribute levels (model complexity), and (f) the 

number of choice sets per respondent (optimal for estimating main effects vs. manageable for 

respondents). Again, we wanted to investigate how robust the HB-MNL model works to 

violations in its assumption of a single multivariate normal distribution of consumer 

preferences. Further, we wanted to find out whether the findings of Voleti et al. [2017] who 

analyzed the predictive performance of the different models for several empirical CBC data sets 

hold for simulated data, too. The core finding from our Monte Carlo study was that the HB-

MNL model appeared to be highly robust in multimodal preference settings. The MoN-MNL 

model and the DPM-MNL model on the other hand overestimated the “true” number of 

components in many cases, which led to a kind of overfitting and as a result of that to large 

absolute errors regarding parameter recovery and prediction accuracy. The latter was 

particularly distinctive for less complex treatments and for data sets with low inner-segment 

heterogeneity. In addition, the LC-MNL model proved to be the definitely best approach to 
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recover the “true” number of segments (especially for symmetric treatments concerning 

segment sizes), while the MoN-MNL and DPM-MNL models clearly failed with regard to this 

criterion. This is especially noteworthy since beyond parameter recovery and prediction 

accuracy the identification of “true” segment structures is of particular importance for 

managers. Surprisingly, the HB-MNL model performed significantly better or at least as good 

as all other models as far as parameter recovery (the identification of “true” utility structures) 

and prediction accuracy is concerned. Primary drivers for the model performance were the 

model complexity (parameter recovery, predictive accuracy), the separation between segments 

(parameter recovery), the number of choice sets per respondent (predictive accuracy), and not 

least the type of model itself which substantially affected all three performance dimensions 

(parameter recovery, fit, predictive accuracy). The other factors (number of segments, inner-

segment heterogeneity, segment masses) only had a marginal impact on the three performance 

dimensions.  

In chapter 4, we applied the aggregate MNL, LC-MNL, HB-MNL MoN-MNL, DPM-MNL and 

HB-NMNL models to an empirical data set and assessed their comparative performance in 

terms of goodness-of-fit and predictive accuracy. The results indicated that models with a 

continuous representation of heterogeneity performed better than models with a discrete 

representation of heterogeneity. In terms of predictive accuracy, the HB-MNL model provided 

either a (considerably) higher or at least a comparable cross-validated hit rate compared to all 

other models and, importantly, markedly outperformed the DPM-MNL model on this measure. 

Again, the MoN-MNL models (with five and six components) as well as the DPM-MNL model 

tended to overfit the data and the LC-MNL model proved to be the best approach to identify 

specific market segments. However, the predictive performance (measured by the out-of-

sample hit rate) of the LC-MNL model was about 10 % lower compared to the HB-MNL model. 

Considering different nested structures, we obtained for the HB-NMNL model every time log-

sum coefficients larger than one. Therefore, the “true” hierarchical decision process of 

respondents (if one existed) could not be approximated satisfactorily. 

Summing up, the core finding of the present thesis is that the HB-MNL appeared to be highly 

robust against violations in its assumption of a single normal distribution of consumer 

preferences in the considered multimodal and nested preference structures. More flexible 

advanced choice models (MoN-MNL and DPM-MNL models) were prone to overfitting 

problems. Furthermore, it turned out that the LC-MNL model was the best approach to recover 

the underlying “true” number of segments. 
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5.2 Managerial implications, limitations and outlook 

Addressing consumer heterogeneity in choice models is an issue in the marketing literature 

since the mid-1990s [e.g., Allenby and Ginter 1995; Rossi et al. 1996; Allenby and Rossi 1998]. 

State-of-the-art methods to represent heterogeneity in discrete choice experiments are LC-MNL 

models [Kamakura and Russell 1989] which address between-segment heterogeneity by 

discrete support points, and HB-MNL models [Allenby et al. 1995] which address within-

segment heterogeneity using a normal distribution. Currently, the marketing literature discusses 

models representing both between-segment and within-segment consumer heterogeneity [e.g., 

Voleti et al. 2017]. By additional prior assumptions MoN-MNL models and DPM-MNL models 

can estimate part-worth utilities based on a mixture of multivariate normal distributions in a 

more flexible way than previous choice models. In contrast to LC-MNL models or HB-MNL 

models, mixture of multivariate normal distributions accommodate multimodal and skewed 

distributions as well as distributions with thick tails. 

From a managerial point of view parameter recovery, predictive accuracy as well as the 

identification of “true” segment structures are important criteria. Therefore, we can conclude 

that the LC-MNL model proved to be the definitely best approach to recover the “true” number 

of segments (especially for treatments with equal segment sizes). Because companies often use 

third-degree price discrimination [e.g., Tuma and Decker 2013], LC-MNL models show clear 

benefits compared to other choice models when the identification of segment structures is the 

main objective. However, our analyses showed that HB-MNL models performed significantly 

better or at least as good compared to all other choice models as far as parameter recovery (the 

identification of “true” utility structures) and prediction accuracy is concerned. Some previous 

empirical studies already indicated a better predictive performance of the HB-MNL model over 

the LC-MNL model [Moore et al. 1998; Natter and Feurstein 1999; Moore 2004]. However, 

Allenby et al. [1998] and more recently Voleti et al. [2017] analyzed the performance of the 

more advanced choice models based on empirical data and in turn reported a superior predictive 

performance of the DPM-MNL [Voleti et al. 2017] or the MoN-MNL [Allenby et al. 1998] 

model compared to the HB-MNL model, respectively. To explore the causes for those 

discrepancies there is a need for further research. Of course, different real-life data sets can 

provide different results. Voleti et al. [2017] stated that it would be interesting to study the 

performance of the competing models under a reasonable distribution of heterogeneity. We 

expect that results will depend on the assumption about the underlying heterogeneity 

distribution. Because in chapter 3 we generated normal distributed part-worth utilities and data 
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sets which were partly highly informative on an individual respondent level, the data generation 

process favors a good performance of LC-MNL, MoN-MNL, DPM-MNL and HB-MNL 

models. This probably explains the similar performance with regard to parameter recovery 

(mean correlations) and out-of-sample hit rate of the LC-MNL, MoN-MNL, DPM-MNL and 

HB-MNL models in chapter 3. In chapter 2, the data generation process suggested by Garrow 

et al. [2010] clearly favors the HB-NMNL model. However, except for parameter recovery, the 

HB-MNL model and the HB-NMNL model performed similarly here. On the one hand, this 

result provides strong support in favor of the HB-MNL model and strong evidence for an 

adequate relaxation of the IIA assumption already when consumer heterogeneity is taken into 

account in the simple MNL model. One the other hand, parameter recovery is an important 

criterion for product design decisions as parameters (part-worth utilities in CBC studies) relate 

to values of product attribute levels and managers are interested to find the best attribute levels 

for their products. Therefore, future research can begin exactly at this point. Future work should 

verify if our findings hold for different distributions of heterogeneity or different assumptions 

regarding the “true” nested structure. For example, if the distribution of inner-segment 

heterogeneity is rather skewed, one would expect a superior performance of MoN-MNL or 

DPM-MNL models compared to HB-MNL, LC-MNL and aggregate MNL models. It should 

be noted that Andrews et al. [2002b] found no differences in measures of performances between 

different choice models when comparing normally distributed preferences to gamma distributed 

preferences. However, they only compared a LC model, a HB model and an aggregate model 

and did not consider the MoN and the DPM models. Moreover, Kim et al. [2004] concluded 

that the recovery performance of models with a DPP was getting worse for data sets with a 

mixture of skewed distributions compared to data sets with a mixture of normal distributions. 

Unfortunately, they did not compare the recovery performance to a HB-MNL model with a 

univariate distribution of heterogeneity or to LC models.  

These points of discussion highlight the pros and cons of simulation studies. The advantage of 

using synthetic data is that experimental factors that are assumed to affect the model 

performance can be varied systematically, and undesirable confounding factors can be held 

constant. A Monte Carlo study does not necessarily reflect the real behavior of respondents. A 

certain number of parameters are varied, whereby some parameters cannot be varied in practical 

CBC applications. In particular, the part-worth utility structures, the segmentation of 

respondents (into nests or segments), the similarity between alternatives (the log-sum 

coefficients) and the amount of inner-segment heterogeneity cannot be influenced by the analyst 

in empirical studies.  
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Irrespective of the data generation process, the application of all models to a real-life data set 

showed that HB-MNL models worked extremely well for predictive purposes and provided at 

least as good if not considerably better predictions compared to the other models, which is an 

important aspect for managers. Moreover, the LC-MNL model seemed to be best suited to 

identify specific market segments. However, as mentioned above, the predictive performance 

(measured by the out-of-sample hit rate) of the LC-MNL was about 10 % lower compared to 

the HB-MNL model. Managers thus need to solve the trade-off between (a) a better predictive 

validity of choice models with a continuous representation of consumer heterogeneity (in 

particular the HB-MNL model) and (b) a probably more intuitive, well-interpretable segment 

approach (LC-MNL model). In this context, the decision of how many segments to select based 

on LC models and MoN models is a discussed issue [Andrews and Currim 2003]. Frühwirth-

Schnatter [2006] pointed out that the LML estimator introduced by Newton and Raftery [1994] 

is a convenient estimator on the one hand but that the estimator tends to be unstable on the other 

hand. Nevertheless, in chapter 3, we could recover the “true” number of components in 82 % 

of all scenarios (and with a 100 % hit ratio for treatments where segment masses were equal) 

using the LC-MNL model and the LML criterion for model selection, which was a higher rate 

of success than reported in previous simulation studies [Andrews et al. 2002b; Andrews and 

Currim 2003]. Furthermore, this finding is comparable to Andrews et al. [2008], who developed 

a heuristic for identifying the correct model37 (strict application of model selection criteria 

resulted in a lower rate of success). For treatments with unequal segment masses, we observed 

a similar hit ratio as in Andrews et al. [2002b] or Andrews and Currim [2003]. It should be once 

more mentioned that the masses of segments are outside of the analyst’s control.  

Considering these results, it can be concluded that the HB-MNL model performs well even if 

part-worth utilities stem from a multimodal distribution or groups (nests) of alternatives share 

certain characteristics. MoN-MNL and DPM-MNL models tend to overfit the data under certain 

conditions. Furthermore, it is difficult to determine an adequate substitution pattern reflecting 

the complex choice behavior of respondents ex ante, which is necessary for the estimation of 

NMNL models. In our empirical study, the log-sum coefficients of the HB-NMNL model 

turned out slightly larger than one, thus, indicating a less advantageous predefined nest 

structure. Regarding the log-sum coefficients, similar results can be found in Train et al. [1987], 

Train et al. [1989], Lee [1999] and Elshiewy et al. [2017]. Consequently, the superior parameter 

                                                      
37 Andrews et al. [2008] did not consider the LC model. They applied logit models with varying specifications of 
(a) parameter heterogeneity (no parameter heterogeneity vs. multivariate normal assumption for the distribution 
of heterogeneity), (b) state dependence effects, and (c) choice set heterogeneity. 
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recovery of the HB-NMNL model in the presence of highly correlated nested structures 

contrasts with the more difficult model specification and estimation process, which is not as 

straightforward as that for the HB-MNL model. In particular, the HB-NMNL model is not yet 

implemented in commercial software packages for CBC studies (e.g., Sawtooth Software).  

In addition, the log-sum coefficients were assumed to be fixed parameters over all respondents. 

Empirical studies showed that respondents might differ in the perception of similarity of 

alternatives. Bhat [1997] allowed for varying log-sum parameters across respondents by 

defining a continuous, monotonically increasing function that maps to the interval [0,1]. The 

function transforms socio-demographic characteristics of respondents to individual log-sum 

coefficients. Empirical results showed that accounting for log-sum heterogeneity leads to a 

better fit and a better parameter recovery.  

Further, future research should analyze the performance of the competing models when taking 

into account simplification strategies of respondents which are known to occur in empirical 

studies. Simplification strategies can, for example, be the result of (a) straightlining behavior 

of respondents who pay attention to only one or two key attributes when choosing brands, (b) 

some kind of cheating behavior of professional respondents as can be more and more observed 

in online panels, or (c) simply boringness of respondents [Hein et al. 2019a]. Simplification 

strategies reduce the quality of the data compared to artificial studies and thus may affect the 

relative performance of the different models studied in this work. Hein et al. [2019a] who 

thoroughly investigated the capabilities of the HB-MNL model for choice-based conjoint 

analysis, found that mean Pearson correlations decline by about 10-20% if 30% of the 

respondents apply simplification strategies but that out-of-sample hit rates were much less 

affected. To the best of our knowledge, no simulation study has yet compared the performance 

of the aggregate MNL, LC-MNL, HB-MNL, HB-NMNL, MoN-MNL and DPM-MNL models 

in the presence of simplification strategies of at least parts of respondents. 

Overall, we have highlighted that HB-MNL estimation proves to be quite robust against 

violations of the underlying assumptions, especially in multimodal data structures and in the 

presence of nested structures in data. In particular, different to previous Monte Carlo studies 

that compared the performance of choice models with different representations of 

heterogeneity, we showed how robust the HB-MNL model works. Other studies mainly 

suggested the application of more flexible advanced choice models to account for consumer 

heterogeneity [Allenby et al. 1998; Otter et al. 2004; Voleti et al. 2017; Krueger et al. 2018]. In 

addition to the findings of Hein et al. [2019a], who analyzed the statistical capabilities of the 
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HB-MNL model with regard to extreme settings of design parameters such as the number of 

attributes, number of choice sets, and sample size, we can conclude that the HB-MNL model 

proves to be extremely robust for multimodal and nested preference structures, too.  

 



147 
 

References 

ABRAMSON, C., ANDREWS, R.L., CURRIM, I.S., AND JONES, M. 2000. Parameter Bias from 
Unobserved Effects in the Multinomial Logit Model of Consumer Choice. Journal of Marketing 
Research 37, 4, 410–426. 

AILAWADI, K.L., GEDENK, K., LUTZKY, C., AND NESLIN, S.A. 2007. Decomposition of the Sales 
Impact of Promotion-Induced Stockpiling. Journal of Marketing Research 44, 3, 450–467. 

AKINC, D., AND VANDEBROEK, M. 2018. Bayesian Estimation of Mixed Logit Models. Selecting an 
Appropriate Prior for the Covariance Matrix. Journal of Choice Modelling 29, 133–151. 

ALLENBY, G.M., ARORA, N., AND GINTER, J.L. 1995. Incorporating Prior Knowledge into the 
Analysis of Conjoint Studies. Journal of Marketing Research 32, 2, 152–162. 

ALLENBY, G.M., ARORA, N., AND GINTER, J.L. 1998. On the Heterogeneity of Demand. Journal of 
Marketing Research 35, 3, 384–389. 

ALLENBY, G.M., AND GINTER, J.L. 1995. Using Extremes to Design Products and Segment Markets. 
Journal of Marketing Research 32, 4, 392–403. 

ALLENBY, G.M., AND ROSSI, P.E. 1991. Quality Perceptions and Asymmetric Switching between 
Brands. Marketing Science 10, 3, 185–204. 

ALLENBY, G.M., AND ROSSI, P.E. 1998. Marketing Models of Consumer Heterogeneity. Journal of 
Econometrics 89, 1-2, 57–78. 

AMEMIYA, T., AND SHIMONO, K. 1989. An Application of Nested Logit Models to the Labor Supply 
of the Elderly. The Economic Studies Quarterly 40, 1, 14–22. 

ANDERSON, S.P., AND PALMA, A.D. 1992. Multiproduct Firms. A Nested Logit Approach. The Journal 
of Industrial Economics 40, 3, 261–276. 

ANDREWS, R.L., AINSLIE, A., AND CURRIM, I.S. 2002a. An Empirical Comparison of Logit Choice 
Models with Discrete versus Continuous Representations of Heterogeneity. Journal of Marketing 
Research 39, 4, 479–487. 

ANDREWS, R.L., AINSLIE, A., AND CURRIM, I.S. 2008. On the Recoverability of Choice Behaviors 
with Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects. 
Management Science 54, 1, 83–99. 

ANDREWS, R.L., ANSARI, A., AND CURRIM, I.S. 2002b. Hierarchical Bayes versus Finite Mixture 
Conjoint Analysis Models. A Comparison of Fit, Prediction, and Partworth Recovery. Journal of 
Marketing Research 39, 1, 87–98. 

ANDREWS, R.L., AND CURRIM, I.S. 2003. A Comparison of Segment Retention Criteria for Finite 
Mixture Logit Models. Journal of Marketing Research 40, 2, 235–243. 

ANTONIAK, C.E. 1974. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric 
Problems. The Annals of Statistics 2, 6, 1152–1174. 

ARIBARG, A., BURSON, K.A., AND LARRICK, R.P. 2017. Tipping the Scale. The Role of 
Discriminability in Conjoint Analysis. Journal of Marketing Research 54, 2, 279–292. 

BALTAS, G., DOYLE, P., AND DYSON, P. 1997. A Model of Consumer Choice for National vs Private 
Label Brands. Journal of the Operational Research Society 48, 10, 988–995. 

BAUMGARTNER, B., AND STEINER, W.J. 2007. Are Consumers Heterogeneous in their Preferences for 
Odd and Even Prices? Findings from a Choice-Based Conjoint Study. International Journal of 
Research in Marketing 24, 4, 312–323. 

BEN-AKIVA, M.E. 1973. Structure of Passenger Travel Demand Models. Ph.D. Thesis. Cambridge, 
Massachusetts Institute of Technology. 



148 
 

BEN-AKIVA, M.E. 1979. Disaggregate Travel and Mobility Choice Models and Measures of 
Accessibility. D.A. Hensher and P.R. Stopher, eds., Behavioural Travel Modelling, Croom Helm, 
London. 

BEN-AKIVA, M.E., AND LERMAN, S.R. 1985. Discrete Choice Analysis. Theory and Application to 
Travel Demand. MIT Press, London. 

BERKOVEC, J., AND RUST, J. 1985. A Nested Logit Model of Automobile Holdings for One Vehicle 
Households. Transportation Research Part B: Methodological 19, 4, 275–285. 

BHAT, C.R. 1997. Covariance Heterogeneity in Nested Logit Models. Econometric Structure and 
Application to Intercity Travel. Transportation Research Part B: Methodological 31, 1, 11–21. 

BLATTBERG, R.C., AND WISNIEWSKI, K.J. 1989. Price-Induced Patterns of Competition. Marketing 
Science 8, 4, 291–309. 

BOYD, J.H., AND MELLMAN, R.E. 1980. The Effect of Fuel Economy Standards on the U.S. 
Automotive Market. An Hedonic Demand Analysis. Transportation Research Part A: General 14, 
5-6, 367–378. 

BRIER, G.W. 1950. Verification of Forecasts Expressed in Terms of Probability. Monthly Weather 
Review 78, 1, 1–3. 

BROWNSTONE, D., AND SMALL, K.A. 1989. Efficient Estimation of Nested Logit Models. Journal of 
Business & Economic Statistics 7, 1, 67–74. 

BROWNSTONE, D., AND TRAIN, K. 1998. Forecasting New Product Penetration with Flexible 
Substitution Patterns. Journal of Econometrics 89, 1-2, 109–129. 

BURDA, M., HARDING, M., AND HAUSMAN, J. 2008. A Bayesian Mixed Logit–Probit Model for 
Multinomial Choice. Journal of Econometrics 147, 2, 232–246. 

CARDELL, N.S., AND DUNBAR, F.C. 1980. Measuring the Societal Impacts of Automobile Downsizing. 
Transportation Research Part A: General 14, 5-6, 423–434. 

CASELLA, G., AND GEORGE, E.I. 1992. Explaining the Gibbs Sampler. The American Statistician 46, 
3, 167–174. 

CHATTERJEE, P., AND KUMAR, A. 2017. Consumer Willingness to Pay Across Retail Channels. 
Journal of Retailing and Consumer Services 34, 264–270. 

CHEN, K.D., AND HAUSMAN, W.H. 2000. Technical Note: Mathematical Properties of the Optimal 
Product Line Selection Problem Using Choice-Based Conjoint Analysis. Management Science 46, 
2, 327–332. 

CHIANG, J., CHIB, S., AND NARASIMHAN, C. 1998. Markov Chain Monte Carlo and Models of 
Consideration Set and Parameter Heterogeneity. Journal of Econometrics 89, 1-2, 223–248. 

CHIB, S., AND GREENBERG, E. 1995. Understanding the Metropolis-Hastings Algorithm. The 
American Statistician 49, 4, 327–335. 

CHIB, S., SEETHARAMAN, P.B., AND STRIJNEV, A. 2004. Model of Brand Choice with a No-Purchase 
Option Calibrated to Scanner-Panel Data. Journal of Marketing Research 41, 2, 184–196. 

CHINTAGUNTA, P.K., AND VILCASSIM, N.J. 1998. Empirical Implications of Unobserved Household 
Heterogeneity for Manufacturer and Retailer Pricing. Journal of Retailing and Consumer Services 
5, 1, 15–24. 

COHEN, J. 1988. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum 
Associates, Hillsdale NJ. 

CONLEY, T.G., HANSEN, C.B., MCCULLOCH, R.E., AND ROSSI, P.E. 2008. A Semi-Parametric 
Bayesian Approach to the Instrumental Variable Problem. Journal of Econometrics 144, 1, 276–
305. 



149 
 

DALY, A., AND ZACHARY, S. 1978. Improved Multiple Choice Models. D.A. Hensher and M.Q. Dalvi, 
eds., Determinants of Travel Choice, Saxon House, Sussex. 

DEBREU, G. 1960. Review of R.D. Luce Individual Choice Behavior. The American Economic Review 
50, 1, 186–188. 

DESARBO, W.S., RAMASWAMY, V., AND COHEN, S.H. 1995. Market Segmentation with Choice-Based 
Conjoint Analysis. Marketing Letters 6, 2, 137–147. 

DIAS, J.G., AND VERMUNT, J.K. 2007. Latent Class Modeling of Website Users’ Search Patterns. 
Implications for Online Market Segmentation. Journal of Retailing and Consumer Services 14, 6, 
359–368. 

ELROD, T. 1988. Choice Map. Inferring a Product-Market Map from Panel Data. Marketing Science 7, 
1, 21–40. 

ELROD, T., AND KUMAR, S.K. 1989. Bias in the First Choice Rule for Predicting Share. Proceedings of 
the 1989 Sawtooth Software Conference, 259–271. 

ELROD, T., LOUVIERE, J.J., AND DAVEY, K.S. 1992. An Empirical Comparison of Ratings-Based and 
Choice-Based Conjoint Models. Journal of Marketing Research 29, 3, 368–377. 

ELSHIEWY, O., GUHL, D., AND BOZTUĞ, Y. 2017. Multinomial Logit Models in Marketing - From 
Fundamentals to State-of-the-Art. Marketing ZFP 39, 3, 32–49. 

ESCOBAR, M.D., AND WEST, M. 1995. Bayesian Density Estimation and Inference Using Mixtures. 
Journal of the American Statistical Association 90, 430, 557–588. 

FALARIS, E.M. 1987. A Nested Logit Migration Model with Selectivity. International Economic 
Review 28, 2, 429–443. 

FERGUSON, T.S. 1973. A Bayesian Analysis of Some Nonparametric Problems. The Annals of 
Statistics 1, 2, 209–230. 

FORINASH, C.V., AND KOPPELMAN, F.S. 1993. Application and Interpretation of Nested Logit Models 
of Intercity Mode Choice. Transportation Research Record 1413, 98–106. 

FRÜHWIRTH-SCHNATTER, S. 2004. Estimating Marginal Likelihoods for Mixture and Markov 
Switching Models Using Bridge Sampling Techniques. Econometrics Journal 7, 1, 143–167. 

FRÜHWIRTH-SCHNATTER, S. 2006. Finite Mixture and Markov Switching Models. Springer Science & 
Business Media, New York. 

FRÜHWIRTH-SCHNATTER, S., TÜCHLER, R., AND OTTER, T. 2004. Bayesian Analysis of the 
Heterogeneity Model. Journal of Business & Economic Statistics 22, 1, 2–15. 

GABOR, A., AND GRANGER, C.W.J. 1966. Price as an Indicator of Quality. Report on an Enquiry. 
Economica 33, 129, 43–70. 

GARROW, L.A., BODEA, T.D., AND LEE, M. 2010. Generation of Synthetic Datasets for Discrete 
Choice Analysis. Transportation 37, 2, 183–202. 

GELFAND, A.E., AND SMITH, A.F.M. 1990. Sampling-Based Approaches to Calculating Marginal 
Densities. Journal of the American Statistical Association 85, 410, 398–409. 

GELMAN, A., CARLIN, J.B., STERN, H.S., DUNSON, D.B., VEHTARI, A., AND RUBIN, D.B. 2014. 
Bayesian Data Analysis. Taylor & Francis Group, Boca Raton. 

GELMAN, A., AND RUBIN, D.B. 1992. Inference from Iterative Simulation Using Multiple Sequences. 
Statistical Science 7, 4, 457–472. 

GEMAN, S., AND GEMAN, D. 1984. Stochastic Relaxation, Gibbs Distributions, and the Bayesian 
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–
741. 



150 
 

GENSLER, S. 2003. Heterogenität in der Präferenzanalyse. Ein Vergleich von hierarchischen Bayes-
Modellen und Finite-Mixture-Modellen. Deutscher Universitäts-Verlag/GWV Fachverlage GmbH, 
Wiesbaden. 

GENSLER, S., HINZ, O., SKIERA, B., AND THEYSOHN, S. 2012. Willingness-to-Pay Estimation with 
Choice-Based Conjoint Analysis. Addressing Extreme Response Behavior with Individually 
Adapted Designs. European Journal of Operational Research 219, 2, 368–378. 

GILBRIDE, T.J., AND LENK, P.J. 2010. Posterior Predictive Model Checking: An Application to 
Multivariate Normal Heterogeneity. Journal of Marketing Research 47, 5, 896–909. 

GNEITING, T., AND RAFTERY, A.E. 2007. Strictly Proper Scoring Rules, Prediction, and Estimation. 
Journal of the American Statistical Association 102, 477, 359–378. 

GREEN, P.E., AND RAO, V.R. 1971. Conjoint Measurement for Quantifying Judgmental Data. Journal 
of Marketing Research 8, 3, 355–363. 

GREEN, P.E., AND SRINIVASAN, V. 1990. Conjoint Analysis in Marketing. New Developments with 
Implications for Research and Practice. Journal of Marketing 54, 4, 3–19. 

GUADAGNI, P.M., AND LITTLE, J.D.C. 1998. When and What to Buy: A Nested Logit Model of Coffee 
Purchase. Journal of Forecasting 17, 3‐4, 303–326. 

HASTINGS, W.K. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their 
Applications. Biometrika 57, 1, 97–109. 

HAUSER, J.R. 1978. Testing the Accuracy, Usefulness, and Significance of Probabilistic Choice 
Models. An Information-Theoretic Approach. Operations Research 26, 3, 406–421. 

HAUSER, J.R., AND RAO, V.R. 2004. Conjoint Analysis, Related Modeling, and Applications. Y. Wind 
and P. E. Green, eds., Marketing Research and Modeling: Progress and Prospects, International 
Series in Quantitative Marketing, Springer, New York. 

HAUSMAN, J.A., LEONARD, G.K., AND MCFADDEN, D. 1995. A Utility-Consistent, Combined Discrete 
Choice and Count Data Model. Assessing Recreational Use Losses Due to Natural Resource 
Damage. Journal of Public Economics 56, 1, 1–30. 

HAUSMAN, J.A., AND WISE, D.A. 1978. A Conditional Probit Model for Qualitative Choice: Discrete 
Decisions Recognizing Interdependence and Heterogeneous Preferences. Econometrica 46, 2, 403–
426. 

HEIN, M., KURZ, P., AND STEINER, W.J. 2019a. Analyzing the Capabilities of the HB Logit Model for 
Choice-Based Conjoint Analysis. A Simulation Study. Journal of Business Economics, 1–36. 

HEIN, M., KURZ, P., AND STEINER, W.J. 2019b. On the Effect of HB Covariance Matrix Prior Settings. 
A Simulation Study. Journal of Choice Modelling 31, 51–72. 

HENSHER, D.A., AND GREENE, W.H. 2002. Specification and Estimation of the Nested Logit Model. 
Alternative Normalisations. Transportation Research Part B: Methodological 36, 1, 1–17. 

HENSHER, D.A., STOPHER, P.R., AND LOUVIERE, J.J. 2001. An Exploratory Analysis of the Effect of 
Numbers of Choice Sets in Designed Choice Experiments. An Airline Choice Application. Journal 
of Air Transport Management 7, 6, 373–379. 

HOFFMAN, S.D., AND DUNCAN, G.J. 1988. A Comparison of Choice-Based Multinomial and Nested 
Logit Models: The Family Structure and Welfare Use Decisions of Divorced or Separated Women. 
The Journal of Human Resources 23, 4, 550–562. 

HOOGERBRUGGE, M., AND VAN DER WAGT, K. 2006. How Many Choice Tasks Should We Ask? 
Proceedings of the 2006 Sawtooth Software Conference, 97–110. 

HUBER, J. 1998. Achieving Individual-Level Predictions from CBC Data. Comparing ICE and 
Hierarchical Bayes. Sawtooth Software Research Paper Series. 



151 
 

HUBER, J., WITTINK, D.R., JOHNSON, R.M., AND MILLER, R. 1992. Learning Effects in Preference 
Tasks. Choice-Based versus Standard Conjoint. Proceedings of the 1992 Sawtooth Software 
Conference, 275–282. 

HUSEMANN-KOPETZKY, M., AND KÖCHER, S. 2017. Price Endings that Matter. A Conceptual 
Replication of Implicit Egotism Effects in Pricing. Journal of Marketing Behavior 2, 4, 313–324. 

JERVIS, S.M., LOPETCHARAT, K., AND DRAKE MARYANNE. 2012. Application of Ethnography and 
Conjoint Analysis to Determine Key Consumer Attributes for Latte‐Style Coffee Beverages. 
Journal of Sensory Studies 27, 1, 48–58. 

JOHNSON, R., AND ORME, B.K. 1996. Getting the Most from CBC. Sawtooth Software Research Paper 
Series. 

JOSE, V.R. 2009. A Characterization for the Spherical Scoring Rule. Theory and Decision 66, 3, 263–
281. 

KAMAKURA, W.A., KIM, B.-D., AND LEE, J. 1996. Modeling Preference and Structural Heterogeneity 
in Consumer Choice. Marketing Science 15, 2, 152–172. 

KAMAKURA, W.A., AND RUSSELL, G.J. 1989. A Probabilistic Choice Model for Market Segmentation 
and Elasticity Structure. Journal of Marketing Research 26, 4, 379–390. 

KAMAKURA, W.A., WEDEL, M., AND AGRAWAL, J. 1994. Concomitant Variable Latent Class Models 
for Conjoint Analysis. International Journal of Research in Marketing 11, 5, 451–464. 

KANNAN, P.K., AND WRIGHT, G.P. 1991. Modeling and Testing Structured Markets. A Nested Logit 
Approach. Marketing Science 10, 1, 58–82. 

KARNIOUCHINA, E.V., MOORE, W.L., VAN DER RHEE, B., AND VERMA, R. 2009. Issues in the Use of 
Ratings-Based versus Choice-Based Conjoint Analysis in Operations Management Research. 
European Journal of Operational Research 197, 1, 340–348. 

KEANE, M., AND WASI, N. 2013. Comparing Alternative Models of Heterogeneity in Consumer 
Choice Behavior. Journal of Applied Econometrics 28, 6, 1018–1045. 

KIM, J.G., MENZEFRICKE, U., AND FEINBERG, F.M. 2004. Assessing Heterogeneity in Discrete Choice 
Models Using a Dirichlet Process Prior. Review of Marketing Science 2, 1. 

KNAPP, T.A., WHITE, N.E., AND CLARK, D.E. 2001. A Nested Logit Approach to Household Mobility. 
Journal of Regional Science 41, 1, 1–22. 

KNEIB, T., BAUMGARTNER, B., AND STEINER, W.J. 2007. Semiparametric Multinomial Logit Models 
for Analysing Consumer Choice Behaviour. AStA Advances in Statistical Analysis 91, 3, 225–244. 

KOTZ, S., BALAKRISHNAN, N., AND JOHNSON, N.L. 2000. Continuous Multivariate Distributions. 
Volume 1: Models and Applications. John Wiley & Sons, New York. 

KRUEGER, R., VIJ, A., AND RASHIDI, T.H. 2018. A Dirichlet Process Mixture Model of Discrete 
Choice. Working Paper, Cornell University, New York. 

KUHFELD, W.F. 1997. Efficient Experimental Designs Using Computerized Searches. Sawtooth 
Software Research Paper Series. 

KUHFELD, W.F. 2019. Orthogonal Arrays. Technical Paper, SAS Institute Inc. 

KUHFELD, W.F., TOBIAS, R.D., AND GARRATT, M. 1994. Efficient Experimental Design with 
Marketing Research Applications. Journal of Marketing Research 31, 4, 545–557. 

KURZ, P., AND BINNER, S. 2012. "The Individual Choice Task Threshold". Need for Variable Number 
of Choice Tasks. Proceedings of the 2012 Sawtooth Software Conference, 111-127. 

KURZ, P., AND BINNER, S. 2016. Simulating from HB Upper Level Model. Proceedings of the 2016 
Sawtooth Software Conference, 211-224. 

LAHIRI, K., AND GAO, J. 2002. Bayesian Analysis of Nested Logit Model by Markov Chain Monte 
Carlo. Journal of Econometrics 111, 1, 103–133. 



152 
 

LEE, B. 1999. Calling Patterns and Usage of Residential Toll Service under Self Selecting Tariffs. 
Journal of Regulatory Economics 16, 1, 45–82. 

LENK, P.J., AND DESARBO, W.S. 2000. Bayesian Inference for Finite Mixtures of Generalized Linear 
Models with Random Effects. Psychometrika 65, 1, 93–119. 

LENK, P.J., DESARBO, W.S., GREEN, P.E., AND YOUNG, M.R. 1996. Hierarchical Bayes Conjoint 
Analysis. Recovery of Partworth Heterogeneity from Reduced Experimental Designs. Marketing 
Science 15, 2, 173–191. 

LI, Y., AND ANSARI, A. 2014. A Bayesian Semiparametric Approach for Endogeneity and 
Heterogeneity in Choice Models. Management Science 60, 5, 1161–1179. 

LIPOWSKI, A., AND LIPOWSKA, D. 2012. Roulette-Wheel Selection via Stochastic Acceptance. Physica 
A: Statistical Mechanics and its Applications 391, 6, 2193–2196. 

LÖFFLER, S., AND BAIER, D. 2015. Bayesian Conjoint Analysis in Water Park Pricing: A New 
Approach Taking Varying Part Worths for Attribute Levels into Account. Journal of Service 
Science and Management 8, 46–56. 

LOUVIERE, J.J., FLYNN, T.N., AND CARSON, R.T. 2010. Discrete Choice Experiments Are Not 
Conjoint Analysis. Journal of Choice Modelling 3, 3, 57–72. 

LOUVIERE, J.J., ISLAM, T., WASI, N., STREET, D., AND BURGESS, L. 2008a. Designing Discrete Choice 
Experiments. Do Optimal Designs Come at a Price? Journal of Consumer Research 35, 2, 360–375. 

LOUVIERE, J.J., STREET, D., BURGESS, L., WASI, N., ISLAM, T., AND MARLEY, A.A.J. 2008b. 
Modeling the Choices of Individual Decision-Makers by Combining Efficient Choice Experiment 
Designs with Extra Preference Information. Journal of Choice Modelling 1, 1, 128–164. 

LOUVIERE, J.J., AND WOODWORTH, G. 1983. Design and Analysis of Simulated Consumer Choice or 
Allocation Experiments. An Approach Based on Aggregate Data. Journal of Marketing Research 
20, 4, 350–367. 

MCFADDEN, D. 1973. Conditional Logit Analysis of Qualitative Choice Behavior. P. Zarembka, eds., 
Frontiers in Econometrics, Academic Press, New York. 

MCFADDEN, D. 1977. Quantitative Methods for Analyzing Travel Behavior of Individuals. Some 
Recent Developments. Cowles Foundation Discussion Papers 474. Cowles Foundation for Research 
in Economics, Yale University. 

MCFADDEN, D. 1978. Modeling the Choice of Residential Location. A. Karlqvist, L. Lundqvist, F. 
Snickars, and J. Weibull, eds., Spatial Interaction Theory and Planning Models, North-Holland 
Publishing Company, Amsterdam. 

MCFADDEN, D. 1980. Econometric Models for Probabilistic Choice Among Products. Journal of 
Business 53, 3, 13-29. 

MCFADDEN, D. 1981. Econometric Models of Probabilistic Choice. C.F. Manski and D. McFadden, 
eds., Structural Analysis of Discrete Data with Econometric Applications, MIT Press, Cambridge. 

METROPOLIS, N., ROSENBLUTH, A.W., ROSENBLUTH, M.N., TELLER, A.H., AND TELLER, E. 1953. 
Equations of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21, 
6, 1087–1092. 

MOORE, W.L. 2004. A Cross-Validity Comparison of Rating-Based and Choice-Based Conjoint 
Analysis Models. International Journal of Research in Marketing 21, 3, 299–312. 

MOORE, W.L., GRAY-LEE, J., AND LOUVIERE, J.J. 1998. A Cross-Validity Comparison of Conjoint 
Analysis and Choice Models at Different Levels of Aggregation. Marketing Letters 9, 2, 195–207. 

NATTER, M., AND FEURSTEIN, M. 1999. Individual Level or Segmentation Based Market Simulation? 
Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management 
Science", 41. SFB Adaptive Information Systems and Modelling in Economics and Management 
Science, WU Vienna University of Economics and Business, Vienna. 



153 
 

NATTER, M., AND FEURSTEIN, M. 2002. Real World Performance of Choice-Based Conjoint Models. 
European Journal of Operational Research 137, 2, 448–458. 

NEWTON, M.A., AND RAFTERY, A.E. 1994. Approximate Bayesian Inference with the Weighted 
Likelihood Bootstrap. Journal of the Royal Statistical Society: Series B (Methodological) 56, 1, 3–
48. 

OGAWA, K. 1987. An Approach to Simultaneous Estimation and Segmentation in Conjoint Analysis. 
Marketing Science 6, 1, 66–81. 

OHLSSEN, D.I., SHARPLES, L.D., AND SPIEGELHALTER, D.J. 2007. Flexible Random-Effects Models 
Using Bayesian Semi-Parametric Models: Applications to Institutional Comparisons. Statistics in 
Medicine 26, 9, 2088–2112. 

OTTER, T., TÜCHLER, R., AND FRÜHWIRTH-SCHNATTER, S. 2004. Capturing Consumer Heterogeneity 
in Metric Conjoint Analysis Using Bayesian Mixture Models. International Journal of Research in 
Marketing 21, 3, 285–297. 

PAETZ, F., HEIN, M., KURZ, P., AND STEINER, W. 2019. Latent Class Conjoint Choice Models: A 
Guide for Model Selection, Estimation, Validation, and Interpretation of Results. Marketing ZFP 
41, 4, 3–20. 

PAETZ, F., AND STEINER, W.J. 2017. The Benefits of Incorporating Utility Dependencies in Finite 
Mixture Probit Models. OR Spectrum 39, 3, 793–819. 

PINNELL, J. 2000. Customized Choice Designs: Incorporating Prior Knowledge and Utility Balance in 
Choice Experiments. Proceedings of the 2000 Sawtooth Software Conference, 179–193. 

PINNELL, J., AND FRIDLEY, L. 2001. The Effects of Disaggregation with Partial Profile Choice 
Experiments. Proceedings of the 2001 Sawtooth Software Conference, 151–165. 

POIRIER, D.J. 1996. A Bayesian Analysis of Nested Logit Models. Journal of Econometrics 75, 1, 
163–181. 

R CORE TEAM. 2017. R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

RAMASWAMY, V., AND COHEN, S.H. 2007. Latent Class Models for Conjoint Analysis. A. Gustafsson, 
A. Hermann and F. Huber, eds., Conjoint Measurement, Springer, Berlin Heidelberg. 

RAO, A.R., AND MONROE, K.B. 1989. The Effect of Price, Brand Name, and Store Name on Buyers' 
Perceptions of Product Quality. An Integrative Review. Journal of Marketing Research 26, 3, 351–
357. 

RAO, V.R. 2014. Applied Conjoint Analysis. Springer, Berlin Heidelberg. 

REVELT, D., AND TRAIN, K.E. 1998. Mixed Logit with Repeated Choices. Households' Choices of 
Appliance Efficiency Level. Review of Economics and Statistics 80, 4, 647–657. 

RIBEIRO, T., CARSON, R., LOUVIERE, J.J., AND ROSE, J.M. 2017. Possible Design-Induced Artifacts 
Associated with Designs for Discrete Choice Experiments. Journal of Statistical Theory and 
Practice 11, 2, 296–321. 

RODRÍGUEZ, C.E., AND WALKER, S.G. 2014. Label Switching in Bayesian Mixture Models. 
Deterministic Relabeling Strategies. Journal of Computational and Graphical Statistics 23, 1, 25–
45. 

ROSSI, P.E. 2014. Bayesian Non- and Semi-Parametric Methods and Applications. Princeton 
University Press, Princeton. 

ROSSI, P.E., AND ALLENBY, G.M. 2000. Statistics and Marketing. Journal of the American Statistical 
Association 95, 450, 635–638. 

ROSSI, P.E., ALLENBY, G.M., AND MCCULLOCH, R. 2005. Bayesian Statistics and Marketing. John 
Wiley & Sons, Chichester. 



154 
 

ROSSI, P.E., MCCULLOCH, R.E., AND ALLENBY, G.M. 1996. The Value of Purchase History Data in 
Target Marketing. Marketing Science 15, 4, 321–340. 

SAWTOOTH SOFTWARE. 2016. Software for Hierarchical Bayes Estimation for CBC Data, CBC/HB 
v5. 

SAWTOOTH SOFTWARE. 2017. The CBC System for Choice-Based Conjoint Analysis. Technical Paper 
(Version 9). Sawtooth Software Technical Paper Series. 

SETHURAMAN, J. 1994. A Constructive Definition of Dirichlet Priors. Statistica Sinica 4, 2, 639–650. 

SILBERHORN, N., BOZTUĞ, Y., AND HILDEBRANDT, L. 2008. Estimation with the Nested Logit Model. 
Specifications and Software Particularities. OR Spectrum 30, 4, 635–653. 

SIVAKUMAR, K. 1995. Role of Price and Quality Tiers on the Cluster Effect in Brand Choice. 
Marketing Letters 6, 4, 265–273. 

STREET, D.J., AND BURGESS, L. 2007. The Construction of Optimal Stated Choice Experiments. 
Theory and Methods. John Wiley & Sons, New Jersey. 

STREET, D.J., BURGESS, L., AND LOUVIERE, J.J. 2005. Quick and Easy Choice Sets: Constructing 
Optimal and Nearly Optimal Stated Choice Experiments. International Journal of Research in 
Marketing 22, 4, 459–470. 

SUÁREZ, A., DEL BOSQUE, I.R., RODRÍGUEZ-POO, J.M., AND MORAL, I. 2004. Accounting for 
Heterogeneity in Shopping Centre Choice Models. Journal of Retailing and Consumer Services 11, 
2, 119–129. 

SUN, B., NESLIN, S.A., AND SRINIVASAN, K. 2003. Measuring the Impact of Promotions on Brand 
Switching When Consumers Are Forward Looking. Journal of Marketing Research 40, 4, 389–405. 

TEICHERT, T. 2001a. Nutzenermittlung in wahlbasierter Conjoint-Analyse: Ein Vergleich von Latent-
Class- und hierarchischem Bayes-Verfahren. Schmalenbachs Zeitschrift für betriebswirtschaftliche 
Forschung 53, 798–822. 

TEICHERT, T. 2001b. Nutzenschätzung in Conjoint-Analysen. Theoretische Fundierung und empirische 
Aussagekraft. Deutscher Universitäts-Verlag, Wiesbaden. 

TRAIN, K.E. 1980. A Structured Logit Model of Auto Ownership and Mode Choice. The Review of 
Economic Studies 47, 2, 357–370. 

TRAIN, K.E. 2001. A Comparison of Hierarchical Bayes and Maximum Simulated Likelihood for 
Mixed Logit. Working Paper, Department of Economics, University of California, Berkeley. 

TRAIN, K.E. 2009. Discrete Choice Methods with Simulation. Cambridge University Press, New York. 

TRAIN, K.E., BEN-AKIVA, M.E., AND ATHERTON, T. 1989. Consumption Patterns and Self-Selecting 
Tariffs. The Review of Economics and Statistics 71, 1, 62–73. 

TRAIN, K.E., MCFADDEN, D., AND BEN-AKIVA, M.E. 1987. The Demand for Local Telephone 
Service: A Fully Discrete Model of Residential Calling Patterns and Service Choices. RAND 
Journal of Economics 18, 1, 109–123. 

TRAIN, K.E., AND SONNIER, G. 2005. Mixed Logit with Bounded Distributions of Correlated 
Partworths. R. Scarpa and A. Alberini, eds., Applications of Simulation Methods in Environmental 
and Resource Economics. The Economics of Non-Market Goods and Resources, Springer, 
Dordrecht. 

TUMA, M., AND DECKER, R. 2013. Finite Mixture Models in Market Segmentation. A Review and 
Suggestions for Best Practices. Electronic Journal of Business Research Methods 11, 1, 2–15. 

VAN HEERDE, H.J., LEEFLANG, P.S.H., AND WITTINK, D.R. 2002. How Promotions Work: 
SCAN*PRO-Based Evolutionary Model Building. Schmalenbach Business Review 54, 3, 198–220. 

VERLEGH, P.W.J., SCHIFFERSTEIN, H.N.J., AND WITTINK, D.R. 2002. Range and Number-of-Levels 
Effects in Derived and Stated Measures of Attribute Importance. Marketing Letters 13, 1, 41–52. 



155 
 

VOLETI, S., SRINIVASAN, V., AND GHOSH, P. 2017. An Approach to Improve the Predictive Power of 
Choice-Based Conjoint Analysis. International Journal of Research in Marketing 34, 2, 325–335. 

VRIENS, M., OPPEWAL, H., AND WEDEL, M. 1998. Ratings-Based versus Choice-Based Latent Class 
Conjoint Models. International Journal of Market Research 40, 3, 1–11. 

VRIENS, M., WEDEL, M., AND WILMS, T. 1996. Metric Conjoint Segmentation Methods. A Monte 
Carlo Comparison. Journal of Marketing Research 33, 1, 73–85. 

WEBER, A. 2015. Modeling Price Response from Store Sales: The Roles of Store Heterogeneity and 
Functional Flexibility. Dissertation an der TU Clausthal. Shaker Verlag GmbH, Germany. 

WEDEL, M., AND KAMAKURA, W.A. 2000. Market Segmentation: Conceptual and Methodological 
Foundations. Kluwer Academic Publishers, Boston. 

WEDEL, M., AND KAMAKURA, W.A. 2002. Introduction to the Special Issue on Market Segmentation. 
International Journal of Research in Marketing 19, 3, 181–183. 

WEDEL, M., KAMAKURA, W.A., ARORA, N., BEMMAOR, A., CHIANG, J., ELROD, T., JOHNSON, R., 
LENK, P.J., NESLIN, S., AND POULSEN, C.S. 1999. Discrete and Continuous Representations of 
Unobserved Heterogeneity in Choice Modeling. Marketing Letters 10, 3, 219–232. 

WEDEL, M., KAMAKURA, W.A., AND BÖCKENHOLT, U. 2000. Marketing Data, Models and Decisions. 
International Journal of Research in Marketing 17, 2-3, 203–208. 

WILLIAMS, H.C.W.L. 1977. On the Formation of Travel Demand Models and Economic Evaluation 
Measures of User Benefit. Environment and Planning A 9, 3, 285–344. 

WIRTH, R. 2010. HB-CBC, HB-Best-Worst-CBC or no HB at all? Proceedings of the 2010 Sawtooth 
Software Conference, 321–355. 

ZWERINA, K., HUBER, J., AND KUHFELD, W.F. 1996. A General Method for Constructing Efficient 
Choice Designs. Working Paper, Fuqua School of Business, Duke University. 

 

 

 


	List of figures
	List of tables
	List of abbreviations
	1 Introduction
	2 Identifying nested preference structures in choice-based conjoint analysis: A simulation study
	2.1 Introduction
	2.2 Design of the Monte Carlo study
	2.2.1 Models
	2.2.2 Estimation
	2.2.3 Data
	2.2.4 Data generation
	2.2.5 Measures of performance

	2.3 Results of the Monte Carlo study
	2.3.1 Effects on parameter recovery, fit and predictive accuracy
	2.3.2 Refinements

	2.4 Summary, discussion, and conclusion
	Appendix A

	3 Multimodal preference heterogeneity in choice-based conjoint analysis: A simulation study
	3.1 Introduction
	3.2 Design of the Monte Carlo study
	3.2.1 Models
	3.2.2 Estimation
	3.2.3 Experimental design
	3.2.4 Data generation
	3.2.5 Measures of performance

	3.3 Results of the Monte Carlo study
	3.3.1 Effects on parameter recovery, fit and predictive accuracy
	3.3.2 Refinements

	3.4 Summary, discussion, and conclusion
	Appendix B

	4 An empirical comparison of Bayesian choice models
	4.1 Introduction
	4.2 Random utility models
	4.2.1 Simple MNL, LC-MNL, HB-MNL, and MoN-MNL models
	4.2.2 DPM-MNL model
	4.2.3 HB-NMNL model
	4.2.4 Model estimation

	4.3 Measures of performance
	4.4 Case study
	4.4.1 Data
	4.4.2 Results

	4.5 Conclusion

	5 Concluding discussion
	5.1 Summary of results
	5.2 Managerial implications, limitations and outlook

	References



