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Urban green space
• Urban green space (UGS) → increasingly relevant indicator for evaluating the environmental

and social sustainability of cities (2022 Report of the Lancet Countdown)

• Provision of local ecosystem services (Derkzen et al. 2015), e.g. mitigating urban heat

island effect (Aram et al. 2019), reducing impact of extreme precipitation events (Farrugia et

al. 2013)

• Associated with increasing well-being of urban dwellers (Reyes-Riveros et al. 2021).



Study objectives

1. Train a ML model to predict street-based vegetation presence (UGS) perception indicator

2. Evaluate UGS status and evolution in a global pool of large cities

3. Enable near-real-time tracking of green space trends to support decision-making



Labelled data: the Green View Index (GVI)
MIT Treepedia (http://senseable.mit.edu/treepedia)’s

Green View Index, by which to evaluate and compare % of

canopy cover, calculated using Google Street View

panoramas

→ human perception of the environment from the street

level

Global spatio-temporal distribution of labelled data

GVI – generation process and representative illustration

(Ratti et al., Treepedia)

Seiferling et al. (2017); Xi et al. (2015); Li & Ratti (2018)

http://senseable.mit.edu/treepedia


Training data and data preparation
Sources of predictors data

• Multispectral satellite imagery → Sentinel 2

• ERA5-Land historical climate → Copernicus

• Gridded population distribution → JRC GHS

• Global land cover map → Google

• GDP per capita → World Bank

Data extraction

• Data extracted in Google Earth Engine

(monthly averages)

• Data processing in R (parsing to GVI

database)

Feature selection and engineering

• X-Y coordinates and polar coordinates

• 10-nearest neighbours spatial median of

several key predictors



Methods

Model training & validation

• eXtreme Gradient Boosting (XGB)

Regression

• Xs → 24 features

• 10-fold spatial cross validation (SCV)

• Hyperparameters tuning based on Root

Mean Squared Logarithmic Error

(RMSLE)

Prediction in out-of-sample locations

• Latin hypercube sampling (LHS) of

points in 140 major global cities

• Extraction of predictor variables in

points

• Model prediction

Spatial cross validation – representative example

Training and testing accuracies measured by R-squared 



Results – mapping global UGS

Predicted GVI,

mean of sampled

points within city 

boundaries

City selection criterion: 20 

largest cities (by population) in 

each of 7 world regions



Results – UGS regional and city heterogeneity

• The cities with the highest

density of UGS are found to be in

the Caribbean, Oceania, Southern

Africa, and South-western Europe

• Among the greenest cities

among the world metropolitan

cities, New York, Johannesburg,

and Jakarta stand out.

• On the other hand, cities in East

Asia and Northern and Western

Africa are among the least UGS-

dense cities

• For example, Lagos, Guanghzhou,

and Mexico City show low levels

of UGS.



Results – UGS evolution: 2016-2022
• Repeating predictions for 2016 and 2022,

we can assess IF and HOW MUCH the

distribution of GVI in each city has

changed.

• Then, we can produce both summaries at

the macro-regional level (panel A) and

distributions at the city-level (panel B)

• The p-value shows the probability of a

statistical change in the GVI mean value

• 2022-2016 is a relatively short period of

time to observe a statistically significant

change within a city

• Examples of stat-sig change are found in

Jakarta, Santo Domingo, where GVI has

decreased significantly.



Results – within-city UGS distribution

• Within-city GVI vs. population distribution UGS distribution inequality analysis

• E.g., about 50% of European cities dwellers live in areas with GVI>20, against only 25% in Latin America,

Asia, And Africa

• Emblematic case: in Cairo only 25% of population exposed to GVI > 12, irrespective of average GVI of 19.

Example: predicted GVI

and pop. distribution 

in Rome, Italy

Regional GVI exposure inequality City-level GVI exposure inequality



Conclusions
• Urban green space → unequally distributed both across and within the subset of the major

global cities analysed.

• On average, mean UGS of 18.5 estimated, varying from 8.9 to 28.2 across cities.

• Greenest cities in Southern Africa, the Caribbean, and Western Europe, while regions

with the least UGS are Eastern and Western Asia, and West Africa.

• Globally, based on the major global cities analysed, between 2016-2022 UGS has diminished

by 0.33 GVI points (-1.75% from 2016). Yet, 6-year period is rather short to observe a

statistically significant change in mean city-level UGS in most cities.

• Within-cities, population exposure to UGS is most equal in Oceania and Southern Europe,

and most unequal in Latin American, Asian and African cities.

• Global UGS policies can benefit from near-real-time assessment and tracking, also under

the viewpoint of environmental justice. Particularly crucial in the developing world!



Thank you!
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