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Abstract

It is estimated that more than 6,000 different genetic diseases are caused by genomic

variants. This can happen in many possible ways: a variant somewhere in the genome

may stop the translation of a protein, interfere with gene regulation, or alter splicing of

the transcribed pre-mRNA into an unwanted isoform. To pinpoint the causal variants of

a disease, it is necessary to investigate all of these processes and evaluate which is the

most likely to result in the deleterious phenotype. A great help in this regard are variant

effect scores. Implemented as machine learning classifiers, they integrate annotations

from many different resources to rank genomic variants in terms of pathogenicity.

Developing such a variant effect score requires different steps: annotation of the train-

ing data, feature selection, model training, benchmarking, and finally deployment for

the model’s application. Here, I present a generalized workflow of the entire process,

implemented as four Snakemake pipelines. The underlying framework makes it simple

to configure how information is converted into model features, enabling the rapid ex-

ploration of different annotations. The workflow further implements hyperparameter

optimization and model validation steps. For deployment, a selected model is applied

to obtain the genome-wide score distribution and can be released as an offline service,

enabling everyone to score individual sets of genomic variants.

The workflow is applied to train Combined Annotation Dependent Depletion (CADD),

a popular variant effect model that is able to score SNVs and InDels genome-wide. I show

that the workflow can be quickly adapted to novel annotations by porting CADD to the

latest genome reference build GRCh38. Further, I demonstrate the integration of deep-

neural network scores as features into a new CADD model, improving the annotation of

RNA splicing events. Finally, I apply the workflow to train multiple variant effect models

from training data that is based on variants selected by their allele frequency. With 70

million training instances and more than 1,000 different features, these represent the

largest data sets currently used for variant pathogenicity prediction.

In conclusion, the developed workflow presents a flexible and scalable method to

train genome-wide variant effect scores based on individually specified training data

and annotation sets. The developed scores are freely available via a web service and

as offline scoring scripts from https://cadd.gs.washington.edu and https:

//cadd.bihealth.org.
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Zusammenfassung

Geschätzt mehr als 6.000 verschiedene Erkrankungen werden durch Veränderungen im

menschlichen Genome verursacht. Vielerlei Gründe können dafür ursächlich sein: Ei-

ne Variante an einer Stelle des Genoms kann die Translation eines Proteins stoppen,

die Genregulation stören oder das Spleißen der transkribierten pre-mRNA in eine un-

erwünschte Isoform begünstigen. All diese Prozesse müssen untersucht und bewertet wer-

den, um letztlich die zum beschriebenen Phänotyp passende Variante zu ermitteln. Eine

große Erleichterung in dieser Hinsicht sind Varianteneffektmodelle. Diese auf maschi-

nellem Lernen basierenden Klassifikatoren integrieren Annotationen aus verschiedenen

Quellen um genomische Varianten hinsichtlich ihrer Pathogenität zu bewerten.

Die Entwicklung eines Varianteneffektmodells erfordert ein ganze Reihe von Schrit-

ten: Annotation der Trainingsdaten, Auswahl der Modellfeatures, Training verschiedener

Modelle, Bewertung und Selektion eines Modells und schließlich Anwendung in der Pra-

xis. Hier präsentiere ich ein verallgemeinertes Workflow dieses Prozesses. Das zugrun-

deliegende Framework ermöglicht es mit wenigen Handgriffen den ganzen Prozess zu

konfigurieren, Modellmerkmale und deren Prozessierung zu bearbeiten, und verschiede-

ne Annotationen zu testen. Der Workflow umfasst außerdem Schritte zur Optimierung

von Modell-Hyperparametern, Modellvalidierung und letztlichen Anwendung des aus-

gewähltes Modells durch genomweites Vorberechnen von Varianten-Scores.

Der Workflow wird zur Weiterentwicklung von Combined Annotation Dependent De-

pletion (CADD), einem Varianteneffektmodell zur genomweiten Bewertung von SNVs

und InDels, verwendet. Durch Etablierung des ersten Varianteneffektmodells für das ak-

tuelle humane Referenzgenome GRCh38 demonstriere ich die gewonnenen Möglichkeiten

schnell Annotationen aufzugreifen und neue Modelle zu trainieren. Außerdem zeige ich,

wie die Integration von Deep-Learning-Scores als Features in einem neuen CADD-Modell

die Vorhersage von RNA-Spleißing-Events verbessert. Der Workflow wird weiterhin dazu

eingesetzt um Varianteneffektmodelle mittels eines neuen Trainingsdatensatzes zu entwi-

ckeln, welcher aus nach Allelhäufigkeit segregierten Varianten besteht. Mit 70 Millionen

Trainingsinstanzen und mehr als 1.000 Features basieren diese Modelle auf den derzeit

größten Datensätzen, die zur Vorhersage von Varianteneffekten verwendet werden.

Zusammenfassend wird gezeigt, dass der entwickelte Workflow eine einfach zu skalie-

rende und flexible Möglichkeit darstellt um genomweite Varianteneffektmodelle zu entwi-

ckeln. Die damit entwickelten Scores sind unter https://cadd.gs.washington.edu und

https://cadd.bihealth.org als Web-Service und stand-alone Skript frei verfügbar.
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Introduction

It is the ultimate nightmare of all new parents: Somehow, their newborn child does

not develop as expected. There are apparent differences to healthy babies or significant

developmental delays, outside of the variation that is usually observed. Doctors are run-

ning a general health check but cannot find anything: No nutrition deficit, no infection,

no poison, no external cause. The pathology seems to arise due to a problem in the

biology of the young human, a bug in the genetic code, a genetic disease.

While some genetic diseases such as chromosome duplications are well-characterized,

relatively simple to detect, and sometimes diagnosed even before birth, rare genetic

diseases are difficult to diagnose. It has been estimated that between 5% and 8% of all

humans have a rare genetic disease (Baird et al., 1988), which translates to about 400

to 600 million cases worldwide. In this context, a rare disease is defined as affecting

less than one in 2,000 live births. The apparent contradiction between high overall

incidence but low frequency of the individual diseases is caused by the high diversity

of more than 6,000 described rare genetic diseases (Amberger et al., 2019). Due to the

different etiology of each disease, the correct diagnosis of a rare genetic disease can take

many years, with many cases remaining undiagnosed (Taruscio et al., 2015). In addition,

effective treatments are available for less than 10% of rare disease diagnoses (Kaufmann

et al., 2018). As a consequence, rare genetic diseases are a major source of child death

(Stevenson & Carey, 2004) and, in industrialized societies, account for more loss of life

years than infectious diseases (Mazzucato et al., 2014).

The search for causal variants, differences in the patient’s genome that cause the

genetic disease, has become easier thanks to genome sequencing. Sequencing reads

the DNA and enables the detection of variants, differences to the genomes of other

humans. Millions of variants can be identified in every genome, most of them without

any consequence. All are screened carefully for those variants that are most likely to

cause the disease, a process that we call variant effect scoring.

This dissertation proposes improvements to that last step: finding among millions

of variants those that are causing disease. It outlines a workflow to train machine

learning models that rank variants throughout the entire human genome. To this end,

the workflow integrates previously classified variants with biological knowledge, based

on which the variant effect is assessed. The workflow is then adapted to the existing

variant effect score CADD, in order to build upon it and to generate novel predictions.

I present how these predictions are better than previous versions and suggest further
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steps to improve variant effect scoring.

The text is structured into nine chapters. General introductions provide foundations

in the fields of machine learning (1) and genetics (2). Continuing on these prerequisites,

chapter 3 introduces the concepts of variant effect scoring and reviews currently existing

approaches to evaluate genomic variants. Chapter 4 outlines concepts for the prob-

lem addressed in this dissertation: training a genome-wide variant classifier. Chapter 5

presents a solution to this problem in the form of a workflow that implements variant

scoring in four pipelines: annotation of a training set, training of a variant model, ap-

plication of that model genome-wide and finally delivery of scored variants to users. The

developed workflow is applied in chapter 6 to develop a new version of the variant effect

score CADD for the most recent human genome reference GRCh38. The capabilities of

the new workflow are then used in chapter 7 to extend CADD by including features spe-

cifically for RNA splicing effects. Finally, results of substituting CADD’s training data

set with population-derived variants are presented in chapter 8. The thesis concludes

with a discussion (9) of the obtained results and outlines open questions and possible

next steps.

Chapters 5, 6 and 7 are based on the published manuscripts Rentzsch et al. (2019) and

Rentzsch et al. (2021). All analyses, whether published in the manuscripts or only shown

here, have been performed by myself. My coauthors Martin Kircher, Jay Shendure,

Daniela Witten, Greg Cooper, and Max Schubach have contributed to the texts, as

indicated in the author contributions section of both manuscripts. For this thesis, the

entire text has been restructured and revised, sharing only individual sentences and

wordings with the previous publications. All figures in the associated chapters overlap

in terms of content with the previous manuscripts but were all specifically created for

this thesis.

In my dissertation, I describe our recent progress in the field of genome-wide effect

scoring with the help of machine learning models. While the developed models are not

yet able to uncover every genetic cause of disease, they significantly improve prediction

on currently known test data sets. In addition, the developed workflow enables the

rapid development of better models that integrate more biological knowledge and may

be optimized for yet unknown objectives. With that, I hope that the generated results

can help us better understand how alterations in human genomes cause disease and

differences in human traits.
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1 Machine learning

Automation has been a driving force of modernization for a long time. Processes that

once required manual labor are now fulfilled by machines. Computers have only increased

the speed of this transition and simplified many tasks via digitization. Still, many

jobs require situational judgment, which is much more difficult to accomplish without

human supervision. For some tasks, computer algorithms can be designed to analyze

the situation before executing an appropriate response. It requires that the solution to

the problem can be broken down into a well-defined set of instructions. Such a solution

is not always available or quickly gets overly complicated. A ”magic wand” that is

often proposed for such problems is artificial intelligence (AI). Specialized algorithms are

expected to analyze and understand the problem in order to formulate a solution. What

hides behind AI is a combination of specially adapted knowledge and computational

models that are generated by machine learning.

Machine learning is a field of computer science that develops strategies to teach com-

puters to perform certain tasks without explicitly stating all necessary steps. It includes

many different algorithms that apply strategies for recognizing patterns, learning how to

do and repeat a task, and finally, optimizing the output. The result of running such an

algorithm is a model of the represented process that is able to produce the desired result.

There is a saying attributed to the British statistician George Box that ”All models are

wrong, but some are useful” (Box, 1976), which applies very well for any machine learn-

ing model. It is implying that any model, no matter how complicated and all-embracing

it may seem, will ever capture the entire nature of the process under consideration and

is instead a simplification. However, some models improve our understanding of the pro-

cess and enable predictions that outperform random guessing. Machine learning models

are being used for many applications in automation, prediction, and discovery, such as

weather forecasts, image analysis, playing games, and more and increasingly medical

applications.

This chapter serves as an introduction to machine learning as is necessary for the

understanding of this thesis. As such, the introduction is by no means complete and

is not intended to serve as a full introduction to the entire field of machine learning

and statistics. My intention is to enable the reader to follow through the application of

various machine learning techniques in creating and improving models for genetic variant

interpretation. For an excellent and in-depth overview of the field, the interested reader

may be directed to ”An introduction to statistical learning” (James et al., 2013).
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1.1 Supervised machine learning

The arguably most common form of machine learning is learning from examples. An

algorithm is presented with a task and a set of instances for which the task has already

been solved. The objective of the algorithm is then to derive rules so that the same

task can be performed on further instances. These rules are generated through what

is called training, the repeated, iterative application of the developing model to the

training instances, followed by an error analysis that leads to model optimization so

that the execution of the task is improved. This form of machine learning is referred

to as supervised because the objective that should be achieved is given by the training

instances and the final performance can be evaluated based on a similar set of examples

by the supervisor.

Basic terminology

A supervised machine learning problem is defined by a set of examples or instances N .

Each instance i ∈ N consists of a feature vector xi and a label yi. xi is a vector that

contains the features J of the instance. Each feature j ∈ J represents a property of the

instance. The label yi is the property that should be predicted. It has to be noted that

while in most cases yi is a direct and independently identifiable property of xi, it can

also be a derived value that is only meaningful within the entirety of the data set, such

as a similarity to other instances and belonging to a certain group of instances.

The general objective of the algorithm is to find a function m that maps xi to yi for

any i ∈ N as close as possible. This means that the difference between the predicted

result yî = m(xi) and yi should be minimized over all instances. The difference between

prediction ŷ and label y is measured via the loss function L(y, ŷ). The machine learning

algorithm minimizes the total loss of the training set l =
∑︁

i∈N L(yi, yî).

All |N | instance vectors xi are summarized in the training matrix X or more spe-

cifically Xtrain with xi ∈ X, i ∈ N . The labels and predictions of all instances are

summarized in Y and Ŷ respectively.

Regression and Classification

Possible label values are an important property of any machine learning problem. Gen-

erally, problems can be divided into regression and classification problems. Regression

describes the prediction of a continuous numerical variable that can, in principle, have
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any rational value (y ∈ R), although further constraints may apply depending on the

type of problem. This contrasts with classification, which decides between defined states

or classes. Classification means that the label variable is categorical, either class A or

class B, encoded as 0 or 1: ŷi ∈ {0, 1}. Most classification algorithms can be adapted

from making a single yes-or-no decision, called binary classification, to distinguish many

different categories in a multiclass prediction.

Predicted label values are not necessarily limited to the training label values The

prediction of a binary classification model can instead be expressed as continuous class

likelihood between 0 and 1. Thus, the division into regression or classification is based

entirely on the input labels. It is important for the choice of algorithm and hyperpara-

meters, as well as for the design of model performance metrics. Somewhat confusingly,

the term regression is also used to describe machine learning algorithms like linear regres-

sion, and more generally describes the process of approximating a continuous variable.

Model architecture

There are various linear and nonlinear ways of how a machine learning model evaluates

and integrates many different features into a single prediction, i.e. how a model makes a

decision. The two most prevalent of these are linear weighting of features in comparison

to each other and defining thresholds for each feature. This distinction enables different

model structures. Linear weighting is used to create linear combinations of all features

of a data set: Each feature j is multiplied by a single parameter aj, all multiplications

are summed up and added to an offset b:

ŷi,linear = mlinear(xi) =
∑︂
j∈J

(ajxi,j) + b

The prediction is often transformed by a nonlinear activation function. These linear

models (Fig. 1A) scale relatively well to many features and, by using the absolute

value of a feature, benefit from gradual features that encode multiple, escalating levels

or gradients instead of a single binary decision. This is in contrast to threshold-based

decision making, which evaluates features according to their relative value rather than

absolute value. The advantage of these decisions is that they cannot only be added up

but also be stacked, allowing for more complex ”if this feature is greater than value R,

then what about feature J”-structures. This structure is used in decision trees (Fig. 1B),

where many decision layers are stacked. The first decision, where the evaluation starts,
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is called the root. Based on evaluation at the root, any instance passes through other

branches where the next decisions are made. After the final decision for the instance is

made, the instance reaches a leaf node that assigns a score, the predicted output of the

model for all instances that reach that particular node.

The lack of ability to learn feature interaction has always been a limitation of linear

models. Therefore, there has long been active research into combining multiple linear

layers by using one layer to predict meta-features that serve as input for the next layer.

The principle trick has been to process the result of each layer in an activation function.

so that the next layer does not directly compute the linear result of the previous layer.

At the same time, the entire network is kept differentiable in order to enable a gradient

descent based training process. In recent years, multi-layered networks (Fig. 1C), better

known as neural networks and deep learning, have become omnipresent in machine

learning. This has led to an explosion of available architectures that are transforming

the applications of machine learning in many areas like image processing.

It is possible to train many different models with various structures for any machine

learning problem. Each of these will cover certain parts of a problem better or worse

than others. Accordingly, it can be useful to join multiple predictions. For example,

multiple tree models are combined into ”forests” of many trees, which are often trained

iteratively so that later trained tree models complement the prediction of the first trees.

More generally, ensemble models combine the predictions from two to any number of

already trained models, either by averaging over all models or by training a meta-model

that uses the different model outputs as features for its prediction.

Finding the optimum: Algorithms for supervised machine learning

After the model structure has been set, the model is initialized by defining the starting

values of the model parameters. Typically, no prior knowledge exists so that two op-

tions are available: Either all parameters are initialized as zero and the same output is

predicted for all instances, or all parameters are set to random values and therefore the

model initially generates a random prediction.

From this starting point, the objective of the machine learning algorithm is to minimize

the loss of the instances in the training data set. In principle, this would be possible by

repeatedly selecting random parameters, checking the loss, and reverting the change if

no benefit for the model is observed. Such a strategy, known as random search, is used

in the field of evolutionary algorithms. While random search will eventually generate a
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Figure 1: Basic machine learning architectures. A: Linear model, B: Tree Model,
C: Neural network. All model architectures are read from top to bottom, as
the input features are provided at the top and the model prediction is retrieved
at the bottom.

good solution, it is slow and in most cases, advanced optimization algorithms converge

much faster.

A requirement for gradient descent, a fast and popular optimization algorithm, is that

the model is differentiable relative to its parameters. When optimizing a single parameter

in order to reduce the training loss, any change applied to that parameter must be in

the opposite direction of the first derivative of the loss function with respect to the

parameter. In principle, it is possible to move that parameter slightly in that direction

and then move on to the next parameter. A faster way is to update all parameters at

once by calculating the derivative as a function of all parameters (pseudo code in Sc.

1). The magnitude of the first derivative indicates how much changing each parameter
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affects the result. The gradient over all parameters puts all updates in relation to each

other. By introducing a constant learning rate by which the gradient is multiplied, a

factor is introduced that indicates how much the parameters should be updated. The

parameters are updated with the calculated step before the new gradient is analyzed in

the next iteration until the training is eventually stopped.

Sample code 1: Gradient descent pseudocode

# iterative function calls until training is stopped

function updateWeights(parameters , offset , X, Y, learning_rate)

{

total_parameter_derivative = [0] * length(parameters)

total_offset_derivative = 0

for x_i , y_i in (X, Y)

{

# Calculate partial derivatives and add to total

total_parameter_derivative += lossDerivative(parameters , x_i , y_i)

total_offset_derivative += lossDerivative(offset , x_i , y_i)

}

# subtract derivatives to decrease loss

parameters -= total_parameter_derivative / length(X) * learning_rate

offset -= total_offset_derivative / length(X) * learning_rate

return(parameters , offset)

}

While the first derivative signals how the prediction is affected by a parameter change,

the second derivative can be used as an estimator of how much the update will improve

the result. Calculating all second derivatives, called the Hessian matrix, is more complic-

ated to compute though. Instead, it is possible to use an approximation of the Hessian

to find better parameter values. This principle is used in the popular BFGS algorithm,

named after the initials of its inventors (Broyden-Flechter-Goldfarb-Shannon). Due to

its rapid convergence (Fletcher, 1987), BFGS is used in most modern gradient descent

library implementations. A variation popular for large data sets is stochastic gradient

descent (SGD). With SGD, the gradient is computed for only a few instances in each

iteration rather than for the entire training data set. This allows a single update step to

be computed much faster. SGD is popular in deep learning because computing gradi-

ents for neural networks is expensive and many small updates have shown good results.

Due to the stochastic nature of the parameter update in SGD, that can lead to oscillat-

ing parameter values, it is often combined with a momentum term. Momentum is the

stored average gradient from previous update steps that is gradually adapted by decay

and addition of new updates. It stabilizes the parameter update and leads to better

convergence. Due to the popularity of gradient descent, there are a large number of

further variations that improve the optimization in various ways. Because of that, the
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algorithm has been adapted to train many different types of models, including logistic

regression problems, support vector machines, and deep neural networks.

The output of a generalized linear model, the linear combination of the input fea-

tures, can be any rational number. In classification problems, this linear model output

is mapped via an activation function into a given range like [0,1]. A prevalent example

of an activation function is the logit function σ(t) = et

et+1
+ 1

1+e−t with the linear model

output t. The choice of the activation function is important, as its integral determ-

ines the loss function for gradient descent. For logit activation, this is the logistic loss

function Σ(t) = 1
log(2)

log(1 + e−t) and the reason why this type of regression analysis is

called logistic regression. The choice of the activation function depends on the expec-

ted error distribution of the instance labels and regulates the algorithm’s focus between

minimizing the number of outliers and minimizing the average error of all instances.

A relatively simple method to extend linear models to higher orders works via the

kernel trick. This principle, which forms the basis for support vector machines (SVMs),

symbolically transforms the input dimensions via the kernel function into a higher-

dimensional space where the training classes can ideally be separated by a single hyper-

plane. When using a linear kernel that does not generate additional dimensions, SVM

implementations are almost identical to logistic regression and typically differ only in

the use of hinge loss instead of logistic loss.

Agnostic of linear feature combinations are decision trees, a type of classification

model that resembles a flowchart. Decision trees are applied by asking successive yes-or-

no questions about an instance, with each question depending on the answer (or decision)

to the previous question. In this way, all instances are divided into groups that share a

classification. Decision trees are not specific to machine learning, as classification splits

can obviously also be chosen manually by an informed agent. To distinguish decision

trees trained by machine learning, these are generally referred to as classification and

regression trees. Trees cannot be learned directly via gradient descent because each

decision split has to be made through a choice that is not directly differentiable. Instead,

each split is determined algorithmically by computing information criteria like entropy

or Gini coefficient for each feature and selecting the feature that separates instances

best. A tree is created from top to bottom by selecting the root decision first and then

proceeding to the two possible decision branches. On each branch, a new decision split

is then created that divides the training instances that have proceeded to that point.

Additional decision branches are added until a certain depth threshold is reached or
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the information gain from a new decision does not reach a specified threshold. The

information content, or a similar metric, of all instances that reach a terminal node is

used for the output of the tree model. As mentioned earlier, decision trees are rarely

trained individually and are mostly used in ensemble models of many different trees in

a forest. Training multiple, singular trees will result in the same model each time as the

training algorithm does not include random parameters. To obtain multiple different

trees that complement each other, randomness can be induced by training multiple

trees in parallel, randomly withholding training instances from each tree, or limiting the

number of features available for each split. This creates a so-called random forest of

trees that each lead to slightly different predictions. The predictions from all trees are

then aggregated into a single prediction.

Unless specified otherwise, each instance in a training set is equally important and

weighted to the same amount in every training iteration. Equal weighting may not

be optimal for problems where some instances are relatively simple to predict while

others require more attention to be correctly classified. In that case, harder-to-predict

instances can be emphasized in training via boosting. The original idea behind boosting

was to combine multiple weak learners that do not yield good model performance on

their own into an ensemble model with better model performance (Kearns & Valiant,

1989). Unlike random forests, a boosting model is not learned as the sum of multiple

weak learners but is trained iteratively, with each iteration starting from the predictions

of the previous iteration. In each training iteration of an adaptive boosting classifier

(AdaBoost, Freund & Schapire, 1995), the predictions of all instances are evaluated.

Instances that were classified correctly are decreased in weight while the weights of

misclassified instances are increased. The new weights are used in the following iteration

to focus the next added learner on those subsections of the machine learning problem

that have not been considered in the present model. Gradient boosting (Friedman, 2001)

is a similar boosting algorithm. Unlike AdaBoost, it does not change the weights of the

individual instances but rather computes the residual loss of each instance. The model

update is then performed by gradient descent on this instance loss. The individual weak

learners in both AdaBoost and gradient boosting are usually implemented using decision

trees.
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Creating a training data set

The success of any attempt to solve a problem with machine learning depends largely

on quantity and quality of the training data set. In general, the more data there is, the

more examples there are to learn from. The training data set should be representative

of the problem to be solved, with training instances coming from the same distribution

as the final application of the model. To give an example: When classifying dog and

cat images, it is problematic if dogs and cats are always in the center of the training

images when the same cannot be expected in the application. It is also important to

consider limits for predictions on extreme examples, such as applying a prediction model

of family house prices to a castle.

Augmentation is a popular technique for increasing the size of a training set. It means

that training samples can be included multiple times as quasi-independent training in-

stances via simple transformations or the addition of noise. An example of this is flipping

or rotating images in a dog-cat classifier. Possible transformations for augmentation de-

pend on the posed problem and data formats. Generally, augmented instances should

not simply cluster with their originals.

Even the best human-annotated training set will contain misclassified instances. While

inevitable, misclassification is not a huge problem as long as it is not biased towards one

output value or class. It can be helpful to know the magnitude of this human-level error

rate, as it represents an upper boundary on algorithmic prediction performance on this

type of data. In other words, a model with 100% prediction accuracy will reproduce

the human-level error rate, while a perfect model, better than the human classification,

cannot reach perfect performance if human mistakes in the training data count toward

its error rate. Comparing model performances within the range of the human-level error

rate is therefore limited.

1.2 Feature engineering

The process of finding, analyzing, and adapting sources of information that describe

the data in a machine learning project is called feature engineering. It starts with a

thought process on what type of information may describe the problem best and may be

useful for the model. Once these have been identified, the analyst searches annotations,

streams or sources of data that provide that information. These annotations have to

be screened for their benefits, including availability for all instances, inherent biases,
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accuracy, used units, and overlap with already existing annotations. The data structure

of selected annotations has to be converted to a format that is needed for the computer

algorithm. After integration into the machine learning model, an iterative process of

checking how well the feature is improving the model, how it may be refined, and which

other features may be useful to maximize performance follows.

Feature engineering, similar to training data set preparation, is hard to generalize.

The main reason for this is the diversity of input types that need to be interpreted

before they can be integrated into a model. For example, color may be a categorical

feature in a data set of cars, but a numerical feature when predicting the outcome of

a physical experiment. Or in one data set, one brand of cars has defined colors by an

international standard while another manufacturer uses their own color naming scheme.

The generation of good features is therefore very often a complex and iterative step and

can occupy a significant fraction of the total development time. It does hence not come

as a surprise that features are frequently adapted from previous projects. Similarly, we

have also found that in project descriptions features are sometimes kept intentionally

vague when they provide a main advance in the improvement of a novel model.

Variable types

Every feature is representing a particular property, that describes an instance and is later

used for predicting the target outcome. The value of the feature is obtained from an

information source, the annotation. Each property is unique and describes the instances

in a certain way, like length in centimeters, color name, or position in a relative context.

Accordingly, there are many different types and formats of features like strings, numeric

measurements with units, lists, and graphs. However, these human language terms

often cannot be used directly by a computer. Instead, the value for each feature of an

instance is encoded in one or multiple numeric variables. The variables of all features of

an instance are stored in one vector, xi. This vector always has the same dimensions and

internal order, meaning that element n of the vector xi always represents the feature n

of the instance i. In terms of encoding, there are three main types of features: binary,

categorical and numeric, as well as several subtypes, distinguished by attributes and

possible values (Tab. 1). While the decision for a type of encoding is usually simple, it

is important for how the feature is interpreted in the model.

The simplest of these types is binary when the instance either has a feature or not.

It is encoded, 0 or 1, in a single variable. An example of this would be if a house has a
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Table 1: Encoding different features types

Feature Type Example Encoding Possible values
Binary house has chimney: yes scalar 0 or 1
Categorical - Nominal house color: yellow vector 0 or 1

Categorical - Ordinal
house low energy

rating: 75%
scalar

each level represents
a numeric value

Numeric - discrete number of windows: 8 scalar any integer
Numeric - continuous room height: 2.8 meters scalar any decimal number

chimney or not. It is further used for features where only two valid options are possible,

like the active light of a two-color traffic light.

If there are more than two states predefined states that the property can have, the

feature is of a categorical type. Examples are the color shown on a three-color traffic

light or the nucleotide in a DNA sequence. Categorical features are further distinguished

into nominal categorical, with categories that do not have an internal order like different

species or names, and ordinal categorical where such an order exists, like ranking on a

list or states of severity of a disease. This distinction is important for the encoding of the

feature in one or multiple variables in the feature vector xi. Nominal-categorical features

are usually encoded, similar to a multiclass label, in several binary ”dummy variables”

with each binary variable encoding if one particular category is true or not. While it

would technically be possible to store information about a finite set of possible categories

in fewer bits, this enables direct access to the single category via a single coefficient

without decoding the different categories first. By definition, categorical features can

only have one value, so that exactly one of those binary variables is true, an encoding

that is called one-hot-encoding. For some features, multiple categories can be selected

in the same instance. In that case, multiple or also none of the binary variables can be

true. While such a feature is very similar to a categorical one, in the implementation

this is better described as a series of binary features.

In an ordinal categorical feature, in contrast to nominal categories, the different cat-

egories are assigned to relative ranks, with each rank specified as a distinct numeric

value. While the same encoding as nominal categorical can be chosen for such categor-

ies, the order enables that the numeric values are encoded in a single variable, which can

have defined values equivalent to the different ranks in an order. This has the advantage

that the feature does not generate as many variables as there are categories of which

most have zero value anyways but has the disadvantage that the different numerical
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weights have to be chosen explicitly.

Very similar to the encoding of an ordinal categorical feature is the discrete numerical

feature. Discrete numerical means that the value of the feature is usually of an integer

value, with a limited number of possible states between two amounts. The difference

between the ordinal categorical and discrete numeric is that the latter is a number by

definition and the set of possible values is not necessarily a finite set, while the numbers

of ordinal categories are specifically set and limited to a finite set of possible states.

To exemplify, the number of kids in a family is a discrete numeric feature while the

rank of relative age, like being the oldest child in a family, is an ordinal categorical

feature. Numeric features do not have to be discrete but can be fractions. In the case

of a continuous numeric variable, features are not limited to integers and are encoded

in floating-point variables. These general types are however not always strict and blend

into each other, like continuous one-hot-encoding where a total sum of 1 is distributed

over multiple categorical variables.

While encoding of the variables is important for the handling of the values, it is

important to keep in mind that in software development practice, the concatenation of

all features in a single vector means that all variables are converted into a single variable

type. Common, because able to store every variable type from binary to continuous

numeric without considerable information loss, is the use of 16 to 64 bit floating point

variables. Most variables in such a vector are nonetheless quasi-binary.

Transformations

The default distribution of a numeric feature is not always ideal for the solution of

the problem. This is mostly the case for features that are not linearly correlated to

the outcome of the label but in some other relationship like quadratic or exponential.

Transforming a feature to a distribution that maximizes linear correlation to the label

outcome can improve the uptake of a feature in a machine learning model tremendously.

Some transformations, like taking the absolute value of a feature or capping a score at

maximum or minimum thresholds are not reversible. This means that the transformation

can result in a loss of information, as more than one input value maps to the same output

value. As such, the transformation does not necessarily result in a change of the feature

distribution but serves as a definition of the features range. Transformations overlap

with the field of scaling, as described in the section about regularization, and generally

serve a similar purpose.
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Encoding

Encoding many categorical features with numerous categories can cause instance vectors

with only a small number of variables different from zero. For computational reasons,

all variables in the instance vector are usually stored in the same data type. Floating-

point variables are preferred over single-bit binary variables, as the latter would result

in a loss of information for many features. The amount of computational storage space

needed to save the entire data set in encoded format is therefore inflated. A solution for

this problem are sparse matrix formats. In comparison to the default ”dense” N ×M

matrix where each row-column coordinate is stored in the data array, only those variables

that are different from the default value, usually zero, are stored in the matrix object.

Retrieving a value of such a matrix amounts to a lookup of whether the variable is stored

in the matrix and if it is not found returning the default value. There are different types

of sparse data format, each with different advantages and disadvantages. Examples are

the dictionary of keys (DOK) that performs lookups in a hash table, and compressed

sparse rows (CSR) that stores data via two consecutive pointers. Converting from a

dense to a sparse matrix format and back again requires some computational time. This

initial delay can be compensated, depending on the data sparsity, by faster saving and

loading times of the entire matrix to a disk, as writing and reading of data is a bigger time

constraint than conversion. Some machine learning implementations also support sparse

matrix formats, which enables faster and especially more memory efficient computation

than with normal dense matrices.

Imputation

What happens if an entire feature is not available for an instance or has an unknown

value? If possible, because relevant only for a small fraction of all cases in training, one

solution is always to ignore the instance. If that is not possible, for example because we

suspect that the absence of the feature is non-random, the feature has to be imputed

with a suitable value. One way to infer a value is by analyzing similar instances via a

nearest neighbor search. Depending on the type of problem, this can be a good solution.

However, very sparse features may lead to wrong labels being attached to many instances

and thus associated mistakenly with a prediction. If we cannot impute the feature value

like this, we define a default value for our feature that gets imputed to every case with

an invalid value. This value can be the mode, mean or median of that feature of all

other instances with a defined value. Or it is some value that is expected or adequate,

15



such as if a feature is missing in an instance because that particular instance cannot

have that feature. For example in a data set of houses, the feature ”number of floors”

could be set to 1 if undefined or in a data set of vehicles, the feature ”engine power”

could by default be set to 0 if the data set also includes bikes. As these examples show,

how a feature’s imputation is encoded is dependent on the feature, machine learning

algorithm, and specific problem and often takes a lot of time to evaluate.

Feature engineering for different machine learning algorithms

The level of detail and structure in which features are best engineered depends on the

machine learning algorithm applied. For example, decision trees built on yes-or-no de-

cisions do not change by relative scaling of a numeric feature. Instead, the question

evaluated by the algorithm is always if the value of a variable is bigger than a given

threshold. In contrast, scaling is very important for linear models where an extreme

outlier of a single feature may change the predicted outcome of the entire model. De-

cision trees are also able to detect interactions between features as multiple yes or no

decisions are stacked sequentially. This stacking enables a potential for structures of if

feature A is yes and feature B is no, then feature C is important sequences. For linear

models, such feature interactions have to be created via feature crossings. A feature

crossing combines all possible combinations of the categories in the individual features

and is equivalent to the multiplication of the encodings of two or more feature vectors.

Since feature crossing creates large feature vectors that add at least the size of the ori-

ginal features to the model, this is a major source for training matrix sparsity and model

complexity. Sparse features can be problematic for decision trees, as every single cat-

egory has to be evaluated against the rest of the model. A possible solution are greedy

search algorithms that summarize multiple feature categories into a single variable (Ke

et al., 2017).

One of the reasons why deep learning models hyped over the last few years is that

they require less feature engineering (Goodfellow et al., 2016). This is due to the hidden

layers in the neural networks that transform the different input features in relation to

each other. One type of neural network, the auto-encoder, is specially designed to store

complex input into a low dimensional latent space of meta-variables. The latent space

describes an instance in relatively few complex terms and can be decoded back into

the full instance features. Unfortunately, this advantage comes at the cost that it is

often hard to come up with reasoning why a neural network decides one way versus
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the other. Multiple studies have shown that they can apply attacks to such a model

by manipulating the input. For example, this could affect the prediction of an image

classification algorithm while a human looking at the same image would not note any

difference (Su et al., 2019). While many different methods for feature attribution have

been described (Ancona et al., 2017), such problems exist for almost all machine learning

applications and could develop into a big problem in the field of artificial intelligence

and other forms of algorithmic decision making. While certainly not sufficient to fully

mitigate such risks, reproducibility and in-depth documentation of feature engineering

is important to audit, debug, understand, correct, and prevent such problems in the

future.

Feature selection

While technically not a part of feature engineering, feature selection widely overlaps

with many of its steps. Once a number of meaningful features are generated and a

model with reasonable performance trained, it raises the question if all used features

are strictly necessary for the model’s best performance. This is especially important for

related features that are strongly correlated. It could be argued that multiple similar

features reduce the impact of the statistical error of the single feature on the final model.

Unfortunately, due to the infinite number of possible solutions of an overdetermined set

of equations, finding the optimal solution in a high dimensional space with a finite

number of instances is prone to result in extreme model coefficients. This problem is

generally known as curse of dimensionality.

To find the optimal combination of features, it would be necessary to test all possible

combinations. The number of combinations rises exponentially, making it practically

impossible for sufficiently large numbers. Several heuristic methods have therefore been

developed to select features. As a simple strategy, random search approaches from the

field of genetic algorithms can achieve significant results by iteratively experimenting

with numerous combinations. In order to not only evaluate by performance but also

simplicity, this is combined with methods that measure the mutual information of mul-

tiple features and from this deduct the information content of the single feature. Finally,

features are rarely ignored entirely from the model, as it is often sufficient to merge mul-

tiple related features via an unsupervised method in a meta-feature. The amount of

feature selection necessary depends on the applied machine learning algorithm as some,

such as decision-trees, apply their own feature selection.

17



1.3 Selecting a good model: Accuracy, Optimization and

Regularization

Once a machine learning pipeline is established, including retrieving the training data,

annotating and encoding the instances, and training the model, the entire process can

be run many times, limited only by the available computational resources. While this

should, given full reproducibility, always return the same result, the configuration may

be altered in several ways to find improvements like which features to include in the

model, what type of algorithm to use, or how to set certain model parameters. This

process of model selection is bound by model performance and complexity.

Benchmarking a model

In order to measure how well a model performs, it has to predict a number of labeled

instances. The instances used in training the model have already been seen by the

algorithm and may have been optimized for overproportionately. Therefore, any data

set the performance is measured on should not be overlapping with the training set.

To restrict occurring biases like common selection background or augmentation to a

minimum, the theoretically best case for performance benchmark is total independence

from the training set. In practice more common is a random split of the initial set of

instances.

The selection of a single test set is statistically problematic due to multiple testing.

Training large numbers of machine learning models with very similar performance can

and will select for models that perform slightly better on the test set by chance. Even

with a substantially sized test set and regularization, there is the risk that test results

for the finally selected model are better than observed on an entirely novel data set.

An independent performance estimate of a model is therefore only given for a test set

that is hold-out during model optimization and first evaluated only after the final model

has been selected. In summary, the model training process should include three stages

that use separate data: model training, model validation, and the final performance

test. If no independent test sets are available, the input data set is accordingly split into

three none overlapping data sets. The training set is used for building and training the

model. During the validation stage, various model versions that have been trained with

different hyperparameter and feature combinations are evaluated and compared. The

final test set is only evaluated when the entire training process is finished, and enables
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an unbiased comparison of the final model to other approaches. Depending on the given

problem, the size of the data set, and the expected performance, the number of instances

in each of the three sets varies. Under the premise that the training set really should

cover the entire problem as far and complete as possible, the training set is generally the

largest of the three sets. Validation and test sets can be smaller, as they serve to get a

statistical overview of how good the model is performing. It is to note that the definition

of validation and test set can be confusing and is often mixed up (Ripley, 2009).

Except for memory or run time optimization, it would always be beneficial to have

an even bigger input data set. The selection of the validation and test set excludes

the included instances from the training process. For small training data set where each

instance counts for training a good model, this can become a problem. On the one hand,

the training set should be a big as possible while on the other hand validation and test

set should also be big to provide profound test results. Various techniques are designed

to mitigate this problem. Two of those, bootstrapping and cross-validation virtually

increase the size of the test set in order to achieve smaller and better accounted for

validation errors. In cross-validation, the initial training data set after split from the

final test set is fractionated into N sets with equal numbers of instances per set. For

each of these sets n ∈ N , a model mn is trained by using the set n as validation set

and all other N − 1 sets joined as training set. This way the entire training set can

be used for performance validation and the single validation set can be smaller. Cross-

validation is computationally more expensive though since multiple models have to be

trained. Bootstrapping is an up-sampling technique, in which instances are randomly

drawn from the training set with each instance being able to be selected multiple times.

Under the assumption that the generated sample represents the total distribution of all

instances, this can be used to create multiple test sets of instances. While these test sets

are not independent, running a model test on all these instance sets gives an estimate

of the uncertainty in the initial test result compared to a test on all instances.

Overfitting and Regularization

When derived from one mutual input data set, training, validation, and test set come

from the same background and therefore should have the same feature and label dis-

tributions. Accordingly, any predictive task should generalize and perform equally well

on all three data sets. Unfortunately, this is often not the case as performance on the

training set becomes overly optimistic with increasing model complexity. The involved
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process is called overfitting, as the model predictions are fitted too much to the training

instances and perform worse when predicting unknown test labels (Fig. 2).

Figure 2: Overfitting with a complex solution. While a complex solution (red) is
often better at distinguishing between instances of different classes, it may
overfit to the training instances and does not generalize. This may lead to a
worse performance on test instances not included in the training set. While
subjectively worse on a first look, a simple solution (green) can in that case
be the preferred solution.

Overfitting happens in all types of machine learning to some degree, as training in-

stances can never represent the complete diversity of the possible input set. Nevertheless,

there are several methods to regularize a model by applying constraints that monitor

and limit overfitting. One approach is that while iterative training will descent with

each step to an optimum in training space, its prerogative is to catch the moment with

the highest accuracy in test space. Once the gain in prediction is only for the training

set and leveling out for testing, the model overfits on the training data. This is often

associated with a drop in test performance. The remaining gain in training performance

observed is due to closely modeling the input set. Early stopping (Fig. 3) means model

adaption on training and test set is monitored and the training process is stopped when

the performance diverges between the two sets. Obviously, model training does not have

to be stopped during run time. Rather, the model state is saved after each iteration and

the stop is performed in retrospect.

Overfitting does not only happen due to the model optimization going on for too

long but also when the model has more parameters than strictly necessary. In that,
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Figure 3: Early Stopping. For the first ten iteration, the prediction accuracy of train-
ing set (blue) and testing set (red) is highly correlated. Past that, the training
accuracy keeps increasing with every iterations while the test accuracy levels
out or even decreases slightly. The difference between test and training is due
to overfitting the model to the training set. A good place to stop early in this
case would therefore be after approximately ten training iterations.

the problem resembles an overdetermined system with many possible solutions. While

overdetermination is not bad on its own, this often leads to an explosion in parameter

values as the model descents to the optimal solution. One possible solution that is

popular in neural networks is drop-out wherein every training interaction, a certain

number of parameters is masked so that the model cannot rely on complex coadaptation

of parameters. Instead, drop-out forces the model to rely on each feature for separate

evidence.

The application of constraints via an added regularization term to the loss function in

order to enforce smaller parameter values is the most prevalent type of regularization.

With constraint, the optimization function o is formulated as the sum of the loss func-

tion L of the prediction ŷ versus the true label y and the regularization term r of the

parameter weights w, multiplied with a regularization coefficient λ that determines the
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regularization strength:

o(ŷ, y) = L(ŷ, y) + λr(w)

These optimization terms penalize larger parameters stronger, pushing the optimization

to prefer smaller absolute parameter values. Generally, there are L1 and L2 regular-

ization with intermediates like elastic-net regularization that combine L1 with L2. L1

or lasso regression is determined by the L1 norm ∥w∥1 = |w|. This means that regu-

larization strength is independent of the size of the parameter and all parameters are

under the same force to be as small as possible. With that, L1 regression enforces sparse

models. Only the most predictive features get assigned parameters that are different

from zero and can get very large coefficients, as L1 regularization does not penalize

large parameters. In contrast to that does L2, or ridge regression, use the L2 norm

∥w∥2 =
√︁

i∈Nw2
i /|N |. This penalization of the square of the parameter values puts

more weight on large parameter values. L2 regularization thus leads to less sparse solu-

tions that include weight more features differently from zero. It is often preferred for

complex predictions where multiple effects with very different strengths are combined

into one model. The regularization coefficient determines the strength of the applied

regularization, with a value of 0 equaling to no regularization. The best value of the

regularization coefficient depends on the data set and generally the involved machine

learning problem and is optimized over multiple orders of magnitude via hyperparameter

optimization.

Both L1 and L2 regularization rely on the assumption that features are approximately

identically distributed. This is important because increasing the value of a variable by

a factor s will decrease the respective coefficient by a factor 1/s, reducing regression

weight by the same factor with L1 and 1/s2 with L2 regularization. As all features

are initially considered of equal importance and thus equal regularization is applied,

they should accordingly be in the same range. This is achieved by rescaling all values.

Common scaling approaches are min-max-scaling and normalization. Min-max-scaling

means that minimum and maximum are determined over all instances, scaled to the

extremes of a defined range with all other values scaled linearly in between. In the

more frequent normalization, all values are divided by the standard deviation (average

squared distance from the mean) of all instances, so that the scaled output has a standard

deviation of 1. Additionally, it is preferred that the mean feature value is around zero.

Otherwise, the mean is a constant that is always multiplied with the feature coefficient

of the linear model and only the difference from mean distinguishes different instances.
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It is compensated by the model offset parameter b. The combination of normalization

and mean centration is called standardization.

Generally, a data scaler is initialized as a set of transformations on all features once

initially before training from the entire training data set. It is then applied to every

instance that is processed through the model. A special technique is batch normalization,

which is especially popular in the field of deep learning. Batch normalization means that

the normalization of a feature is not established on the entire training data set but only

on the batch, a small subset of the entire training data set that is loaded for one training

iteration in stochastic gradient descent. The main arguments behind batch normalization

are that it enables a faster (Ioffe & Szegedy, 2015) and generally more stringent training

process, although exact details are unknown (Kohler et al., 2018; Yang et al., 2019).

Performance metrics

In order to quantify the performance, called goodness of fit, of a trained machine learning

model, it is run on the labeled instances of the test set. Generally, the predicted labels are

then compared to the actual labels via multiple metrics. In cases where data or labels

are limited to the training data set, model prediction may be validated on surrogate

labels, metrics that are correlated to the labels of the training data set and not used as a

feature. The goodness of fit is always measured with regard to the test set which makes

results comparable only to models within the same setting. Depending on the task and

the question asked, there are several different quantification metrics.

Popular measures for goodness of fit in a regression analysis are correlation coefficients

and coefficient of determination. These are metrics for how close the predicted values

match to the real values. Correlation is a measure of dependence between values. As

prediction is supposed to be as close to the real value as possible, the aim is to maximize

correlation. Without assumption about the distribution of the real values, the most

prevalent form of linear correlation analysis is Pearson correlation. Based on the mean

µY = 1
N

∑︁N
i Yi, covariance cov(Ŷ , Y ) = 1

N

∑︁N
i (Ŷ i − µŶ )(Yi − µY ) and the standard

deviation σY =
√︂

1
N−1

∑︁N
i (Yi − µY )2, Pearson’s correlation is computed for prediction

Ŷ and real value Y as ρPearson(Ŷ , Y ) = cov(Ŷ ,Y )
σŶ σY

. The range of the Pearson correlation

coefficient is from -1 to +1 with a negative correlation coefficient indicating an inverse

association between prediction and actual values. On data set with few extreme and

many relatively close instances, Pearson correlation can be impacted by the extreme

instances due to their larger potential error. In order to get a more robust estimator,
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it can make sense to compute the relative ranks of predicted and real values and then

compute the Pearson correlation of those ranks. This is called a Spearman correlation.

Finally, coefficient of determination is an often used metric to describe goodness of fit.

It directly reflects the proportion of the total variance in the real values that is predicted

by the model. Mathematically, the coefficient of determination or R2 is the square of

Pearson’s correlation coefficient. Since the output or prediction of a model is always a

floating-point number, regression analysis can also be applied to classification problems.

This can be used to compare the prediction of several classification models to an external

variable that is associated with the initial class label.

In classification analysis, there is less focus on the exact value of the label prediction.

More important is that the predicted class matches the expected class with a low error

rate. In a binary setting for a given threshold t ∈ R, all instances with y > t get

predicted A and all instances with y < t get predicted B. The threshold t is defined as a

number somewhere between the labels for classes A and B. Typically would be t = 0.5

in a y ∈ 0, 1 labeling.

A confusion matrix compares the numbers of predicted and observed labels (Tab.

2&3). The overall error probability is called accuracy. Its value is the likelihood that a

random instance is classified correctly by the model and is defined through the number

of correctly classified instances divided by the number of all instances. Depending on

the task performed, it is also important to consider error rates for every single class

in isolation. To do this, one class is defined as positive P and one as negative N .

An instance identified correctly is called true, resulting in true positives TP and true

negatives TN . Falsely identified instances are predicted to be in the wrong (false) class.

Therefore, false positives FP are predicted to be in the positive class but are negative,

while false negatives FN are actually of class positive and falsely predicted as negative.

Table 2: Example classifier for two classes red and blue

actual red actual blue total
predicted red 13 3 16
predicted blue 7 14 21
total 20 17 37

Table 3: Confusion matrix: relationship of actual and predicted labels

actual Positives actual Negatives
predicted Positives T rue Positives False Positives
predicted Negatives False Negatives T rue Negatives
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The classification error rate of the positive class, TPR = TP/(TP + FN) = TP/P ,

is called sensitivity, recall or simply true positive rate. Its equivalent for the negative

class is specificity, selectivity or true negative rate TNR = TN/(TN + FP ) = TN/P .

Complement to TPR and TNR respectively, there are false negative rate FNR =

FN/(TP + FN) and false positive rate FPR = FP/(TN + FP ). The sum of TPR

and FNR as well as TNR and FPR is always 1. The positive predictive value or

precision PPV = TP/(TP + FP ) is the likelihood that a positive prediction is correct.

It should be noted that the assignment of positive and negative is dependent on an

external definition and true positive and true negative rates can be reversed if the model

task is formulated differently. Accuracy of all instances is defined as: Accuracy =

(TP + TN)/(TP + TN + FP + FN).

It is important to keep in mind that all these rates are mutually dependent on the clas-

sification threshold t. Increasing t decreases the likelihood that an instance is predicted

to be positive, thus decreasing the number of TP and FP and increasing the number

of TN and FN , which decreases TPR. The overall performance of a model is therefore

assessed over all possible values of t. From the single class error rates, derived metrics

describe the relationship of these error rates in comparison to each other. This means

that classification metrics are computed for the same values of t, i.e. when a model has

a TPR of 0.8, what is the FPR of the same model on that data set. This relation-

ship of TPR and FPR is called Receiver operating characteristic (ROC, Fig. 4), with

the graphical plot called ROC curve. The area under the ROC curve (auROC) ranges

between 0.0 and 1.0, with higher values linked to better performance. Since both TPR

and FPR are independent of the relative numbers of positive and negative instances,

auROC is especially used in scenarios where the ratio of positive and negative instances

in the final application is unknown.

Another often considered relationship is that of PPV and TPR, named after two

of their synonyms precision-recall curve (PRC, Fig. 5). ROC and PRC are in most

cases correlated. The area under the PRC (auPRC) is also in the range from 0 to 1

with higher values linked to better performance. If a model ROC-curve has higher TPR

than another model PRC for all FPR, it will have both a higher auROC and a higher

auPRC than that model. auPRC is especially useful for rating how well a small number

of instances is detected in a large imbalanced data set.

Any classification measure compares to a random baseline, the performance of a null

model with predictions assigning instances randomly. For most metrics, the random

25



0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e 
po

si
tiv

e 
ra

te

Receiver Operating Characteristic (n = 41723 vs 131337)

Model A (0.975)

Model B (0.986)

Model C (0.878)

Model D (0.667)

Number of positive instances in test data set

Number of negative instances in test data set

auROC of model A

ROC-curve of model C

ra
nd

om
 b

as
el
in

e

Figure 4: Example receiver operator characteristic. The receiver operator charac-
teristic (ROC) displays the relationship of true positive rate (TPR) and false
positive rate (FPR) for any model in a ROC curve. The area under the ROC
curve (auROC) is used as a metric to describe overall model performance.
A larger auROC does not mean that TPR is always better at equal FPR as
shown by Model D surpassing Model C for small FPR.

baseline is defined by the class probabilities of the labeled instances. For auPRC, it is

the fraction of positives in the entire test data set P/(P+N). Since both TPR and FPR

are only dependent on positive and negative instances respectively, in random guessing

on a large sample TPR approaches FPR, resulting in a linear term with a gradient of 1

and offset 0, for all values of FPR from 0 to 1. Thus the area under the random baseline

of auROC is always 0.5. Classifiers performing worse than random guessing are usually

due to interpretation errors, e.g. when the instance labels have been mixed up or the

prediction is negatively correlated with the input labels (Fig. 6).

In a multiclass prediction, these metrics have to be adapted. While accuracy can be

calculated for all instances, TPR and the other metrics are calculated for each class
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Figure 5: Example of a precision-recall curve. The area under the precision-recall
curve (auPRC) is a metric for how well a model is at prioritizing a set of
instances from a large set.

separately.

Hyperparameter optimization

When adopting a machine learning model to a novel problem, there are many hyperpara-

meters like the strength of regression, the number of training iterations, or the number of

layers in a deep neural network that have to be optimized. Based on previous projects,

domain knowledge, and the available computational resources, it is usually possible to

determine ranges for possible hyperparameter values. As hyperparameters are not mu-

tually independent and certain combinations may lead to a good model, it is necessary

to try out several of these combinations and then select the best combination. There

are different strategies to find such combinations. The most obvious is to try out all

possible combinations in a grid search. However, the number of possible combinations

grows exponentially with the number of parameters. This is especially a problem in
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Figure 6: Trouble with performance metrics. On imbalanced test data set, the
choice of the wrong performance metric can lead to irritating results. While
this does not affect ROC (left) which is based on ratio independent TPR
and FPR, the random baseline of a PRC (right) rises with a higher fraction
of positive instances which can make it difficult to analyze the performance
of different models. Models with AUC performing worse than the random
baseline, like Model B on the left, usually need more investigation.

areas of machine learning with many model parameters. An alternative for such a case

is a random parameter search. In a random search, multiple combinations with different

parameter values are trained in parallel. The best combination is then selected from

the random subset. Random search often finds that certain hyperparameter values are

relatively flexible and can be excluded from further optimization. After an initial ran-

dom search, hyperparameters can be further optimized by greedy Bayesian optimization,

evolutionary algorithms, and, for some algorithms, by deriving parameter gradients.

Keep it simple in order to understand a predictions

In the 14th century, the English scholar William of Ockham formulated the principle:

”Numquam ponenda est pluralitas sine necessitate” or ”Plurality must never be posited

without necessity” that is known today Ockham’s razor. In the field of machine learning,

this is adapted as ”a model should be kept as simple as possible”. While complexity

naturally arises with large model sizes and longer and more complicated training pro-

cesses, the main reason behind this is comprehensibility. Testing a model on a data set
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may assure that the prediction is not entirely unfounded but does not tell why a model

is giving a prediction. Especially in edge cases, when professional and computational

prediction are diverging, this raises the question: is the prediction founded on a better

understanding of the circumstances or due to an artifact? If this should be the case,

can general rules be generated that explain the prediction? And if this is not the case,

can the faulty logic in a machine learning model be found so that altering features can

be corrected or the training process be adapted? Else, these problems may create loop-

holes that can lead to wrong decision-making or exploitation for coordinated attacks

on a model that may be invisible to the uneducated user (Su et al., 2019). Finding

the features that lead to a prediction is called feature attribution. In a linear model,

feature attribution is comparatively simple since the relative quantiles of the value of

an instance are known for each feature, as well as the coefficients that are learned in

the model. The same process is a lot more complicated for nonlinear models with many

competing methods proposed like for decision trees (Lundberg et al., 2020) and neural

networks (Mundhenk et al., 2020; Yang & Kim, 2019). The gained insight is used in the

discovery of meta-features that could not be found in linear settings.

1.4 Unsupervised and Semi-supervised learning approaches

Machine learning does not have to rely on labeled instances. The field of unsupervised

machine learning analyzes data set in order to recognize patterns that explain the un-

derlying structure. In addition to finding hidden labels and dimensions, unsupervised

learning algorithms are used for outlier or anomaly detection, recommender systems,

and dimension reduction. The two main branches of unsupervised machine learning

are, similar to classification and regression, clustering into groups and matrix factoriz-

ation that detects modes of variation, although these two fields overlap. Clustering is

a surrogate term for approaches that divide the instances into a finite set of groupings.

These groups or clusters are learned by the algorithm based on the similarity between

instances, trying to find groups where instances are more related to each other than to

instances outside of the group. There are many different clustering algorithms based on

the expected structure of the final clusters and the structure of the algorithm itself. To

give an example, k-means clustering specifies the number of clusters at the beginning and

which are then refined iteratively. In contrast, in hierarchical clustering, all instances are

divided into two groups which are then recursively divided further into smaller groups

until each subgroup only contains a single instance. Each cluster or grouping generated
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by a clustering algorithm is described by a vector, either directly computed from the

algorithm or via the mean per feature of all instances in that grouping. These clustering

vectors are functionally equivalent to the modes of variation or dimensions in a matrix

factorization. The main difference to the latter is that in a clustering approach each

instance is matched to a single cluster while in matrix factorization, each instance is

represented by a weight vector that describes the expression of all dimensions in this

instance. Again, there are a lot of different algorithms that enforce certain properties

on both weight and dimensions. Examples of these are orthogonality of dimensions in

principle component analysis (PCA) and non-negativity of weights in non-negative mat-

rix factorization (NMF). Unsupervised machine learning shares many of the steps and

adaptions from supervised machine learning such as feature engineering and regulariza-

tion.

Semi-supervised machine learning combines strengths from supervised and unsuper-

vised machine learning approaches. It is applied if primary instances labels exist but

are not available for all instances in the training set. It is based on the assumptions

that the provided labels are representative of the true labels of all instances and that

instances with similar features are likely to have the same label. The semi-supervised

algorithm can then rely on labels for a supervised definition of the general scope of the

prediction and later integrate a much bigger training set that can be analyzed unsuper-

vised to estimate the background distribution of instances. Semi-supervised approaches

are popular where instances are simple to generate but classes are expensive to assign

accurately.

1.5 Additional concepts: Reinforcement, multi-task and transfer

learning

For many problems, the evaluation of a solution is much simpler than the generation

of a perfect solution. Examples of such problems are the result of a game of chess or

the steering of a machine. In principle, it is possible for these problems to generate a

number of solutions randomly, evaluate all, and in the end select by best performance.

However, in many cases, this is not possible as it is the objective that generated solutions

are good. Over the years, reinforcement learning has developed as a field of algorithms

that train models that adapt to problems with a multitude of inputs in order to generate

a good solution from different situations. The main premise in reinforcement learning

is reinforcement, where the model repeatedly encounters similar situations from which
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it generates action. That action is then evaluated and either positively or negatively

”reinforces” the model to do the same action again in the next iteration. Reinforcement

learning has been applied in many areas for playing games like chess or go and for per-

forming interactions with the real world like maneuvering robotic arms or steering cars.

A special case of reinforcement learning is the generative adversarial network (GAN). In

a GAN setting, two machine learning models are trained simultaneously. The first, dis-

criminative model can be any supervised or semi-supervised machine learning model that

is trained to evaluate instances while minimizing a loss function. The second, generative

model is generating new instances. While the initial distribution of these instances is

derived from a normal training set, the adversarial part of this type of machine learning

comes from the fact that the generative model is trained as well on the error rate of the

first model, it has the objective to increase the number of classification mistakes. This

is supposed to lead to the increased generation of particularly hard training cases that

therefore get reinforced more than simple cases on the discriminative network. A typical

application of a GAN is the discrimination between random computer-generated images

and for example images of human faces (Karras et al., 2020). In that case, the generative

model is supposed to learn to generate more and more realistic synthetic face images

that are hard to distinguish from real faces. Unfortunately, the usefulness of GANs is

limited by the fact that those tend to concentrate on a small number of extreme cases

while neglecting large parts of the overall input space (Arora et al., 2017).

Multi-task learning

By design, machine learning algorithms optimize the problem they are given: classifying

instances from the given training data set. If a model is trained to distinguish between

tomato and cherry images, it will do just that: distinguish between tomatoes and cher-

ries. Now the same training data set of tomatoes and cherries may be classified not by

the type of fruit but by whether the fruit is ripe and edible. It may be the simplest to

train two models for each tomato and cherry ripeness. However, predicting both prop-

erties in what is called a multi-task model, may be beneficial for covering certain rare

cases that are covered sparsely in the tomato or cherry subsets of the entire data set. In

this example, while color is usually a good indicator of ripeness there are strains of both

tomatoes and cherries that are yellow when ripe. While this may be rare within the

entire data set and may therefore be ignored or overfitted in a classifier of a single type

of fruit, the combined data set contains more instances over a broader background which
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may make it easier for the model to learn that color does not necessarily equate ripeness.

And while training a separate model that only trains general fruit ripeness may cover

this case, there are certainly still differences in how cherries and tomatoes ripen, and

therefore important that the model still learns to distinguish different types of fruit by

training to predict both properties jointly. Another example of this problem would be

the classification of certain images by day and by night, where different features become

important depending on the other classification results and a transfer of those features

improves overall prediction.

Transfer learning

Related but not the same as sequential training is transfer learning. In transfer learning,

parts of an already existing model are adapted for the training in another model. This

can mean that the parameters of a trained model are used as initialization for a new

model or even that entire components of the model are adapted. For example, layers

of a deep neural network can be used as fixed feature processors on whose output the

new model is trained. Reasons for using parts of or even entire preexisting models are

either the amount of time that it takes to train a new model or the limited size of

the training data set, which may not be big enough to train a fully regressed model

without overfitting. Both scenarios are common in image classification where complex

pre-trained models like ImageNet that have been trained on large image data set and

can extract important features from these images are adapted for a new type of image

prediction.
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2 Variants in the human genome

Deoxyribonucleic acid (DNA) is the key molecule storing instructions to operate cellular

life. DNA is composed of a double helix built from the four nucleotides adenine (A),

cytosine (C), guanine (G), and thymine (T). The two strands of the double helix are

composed of matching nucleotides, with A being paired with T on the opposite strand

and G with C. Each of these pairs is one base pair (bp) in the DNA molecule. The

encoded information serves as blueprints for thousands of molecules and specifies when

to build which. In total, two sequences of more than 3 billion bp form the human

genome, the collection of all human genetic information.

Each normal human cell nucleus contains 46 chromosomes, 2 copies each of the 22

autosomes as well as two gonosomes, either two copies of chromosome X in case of a

female cell or one of X and one of Y in case of a male cell. In addition, a small mitochon-

drial genome is located in separate organelles outside of the nucleus, the mitochondria,

which are found as multiple copies in each cell. Each chromosome (and the mitochondrial

genome) contains many genes. These genes are translated into proteins and ribonuc-

leic acids (RNA), specialized molecules that serve special functions like building more

molecules, harvesting energy, or protecting the cell from external agents.

This chapter serves as a brief introduction to the genome and genetic variants. It intro-

duces why the genome sequence is different for every individual and what consequences

these differences may have. It also describes different types of genetic variants and how

those are discovered. While the details on how variants cause disease are described in

the next chapter, I hope to motivate the steps necessary for variant interpretation.

2.1 Definitions

The information of a segment of DNA, potentially controlling all kinds of cellular pro-

cesses, is encoded in its nucleotide sequence. Hence, if the sequence of two molecules

of DNA is identical, these two molecules could be assumed to functionally have the

same effect. Any nucleotide in the DNA sequence has a position and the sequence is

oriented. If a DNA molecule is altered by exchanging some nucleotides with others, the

change in sequence is called a mutation. Mutations have a direction (i.e in temporal

order) from one sequence to another. They are formally described by the properties

position, original (reference) sequence, and new (alternative) sequence. When there is

a difference between two sequences but the direction is unknown or simply ignored, the
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difference may be called variant, with the position having genetic variation. Since vari-

ants are usually described in comparison to a reference, they are characterized by the

same three properties as mutations. In practice, the term mutation is often replaced by

the term variant. Frequently, the type of variant is further specified by attributes such

as pathogenic or benign (Richards et al., 2015).

Like each nucleotide has a position in a DNA molecule, the genomic locus describes

the position of a sequence on a chromosome in the genome. A sequence version at

a particular locus in the genome is called an allele. Different alleles usually share a

common sequence origin but differ in one or more variants.

The term for having two copies is diploid, while a single copy genome is haploid. Most

chromosomes exist diploid in a normal human cell nucleus. Exceptions of this rule are

the sex-determining gonosomes X and Y: While X is diploid in females, it is haploid in

males as there is also one copy of chromosome Y. Similar to chromosomes, variants (or

alleles) can also exist in one or two copies. If found only on one chromosome, the variant

is heterozygous. In contrast, if both chromosome copies have the same allele, they are

homozygous.

In principle, the two copies of a diploid chromosome are independent of each other.

While there are some interactions between chromosomes and certain types of mutation

like recombination can lead to exchanges of segments between chromosomes, the re-

spective sequences are independent of each other. Each of the two copies is referred

to as a haplotype, with the paternal haplotype being inherited from the father and the

maternal from the mother. Multiple variants of the same gene or chromosome can be

on the same haplotype or not. Variants on the same haplotype are called in phase or

phased. Phasing becomes important when two variants would both impact the function

of a gene: If both variants are in phase, only one copy of the gene is affected and the

other may rescue its function.

The collection of all genomic information including all variants in a cell or organism is

the genotype. The genotype includes information about heterozygous and homozygous

copies of each allele, and is descriptive either for the entire genome or limited to a certain

locus. Each genotype is linked to a particular phenotype, the expression of observable

traits in the organism with that genomic information. The phenotype can be but does

not have to be dependent on the genotype. A variant responsible for or contributing to

a certain phenotype, for example a genetic disease, is called causal variant.

34



2.2 Determining variants in the DNA sequence

DNA sequencing is the process that reads the order of the four nucleotides A, C, G, and

T in a DNA molecule. Due to the complementary base pairing of A with T and C with

G, sequencing is necessary only for a single strand of DNA. The nucleotides along the

strand are read out one after the other, as they are molecularly bound and oriented in

the nucleotide chain.

Since continuous stretches of DNA, i.e. entire chromosomes, are millions of nucleotides

long, it is currently technologically impossible to consecutively read the entire sequence.

Instead, sequencing is performed from DNA fragments. Each of these fragments, collo-

quial known as reads, covers a tiny fraction of the total sequence. The original sequence

is later reconstructed by integrating the information of all reads from a sequencing run.

Read properties like lengths and error rate, which are important for that process, are

sequencing technology dependent.

Since the beginnings in the 1970s, numerous technologies have been developed for DNA

sequencing. All of these are specialized in how a DNA sample has to be prepared and how

the actual sequencing is performed. Today, the actual sequencing step is run through

a dedicated machine, called the sequencer, that can sequence hundreds to millions of

DNA reads in parallel. In contrast to older and more laborious methods, these high-

throughput techniques are called next-generation sequencing (NGS).

The most broadly applied, NGS technology is bridge amplification coupled with se-

quencing by synthesis (SBS), as commercialized by the company Solexa (now Illumina).

Bridge amplification is used to locally amplify a DNA molecule on a surface so that many

copies of the same molecule are located in one area of the sequencing chip. The basic

principle of SBS is the synthesis of the matching second strand of the DNA molecule.

The insertion of the complementary nucleotides in all clonal copies of the molecule is

detected and monitored. As different fluorophore colors are linked to the integration of

each nucleotide, the sequence of the DNA molecule is decoded. With read lengths of up

to 300 nucleotides, SBS is a short-read sequencing technology.

In recent years, short-read sequencing has been complemented by single-molecule and

long-read technologies, as being developed by the companies Pacific Biosciences and

Oxford Nanopore Technologies. Long-read technologies provide reads of up to mega

(109) bases in lengths (Payne et al., 2019). Ultra-long reads are used to connect dis-

tant sequences, providing additional information about a single haplotype (Beyter et al.,

2021) and enable more complete genome reference, including highly repetitive regions
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that could not be resolved with short reads (Nurk et al., 2021). However, available

technologies show higher and partially context-dependent error rates than SBS (Am-

arasinghe et al., 2020) and are, as of 2020, more expensive per base pair of sequenced

DNA (Logsdon et al., 2020).

The genome of a human, as well as any other organism, can be sequenced to different

levels of quantity or depth. The term coverage describes how often each position is

included in (or covered by) single reads on average. For an entire human genome with

its 3 billion bp, this means that at least 10 million reads of 300 bp are necessary to reach

an average 10-fold coverage of the genome. While whole-genome sequencing (WGS)

is done routinely nowadays, especially so-called non-coding regions are frequently not

analyzed to save cost and time. Instead, whole-exome sequencing (WES) is limited to

the exome, the coding exons, and nearby untranslated regions of the genome. The DNA

library that is used for WES is generated by enriching coding DNA regions via targeted

sequence capture (Ng et al., 2009). For analyses of a single disease, where only a few

known genes are of interest, enrichment can be further limited to what is known as a

gene panel.

In recent years, a huge number of protocols have been established that extend upon

the concept of DNA sequencing. These enable the sequencing of different types of

RNA, determine DNA methylation, mark the binding of different molecules to DNA or

interrogate the proximity of DNA segments in the nucleus. A recent hype has developed

around the field of single cell genomics that associates each sequencing read with a

unique cell. Sequencing many cells in parallel enables deeper insights into the regulatory

trajectories that cells progress through.

From sequencing to calling variants

DNA sequencing of a sample does not provide a full genome sequence but rather a

high number of individual DNA reads. Depending on the application, there are two

orthogonal approaches to obtain the genome sequence: Either de novo assembly, only

based on the DNA reads, or with help of a reference genome similar to the sample.

When no reference genome is available, is too distantly related, or missing important

segments, a new genome has to be assembled by connecting reads to a single continuous

sequence. This is performed based on overlaps at opposite read-ends, which are merged

into one longer sequence. Ideally, many reads overlap continuously, so that large sequence

blocks that cover large genomic areas are obtained. Due to mismatches and non-unique

36



nucleotide k-mers, it is nearly impossible to decode entire chromosomes in one sequence

based on overlaps alone. Current algorithms for genome assembly resolve ambiguities

via a type of directed graph, the De Bruijn graph (Simpson & Pop, 2015), by finding a

path through every node in the graph. A major challenge in this regard are repetitive

regions where the same sequence pattern appears multiple times in close succession.

Reoccurring patterns lead to loops in the graph that could be explained by a virtually

unlimited number of possible sequences. To solve the sequence in these repeat regions,

long-read technologies are popular where the reads cover the entire repeat.

reference: ..TTCATACAGCACTATGCGCGGGAAAAA..

CAGCACTATGCGCG

GCGCGGGAAAAATTCATACAGCAC

reads:

Figure 7: Concept of sequence assembly. Aligning segments of multiple reads are
merged into one larger sequence, and finally integrated in building the reference
genome. In reality, the toy-example above is made more complicated by read
errors and repetitive regions where multiple, conflicting overlaps are possible.

While single genes were assembled much earlier, the Human Genome Project took

hundreds of scientists from institutions all over the world years to sequence the first

human genome. In 2003, the formed Genome Reference Consortium released the first

version of what is known today as the human reference genome. That reference is

not one particular human genome but an idealized representation of a genome for the

entire species. GRCh38, the latest human reference genome, has a total length of about

3.1 billion nucleotides but includes several unresolved gaps. These gaps are caused

by complex regions like the chromosome centromeres that are rich in near-identical

sequence repeats, so that about 8% of that sequence remains unresolved in GRCh38.

Only recently, the Telomere-to-Telomere consortium is decoding the full sequences of

the last unknown segments and providing a genome sequence without gaps (Nurk et al.,

2021).

Genome assembly is expensive due to the high read lengths and number of reads

that are necessary to obtain a high assembly quality. Instead, most analyses rely on

a reference like the human reference genome and look for differences in their data in

comparison to that of the reference. In a step called mapping, the sequenced reads are
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aligned to the reference (Fig. 8). Mapping takes into account that not all reads match

perfectly with the reference. Mismatches may be caused due to differences between

sample and reference, but also due to the reference missing that particular sequence,

high sequence divergence, sequencing errors, or sample contamination.

reference: ..TTCATACAGCACTATGCGCGGGAAAAA..

TCATACAGCACT

GCACTATGCGCG TTGACCTTGGTA

al
ig

ni
ng

re
ad

read with

single mismatch

no good

alignm
ent

Figure 8: Read mapping. Sequenced DNA reads are matched to the already existing
reference sequence. Mismatches in the mapping between read and reference
may be due a difference in the sampled sequence, sequencing errors or because
the reads true alignment is to another location of the genome.

Variants are called once the reads are mapped to the reference. Variant calling means

going through the alignments and determining sequence differences from the reference

that are shared between multiple reads. Strong quality control is needed to screen

the found differences to minimize false positive results due to sequencing errors and

misaligned reads. All variants that pass these checks are collected and characterized in

terms of sequence difference, position, quality metrics, and number of observed reads to

distinguish heterozygous from homozygous variants. To obtain additional information

about haplotypes, variants located in close proximity may be phased by testing if they

appear on the same reads.

Structural types of genetic variants

The most frequent type of difference between two genomic sequences is the single nuc-

leotide variant (SNV): the exchange of one nucleotide in sequence A by one of the three

others in sequence B. Based on the structure of the nucleobase molecule, nucleotides

are divided into purines (Adenine and Guanine) and pyrimidines (Cytosine and Thym-

ine). As these structures influence the DNA secondary structure, SNVs are divided into

transversions, where a purine nucleotide is exchanged to a pyrimidine nucleotide or vice

versa, and transitions, where the basic purine (or pyrimidine) structure remains in place.

By combining the four DNA nucleotides, there are 12 possible SNVs, three of which are

possible at each position in a sequence. In addition, the unaffected adjacent nucleotides,
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reference: ..TTCATACAGCACTATGCGCGGGAAAAAGCGTCAGCTAAGCAGCTCGTA..

reads:

CATACAGCACTA
TTTATACAGCAC

CGTCAGCTCAGC

TACAGCACTATG

AT-CGCGGGAATA

ACAGCACTATGC

GCGCGGGAATAA

TACGGCACTATG

AGCACTATGCGC

CGGGAAAAAGCG
GGGAATAAGCGT

GAAAAAGCGTCA
AAGCGTCAGCTC
AGCGTCAGCTCA

CAGCTCAGCAGC
CTCAGCAGCTCG

CAGCAGCTCGTA

mismatches in
a single read

difference shared
between multiple reads

mismatch in all
reads

Figure 9: Variant calling. Variants are called from the difference between aligned reads
and the reference sequence. Mismatches found only in a minority of reads are
likely to be due to sequencing errors or misalignment. The task of the variant
caller is to find variants that are supported by multiple reads. Depending on
the fraction of reads a variant is observed in, there are heterozygous variants
that are only found on one allele and homozygous variants that appear in all
reads.

e.g. +1 and -1 of the affected position, are often considered when describing a SNV as

those play an important role in how variants arise (see next chapter). When multiple

SNVs appear in close succession on the same haplotype, they may be considered as a

mutational hotspot.

In comparison to the limited number of possible SNVs, there is an infinite amount of

possible larger variants (Fig. 10). These include the addition of novel DNA sequence in

an insertion and the removal of DNA sequence in a deletion. By definition, insertions

and deletions, often summarized as InDels, are less than 50 bp long.

Sequence alterations larger than 50 bp are called structural variants (SVs). There

is no length limit for SVs, including relocation of entire chromosome arms, though

most frequent human SVs are shorter than 100,000 bp long (Collins et al., 2020). SVs,

specifically large deletions and insertions, can be further classified according to where

the inserted sequence comes from or the deleted sequence goes. Accordingly, there are

dup- and multiplication of an existing sequence, translocations where a segment of DNA

is moved to another genomic locus, and inversions where a segment is reversed in its

orientation. These large-scale changes may be accompanied by multiple smaller sequence

changes like SNVs (or other SVs) in the sequence, further complicating the discovery
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TTCATACAGCACTATGCGCGGGAAAAAAG

TTCTTACAGCACCGATATGCGCGGAAAAG

reference:

alternative:

SNV insertion deletion

Structural variations

Small variants

reference:

alternative:

duplication insertiondeletion inversion complex

Figure 10: Types of small and large variants. All variants are identified as se-
quence differences of a sample (alternative) compared to the reference se-
quence. Defined as small variants are SNVs as well as insertions and deletions
(InDels) that affect less than 50 bp of DNA sequence. Larger variants are
called structural variants (SVs).

and classification.

In principle, any type of variant may have a phenotypic effect. Since most variants

are SNVs and short InDels with less than three de novo SVs discovered in an average

individual (Abel et al., 2020), many studies primarily focus on those smaller variant

types. This is also influenced by the fact that processes like variant calling heavily

depend on the type of variant: While SNVs will mostly lead to base mismatches in the

aligned sequence read, longer insertions may align a read to different genomic regions.

Larger variants remain important nonetheless. They were found causal for many diseases

(Mitelman et al., 2007; Sanchis-Juan et al., 2018) and are considered to be more likely

pathogenic per variant (Ganel et al., 2016), mostly due to the larger absolute change

and more affected genomic sequence (Sudmant et al., 2015).

2.3 Sources of variants

Most variants in a genome are shared with a parent (Fig. 11). They may have appeared

first in a distant ancestor and have been passed on ever since. All of these variants have
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accumulated since the last common ancestor of all humans, a hypothetical person from

which the genome sequences of all humans living today are inherited. The last common

ancestor has been estimated for the mitochondrial genome and chromosome Y in the

range of multiple hundred thousand years ago (Fu et al., 2013; Poznik et al., 2013).

Since chromosome Y and the mitochondrial DNA are the parts of the genome where

few recombinations happen, increasing the likelihood that large stretches from a single

genome are inherited by all individuals in a population (Jobling & Tyler-Smith, 2017),

the last common ancestor of other regions of the genome and variants within those may

be older than that.

Every variant in a genome has appeared once de novo in one individual through

mutation of the germline at that position and has since been inherited by that person’s

progeny. Trio sequencing studies, that compare the genome of a child to those of its

parents, have found a median of 60 to 70 de novo variants, variants that are limited

to the child (The 1000 Genomes Project Consortium, 2011; Kong et al., 2012; Kaplanis

et al., 2021). Some de novo variants are shared between siblings and derive from the

same parental gamete lineage where the mutation appeared (Jónsson et al., 2018). The

number of these mutation increases with parental age (Jónsson et al., 2017). More

de novo variants arise from the first cell stages of the developing baby, though later

mutations won’t affect most cells of the developing organism.

There are two main categories to classify sequence alterations by cause: spontaneous

mutations that appear due to structural damage to the DNA molecule and copying

errors that occur when the DNA is replicated (Ségurel et al., 2014). Endogenous causes

for spontaneous mutations include the formation of pyrimidine dimers and hydrolytic

deamination of cytosines (Lindahl, 1993). If not repaired, the altered nucleotides are not

recognized properly in the next DNA replication and a mutation manifests in one of the

daughter cells (Maki, 2002). Similarly, exogenous mutagens like radiation and reactive

oxygen species can induce spontaneous mutations by causing reactions of the DNA

nucleotides or breaking one or both DNA strands (Ségurel et al., 2014). Additionally,

replication errors occur when the DNA polymerase incorporates the wrong nucleotide in

the newly synthesized strand, a mistake that happens in about 1 in 104 to 105 bp (Echols

& Goodman, 1991) but is reduced to about 1 in 109 bp by proofreading exonuclease

domains in the DNA polymerases (Schmitt et al., 2009; Korona et al., 2011).

In most cases, the described DNA damage affects only one of the two strands of

the DNA double helix. These premutations only become permanent after the next
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reference ..TTCATACAGC--ACTATGCGCGGGAAAAAGCGTCAGCTAAGCAGC..

..TTCCTACAGC--ACTATGCCCGGGAAAAAGCGTCAGCTAAGCAGC..

..TTCATACAGC--ACTATGCGCGGTAAGAAGCGTCAGCTAAGCAGC..maternal

genome

..TTCATAGAGCTGACTATGCCCGGTAAAAAGCGTCAGCTAAGCAGC..

..TCCATAGAGC--ACTATGCGCGGGAAGAAGCGTCAGCTAAGCAGC..
paternal

genome

..TTCATACAGC--ACTATGCGCGGTAAGAAGCGTCAGCTA--CAGC..

..TCCATAGAGC--ACTATGCGCGGGAAGAAGCGTCCGCTAAGCAGC..
child

genome

homozygous variants
are always inherited

de novo SNV de novo deletionheterozygous variants
may be inherited

genotype of child can be
different from both parents

..TTCATACAGC--ACTATGCCCGGGAAGAAGCGTCAGCTA--CAGC..

..TCCATACAGC--ACTATGCGCAGGAAGAAGCGTCCGCTAAGCAGC..
child

tissue

somatic SNV

m1:

m2:

p1:

p2:

m1:

p2:

m1:

p2:

Figure 11: Inherited, de novo, and somatic variants. Most variants in every in-
dividual genome are shared with one of the parents. In contrast, de novo
variants are not observed in the genome of the parents. Somatic variants
are those variants that are not found in all cells of the organism. Depending
on when the mutation occurred, they are observed in only one or multiple
tissues.

cell division (Maki, 2002). Molecular repair pathways exist to correct premutations

that appear as mismatches between DNA strands. Repair mechanisms are diverse and

include mismatch repair such as the proofreading during DNA replication, nucleotide

excision repair and base excision repair that respond when one or multiple nucleotides are

damaged and need to be replaced, and the repair of double-strand breaks via homologous

recombination, matching the sequence to a sister chromatid, or via non-homologous end

joining (NHEJ) (Iyama & Wilson, 2013). Mistakes that happen in DNA repair or that

are a result of incomplete repair during NHEJ are an additional source of mutations

(Lieber, 2010). Variants in the associated repair genes can reduce or entirely prevent

the function of repair mechanisms so that more premutations will proliferate. While

heterozygous repair gene defects can increase the number of mutations (Sharma et al.,

2020), especially homozygous defects lead to very high mutation rates and are associated

with somatic (Roberts & Gordenin, 2014) and germline hypermutation events (Kaplanis

et al., 2021).
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The likelihood for a process to cause a mutation depends on the chromatin structure,

the DNA sequence, and the type of mutation (Sabarinathan et al., 2016; Mao & Wyrick,

2019). Some types of DNA damage like nucleotide deamination can only happen at

certain nucleotides. Accordingly, the number of mutations attributed to each process

follows characteristic nucleotide distributions. These process characteristics are found

stochastically in the form of mutational signatures in genome-wide analyses of mutation

counts (Alexandrov et al., 2013). Originally discovered in cancer studies, by now more

than 100 different mutational signatures have been established and are attributed to

many different sources, from repair enzyme defects to chemotherapeutic agents (Phillips,

2018; Tate et al., 2019; Alexandrov et al., 2020). As such, mutational signatures have

also been established for de novo mutations to describe global mutation distributions

and hypermutation events (Kaplanis et al., 2021).

Somatic variants and cancer

Germline variants exist in a genome since the fusion of maternal and paternal germ cells

and hence are shared between all cells in the organism. Somatic variants are mutations

that appear after the first cell division of the fertilized oocyte and are thus not found in all

cells. By definition, somatic variants exclude mutations in the germline, i.e. reproductive

tissues, therefore only affect the individual and are not inherited by offspring. Over a

lifetime, organisms continuously accumulate somatic variants in all body parts, with

increased numbers found in environmentally exposed and highly proliferating tissues

(Yizhak et al., 2019).

By disrupting cellular processes, the increasing number of variants is thought to be

one of the reasons for aging (Campisi & Vijg, 2009). High mutation rates have been

found to lead to severe damage of organ function, premature aging and are linked to

neurodegeneration and cancer (Kennedy et al., 2012). Somatic variants located in genes

that control processes like cell proliferation or cell death may disrupt the regulation of

those processes, lead to cellular aberrations and ultimately cancer. While not all cancer

cases start from a genetic cause (Yu et al., 2014; Ostrander et al., 2016), mutations

are thought to be necessary for the progression of every tumor (Morjaria, 2021). A

typical tumor genome contains 4 or 5 driver mutations, with most other somatic variants

currently believed to be passenger variants (Campbell et al., 2020). The driver mutations

enable faster growth, are responsible for evasion of the immune system, and facilitate

resistance to chemotherapy (Stratton et al., 2009). While not directly responsible for the
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unregulated growth, deleterious passenger mutation may contribute to the optimization

of the tumors growth strategy (McFarland et al., 2013). Not all variants that increase

the likelihood of a tumor or drive progression are somatic and may be inherited over

multiple generations (Brown et al., 2020). Often located in DNA repair genes, these

cancer syndrome variants are linked to increased basal mutation rates that eventually

lead to unlimited cell proliferation and cancer (Kaplanis et al., 2021).

Population sequencing and standing variation

Since the initial release of the human reference genome, various consortia have started to

sequence many human genomes in order to map variants across the world. While initial

human population whole-genome sequencing projects like 1000 Genomes and HapMap

already included more than 1,000 people, decreases in sequencing costs enable recent

projects like gnomAD, TopMed, UK10K to study 100,000 and more individual genomes.

Standing variation is the incidence of more than one allele in a genomic locus. It is

thought to be a major source of local adaption as variants that increase evolutionary

fitness are positively selected in a novel environment (Barrett & Schluter, 2008). Ex-

amples of local adoption are variants in the gene HBB that are most frequently observed

in tropical regions of Africa and, when heterozygous, provide resistance to malaria (Rees

et al., 2010). Variants in the genes MTHFR and EPAS1 frequently observed in Tibetans

are thought to enable better oxygen uptake at higher altitudes (Yang et al., 2017a). Not

all local differences are due to selection though but can also appear because of genetic

drift, changes in allele frequency that appear as a result of random mating (Rees et al.,

2020).

In addition to trait associations, studies of standing variation and genetic drift have

provided new insights into the historic distribution and interactions of human popula-

tions, both on a global scale (Elhaik et al., 2014) as well within countries (Leslie et al.,

2015). Accordingly, those variants can be used to geographically map humans in the

world based on relatives and ancestries. Some standing variation is shared even with

the genomes of Neanderthals (Green et al., 2010) and Denisovans (Reich et al., 2010).

A small excess of this allele sharing has led to the hypothesis that modern humans have

had admixture with those extinct human lineages (Lohse & Frantz, 2014), with some

variants in every non-African human being passed down from shared Neanderthal or

Denisovan ancestors. These variants are an important contribution to the diversity and

local adaptation of modern humans (Dannemann & Kelso, 2017).
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2.4 Genome-wide association studies and polygenic risk scores

Most variants in a human genome are not unique to the single individual but shared with

other humans. Large population sequencing studies such as gnomAD (Karczewski et al.,

2020) and BRAVO (Taliun et al., 2021) have found hundreds of millions of variants. As

of gnomAD version 2.1, 25 million SNVs and 6.7 million InDels have allele frequencies

greater than 0.1%. Frequent occurrence of variants enables statistical analyses, called

genome-wide association studies (GWAS), that integrate genotypes over hundreds of

genomes in order to link the significant enrichment of certain variants to measured

phenotypes (Hirschhorn & Daly, 2005).

Fine mapping of significant associations between a trait and a single causal variant

is impaired by linkage disequilibrium (LD) as phased variants are not found independ-

ently (Slatkin, 2008). The association of one or multiple causal variants may lead to

enrichment in nearby, linked passenger mutations that do not have any effect themselves.

While LD often complicates pin-pointing an effect to a single variant, numerous GWAS

hits have been validated in independent experiments or with high resolution and are

considered confirmed trait loci (Schaid et al., 2018). GWAS have been used to study

thousands of different traits and found numerous links to disease or phenotype (Vis-

scher et al., 2017; Buniello et al., 2019). Based on these findings, multiple medications

have been developed that are prescribed based on findings of certain genetic variants

(Szustakowski et al., 2020).

As common variants, most GWAS hits typically have relatively small effect sizes with

larger trait differences being caused by multiple loci (Tam et al., 2019). However, know-

ledge about multiple loci that influence the same phenotype can be combined to make

stronger predictions about the trait from the human genome. Polygenic risk scores

(PRS) estimate the cumulative effect of all common variants in a genome on a certain

trait (Dudbridge, 2013). While PRS have successfully been applied to predict lifetime

risks of disease (Lewis & Vassos, 2020), recent studies have also shown that the pro-

portion of total variance explained by PRS depends on ethnicity and social-economic

status, raising questions about sampling bias in the sequenced human genomes (Duncan

et al., 2019; Mostafavi et al., 2020).
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2.5 Rare Mendelian disorders

While the combined effect of multiple GWAS hits can be strong, most common variants

have relatively small effect sizes and explain only a fraction of total variation (Conrad

et al., 2010; Lupski et al., 2011; Marouli et al., 2017). As evolutionary pressure selects

against variants with negative effect sizes and for variants with positive effect sizes,

functional variants are generally depleted among common and hence enriched among

rare variants (Marth et al., 2011). Large negative effects are often seen for de novo

mutations (Acuna-Hidalgo et al., 2016; Deciphering Developmental Disorders Study,

2017). As de novo mutations may appear anywhere in the genome, there is a large

variety of phenotypes, with over 15,000 predicted disease genes (Cooper et al., 2010)

and over 6,000 described genetic disorders (Amberger et al., 2019). Many disorders have

been described for a small number or even just one individual and are hence known as rare

genetic diseases. In the past, rare disease mechanisms were studied by screening many

different biological pathways and biomarkers in order to find differentially expressed

genes and modified proteins (Rodenburg, 2018). Patients with a similar phenotype were

summarized into study groups to find a common etiopathogenesis, the shared cause and

development of an abnormal condition. High-throughput sequencing technologies have

enabled trio sequencing (Need et al., 2012), where the genomic sequence of the child

is screened for variants that are not found in the genomes of either of its parents (see

Fig. 11). Pooling rare genetic disease patients not just by phenotype but by variants in

the same genes improves the discovery of previously unknown rare disease genes (Wright

et al., 2018; Kaplanis et al., 2020), and supports the development of molecular treatments

based on response in those groups (Pogue et al., 2018).

Many rare diseases are monogenic, meaning that they are caused by variants in a

single gene. The large effect size of a single causal variant, that disrupts the proper

function of the involved gene, may cause a malformation. Monogenic diseases are also

called Mendelian disorders, named after the genetic inheritance rules first discovered by

Gregor Mendel. This distinguishes Mendelian from complex disorders that are caused by

a combination of environmental and genetic factors. Despite the name, many Mendelian

diseases lead to early death or infertility and are inherited less frequently as carriers do

not have any progeny (Mazzucato et al., 2014). Instead, the causal variant may appear

de novo and is only observed in the germline of the child (Deciphering Developmental

Disorders Study, 2017).
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2.6 The genetic variant interpretation challenge

The number of genomic differences of any human’s personal genome in comparison to

the reference genome is in the order of multiple millions in total (The 1000 Genomes

Project Consortium, 2015). This leads to a single-digit number of variants per thousand

bp of DNA, unevenly distributed over the whole genome (Rogozin & Pavlov, 2003). The

challenge in interpreting any single human genome is identifying the subset of causal

variants, that is responsible for a particular phenotype.

To cause a change in a macroscopic trait, a variant has to influence a molecular process

that is causing the altered phenotype. Based on the known difference to the annotated

genomic sequence, it is possible to predict those variant effects on different molecular

processes (Fig. 12). For example, the effect of a coding variant may be predicted

as the integration of a different amino acid depending on the nucleotide triplet in the

mRNA. Sequence predictions are very accurate, with possible predictions ranging from a

synonymous variant that has no consequence to the amino acid sequence to a non-sense

variant that causes the immediate termination of the protein’s amino acid sequence.

Other molecular processes like RNA splicing or transcription factor binding are harder

to assess, although progress in deep learning has led to the development of tools that

predict variant effects with previously unknown accuracy (Zhou & Troyanskaya, 2015;

Jaganathan et al., 2019; Cheung et al., 2019; Avsec et al., 2021).

Trait altering variants may be divided into two general molecular effect categories:

gain of function and loss of function. The terms refer to the impact on molecular

processes within a single cell like protein binding or formation of splicing isoforms.

In that sense, loss of function is the disruption of a process, e.g. two proteins stop

interacting or an existing site loses any splicing activity. Gain of function is then the

formation of a new process, e.g. a novel interaction or splice site. The reason for this

distinction is different predictability. As an existing activity is linked to a genomic

sequence, mutations to that locus will very likely have a disrupting impact on that

activity. On the contrary, a new activity may be one of many possible alternatives,

e.g the novel protein interaction may be with any of thousands of proteins. Further,

the existing activity is likely to play a certain role in the cell as else it would have

been lost over time, while a new one may have no further consequences aside from the

activity itself. Therefore, it is not surprising that concordance of variant consequence

interpretations is higher for stop-gain mutation, that are typically loss of function, than

for splice site or protein sequence changes, that may be loss or gain (Yang et al., 2017b).
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Promoter variant Coding variant Intergenic variant Enhancer variant

Non-coding RNA variant UTR variant Intronic variant Splicing variant

Transcription start site Coding sequence RNA splicing Untranslated region Regulatory element

Alternative splicing

Figure 12: Consequences of a variant. Depending on the location in the genome,
variants can influence different cellular processes. While some like promoter,
enhancer or UTR variants are mostly effecting the expression of the associ-
ation gene, splicing and coding variants may alter the structure and therefore
function of the translated protein. A majority of randomly sampled variants,
including most intronic and intergenic variants, will not have any affect on
gene expression.

Properties of a causal variant

A variant may not have the same effect in all humans. For some carriers, a variant

may lead to a genetic disease while other carriers are not affected. Penetrance is the

probability that a person has a disease given a certain genotype. For example, a variant

has a 70% penetrance regarding a disease if 7 in 10 individuals that carry the variant

develop clinical symptoms of that disease. A variant has complete penetrance when all

carriers of the variant are affected, otherwise the variant has incomplete penetrance.

Known since the famous pea experiments of Gregor Mendel, genetic traits may be

inherited dominant or recessive. Dominant means that a single copy inherited from

either parent is sufficient to cause the linked phenotype. In contrast, a recessive allele

needs to be on both haplotypes to have the same effect. While for a dominant trait,

at least one parent has to have the same trait, recessive traits may not appear in any

ancestor, although both parents carry one copy of the causal allele. Dominant and

recessive are mostly defined for alleles rather than specific variants. A person may

have two alleles of a recessive trait and hence express the linked phenotype, despite the

variants on the two alleles not being identical.

Some traits are neither entirely dominant nor recessive but on an intermediate level

between those. These may be explained by genes where the two copies of an allele can
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in principle compensate for each other but multiple variants may cause the effect. In

this case, both a homozygous genotype as well as a heterozygous genotype with a second

variant on the complementary haplotype may cause the phenotype.

Incomplete penetrance of a single variant can be caused by environmental factors, but

may also be caused by interaction with other genetic variants (Cooper et al., 2013). For

example, a frameshift mutation alone has strong consequences for the expressed amino

acid sequence of a gene. If there is a second frameshift in the same gene and the shifts

of the two cancel out, the effect on the protein may be rescued. Similarly, the effect of

any SNV may be masked by an upstream frameshift, or a splicing change may only be

caused by some variant combinations (Baeza-Centurion et al., 2019). Compensation or

masking of variant effects by variants in other genes is called epistasis.

Terms used to describe variants can be different between medical and population ge-

netics perspectives. If a variant is causing a negative effect, the medical field prefers the

term pathogenic while the latter uses the term deleterious. While both words are often

used synonymous, here they have distinct meanings: Variants are pathogenic if they

are an actual disadvantage for the carrier by causing an unwanted phenotype. When

a variant is deleterious, it may be pathogenic or it may not have any effect on the

carrier, often due to incomplete penetrance. Nevertheless, the deleterious variant is dis-

advantageous from an evolutionary perspective because it may cause a negative effect in

another situation, e.g. when being homozygous or through epistasis with other variants.

Over multigenerational time scales, there is selection against deleterious variants. When

variants do not have an effect on selection or phenotype, the medical term benign and

the population genetics term neutral are used synonymously.

Ranking and validating causal variants

Identifying a strong molecular variant effect does not prove a link to a change in pheno-

type. Even stop-gain variants, of which on average between 1 and 2 are found in every

healthy human genome, may not have a strong negative effect, with those variants be-

ing enriched in non-essential genes that are thought to have no impact on the carrier

(Karczewski et al., 2020). Conservation scores that track the number of mutations over

long evolutionary time scales, as well as regional variant frequency indices, are tools

for assessing the robustness of genes, non-coding regions, or parts thereof to novel vari-

ants. Variant effect scoring methods, introduced in detail in the next chapter, combine

different sources of variant effect prediction in a single metric. The resulting score ap-
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proximates variant deleteriousness and is used to prioritize variants by the likelihood of

a disease-causing effect.

The highest scoring variants are finally investigated in detail to validate the link to

the phenotype of concern and characterize a possible mechanism of action (Richards

et al., 2015), knowledge that can later be used to derive treatment options and actively

influence the phenotype. Relatively simple functional assays like RNA-Seq, metabolome

profiling, and analyses of protein expression are used to independently validate the vari-

ant effects (Rodenburg, 2018). Findings from many different patients and their medical

data may be integrated in order to support the discovery of disease mechanisms based

on statistical data (Kaplanis et al., 2020). If these are not sufficient or to explore treat-

ment options further, a more in-depth study including animal models, patient-derived or

human-cell-line culture experiments may be necessary (Rodenburg, 2018). Best practices

further call for validation of all causal variants by orthogonal sequencing technologies

(Rehm et al., 2013; Marshall et al., 2020). Most of these validation experiments are

laborious and expensive. It is therefore critical that ranking of all genomic variants is

done comprehensively as to prioritize the validation of variants with a high likelihood of

having an effect (Richards et al., 2015).
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3 In silico evaluation of genetic variants

Based on prior biological knowledge, an informed user can evaluate if a genomic variant

is likely to cause disease. The used information about genes, sequence modifications, or

evolutionary history of the sequence at a particular location in the genome is referred to

as genome annotations. Single annotations are often not sufficient for a full evaluation,

as even strong signals of pathogenicity like gain of a stop codon can turn out neutral

(Rausell et al., 2020). This makes variant evaluation laborious: hundreds of data an-

notations are available for every single variant and have to be put into relative context.

Accordingly, there has been a long-time trend in computational biology to automate

this task in a process called variant effect scoring. A variant effect score collects differ-

ent annotations about a variant, evaluates the severity of each of those, and eventually

generates a score that predicts the likelihood of a variant effect. In this sense, the score

acts as a ranking mechanism that prioritizes variants that are likely to cause a change

in phenotype over variants that are likely to be neutral. The goal is to evaluate all

variants in a genome within a few hours at most. In this chapter, I review the general

methodology of variant effect scoring methods, catalog variant annotations that can be

used to predict variant pathogenicity, and give an overview of existing solutions to score

genomic variants genome-wide. The chapter concludes with a detailed introduction to

the variant effect score CADD.

3.1 Variant effect scoring

There are many different terminologies for the scoring, prioritizing, and ranking of ge-

netic variants that are not standardized between different scientific publications. In the

following, variant effect score describes a numeric value that is assigned to a genetic

variant to assess its potential to have an effect. A variant effect score can predict a

single effect like the disruption of RNA splicing or be rather generalized and summarize

a multitude of different effects in a single metric that predicts pathogenicity. The score

itself may be used to rank or prioritize variants. Variant prioritization itself may depend

entirely on a variant effect score or may integrate additional, case-specific information.

With that, prioritization may restrict variants to genomic locations within a set of genes

that have been previously found to cause a similar phenotype, or separately handle

previously classified variants.

The noun ”score” here describes both the variant effect score of the single variant (e.g.
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”Variant V42 has a score of 0.9”) as well as the totality of all variant-value assignments

(e.g. ”The score has a range from 0 to 1”). Variant effect scores are the output of

applying a variant effect model to genomic variants (Fig. 13). The ”model” receives a

genomic variant as input and generates the score based on information about the variant.

The model has been developed using a particular variant scoring method based on prior

knowledge about the metric the score is based on. The ”method” specifies the overall

model settings and the algorithm that determines the model parameters. In that sense,

each model is an instance of the variant scoring method of which there can be multiple

versions. The actual calculation of the score is done by a software implementation,

colloquially called ”tool” (e.g. ”We developed a tool to assess genome-wide variant

effects”).

Development phase Application phase

input:
genomic information

input:
training set

output:
variant effect model

generate model

input:
variant set

output:
variant effect score

scoring

retrieve
information

retrieve
information

Figure 13: Variant effect model and score. The variant effect model is developed to
predict a variant effect based on genomic information about genetic variants.
The variant effect score is the metric generated by applying the variant effect
model to any genomic variant.

Predicting variant effects

Each variant effect score has several defining properties: the type of effect predicted,

the metric that is used to represent the effect, the types of information that are used
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to perform the prediction, and the structure of underlying algorithms and general para-

meters of the model that performs the score calculation. Predicted effects can be the

likelihood of an impact on the phenotype of the entire organism like pathogenicity or

deleteriousness of the variant, or a single cellular process like the binding of a molecule

to the DNA, RNA splicing, or enzyme kinetics. All these effects have in common that

they are impossible to predict with simple deterministic methods, like the consequence

of amino acid exchange on the protein sequence. The effect, or a matching metric, is

studied in detail through a variant assay or animal model by measuring the consequence

of every single variant from a given set. The measured effects can be used to develop

the score and benchmark its performance. While raw or transformed measurements may

be used for these tasks, many applications are based on a division into result classes:

variants with and without an effect, sometimes further graded into severity levels. The

predicted variant effect score is then optimized for distinguishing between these classes.

There are two fundamental concepts, based on which information the variant effects

are predicted: based on either nucleotide sequence alone or integrating various genomic

annotations. Sequence-based variant effect scores generally subtract the prediction for

the alternative sequence of the variant from that of the reference sequence. Initially,

many sequence-based variant effect scores were k-mer scores that assign one value to

each possible DNA nucleotide combination of length k, with typical values of k ran-

ging between 5 and 12 (Yeo & Burge, 2004; Lee et al., 2015; Rosenberg et al., 2015;

di Iulio et al., 2018). Advances in deep learning technologies have led to the prediction

of effects from longer sequences, with recent neural networks integrating sequences that

are thousands of nucleotides long (Jaganathan et al., 2019; Avsec et al., 2021). Many

sequence-based variant effect predictors are specialized to a single biological processes

like transcription factor binding (Avsec et al., 2021), DNA splicing (Yeo & Burge, 2004;

Rosenberg et al., 2015; Jaganathan et al., 2019; Cheng et al., 2019), nucleosome position-

ing, ribosome loading (Sample et al., 2019), or choice of poly-adenylation sites (Bogard

et al., 2019). More general application include missense (Sundaram et al., 2018) and

non-coding effect prediction (Zhou & Troyanskaya, 2015), including some like the k-mer

score CDTS (di Iulio et al., 2018) that are designed for genome-wide effect prediction.

In annotation-based variant effect scoring, the variant effect is predicted based on

various types of genomic information (Fig. 15A). That information, referred to as an-

notations, is specific for the variant itself or has been generated for the genomic position

of the variant. Annotations can be specific for one type of variant consequence (compare
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Variant
Chromosome:        22
Position:  43,451,447
Reference:          C
Alterantive:        A

Genome: ..TCAAGTGATTTTCCCAGGTCAGCCTG..
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sequence    window

GATTTTCCCAGGT
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reference prediction

alternative prediction
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Xalt
Score: y = Xalt - Xref

Sequence based model

^

Figure 14: Sequence-based variant effect model. Entirely based on DNA sequence,
a window around the variant is looked up in the genome. The alternative
sequence is constructed from this reference sequence by exchanging the refer-
ence by the alternative nucleotides. The variant effect score is the difference
of the sequence model prediction on both sequences.

Fig. 12) or generalized to all genomic variants. Sources of annotations are almost any

kind of information that may be known or generated about the variant or its location.

These include genomic sequencing readouts, properties of the DNA or protein sequence,

and aggregated knowledge of genes and protein domains. As such, many annotations

are also a type of variant effect that may be generated by another effect predictor. Meta

classifiers integrate specialized process predictions and other variant effect scores as an-

notations into their prediction (Dong et al., 2015; Ioannidis et al., 2016). In total, a

great number of annotations have been used in different variant effect scores, with every

score being based on a distinct set. More detail about different annotations is given in

chapter 3.3.

To generate the score, all annotations are retrieved, processed, and summarized by

the model into the score. One way of summarizing many annotations into a single score

is the linear model (Fig. 15C). All annotations are transformed into numeric values

(Fig. 15B) and each is multiplied with a model parameter, the sum of which is the

variant effect score. More complex model structures like binary trees (Fig. 15D) or deep

neural networks enable the integration of feature interactions, which otherwise have to

be created manually.

There is a continuous overlap between sequence and annotation-based variant effect

scoring. For example, sequence-based scores may integrate gene annotations to derive

the evaluated sequence or limit scoring to suitable genomic regions. Similarly, sequence

properties like GC content, the observation of selected DNA sequence motifs, or en-

tire, previously generated sequence-based scores can be annotations in annotation-based

scores. Hard to classify are models like PolyPhen (Ramensky et al., 2002) and SIFT (Ng

& Henikoff, 2003), that are based on comparative sequence analysis, and share properties
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Figure 15: Annotation-based variant effect model. A based on variant position
and substitution, different annotations are retrieved, encoded in a numeric
vector and scored with the annotation-based model. B Encoding translates
categorical annotations into numeric variables. The actual model can have
different structures like a linear (C) or binary tree model (D).

from both types of variant effect scoring.

Learning to predict an effect

In principle, it would be possible to manually create a variant effect model based on

expert knowledge. For many annotations, it has been well described how the encoded

process translates to a phenotypic alteration. However, this is not the case for all

annotations, even less so for sequence-based predictions. The assignment of variant

information to effect is instead algorithmically optimized, or trained, using machine

learning.

By the number of published scores, the most popular way of training such a machine

learning model is based on labeled variants from various variant databases. These data-

bases are easily accessible, genome-wide, and contain thousands of previously studied

genomic variants. The model is trained by a machine learning algorithm that maximizes

the ability to predict a previously determined metric or to distinguish between, in most
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cases, two classes of variants: pathogenic and neutral.

Besides the annotations and the variant sets used for training, any variant effect score

is defined by the algorithm that is used to generate the model. For this task, most variant

effect models are using supervised machine learning based on labeled variants. Possible

algorithms are interdependent with the final model structure. Binary tree based models

are mostly trained via either random forests (Li et al., 2009; Carter et al., 2013; Ritchie

et al., 2014; Zhang et al., 2015; Smedley et al., 2016; Douville et al., 2016; Ioannidis

et al., 2016) or gradient boosting trees (Jagadeesh et al., 2016; Capriotti & Fariselli,

2017; Gray et al., 2018), though other decision tree algorithms have been used (Hu &

Ng, 2013; Jian et al., 2014a). Linear models are trained with linear SVMs (Zhao et al.,

2013; Kircher et al., 2014; Folkman et al., 2015; Livingstone et al., 2017) or logistic

regression (Dong et al., 2015; Huang et al., 2017). More complex structures are possible

with deep neural networks (Quang et al., 2015; Xiong et al., 2015). Other methods that

are not based on supervised machine learning are using likelihood-ratio tests (Chun &

Fay, 2009; Yandell et al., 2011; Choi et al., 2012; Fu et al., 2014), Bayesian classifiers

(Adzhubei et al., 2010; Zhang et al., 2014; Schwarz et al., 2014), hidden Markov models

(Shihab et al., 2014) or clustering (Ionita-Laza et al., 2016).

Using effect scores to diagnose patients

Variant effect scores are an important component in rare disease diagnosis pipelines (Zhu

et al., 2015). The score metrics are used to rank variants based on the likelihood to cause

large phenotypic effects. Unfortunately, there seem to be no studies that quantify the

impact of variant effect scores independent of linked variant analysis steps like filtering

for common variants and known disease genes. Recent studies suggest that between

30% and 50% of novel genetic disease cases can be solved through WES followed by

variant analysis (Farwell et al., 2015; Stark et al., 2016). This rate of diagnosis drops

however for patients that could not be diagnosed in previous analyses (Boycott et al.,

2017), with follow-up WGS studies finding candidate variants in approximately one in

four cases (Wright et al., 2015). Using trio sequencing has led to increased diagnosis

rates than sequencing of only the patient’s genome (Farwell et al., 2015).

3.2 Databases of analyzed variants

Prior knowledge plays an important part in the evaluation of a set of genetic variants.

Nowadays, there are variant databases such as ClinVar (Landrum et al., 2018), HGMD
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(Stenson et al., 2020) or OMIM (Amberger et al., 2019) that contain tens of thousand

of variants. The variants are classified by an ontology that includes an assessment of

whether the variant may cause disease. The American College of Medical Genetics has

defined guidelines for the assessment and assigns variants based on evidence in one of five

different interpretation categories (from pathogenic to benign) (Richards et al., 2015).

In cases where a variant cannot be classified with absolute certainty due to missing

evidence or incoherent data, it may be classified in the category ‘uncertain significance‘

(Rehm et al., 2015). For most variants, the database record includes an explanation for

why a particular category was assigned, as well as additional information like population

allele frequency, associated phenotypes, or medical case studies.

Genetic variant databases are steadily growing, with comprehensive databases like

ClinVar as of 2021 containing in the order of 100,000 genetic variants while variant

archives like dbSNP (Sayers et al., 2011) or gnomAD have hundreds of million variants.

In any case, all databases are far smaller than the 9 billion possible SNVs in the human

genome, not to think about InDels and SVs where an ultimately unlimited number of

possible combinations exists. All those variants are not found in databases or where

evidence is inconclusive remain to be studied by genetic assays, phenotype association,

and variant effect scoring.

Databases as a source for model training

Based on the assumption that already studied variants are a random subset of all genomic

variants, databases are an important resource of labeled data when developing variant

effect models. Especially ”pathogenic” variants from ClinVar and HGMD have been

used as positive training instances for developing variant effect models. Those have

been set in contrast to variants classified as ”benign” in the same database (Capriotti

& Fariselli, 2017).

However, many regions of the genome have not yet been studied in depth. Hence, it

is currently unknown to which extend variants in any database are subject to selection

bias. Assuming that variant classification requires a prior study, especially the ”benign”

class may contain a large fraction of variants that were investigated for being causal

of a disease. While any disease implications may have been cleared eventually and

the variants are classified correctly as ”benign”, the selection, possibly based on some

genomic feature, may have led to a different distribution than in the genomic background

(Cooper et al., 2010; Nykamp et al., 2017). To avoid such biases, some models are
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trained using common variants that are shared among many individuals or rare variants

from healthy humans as a negative variant set. With that, they are following guideline

recommendations that those variants should be regarded as neutral (MacArthur et al.,

2014; Richards et al., 2015; Nykamp et al., 2017).

In the same way that variants classified as ”benign” are not representative of all

neutral variants, variants classified as ”pathogenic” went through specific ascertainment

and most likely do not represent the true distribution of all disease-causing variants.

Unbiased alternatives are data sets created from evolutionary changes between species

genomes (Adzhubei et al., 2010; Gulko et al., 2015; Kircher et al., 2014; Huang et al.,

2017; Sundaram et al., 2018) or population variants (Ionita-Laza et al., 2016; di Iulio

et al., 2018). Not all variants in such a set will be assigned the correct labels, which is why

they may be termed proxy-labels. Possibly due to the larger absolute size of the data set,

variant effect scores trained on proxy-labeled variants nevertheless perform reasonably

well, as shown by the benchmarks published in the respective studies mentioned above.

3.3 Genomic annotations

Over the last decades, a lot of knowledge has been collected about different processes that

are taking place in human cells. Long before the establishment of the human genome

sequence, much of this knowledge had already been attributed to certain DNA sequences.

As a result of the decoding of the human reference genome, these sequence-information

relationships are now linked to defined coordinates of the genome and referred to as

genome annotations (Stein, 2001). Annotation of a genomic variant is hence the process

of retrieving linked data given the position of the variant in the genome.

Formats, access, and types

Some annotations can be derived from other annotations, like the amino acid exchange

caused by a genomic variant that depends on the annotation of a gene, the reference

amino acid, and the substitution taking place. All other annotations that are not derived

are generally stored in annotation data files. These files consist of individual data points

that each are related to one position, or coordinate, in the genome. The genome position

can be a single bp or a continuous stretch of DNA, from a start position to an end position

(smaller to larger coordinate). For annotations where the direction is important, an

optional strand information encodes whether an annotation like a gene refers to the DNA

strand that is encoded in the genome reference sequence (+) or the respective reverse
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complement (−). Similarly, a phasing parameter can specify when multiple elements

are located on the same haplotype. In addition to that, positions can be specific to a

single DNA substitution in which reference and the substituting alternative sequence are

listed. The information that is encoded by the annotation may be of numeric value (e.g.

expression is 4.5), categorical (e.g. segment is a regulatory element), or string-based

(e.g. gene name is YAP1). In some cases, the position alone is sufficient as it encodes

the existence of the annotation at that position. Multiple information sources may be

summarized based on shared positions in a single annotation file.

Although standards for biological information storage are not a recent development

(Ashburner et al., 2000), raw annotation data is stored in files of almost any format.

Manuscript data is often published in a way that is practical to the authors, for example

in a Microsoft Excel sheet or an unspecified text file. Nevertheless, a number of stand-

ardized formats are popular and used for many large annotation data set. The Browser

Extensible Data (BED, https://genome.ucsc.edu/FAQ/FAQformat.html#format1)

format is designed for annotating genomic range data. In addition to three required

position fields (chromosome, start, and end), a BED file contains up to 9 to specify

information like element name or strand information. If only a score value is assigned

to each range, the simpler bedGraph format (https://genome.ucsc.edu/golden

Path/help/bedgraph.html) limits columns to the three for the position in addition

to a fourth for the score itself. Other formats to store genomic range information are

the General Feature Format (GFF) and its derivatives Gene Transfer Format (GTF)

and Genome Variation Format (GVF, Reese et al., 2010). All three consist of nine

columns that encode a genomic position and the annotated features name, source plus

additional attributes (https://genome.ucsc.edu/FAQ/FAQformat.html#format3).

While GFF has been developed to annotate any type of genome element, GTF spe-

cifically addresses data where multiple attributes are stored for each element. GVF is

optimized to describe sequence alterations in association with a stored attribute. Con-

tinuous data with constant element size is commonly presented in wiggle format (WIG,

https://genome.ucsc.edu/FAQ/FAQformat.html#format6). WIG has the advantage

that position information of subsequent values can be omitted, reducing file size and

increasing access speed. The Variant Call Format (VCF, Danecek et al., 2011) stores

genetic variants in coherence with information about these variants and is especially

flexible regarding the annotation of multiple different annotations in a single file. All

described data formats are stored in tab-delimited ASCII text files and therefore read-
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able and writable with any text editor. The size of the raw text files is reduced via

compression, generally with gzip (https://gnu.org/software/gzip).

Loading large annotation files is time-consuming and often limited by the space of

available working memory. Efficient collection of annotations for a set of variants is hence

constrained through the necessary files accesses. In order to avoid loading the entire files

and reading until the required position, a file index for each file enables direct file access

so that data is read only at the requested position. These file indices are binary-tree

derived data structures that contain file pointers to defined genomic intervals. Tabix (Li,

2011) is a specialized bioinformatics software to generate these indices for compressed

files in formats like BED, GFF, and VCF. Alternatives are dedicated file formats such

as bigWig and bigBed that include an index at the beginning of the data file (Kent

et al., 2010). Functionally identical are indices from relational databases such as SQL.

Specialized variant annotation software like Annovar (Wang et al., 2010) or Ensembl

VEP (McLaren et al., 2016) employ such a database to efficiently annotate variants.

Sources of annotations

Any annotation-based variant evaluation depends on many different annotations. Some

annotations are measured directly as raw biological readout while others are derived by

integrating various sets of raw data. Common to all is that they represent some type of

cellular process or genomic feature.

The first considerations when annotating a genomic variant are other genomic elements

that have been located at the same position. These elements provide a general inference

of what kind of consequence (see also Fig. 12) the variant may have and thus what kind

of other annotations may be relevant. The location of all transcripts that are transcribed

from a genome, associated exons and introns, and how these fit into a limited set of genes

is called a gene annotation. Human gene annotation builds are published in databases

like GENCODE (Harrow et al., 2012) and RefSeq (Pruitt, 2004). Information like gene

names, transcript identifiers, and encoded proteins are referenced in the gene annotation

and can be used to obtain further annotations.

There are plenty of genomic features that may be annotated to variants in protein-

coding regions. Given the annotation of the transcribed sequence, sequence effects are

simple to predict. From these, missense effects may be analyzed for changes in bio-

chemical and biophysical properties of the involved amino acids. The same substitution

may have different effects at different positions in the protein, so that the function of
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the associated protein domain or secondary structures like alpha helices and beta sheets

may be considered. Databases like PDB, STRING and UniProt are a source of three-

dimensional structures (wwPDB consortium, 2019), protein-protein interactions (von

Mering et al., 2005) or known post-translational modifications (Khoury et al., 2011).

Homologous proteins and domains of known function may enable conclusions that can

be adapted to the variant of interest (Loewenstein et al., 2009). While there is recent

progress in predicting protein structure directly from sequence (Jumper et al., 2021), it

is currently unclear how predictive these structures are for functional changes.

In the absence of coding sequence effects, other annotations are emphasized when

synonymous or intronic variants are evaluated. These variants impact gene expression

via codon usage bias (Liu et al., 2021) and RNA splicing, the assembly of multiple

exons into a mRNA. Alternative splicing of a single gene into multiple isoforms is one

major source of the complexity in the human proteome (Ule & Blencowe, 2019). Many

components contribute to ”correct” RNA splicing, including donor and acceptor splice

sites, branch points, and binding sites for small nuclear ribonucleoprotein particles as

well as the 3D conformation of the RNA, which may be impacted by genomic variants

(Lee & Rio, 2015).

Annotations that link gene expression via changes in the mRNA levels may be con-

sidered for variants in untranslated regions (UTRs). The 5’ UTR of a transcript can be

affected by upstream open reading frames (Whiffin et al., 2020). Ribosomal loading is

affected by the Kozak sequence (Sample et al., 2019). Binding sites for miRNAs and

RNA binding proteins have been found important annotations when evaluating variants

that are located in the 3’ UTR (Griesemer et al., 2021). However, the by far largest

expression changes in 3’ UTRs seem to be caused by variants that alter existing poly-

adenylation sites (Bogard et al., 2019), encouraging the annotation of such elements.

Compared to transcribed regions, it has taken a long time to develop comprehensive,

genome-wide annotations of non-coding variants. The impact of transcription factor

(TF) binding on gene regulation has been known for a long time (Mitchell & Tjian,

1989), and TF motif databases like JASPAR (Sandelin et al., 2004) and DNA shape

predictions (Zhou et al., 2013) annotate possible binding sites genome-wide. However, it

is impossible to separate functionally active sites based on DNA sequence motifs alone,

even though these are certainly significantly enriched (Elkon, 2003; Wang et al., 2018;

Zeitlinger, 2020). Over the last 15 years, the encyclopedia of DNA elements (ENCODE)

and similar projects have generated a large collection of genome readouts of transcrip-

61



tion factor binding, histone modification, and chromatin state. Integrative functional

analyses based on these data have defined candidate cis-regulatory elements that can

now be annotated from databases like SCREEN ENCODE Project Consortium et al.,

2020. The generated data serves also as input for segmentation and genome annota-

tion algorithms like ChromHMM (Ernst & Kellis, 2012) and Segway (Hoffman et al.,

2012) that divide the entire genome into distinct functional classes. The characteriza-

tion of chromatin structures like topological associated domains has greatly increased

the understanding of regulatory element interaction (Hu & Tee, 2017), although the

definitive association between a functional element and the regulated gene remains an

open challenge (Schmidt et al., 2020).

A central component in most annotation-based variant effect scores, independent of

other genome features, is conservation: Conservation scores like phastCons (Siepel et al.,

2005), phyloP (Pollard et al., 2010), GERP (Davydov et al., 2010) and SiPhy (Garber

et al., 2009) measure the stability of genome segments over evolutionary time scales.

Regions of the genome sequence from different species which align very well are con-

sidered highly conserved. In contrast, regions where there are no or few closely related

species genomes align, or where there are frequent nucleotide mismatches in the aligned

genomes, are of low conservation. While mutations happen by chance and may affect all

positions of the genome, those in functional regions will lower the reproductive success

of its carrier and are therefore selected against. Survivorship bias causes mutations to

accumulate in regions that do not affect function (Havrilla et al., 2019). Consequently,

conservation scores are a stochastic measure of mutational tolerance and identify posi-

tions in a DNA sequence that are absolutely necessary for the function of the respective

genome segment (Lindblad-Toh et al., 2011; Finucane et al., 2015).

In summary, there is a large number of annotations that may be considered for variant

effect scoring. Those pointed out here serve only as examples for a much larger variety,

with constant publishing of new annotations. Variant effect scores that predict cellular

processes may be themselves the source of an annotation in other, more general scores.

Arguments for or against single annotations are dependent on the individual variant ef-

fect score. Considerations should be mostly regarding the association with the predicted

variant effect, correlation with other annotations, and how far the annotation may be

biased for or limited to previously studied genes. It is, therefore, no surprise that every

variant effect score will use a slightly different set of annotations.
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Figure 16: Genome conservation in UCSC genome browser. Screenshot showing
the transcription start site of the gene PITX2. The center of the plot are
alignments of other vertebrate genomes to the human reference. In the UTR
and coding region of PITX2, more species genomes like chicken and zebrafish
align than in non-coding regions. More and less variable alignments lead to
higher conservation, here represented exemplary by phyloP 100 vertebrate
conservation.

3.4 Variant score implementations

As of 2021, an overwhelming number of computational variant effect scores, associated

software, and web server have been published. Every score has been developed with a

certain focus like coding or non-coding regions of the genome, certain effect categories,

variants of unknown significance, or InDels and SVs. Parameters like spatial resolution

are influenced by the used annotations, while architecture optimizations enable novel

insights based on previously known data.

Coding variant scores

Coding variants that result in changes to the amino acid sequence of a protein and

are a primary cause of large variant effects (Cargill et al., 1999; Sunyaev et al., 2001).

A large fraction among coding variants are missense variants, in place substitutions of

amino acids in protein-coding genes. While old and new protein sequences are simple to

predict based on nucleotide triplets, the coding effect score predicts pathogenicity that

may be caused by the altered protein.

The first considerations regarding coding variants were amino acid substitution matrices

like Grantham (Grantham, 1974), PAM (Dayhoff et al., 1979) and BLOSUM (Henikoff

& Henikoff, 1992) that are based on evolutionary substitution likelihoods. With the

rise of comparative genome alignments, these were combined with genome conservation
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in methods like PolyPhen (Ramensky et al., 2002) and SIFT (Ng & Henikoff, 2003).

Recent coding variant scores integrate knowledge about biophysical and biochemical

characteristics of the altered amino acids, post-translational modifications, protein do-

mains, protein classes, homologous proteins, and enzymatic assays into the prediction

(Adzhubei et al., 2010; Choi et al., 2012; Carter et al., 2013; Gray et al., 2018).

Protein truncating variants (PTVs), coding variants that cause a novel stop codon,

the loss of a start codon, a frame-shift or change in splicing, have on average equal or

more constraint than missense variants (Exome Aggregation Consortium et al., 2016).

While a PTV close to the reference stop codon may have less of an effect than one closer

to the start of the gene (Nagy & Maquat, 1998), the assessment of PTVs is less variant-

specific since the partial or full loss of protein function can be assumed in almost all

cases (Rivas et al., 2015). The main consideration regarding PTVs are hence properties

of the encoded gene like essentiality and haploinsufficiency (Cassa et al., 2017; Rausell

et al., 2020).

Of limited concern regarding protein function are synonymous variants that would

rather influence gene regulation than alter protein function (Hunt et al., 2014; Exome

Aggregation Consortium et al., 2016). Considering their impact on RNA splicing, many

coding variant effect scores nevertheless integrate annotations to predict synonymous

variant effects. Variants that cause the loss of a stop codon are often neglected for being

statistically rare (Hamby et al., 2011) and generally evaluated like missense variants

without dedicated annotations (e.g. Adzhubei et al. (2010); Kircher et al. (2014); Ionita-

Laza et al. (2016); Gray et al. (2018).

Specialized scores and non-coding variants

Many variant scores are predicting effects on a single molecular process like RNA splicing

(Jian et al., 2014b; Cheung et al., 2019) or transcription factor binding (Alipanahi et al.,

2015). The generated scores are not replacements of pathogenicity but rather the effect

on the process independent of organism-wide impact. Variant sets that are used to train

specialized models are defined in molecular assays that sample the modeled effect like

Deep Mutational Scanning (Gray et al., 2018) and STARR-seq (Muerdter et al., 2015).

Another alternative are associated labels based on genome-wide readouts like peaks in

ChIP and DNase-seq data set (Zhou & Troyanskaya, 2015; Kelley et al., 2016).

Findings from GWAS analyses indicate that a majority of phenotype-associated vari-

ants may be located in non-coding regions of the genome (Edwards et al., 2013). How-
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ever, the number of possible non-coding variants is much bigger than that of coding

variants, increasing the number of candidate pathogenic non-coding variants. As a con-

sequence, a comparatively small number of non-coding variants have been found causal of

genetic disease and added to databases such as ClinVar (Makrythanasis & Antonarakis,

2013; Smedley et al., 2016).

In addition to that, many annotations that are key for coding prediction are unsuitable

for non-coding parts of the genome (Drubay et al., 2018). Many regulatory regions of

the genome are recently evolved (Ponting, 2017), so that genomic conservation, a central

component of coding effect prediction, performs poorly on variants in regulatory elements

(Kircher et al., 2019). Due to the absence of good alternatives, many (Lee et al., 2015;

Zhou & Troyanskaya, 2015; Kelley et al., 2016; Avsec et al., 2021), but not all (Smedley

et al., 2016; Huang et al., 2017), non-coding effect scores are sequence-based.

Genome-wide variant effect scoring

Genome-wide models combine the evaluation of variants in coding and non-coding re-

gions of the genome in a single metric. Due to the limited number of non-coding variants

in databases like ClinVar or HGMD, they are generally trained on other training set such

as variants detected in populations sequencing (Ionita-Laza et al., 2016) or derived by

comparison to other genomes (Kircher et al., 2014). The attribute genome-wide fur-

ther implies that annotations have to be considered especially carefully in order not to

introduce observation or selection biases. Due to the number of covered molecular con-

sequences, a genome-wide pathogenicity effect score can depend on hundreds of separate

annotations.

Limits to ”genome-wide”

Unfortunately, genome-wide does not mean that all variants in the human genome can

be scored or will be scored equally. Besides regions of the genome that are missing

from current reference genomes, the mapping of sequencing reads has higher error rates

in some regions of the defined genomic sequence than in others. Reference genomes

like GRCh38 further include alternative contigs, parts of the genome where multiple

different haplotypes coexist at the same genomic location. Alternative contigs may lead

to ambiguity in read or sequence alignments that may influence the generation of many

genomic annotations. Similar restrictions apply to the human gonosomes X and Y. Sex-

dependent coverage and different evolutionary selection (e.g limited recombination in
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chromosome Y) alter the profile of many annotations which impacts the resulting local

score distribution.

One part of the human reference genome where it has been recommended that variants

are analyzed separately from the rest of the genome is the mitochondrion (McCormick

et al., 2020). The reasons are that the mitochondrial DNA is short in length compared

to the rest of the genome, has a high density of housekeeping genes, and is only inherited

from the mother. While mitochondrial variants can be scored with genome-wide scores,

variant effect scoring specialized to the mitochondrial genome has been shown to lead

to better results (Castellana et al., 2017).

InDel and SV

While pathogenicity of all structural variant types is generally accepted, most variant

effect scores are limited to SNVs. Responsible for this focus may be problems in variant

calling (Chen et al., 2019) that causes a biased representation of all none-SNV types

in databases from which variants are selected for model training. Another problem is

the proper assignment of many annotations variants that are affecting more than one

nucleotide and cause changes in the sequence length. Finally, the limited number of

classified variants is also a bottleneck regarding score assessment.

Nevertheless, several methods have been developed for variant effect prediction on

small InDels (generally defined as > 50 bp). Some methods are able to score different

types of insertion or deletion events (Zia & Moses, 2011), though often restricted to

coding regions of the genome (Douville et al., 2016). Others are specialized on frameshift

(Zhang et al., 2014) or non-frameshift InDels (Bermejo-Das-Neves et al., 2014), or were

released in separate models for different types (Hu & Ng, 2012, 2013; Zhao et al., 2013;

Folkman et al., 2015).

In addition to dedicated InDel scores, some methods score SNVs and InDels using

one general model (Adzhubei et al., 2010; Choi et al., 2012; Hu et al., 2013; Kircher

et al., 2014; Schwarz et al., 2014). While there are further overlaps between SNV and

InDel scores that were created by the same group of authors (e.g Carter et al., 2013 and

Douville et al., 2016) that often share much of the underlying method, no joined score

created by only a single model is implemented in those cases. Notably, using a single

scale for SNVs and InDels is rarely validated.

For SVs, only a number of specialized scores have been published (Ganel et al., 2016;

Geoffroy et al., 2018; Huynh & Hormozdiari, 2019; Kumar et al., 2020).
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Variant effect prediction in other species

Most annotations and many assays have been generated only for the human genome,

and are often limited to the coordinates of the genome build GRCh37. In concordance,

almost all variant effect scores are either generic or established only for human variants

(Wagih et al., 2018). This focus is simple to explain as most interest in molecular

principles is coming from a perspective of human medical use. Even in relatively well-

studied model organisms, most interest is in genome segments that are homologous to

the human sequence, regions where variant effect scores can be transferred with genomic

liftover (Liu et al., 2016). Species-specific variant effect scores have been developed for

mouse (Groß et al., 2018) and dog (Capriotti et al., 2019) and show better performance

than lifted scores. Agricultural interest has further lead to the development of models

for important livestock species (Groß et al., 2020a,b).

Comparisons between scores

Independent of the metrics used (Vihinen, 2012), comparing different variant score mod-

els is complicated. Every score has a slightly different set of annotations or variants used

for training, so that score differences cannot be attributed to a single source. When

published, almost every score is described as having the best performance on presented

benchmarks or at minimum as being an advantage in previously missed variant categor-

ies. In the shown benchmarks, it happens that other tested scores are using parts of

the tested variant set as input to model training. An appealing solution to training-test

overlaps are multiple models, one for each chromosome, so that all genomic variants

can be scored as hold-out from the training set (Smedley et al., 2016). However, this

leave-one-chromosome-out strategy has the limitation that multiple models correspond

to a single score and is rarely applied.

In response to missing comparability, general benchmark sets have been proposed that

should not be used for model training (https://github.com/quinlan-lab/pathos

core, Sundaram et al., 2018). Independent of how practical such an idea is, once a

benchmark set is well-known, every model developer may, consciously or unconsciously,

optimize their novel model for that data set. An always temporary solution to such a

performance race are novel, independent, and not yet fully released benchmark sets like

those presented as CAGI challenges (https://genomeinterpretation.org).
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3.5 CADD

The word CADD, without further specification, generally addresses both the CADD

model, a machine learning classifier to evaluate genomic variants, and the CADD score,

the corresponding variant effect score. The acronym CADD is short for ”Combined

Annotation - Dependent Depletion”. Both the model and the score were originally

published by Kircher et al. (2014) in Nature genetics and via the web server https:

//cadd.gs.washington.edu. CADD is able to predict the pathogenicity of SNVs and

short InDels genome-wide.

Every variant effect score has some specialty to their machine learning or how an-

notations are selected and processed. Crucial for CADD are two components: a huge

training data set that includes more than 30 million genomic SNVs and InDels, and

more than 100 different annotations. The main framework is outlined in Figure 17.

Derived variants

The training set for most other variant classifiers is selected from variant databases like

ClinVar or HGMD. As the human genome is too large to be comprehensively studied,

variants that are easier to find or located in genes that have been found interesting in

the past are enriched in those databases. Any variant classifier developed based on such

a data set integrates this ascertainment bias. In contrast, variants used for the training

of CADD are not taken from curated data. Instead, SNVs and InDels are chosen from

the human genome based on the principle of purifying selection.

A random de novo mutation that appears in an individual can affect genome function

and with that the individual’s genetic fitness in two ways, either beneficial or adverse.

Variants with a beneficial effect will statistically increase the reproductive success of

the individual, be inherited by their progeny, spread through the population, and even-

tually become fixed in all individuals. A variant with an adverse or deleterious effect

will decrease reproductive success and, sooner or later, cause the variant to go extinct.

This selection against deleterious variants and for beneficial variants is termed purifying

selection. The genome sequence of any biological organism has been under natural se-

lection for billions of years. Due to gradual adaption to the current environment, almost

all novel variants that affect genetic fitness will be deleterious as any beneficial vari-

ant has ultimately become fixed while deleterious variants can appear again and again.

Variants that are observed in a population or between two or more species are depleted

of deleterious variants even though there is variance in phenotype. The majority of
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Figure 17: Overview of the CADD framework. (A) Training a CADD model relies
on two sets of variants; a proxy-neutral set of human-derived variants and a
proxy-deleterious set of randomly drawn, simulated variants that match the
sequence composition of the human-derived set. Using more than 100 diverse
annotations, a logistic regression classifier is trained to differentiate between
proxy-neutral and proxy-deleterious variants. That classifier is the CADD
model. (B) Variant sets are provided as VCF files. Variants are evaluated
based on chromosome, chromosome position, reference allele, and alternative
allele columns from these files. Scores are either retrieved from prescored
files or variants are fully annotated and the CADD score is calculated by
the model. The CADD Phred-score, the relative ranking of each variant
compared to all SNVs in the genome, is looked up in a conversion table, and
both scores are returned.

variants are thought to have no impact on genetic fitness. These neutral variants do

not affect reproductive success and increase or decrease in frequency by chance. Based

on Bayesian statistics, it follows that most neutral variants will go extinct within a few

generations while only very few variants will randomly spread through the entire popu-

lation. Estimates have put the total fraction of the human genome that is under strong

purifying selection in the range of five to ten percent (Lindblad-Toh et al., 2011; Rands

et al., 2014). It follows that a sample of variants generated by applying random changes

to the genome sequence will contain a corresponding fraction of variants that are under
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purifying selection.

The CADD training set is derived based on these assumptions. The positive class,

called proxy-neutral or human-derived, consists of differences between the human gen-

ome and that of an inferred ancestor. Based on Ensembl EPO alignments (Herrero

et al., 2016), a genome sequence of the common ancestor of humans and the great apes

is inferred. The proxy-neutral set is obtained by selecting all variants that are absent

in the ancestral genome but have an allele frequency of greater than 95% in the human

population. The negative, or proxy-deleterious, class is sampled from the genome under

the following constraints: In order to prevent the final model to classify variants based on

properties like allele bias or chromosomal location, SNV allele substitutions frequencies,

number of SNVs per 100 kb of the genome, and number of CpGs affected are modeled

after the numbers from the proxy-neutral class. InDels are matched by length, as well

as by the number of variants per 100 kb of the genome. The labels ”proxy-neutral”

and ”proxy-deleterious” are used for the two sets as both are highly heterogeneous and

are only enriched or depleted of deleterious variants respectively (see chapter 6.1 for

a mislabeling estimate). In the case of the human genome build GRCh37, each class

consists of 15 million SNVs and 1.8 million InDels.

Annotations

All 33 million variants are annotated with more than 100 different annotations. Annota-

tions that are used in CADD come from a wide range of biological processes and assays,

and are represented by diverse data types. Many make a prediction about a single

process, such as DNA splicing, and are available only for a subset of variants. Major

sources of annotations include the Ensembl Variant Effect Predictor (VEP, McLaren

et al., 2016), and data portals like the UCSC genome browser (Casper et al., 2018),

ENCODE (ENCODE Project Consortium, 2012; Davis et al., 2018) and gnomAD (Kar-

czewski et al., 2020). Examples for annotations from these data collections are transcript

information like distance to the closest exon-intron boundary, transcription factor bind-

ing or expression levels in commonly studied cell lines, and amino acid substitution

scores for protein-coding sequences like SIFT (Ng & Henikoff, 2003) and PolyPhen-2

(Adzhubei et al., 2010). Other annotations are downloaded directly from project spe-

cific repositories including Segway (Hoffman et al., 2012), GERP (Davydov et al., 2010)

and microRNA binding predictions from mirSVR (Betel et al., 2010) and targetScan

(Lewis et al., 2005; Agarwal et al., 2015). A few annotations are specially adapted
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for their use in CADD, running the software provided by the original authors. Con-

servation scores like phastCons (Siepel et al., 2005), phyloP (Pollard et al., 2010) and

GERP are computed from multiple sequence alignments similar to those used to find

the proxy-neutral set of human-derived training variants. In order to prevent those an-

notations to be biased for variants from this training set, phyloP and phastCons have

to be specifically calculated without taking the human reference sequence into account.

The GERP conservation score would only be affected if more than one genome sequence

was mutated in the multiple sequence alignment and therefore does not need correction.

Lists of all annotations used in each CADD version are available from the release notes

on the CADD web server.

Model and score

After annotation, the missing feature values are imputed and the entire data set is

converted into one large training matrix. A single model is fitted and can then be

applied to any genomic variant. The output of the model is the CADD raw score. The

numeric range of the raw score is model-specific and does not have an absolute meaning.

It only gets a relative meaning via the application of the model to all ∼ 9 billion possible

SNVs of the human reference genome. A Phred-score is calculated from the relative rank

of each variant and is linked to the corresponding CADD raw scores via a conversion

table.

History of CADD versions

Since its inception, the details of model training have changed multiple times. CADD

v1.0 was not trained as a single machine learning model. Instead, ten linear SVMs were

trained using the machine learning library LIBOCAS (Franc & Sonnenburg, 2009), each

using the same human-derived set but different sets of simulated variants for training.

Models were trained for 2.000 iterations and a total run time of 70 hours but did not

converge to a stable optimum. To offset the missing convergence, coefficients of the final

model were calculated by averaging all ten models.

GraphLab (Low et al., 2014) was adopted as machine learning library beginning with

CADD version 1.1. The SVM used for training the model was replaced by a logistic

regression classifier. Similar to version 1.0, ten classifiers were trained for eight training

iterations and merged into a single model. CADD v1.1 further extended the initial set of

features by five annotations to specifically improve the prediction of non-coding variants
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Table 4: Novel annotations from CADD version 1.1

chromHMM (Ernst & Kellis, 2012), functional genomic segmentation model based
on 127 cell types from the ENCODE and Roadmap Epigenomics projects

DNA shape factors (Zhou et al., 2013), predicting the DNA secondary structure of
sequence heptamers

miRNA binding sites predictions from mirSVR (Betel et al., 2010) and targetScanS
(Lewis et al., 2005; Agarwal et al., 2015)

Mutation index (Michaelson et al., 2012), index of genome-wide mutability

Protein domain annotation provided by Ensembl VEP based on protein databases
such as PANTHER (Thomas et al., 2003) and Pfam (Finn et al., 2010)

(Tab. 4). One of these annotations, the DNA shape factors, was annotated incorrectly

in the provided prescored SNV files. This mistake was corrected in the follow-up release

CADD v1.2.

For the next release, the extraction of human-derived variants was based on new

Ensembl EPO 6 primate alignments and extended to genomic segments with missing

or more distantly related (Scally et al., 2012) chimpanzee sequences by comparing the

human sequence to those in the gorilla genome. It also fixed several issues with the

InDel extraction. A single logistic regression model was trained from the new training

set of 30 million SNVs and 3 million short InDels, terminating model training after 10

iterations and dropping the model averaging. The new model used the same annotations

as the previous release and was released as CADD version 1.3.

Advantages and disadvantages

Due to the heterogeneous training data set that has not been selected and curated by

any human but rather is generated by an algorithm directly from sequence alignment,

the CADD model is not biased for certain variant categories. The size of that set and

diversity of variants makes it possible to train a model from many annotations that

correspond to many different variant properties and consequences, many of which may

not be represented in a selected set. However, due to the set of human-derived variants
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being defined as variants where the ancestral sequence mutated into the reference, i.e.

reference and alternative sequence are switched, representation is limited in regards to

some variant consequences like gain of a transcription start site. Some annotations

further need to be corrected for recent evolutionary changes as those are part of the

training data set.

It may be speculated that the large fraction of mislabeling in the training set may

influence the adoption of some annotations. Contrary to that, mislabeling may reduce

overfitting as, similar to drop-out, the wrongly classified variants serve as regularizing

factors for very strong model features, though none of these effects have ever been shown.

In addition to that, the CADD score has been criticized for not discriminating properly

between variants used in training and variants appearing in common reference set (Heijl

et al., 2020), although enrichment of any of the two variant classes in a benchmark set

is likely to be due to evolutionary constraint and not man-made selection.

Influence on other scores

As one of the most influential variant effect scores, other research groups not related to

the authors have developed similar scores. DANN uses the annotated training data from

CADD v1.0 in combination with a deep neural network (Quang et al., 2015). CAPICE

(Li et al., 2020) has combined most of the CADD annotation set with a different training

set in a gradient boosting classifier. The approach of using evolutionary-derived variants

as training set of a binary classifier has been adopted for other model organism such as

mouse (Groß et al., 2018), pig (Groß et al., 2020b) and chicken (Groß et al., 2020a). In

contrast to CADD which is defined for SNVs and InDels up to a length of 50 bp, all

listed, derivative scores are limited to SNVs.
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4 Considerations for the development of genome-wide

variant effect scores

When I started on this project in 2017, the variant effect score CADD was already a

great success. In the three years since its initial publication, four updates had been

released, which included changes to the machine learning framework and the addition

of new annotations. The score had attracted hundreds of users who used variant effect

scoring via the web server and the script release. Altogether, this had led to more than

a thousand citations of CADD in other scientific publications.

Unfortunately, the old CADD scripts up to version 1.3 had become difficult to manage.

Internally, the entire project was best described as an organically grown collection of

scripts and annotation files that were continuously executed through a well-documented

but often complicated list of shell scripts. All annotations, dependencies, and model

parameters were hard coded and had to be manually adjusted in the source code. Ma-

chine learning was dependent on the closed-source library GraphLab, which hid some

crucial processing steps such as data set scaling. The biggest problem, however, were the

many separate processing steps required to generate a new CADD release: Annotation,

model training, benchmarking, model selection, and genome-wide scoring each consisted

of separate steps that had to be manually executed and checked for completion one

after the other. All of this led to a complicated setup process with manual download-

ing of scripts, annotation files, and dependencies, prompting one competitor to declare:

”CADD is a beast!”.

In order to continue working on CADD and improve variant effect scoring, we envi-

sioned a new workflow. That workflow was to involve all the necessary steps to generate

new CADD releases: From annotating variants, learning and optimizing the classifier,

scoring variants, to finally making the generated variant effect score available to the

scientific community. The framework that is executed by the workflow was imagined

to follow the principles of reproducibility, extensibility, and simplicity. This chapter

summarizes our considerations in designing such a workflow before the next chapter

describes its implementation.

4.1 Principles for a variant effect scoring framework

In order to build an applicable variant scoring model, several steps have to be performed

in succession: The training data set has to be selected, the annotations chosen, all this
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information concentrated into a numeric matrix, which is then used to train a machine

learning model. As models can be trained with different parameter values, these models

are evaluated in terms of strengths and weaknesses until one final model is selected.

That model is finally deployed, in order to enable the application of the developed

variant effect score in practice. Although most of the involved steps require careful

planning and evaluation, the entire process can be summarized into one workflow that

sequentially executes the different steps. Continuous blocks are organized into software

pipelines that are controlled by a central configuration. The results of each pipeline are

carefully evaluated before the next steps of the workflow are started.

For a scientific project that consists of many different scripts and interacts with ex-

isting data, software, and software libraries, it seems obvious to follow good practices

of software development. Good practices for software development concern the state

of the software itself, such as how the code is written and documented, version con-

trol, how dependencies are managed, and how the various programs interact with other

software and data, adopting Application Programming Interface (API) descriptions and

predefined file formats. While all of that may seem to slow down the development of

the source code during the initial writing process, it simplifies the management of the

entire, growing codebase in the long run. Further, a well-managed source code is easier

to replicate, so each pipeline can be ported to other computing systems and achieve

the same results there. Replication is important for any scientific project so that other

members of the scientific community can understand and reproduce the results (Peng,

2011). Reproducibility goes hand in hand with stability in that small changes in the

analysis should produce comparable results, and reduce outlier results like the figurative

butterfly effect, where small differences in the input lead to vastly different outcomes.

Compliance with standards is, obviously, only necessary for the acceptance of valid

data. It does not necessarily mean that files that are not properly standardized have to

be rejected. For example, a variant effect scoring script may accept as input a simple tab-

delimited file with the required fields chromosome, position, reference, and alternative,

even though it does not contain the complete header that a valid VCF file should have

according to the file standard (Danecek et al., 2011). While this may be disadvantageous

for the detection of corrupted input files, it lowers the entry barrier for novel users who

want to evaluate ”just” a few variants.

Besides being flexible to extend and compatible with other applications and systems, a

workflow for scoring variant effects should be fast. The annotation of each variant in the
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data set is independent of all other variants and can therefore be executed in data-parallel

processes. Equally, multiple models that test different features or model parameters can

be trained and applied simultaneously. Pipeline frameworks like Snakemake are useful for

managing parallelization and provide interfaces to common scheduling and distribution

systems (Mölder et al., 2021).

4.2 Annotations

Depending on the method, there can be hundreds of different annotations for every

genomic variant. These annotations are derived from various data sources, including

biological readouts, statistical analyses, and sequence predictions. How the involved in-

formation is integrated depends on the particular annotation: Some are variant-specific,

some depend on the position or segment of the reference genome the variant is located

at, while others are independent of genomic location and based only on the type of

nucleotide exchange that occurs.

Inclusive and exclusive annotation management

Annotations can be managed inclusively or exclusively. Exclusive means that any inform-

ation from an annotation may be considered only within the context of that annotation,

in contrast to inclusive management that also considers what is known from other an-

notations. For example, any stop-gain mutation by itself would normally be considered

highly pathogenic. However, if we put that stop-gain mutation in the context of the

associated transcript, we may find that the new stop codon is only one amino acid prior

to the previous stop codon, or that the involved transcript is rarely expressed at all.

Similarly, we may observe a highly conserved sequence position in an intron of one gene

and wonder about the conservation of that location (Fig. 18). If we find that the same

genomic locus is also part of the exon of another gene and causes a synonymous effect

there, that could explain the high conservation and lead to a more benign assessment of

the variant.

Whether different annotations are managed inclusively or exclusively depends on the

model. We have found that it makes sense to treat gene annotation, i.e. multiple

genes annotated to one site, exclusively while all other annotations should be treated

inclusively. In that case, it is important that only a single gene is annotated per variant

during training so as not to prioritize one variant with multiple genes nearby over others

with only one gene. Further, there has to be a heuristic on how to set precedence
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intronic variant

coding variant

Figure 18: Multiple consequences for one variant. There are many cases of partial
or complete overlap between different genes in the human genome. Variants
in those regions may be associated with all genes, possibly with different
consequences, as illustrated by the example of an intronic variant in the blue
gene that is also a coding variant in the red gene. While changes in the DNA
affect all genes, sequence constraints may originate from only one or multiple
genes.

between exclusive predictions so that the synonymous variant of one gene is predicted

preferentially over the non-coding element of another gene.

Precomputed and ad hoc data

Most variant annotations are derived from genome-wide data sources. Time-consuming

processing steps, such as converting raw data to the correct format, are performed once

for all possible variants and only parsed and possibly adjusted during annotation. The

data is stored in some sort of relational database, so retrieving the annotation for a

variant requires a single look-up in the database index. For some annotations, there

exists no previously computed (precomputed) data. A good example of such annota-

tions are those that depend on other machine learning models, e.g splicing prediction via

deep neural networks. In that case, it may have been considered too time-consuming to

generate the annotation once genome-wide. Even if it later proves necessary to do just

that, as long as the annotation is explored only as a possible model feature, it can be

integrated into the model as ad hoc annotation. Ad hoc annotations are generated only

for the variants that are needed, which entails the limitation that the annotation process

thus requires more time and resources. However, they also bring benefits, since depend-

encies like the gene annotation build can be adapted more easily than with precomputed

annotations.
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Annotating insertions and deletions

Assigning annotations for InDels is in many cases more complicated than for SNVs. Due

to the many different possible InDels at each genomic position, precomputed annotations

are often only available for SNVs. Annotation of InDels is further complicated by the

fact that they are not restricted to a single nucleotide position in the genome. Where

SNVs are annotated with the value at that position, insertions in principle do not affect

any position in the existing sequence, while deletions are spread over multiple positions.

As a compromise, we retrieve all position values for deletions and those before and after

for insertions (Fig. 19). A selection such as minimum, maximum or average may then be

applied to reduce all to a single value. Depending on the data type, the resulting value

distribution may be significantly different from that of SNVs. Careful consideration must

therefore be given to the extent to which InDel annotations and the resulting variant

effect scores are comparable to those of SNVs.

TTCATACAGCACTATGCGCGGGAAAAAAG
TTCTTACAGCACTATGCGCGG---AAAAG

reference:

alternative:

positions
considered:

SNV insertion deletion

CGA

Figure 19: Positions of annotation considered per variant type. SNVs are simple
to annotate, as only the value at the position of the variant is considered. For
deletions, this is extended to all deleted nucleotides. Insertions are annotated
from the positions immediately before and after the inserted sequence.

Gain and loss of function

Sequence changes can affect many different processes, like the binding of a transcription

factor or the activity of a protein domain. For the final variant effect score, significance

does not depend on the general direction of that effect, i.e. if there is a gain of something

that did not exist before or the loss of something that did. However, depending on

how they are generated, most annotations are limited to loss of function, as existing,

observable processes or the observable state of the genome are described. A change

in this status quo is interpreted in the sense that the annotated process, e.g. binding
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of a protein or expression of a transcript, is not working anymore. In contrast, the

reverse case, e.g. binding of a new protein or expression of a novel transcript, is much

more difficult to predict. In cases where gaining of activity at a site is predicted, the

uncertainty about the gained activity is often different from that of a predicted loss of

activity. Even if the gain is the result of a variant, the further consequences of that gain

are typically unknown. Any novel activity, when considered in terms of evolutionary

fitness or pathogenicity, may have no, only negative, only positive, or a mix of different

consequences. This distinguishes it from the existing activity, which is assumed to be

predominantly positive because otherwise the respective mechanism would have been

long been selected against.

We have relied on two different strategies for coping with different effect sizes in

gain and loss predictions: Either positive and negative effects are mapped into separate

features or limits are imposed so that any gain effects are masked. In this way, weights

for the different directions of consequence prediction are offset to the machine learning

model. Nevertheless, gain of function predictions remain a limiting factor for any variant

effect score.

Reference genomes and gene annotations

Many genomic annotations are based on sequencing data that has been mapped to

the reference genome. Similarly, transcriptomic data is matched to a set of transcript

annotations from a gene annotation build. With progress in genome research, these ref-

erences are continuously updated. One of the key ideas of open science is reproducibility.

For annotations, it enables the reprocessing of existing raw data based on another refer-

ence, which may be used to train a classifier with the same parameters, but for example

on another genome build. Unfortunately, the raw sequencing data is often not readily

available, or reprocessing takes, at minimum, a lot of effort. In that case, annotations

may be lifted between genome builds via a coordinate transfer. This liftover process is

not perfect as new genome builds have historically changed more than just coordinates

of variants, with the consequence that lifted annotations are missing in crucial and es-

pecially novel sequences of the genome. Nevertheless, lifted annotations are important

for models that are compared across different reference sequences. The same applies to

gene annotations, as the same build should be used for all annotations but is often not

available, especially when annotations are precomputed.
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Data precision

The level of detail that is available from a data source is often higher than needed

for interpretation. Since even in the age of big data, storage space is always limited,

the level of precision inflates the size of the annotation file set and files of annotated,

scored variants, often without impact on the final model score. For example, if one very

important annotation has a precision of 0.01 but is multiplied with a coefficient of 0.1,

the uncertainty generated by that annotation is 0.001 = 10−3. If another annotation has

a much higher level of precision, i.e. an annotation value of 1.2345 that is multiplied in

a linear model with a coefficient of 0.03, the influence on the total score of the last value

digit is 0.0005× 0.03 = 0.000015 = 1.5× 10−5. As the final score uncertainty is already

limited by the precision of the first annotation, the increased precision of the second may

be omitted. There is no evidence that reducing the precision of some annotations does

improve model performance. However, for text-based files such as any tabix accessed

format, a shorter value string leads to a reduction in size of the final data file. For

example, we were able to reduce the size of the archive with all annotations from 194

GB in CADD GRCh38-v1.4 to 168 GB in GRCh38-v1.5 by reducing the precision of

ChIP-seq annotations derived from ENCODE. We note that other data formats may

reduce file sizes even more. For example, the genome-wide file containing CADD scores

of all possible SNVs in the gzip-compressed TSV format is 80 GB, while the same data

in the bigWig format is only 40 GB. Hence, reduction of precision is only a last resort

but requires no further adjustments in processing.

4.3 Building the training matrix

Once all information about a variant is collected, that information has to be put into

context before it can be evaluated by a machine learning model. The various data

formats, strings, categories, and numbers need to be converted into a numeric vector.

Some of the generated features are dependent on a single annotation while others are

a combination of multiple sources. How features are prepared, transformed, combined,

encoded, and imputed is explored via feature engineering. Which features are used in

the model is then decided by feature selection.
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Missing values, undefined or undetected?

There are many reasons why an annotation may not be available for one particular vari-

ant. Besides when they are not applicable, i.e. the affected amino acid of a non-coding

SNV, this situation often occurs when that annotation is missing in some regions of the

genome. Since the final feature vector of each variant must have the same dimensionality,

the missing feature is then imputed with a replacement value.

How undefined values are selected has to be decided carefully. For example, a con-

servation score may be missing because no other species genome could be aligned to

that genomic region. In that situation, it is unclear whether that genomic segment is

of very low conservation and therefore not part of the other genomes, or whether that

particular genomic region is not assembled in other genomes. If it is not possible to

decide whether the annotation is undefined or undetected, multiple situations that have

totally different reasons for missing an annotation may be considered jointly. These

uncertainties can be magnified when multiple annotations depend on a mutual basis, i.e.

different conservation scores on multiple sequence alignments.

The probably best solution to minimize the effect of missing annotations is to exclude

some genomic regions where model scoring is unreliable, for example, alternative haplo-

types, the mitochondrial genome, or chromosome Y. While it may be annoying for score

users to be missing scores for some variants, score artifacts in these regions may lead to

undesired results. For all other variants, it is possible to distinguish between variants

that are missing a value and all other variants by introducing an additional feature: A

binary indicator that states whether a particular annotation is defined for that variant

or not.

Feature interactions

Feature interactions are features that depend on multiple different annotations which

get combined in various ways. An example is the feature-cross where the value of

a numeric annotation is multiplied with the one-hot-encoded vector of a categorical

annotation. Whether feature interactions are relevant for a model depends on the applied

algorithm. While tree-based learners, as well as deep learning architectures, will combine

features in many different ways, linear models may benefit from carefully crafted feature

combinations. Depending on the selection of the training set, feature interactions have

to be considered carefully as they may identify variant categories in ways not obvious

from the single annotations.
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Feature correlation and degrees of freedom

Many features of similar definition are based on common sources. A good example are

multiple sequence alignments that are used to generate different conservation scores, i.e.

based on primate versus based on mammalian genomes. Naturally, these are significantly

correlated. One reason is that a gene that has been evolutionary stable in the short

term is likely to be stable in the long term. Further, the genomes found in the primate

alignment may also be part of the mammalian alignment. Even if this were not the case,

the evolutionary history of all species would be shared. In any case, the correlation makes

it impossible to attribute the predicted score to a single annotation and may even lead to

model instability when coefficients of different annotations compensate each other. One

possible solution for annotation correlation is dimension reduction via methods such as

clustering or PCA, although a resulting loss of information may limit the use of some

annotations.

Degrees of freedom that are introduced with feature encoding have to be considered

as well. A prime example for this are nucleotide exchanges: Ignoring the more complex

nucleotide exchanges of InDels, there are several different encodings for a SNV. From

four nucleotides, each possibly substituted for three other nucleotides, there are 12 nuc-

leotide exchanges. The exchange A(denine) to G(uanine) on the + strand is the same

as T(hymidine) to C(ytosine) on the - strand of the genome. If the strand is not con-

sidered separately, the 12 theoretical nucleotide exchanges, therefore, reduce to six. An

even simpler reduction is the classification of mutations in transversions and transitions.

Encoding both, the exact nucleotide exchange and whether a mutation is a transver-

sion is adding an additional degree of freedom to the model. Amino acid scores can

be similarly overdetermined, with substitution scores like Grantham (Grantham, 1974)

or PAM (Dayhoff et al., 1979) acting as complex encodings that provide a weighting of

every amino acid substitution according to coefficients of each substitution. They may

nevertheless be useful as they provide an initialization weight for each substitution and

are minimizing regularization strength for rare events that would need large coefficients

without them.

Storing the data as a sparse matrix

With hundreds of features and potentially millions of variants, a variant scoring matrix

can be quite large. One of the main drivers of matrix size are one-hot-encoded annota-

tions and feature-crosses that lead to many single variables per annotation. Due to the
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encoding limiting the actual value to only one of these variables, most variables of the

obtained matrix will be zero, meaning that the annotation is not of that value. The

size of such a matrix may be reduced via compression. However, machine learning on

compressed data is complicated, slow, and not available on most frameworks. Instead,

the data may be converted to a sparse matrix format. Sparse matrix notations only

store values different from zero, which significantly reduces the size of any matrix with

many empty variables. The obtained files enable fast data loading and training.

4.4 Training the model

After annotation and feature design, the training data set is loaded and model training is

started. Like any other machine learning problem, training a variant scoring model can

be optimized in terms of algorithm and hyperparameter settings. During training, the

convergence of the model is monitored in order to prevent overfitting. Especially relevant

to variant scoring is how the training set influences validation and testing. The common

definition of a fraction of the training set as hold-out for testing can lead to biases for

certain genomic regions. For example, using the popular ClinVar data set for training

will include many variants from the gene BRCA1 in the pathogenic class of any training

set. That creates the possibility that any variant in that gene is classified as pathogenic.

With training and testing variants sharing annotations, a good performance in that case

may be due to being able to differentiate between important and less important genes

rather than variants. Instead, gene and chromosome hold-outs use all variants from

certain regions as benchmark sets, reducing the risk that observed good results are due

to overlap in training and validation.

Any variant data set that is not the entire genome has limits and biases. Besides

generalization issues, i.e. amino acid effect predictor being used for splice site effects,

the main challenge in this regard are observation biases: Presently known pathogenic

variants are usually known to be pathogenic because the involved genes have been in-

vestigated thoroughly. This investigation may have happened because of other variants

in the same gene, due to an associated disease, homologous genes in other species, or

because of technical limitations like gene length. In order to show that the model is

not only learning these biases but able to extrapolate to other data, requires validation

with independent test data sets. Many of these alternative data set may be classified by

another metric, i.e. some functional assay that is only associated with pathogenicity. In

that case, relative enrichment is used to show that a model is better than random (or
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another model) at predicting that metric.

4.5 Delivering a variant score

Once a variant scoring model is generated, it is time to make it public. Besides the

academic publication, this means enabling other people to score variants as a service.

While the target audience of a variant score at this stage are other academic researchers,

we should neither expect the technical expertise of a computational biologist nor the

effort of reading long and complicated documentation to use the service. This includes

the necessary interaction to obtain the score value for a variant, as well as providing

context so that the score it is not just a number in a given interval and can be interpreted

in human categories such as pathogenic or benign.

The arguably most practical service is a public web server, where a variant file in a

common data format such as VCF can be uploaded. The web server then performs its

prediction on the parsed variants and returns the score as either a dynamic web page

or a file download. We expect that the entire process is fast and reliable. Speedup may

be achieved via prescoring of variant sets that are found repeatedly, i.e. genome-wide

scoring of SNVs. In any case, it is important that the score of each variant remains

reproducible at all times, and is independent of the uploaded file or server status.

In addition to the web server, we ideally want to provide the source code that produces

the variant score. The most compelling argument to make the source available is that

it enables further research in the area, as other scientists can modify and extend the

model. Beyond that, it makes the entire process transparent and removes the pressure

to rely on the availability, stability, and constraints of the web server.

Genome-wide score calculation

Instead of annotating and scoring genomic variants only when requested, it is possible

to prescore variants: Generating all scores at once for a large set of variants and then

retrieving only those from the stored file that are requested. Prescoring has three key

advantages: First, every variant is scored only once. Second, summarizing all variant

annotation requests in a single access means that the annotation process can be run

continuously. Then, annotation requests will not result in random file accesses but

a line-by-line parsing of all data in the annotation files. Third, any provided service

becomes much faster as each score request is reduced to a single random file access on

the prescored file.
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Genome-wide scoring can be routinely applied to predict all SNVs in a genome, with

three possible SNVs for any nucleotide in the genome sequence. While theoretically

possible for deletions, where for each nucleotide in the genome there is one deletion of

each length, there is an almost unlimited number of insertions as the inserted sequences

may be any possible combination of the four nucleotides. As such, prescoring of InDels

is better limited to variants that are relatively likely to be found, for example, due to

high allele frequency or because observed in popular genes or data sets.

Phred-scores

Scoring SNVs genome-wide provides a good overview of possible score values. The entire

distribution can be analyzed statistically and enables ranking of every single variant in

comparison to all SNVs. Since the rank of each variant is a large number that can be hard

to grasp, the rank is modified via a comparative descriptor like an empirical p-value or log

transformation of the relative position. One popular log transformation is Phred-scaling

(Ewing & Green, 1998). From the relative rank of each variant r = rank(RawScore), a

Phred-score is calculated via:

Phred-score = −10 log10(
r

total number of SNVs
)

Any relative rank-based evaluation is dependent on the number of instances ranked.

Depending on whether more or fewer segments of the genome are included in the

genome-wide calculation, i.e. from alternative haplotypes or previously uncharacterized

regions like centromeres, the relative changes in rank lead to a shift in Phred-score.

Hence, the number and score distribution of all SNVs is determined once and used to

generate a conversion table. The finalized table can be quickly applied to all genomic

variants including InDels to associate raw model and Phred-scores.

The interpretation of a Phred-score is subjective and it is impossible to define the one

threshold above which variants are generally considered as pathogenic. Since different

probabilities in training and test set lead to a relative label shift and considering the

different stages of variant assessment, the selection of a threshold is influenced by the

number and type of variants (Guo et al., 2017; Alexandari et al., 2020). For CADD,

users have been using thresholds like Phred-score > 10, 15 or 20 (Itan et al., 2016),

although all of these correspond to arbitrary values and have most likely been chosen

for the beauty of their numeric values.
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Accessibility

The final variant score data has to be accessible to many different people. Unfortunately,

there are many different data formats in bioinformatics that, though mostly convertible,

generate adoption obstacles. For the single application, this can only be minimized by

implementing file standards and linking format converters.

Aside from the data format, accessibility raises the question of how data is obtained

by a user. For computational biologists, using a command-line interface is very common,

and they may prefer a local database or an API from which variants are retrieved. In

contrast, someone without a computational background may prefer a web service where

a file with variants is uploaded and the result is downloaded. As speed is an important

aspect of the retrieval process, prescoring of frequently requested variants may reduce the

average processing time and enables new applications like browser tracks for the UCSC

genome browser (Kent et al., 2002). It should be noted though, that prescoring can also

misguide users. We have found that available resources of prescored variants, such as the

popular variant score library dbNSFP (Liu et al., 2016), can lead to the conclusion that

some variants cannot be scored with a variant score, simply because it is not included

with the other prescored variants. While such confusion is probably unavoidable, these

shortcomings should be publicly documented in any prescored resource.

Data protection

Finally, genomic data is highly informative of the genomes it is derived from and accord-

ingly highly protected in various jurisdictions around the world. To retain full control

of the involved personal data, any user of the variant score should prefer offline scoring

of all variants on a computer system that is under their control. However, this is not

always possible as the required resources to run variant scoring can be enormous and are,

even if not making it impossible, slowing down the application for the user. To protect

personal data, the provided web services should store only strictly necessary data and

not share it with third parties. Transparency about the collected data increases trust

and minimizes confusion regarding whether the user is legally allowed to use a service

or not.
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5 Implementing a new variant scoring workflow

The model training and variant scoring workflow that was developed with a focus on

the variant classifier CADD, is mainly implemented in four Snakemake pipelines (Fig.

20). All pipelines automatically manage dependencies via conda and are adaptable to

novel annotations, training, and validation sets via configuration files. Annotations and

features are implemented as dedicated object hierarchies that manage the parsing of

common data types and formats while enabling the custom integration of many kinds

of variant information. While the entire workflow is adapted to the CADD project, e.g.

large size and particularities of the training data set, it is able to train any supervised

machine learning based variant classification independent of training set, annotations,

model algorithm, or application scenario.

Annotation
retrieve information
explore features
annotate training set

Model generation
encoding and imputation
machine learning
validation and testing

Genome-wide
score calculation

score 9 billion SNVs
calculate Phred conversion table
generate prescored files

Score delivery
retrieve prescored SNVs
score InDel
offline and online availability

annotated training set

variant model

prescored files, conversion table

Figure 20: Variant scoring pipelines. In total four pipelines execute all necessary
steps from the initial variant set to the scored variant. The pipelines are
executed one after the other.

The first two pipelines implement the annotation of the training data set and model

training. These two steps are kept separately as the former is a relatively slow pro-

cess that is ideally executed once to annotate the entire training set with all available
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annotations. It is supplemented by an AddAnnotation pipeline to later add further an-

notations to the large files of annotated variants. Model training follows as a faster and

more flexible process that enables rapid and parallel prototyping of feature combinations

and preprocessing, hyperparameter optimization, and model benchmarking with differ-

ent testing and validation data sets. The third pipeline is scoring all SNVs genome-wide

and generates the Phred-score conversion table. Finally, the fourth pipeline is able to

score variants from provided VCF files. It is used as an online service, to score variants

on the CADD web server, and as an offline service, that enables users to score variants

on their own system.

5.1 Training set annotation

The pipeline to annotate the training set (Fig. 21) is set up to process millions of

variants, including SNVs and InDels, that are spread through the entire human genome.

As variants are considered independent of each other, data parallelization is achieved by a

simple split of the input into sets of fixed size. Variant annotation itself is split into three

steps: annotation with Ensembl VEP, ad hoc annotation with other VCF-annotation

scripts, and the final summary of all information into a tab-separated-value (TSV) text

file that includes further annotations from external data files. The entire process is

managed via a general configuration file that specifies the training set, VEP parameter

settings, and extensions, the ad hoc scripts that are annotating based on VCF files, the

split size used for parallelization, and a second configuration file, AnnotationConfig, that

specifies all annotation columns in the output.

Most variant annotations that depend on the gene annotation are retrieved from

Ensembl via the Variant Effect Predictor (VEP). These annotations include gene and

transcript identifiers which are further analyzed to predict the position and consequence

of a particular variant in a gene, e.g. a missense variant causing an exchange of the

amino acid leucine to arginine. For variants with multiple overlapping or nearby genes,

VEP annotates one possible consequence per variant per gene. VEP also provides gene

annotation build based annotations like PolyPhen-2 and SIFT. In the pipeline, genome

build, Ensembl database version, as well as VEP extensions, are managed in the config-

uration file. VEP is run in as an offline script installed from bioconda (Grüning et al.,

2018) using VCF output.

The VEP annotated VCF file can be extended in the second annotation step by fur-

ther VCF-annotating scripts. Separating this process from the other annotation steps
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Ensembl VEP
other

VCF-annotators
annotationsplit concatenate

input:*.vcf.gz
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Figure 21: Rule graph of annotation pipeline. VCF files are annotated in three
steps: Ensembl VEP, other VCF-annotation scripts and the final annotation
that converts the variants from VCF to a column-wise tab-separated format.
Data parallelization divides the main processing steps through a split of the
input file. The results are concatenated after all annotation steps have been
executed.

has the advantage that it can be run in a more exploratory setting, using ad hoc annota-

tion generation that depends on custom libraries that may differ from the rest of the

pipeline. As such, the step was established to run deep neural networks like MMSplice

and SpliceAI to annotate variants with splicing predictions. In general, we have found it

to be advantageous to calculate any annotation genome-wide once so that each position

or variant has to be covered only a single time. However, genome-wide score calculation

is computationally expensive, especially so for complex deep neural networks. The VCF

annotation step serves as an intermediate step for ad hoc annotations, as the script is

only used to annotate the training set and explore potential features. If the annotation

is later integrated into the model, the annotation is calculated genome-wide and moved

to the third annotation step.

The third step uses the annotated VCF file as input and converts it into a gzip-

compressed tab-separated text file. Each column in the file is one annotation field while

each row corresponds to a variant. This file format has the advantage that it is human-

readable as well as simple to parse and extend. Which annotation fields are included is

controlled by a configuration file, named AnnotationConfig. AnnotationConfig is a text

file in python configParser format that contains two sections: The first section defines

the global path to a root directory from where all annotation data files are localized and

specifies the FASTA (Lipman & Pearson, 1985) genome reference file. The second section
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lists all the annotations that are to be included, specifying the respective annotation data

file for those annotations absent from the VCF.

The annotations themselves are defined as classes in the python library Annotation.py

(Sc. 2) that is part of the variant scoring workflow. It specifies for each annotation class

whether the annotation depends on a data file and how that file is accessed, whether the

annotation depends on the variant consequence and how many annotation columns are

provided by the annotation. To keep this source code structured and maintainable, the

different annotation classes inherit common functions like file access and InDel scoring

from meta-classes. Most data accesses are processed with SAMtools and tabix. This has

the advantage that compressed data files can be reused without duplication in different

configurations while the annotation process benefits from the fast random file access

enabled by the tabix index. The library is designed as a list of all annotations so that

further annotations can be added.

Sample code 2: Definition of annotations in Annotation.py (simplified)

class Annotation(object ):

consequence = False

mandatory = False

class FeatureAnnotation(Annotation ):

def process(self , res):

self._retrieve(res)

return self._get_score(res)

class TabixAnnotation(FeatureAnnotation ):

multirange = False

rangescore = False

zerobased = False

def load(self , args):

if self.path != ’’ and (not os.path.exists(self.path )):

sys.stderr.write("%s:␣Require␣valid␣path" % self.name)

elif os.path.exists(self.path):

self.tabix = pysam.TabixFile(self.path ,’r’), self.name

self.continuous = args.continuous

def _retrieve(self , res):

self.tabix = get_range_from_tabix(self.tabix ,

res[’Chrom’],

res[’Start’],

res[’End’],

rangescore=self.rangescore ,

continuous=self.continuous ,

multirange=self.multirange ,

zerobased=self.zerobased)

self.score = self.tabix [6]
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class ScoreHighest ():

def _get_score(self , res):

if len(self.score) == 1: res[self.name] = self.score [0][ -1]

elif len(self.score) > 1:

helper = map(lambda x:( float(x[-1]),x[-1]),self.score)

helper.sort()

res[self.name] = helper [-1][-1]

return res

class PolyPhen(Annotation ):

name = ’PolyPhen ’

features = [’PolyPhenCat ’, ’PolyPhenVal ’]

consequence = True

def process(self , res):

if res[’PolyPhen ’] != ’’:

cat , val = res[’PolyPhen ’]. split(’(’)

res[’PolyPhenVal ’] = val[:-1] # remove closing ’)’

res[’PolyPhenCat ’] = cat

return res

class PriPhCons(TabixAnnotation , ScoreHighest ):

name = ’priPhCons ’

path = ’/phastCons/primates_nohuman.tsv.gz’

The annotation script parses the AnnotationConfig, initiates all annotations as An-

notation objects, and checks the availability of the data sources. Variants from the

second step are read iteratively as all annotations are processed into the row of annota-

tion fields. For variants where more than one possible consequence is found by VEP,

separate variant annotation rows are created. Whether all exclusive annotations per

variant are kept in the final output, or only one consequence is retained, is specified in

the overall configuration file. The annotated files are finally concatenated and saved for

model training.
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5.2 Model training

The model training pipeline takes the annotated training data set, selects features from

those annotations, and trains one or more machine learning classifiers. The trained vari-

ant scoring models are then benchmarked on several independent test sets. All necessary

settings are configured via a configuration file. Though the pipeline is adapted to train-

ing models with scikit-learn, the common structure makes it possible to train models

with other machine learning frameworks like GraphLab (Low et al., 2014), TensorFlow

(Abadi et al., 2015) or Keras (Chollet et al., 2015) with few changes. The pipeline con-

sists of three structural parts with several rules each: (1) preparation of the training set

including encoding, imputation, and conversion into a sparse matrix, (2) model training

and (3) benchmarking that annotates and scores validation and testing data set. As

described before for the annotation pipeline, data parallelization is implemented for in-

volved rules (Fig. 22) including training set encoding and test data set annotation by

a split of the variant set. Similarly, multiple machine learning models may be trained

at the same time. Before model training, the training matrix is stored in sparse matrix

notation. This enables very large training matrices with several hundred features and

millions of instances, that would require multiple hundreds of GB if stored in a dense

matrix.

The pipeline rules labeled as encoding cover more translating annotations into numeric

features. The EncodingConfig file lists feature tracks that are to be included in the final

model. Defined are feature tracks in the source code as a large python dictionary in the

file tracks.py (Sc. 3). The EncodingConfig selects feature tracks from that file, enabling

the reuse of features. Each feature track is a configuration item that defines how the

variant annotation stored in a character string is converted to a numeric format for the

machine learning algorithm. It specifies string to number conversions, one-hot-encoding

of categorical variables, defines the imputation value if the annotation is undefined,

and enables simple processing like transformations or deriving a feature from multiple

annotations. Additional functions can specify changes to an annotation when a variant is

inverted by replacing reference and alternative sequence, a feature that is important for

training the variant classifier CADD. Finally, encoding adds class labels to the encoded

training vector to enable supervised machine learning and may select a random hold-out

to track hold-out validation accuracy during model training.
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Figure 22: Rule graph of training and benchmarking pipeline. The annotated
training data files are encoded in a single large sparse matrix (left). Test
data is annotated and encoded like the training data but not converted into a
sparse format (right). Depending on the type of benchmark and specified by
a configuration file, multiple scored files (AUC benchmarks) or a metric given
from the input file (correlation and Kruskal-Wallis benchmarks) are used for
the test.
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Sample code 3: Definition of feature tracks in tracks.py (adapted)

trackData = {

’ref’: {

’description ’: ’Reference␣allele ’,

’type’: list ,

’categories ’: [’A’,’C’,’G’,’T’,’N’],

’dependencies ’: [’type’, ’ref’, ’alt’],

’derive ’: lambda x: ’N’ if x[’type’] != ’SNV’ else x[’ref’],

’na_value ’: ’N’,

’hcdiff_derive ’: lambda x: ’N’ if x[’type’] != ’SNV’ else x[’alt’]

},

’length ’: {

’description ’: ’Number␣of␣inserted/deleted␣bases’,

’type’: int ,

’transformation ’: lambda x: min(x, 49)

},

’priphcons ’: {

’description ’: ’Primate␣PhastCons␣conservation␣score’,

’type’: float ,

’na_value ’: 0.115,

},

...

}

The encoded data is output in a comma-separated-value (CSV) file, that is sub-

sequently converted into a sparse matrix. For sparse encoding, the pipeline uses the

SciPy (https://scipy.org) implementation of compressed sparse row representation

(CSR, Fig. 23). The CSR format enables fast concatenation of rows (vstack), that is

used to merge sparse variant matrices, that where generated in parallel, into one large

training matrix.

0 5 7 0 2 1 0

0 0 0 8 6 0 6

3 0 1 0 2 0 0

0 0 4 0 5 0 0

=
data_vector = [5,7,2,1,8,6,6,3,1,2,4,5]
row_index = [0,4,7,10]
column_index = [1,2,4,5,3,4,6,0,2,4,2,4]

Figure 23: CSR matrix notation. Compared to the dense notation (left), the com-
pressed sparse row format (CSR, right) stores the data in three vectors: data
vector, row index and column index. The data vector stores all non-zero val-
ues from the matrix as 32-bit floating point numbers. The row index stores
for each instance (row of the matrix) the position of values that are non-zero
in the column index and data vector. The column index stores the column
numbers for all values in the data vector.
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Model training starts with scaling of the feature matrix. By default, the pipeline uses

the StandardScaler from scikit-learn that transforms each feature to the same variance

but does not shift the mean to zero to retain a sparse data matrix. Model hyperparamet-

ers are specified via a separate ModelConfig, that enables exploring different machine

learning algorithms and hyperparameter optimization. The trained model object is

stored in conjunction with the scaler in a joblib file (https://joblib.readthedocs.io).

To evaluate different model settings for validation and testing purposes, the pipeline

is able to benchmark the trained models on selected test cases. Besides accuracy on the

hold-out that is logged during model training, these test cases are defined in the Test-

Config file. Supported are correlation, area under the curve (AUC), and Kruskal-Wallis

tests. Correlation is used to compare prediction scores from one set against another met-

ric, AUC to benchmark the ability of a model to distinguish between two variant sets,

and similarly, the Kruskal-Wallis test to evaluate the ability to distinguish an arbitrary

number of categories. The obtain the benchmark scores, variants are annotated and

encoded via the same steps as the training data set. Variants are then scored with the

trained models. Depending on the defined test metric, the scores are finally compared

against another set or values previously defined as a separate column in the input file.

While the annotation of a large training set uses hundreds of compute nodes for hours,

the model training pipeline can be run with fewer computational resources. Based on

the different configuration files, i.e. EncodingConfig, ModelConfig, and TestConfig, and

an already annotated training data set, it enables rapid exploration of different feature

sets and model hyperparameters. The final model may be chosen from the benchmark

results and is used in the further steps for variant scoring.

5.3 Overview of performance benchmarks

In most machine learning settings, it is a central objective to predict instances in a

hold-out of the training set accurately. CADD is an exception to this rule. The training

set of human-derived versus simulated variants serves only as a surrogate for the real

objective of the classifier: to detect pathogenic variants. While pathogenic variants are

expected to be depleted in the set of human-derived variants, there are many other data

sets that, while overall not as large and extensive as the CADD training set, are better

suited for model benchmarking.

In an ongoing progress over multiple years, more than 15 different benchmarks have

been adapted in the development of different CADD versions. All adapted benchmarks
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fall into three main categories: (I) two-class comparisons measuring Area Under the

Curve (AUC) between class predictions, (II) correlations of the model score with an

assay defined metric, and (III) multiclass comparison based on non-parametric statistical

tests.

Correlation with allele frequencies

The allele frequencies of variants observed in population studies are used as a surrogate

for pathogenicity. Similar to the CADD training set of human-derived variants, fre-

quent variants are less likely to be pathogenic due to purifying selection. Variant allele

frequencies are obtained from the 1000 Genomes project (The 1000 Genomes Project

Consortium, 2015). Separate for SNVs and InDels, the allele frequencies of 100,000

randomly selected variants are correlated with model scores, optimizing for high correl-

ations. Correlations on these benchmarks are generally very low (Spearman correlations

between 0.03 and 0.05). This benchmark is especially valuable for InDels as there are

few large benchmark data set that do not entirely consist of SNV.

ClinVar benchmarks

The largest currently publicly available curated database of human genomic variants

is ClinVar (Landrum et al., 2018). In ClinVar, variants are assigned to one of five

clinical significance categories as defined by the American College of Medical Genetics

and Genomics and the Association for Molecular Pathology (Richards et al., 2015). The

four significance categories are ”pathogenic”, ”likely-pathogenic”, ”likely-benign” and

”benign”, with a fifth category ”uncertain significance” when none of the other categories

can be assigned. Assignments of variants are contributed from genetics laboratories

worldwide. It should be noted that ClinVar assignment can be wrong and findings

from different studies may have contradicting results. Some variants in the database

are therefore assigned to multiple classes. A review status has been established for all

ClinVar variants to address uncertainty in the classification but is not used here.

Variants that are classified in ClinVar categories are used for two-class benchmarks.

The most obvious of multiple possible combinations is a comparison of the most and least

severe categories, i.e. pathogenic versus benign. An alternative benchmark compares the

categories likely-pathogenic and likely-benign. Limited to SNVs and short InDels, each of

these categories contains multiple thousand variants. All include diverse sets of variants

from coding and non-coding regions, that can be further split into missense, nonsense,
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splicing, and intronic subsets that serve as valuable benchmarks for the respective variant

types. auROC is the preferred metric in all ClinVar benchmarks as the variant numbers

in positive and negative sets are not expected to represent the true fractions of pathogenic

and neutral variants.

It is not entirely clear how well variants from the ClinVar categories benign and

likely-benign represent neutral variants. Besides the consideration that the absence of

evidence for pathogenicity is no evidence for absence of the latter (Richards et al., 2015),

all variants in ClinVar have been under selection bias. While an entire human genome

contains millions of variants, some reason has driven a human analysis to investigate

exactly those variants to a point that justified submission to ClinVar. Only about 10%

of all human genes have been thoroughly researched (Edwards et al., 2011) with the

studied genes not being representative for all genes (Stoeger et al., 2018). An example

of a strongly investigated gene is the tumor suppressor gene BRCA1, which, as of ClinVar

release from April 4, 2017, is annotated to 799 of 33,957 pathogenic and 230 of 10,500

benign variants in the database.

A substitute for the neutral set in the benchmark are variants that are found frequently

in a population. As stated previously, frequent variants are thought to be under purifying

selection and accordingly be mostly neutral. However, while pathogenic ClinVar variants

are overwhelmingly found in coding regions, frequent variants are distributed throughout

the entire human genome. Results from exome sequencing (Ng et al., 2009) may be used

to regionally limit population variants, with the benefit that more data is available today

from exome than whole-genome sequencing. In this study, all variants with an allele

frequency greater than 5% but lower than 50% from the ExAC (Exome Aggregation

Consortium et al., 2016) project are used as the neutral set.

Each of the three comparisons described, (A) ClinVar pathogenic versus ClinVar be-

nign, (B) ClinVar pathogenic versus frequent variants from ExAC, and (C) ClinVar

likely-pathogenic versus ClinVar likely-benign has certain disadvantages. The neutral

set from B is certainly the least biased and distributed over the entire exome. How-

ever, the auROC metric of various predictors on B is in the order of magnitude of 0.95,

meaning that both sets can be separated almost perfectly. While this is great from an

overall perspective, it means that differences between multiple models are very small

and depend on the classification of a small fraction of the entire data set. In compar-

ison, as of CADD v1.6, no model has reached an auROC better than 0.8 on benchmark

A. Benchmark C depends on how much doubt is involved in the classification of the
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variants in the likely categories. Generally, the involved data set has been used less to

evaluate other variant effect scores that may lead to circularity between model testing

and validation, with the limitation that this is not true for variants that have been re-

assigned from the more distinct categories. Due to the high number of variants in both

categories, it is nevertheless a valuable benchmark to assess genome-wide pathogenicity

prediction.

Association with measured variant effects

An ideal benchmark would consist of an assay that analyzes all genomic variants without

bias in a single biological readout and compares the assay results to the predicted scores.

Unfortunately, the total size of the genome is so gigantic that it is unfeasible to study all

possible variants with the currently available technology. The selection of regions that

are supposedly ”interesting” creates biases for which pathogenic or neutral variants may

be found. Variant effect prediction scores that are solely assessed on the chosen, well-

characterized variants may fall into the same bias and may therefore never find currently

unknown effects. Multiplexed assays of variant effect (MAVE) are designed to partially

solve this bias by selecting a single genomic segment and analyzing all possible variants

in those segments, associating them with a single phenotypic variable (Starita et al.,

2017). MAVEs have been established for coding and non-coding regions. The analysis

of protein-coding regions with deep mutational scanning (DMS) substitutes each amino

acid in a segment with every other possible amino acid and measures the expressed

proteins’ properties like stability, enzymatic activity, or ligand binding. Each DMS

assay is specific to first a single protein and second one biophysical assay that measures a

protein property, which means that variant effects are only comparable between variants

evaluated in the same protein and assay. To access the prediction of missense variants,

DMS data was collected for the human protein-coding genes BRCA1, DLG4, YAP1 from

Gray et al. (2018) and TPMT from Matreyek et al. (2018) and is correlated to the scores

of the developed models. DMS data sets are specific to a single amino acid exchange.

Due to the degeneracy of the genetic code (64 nucleotide triplets translate into 20 amino

acids), in many cases, multiple nucleotide variants can be assigned to a single DMS

variant. Here, only DMS variants that can be explained by a SNV are included, with

one SNV selected randomly if multiple are able to achieve the amino acid exchange.

Similar to DMS, although totally different in processing, are Massively Parallel Re-

porter Assays (MPRA), a type of MAVE for non-coding variants. In a MPRA, a non-
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coding element, like an enhancer or promoter sequence, is cloned in a minimal gene

construct that transcribes into a short reporter mRNA. The idea behind this sequence

construct is that the non-coding element influences the transcription of the gene-based

on its sequence, as the expression of the latter is measured via RNA-Seq. Using an

error-prone PCR that generates random nucleotide exchanges, all possible SNV of the

sequence of the non-coding elements are generated and tested in parallel with the assay.

The effect of each SNV is then measured as the difference in mRNA expression between

alternative and reference sequence. For the development of CADD models, MPRA of

enhancers from ALDOB, ECR11, HBB, LDLR, SORT1, and TERT (Patwardhan et al.,

2009, 2012; Kircher et al., 2019) are evaluated by correlating the expression changes to

the model scores.

A benchmark data set that covers RNA splicing effects is MFASS (Cheung et al.,

2019). The MFASS data is based on a MAVE that tested almost 30.000 SNV in more

than 2.000 human exons for splicing changes. Based on the observed change in splicing

levels, the data set is split into two groups: splice-disrupted variants (sdv) and not

splice-disrupted variants (no-sdv). Classifiers are compared in this benchmark on how

well they differentiate between the two groups. Due to the strong imbalance in the data

set (1.050 sdv to 26.593 no-sdv) being a result of the assay, not the chosen variant set,

the benchmark is measured via the precision-recall curve (PRC).

Two smaller and more specialized benchmarks consist of variants in the genes Tumor

Protein P53 (TP53) and human beta globin (HBB). TP53 is a tumor suppressor gene

that is mutated very often in cancer patients. The protein that is translated from

TP53 (p53) plays an important role in managing cell death, proliferation, and survival,

assigning TP53 mutations a key role in enabling the extensive growth of tumor cells

(Kruiswijk et al., 2015). While pathogenic variants are depleted in standing variation,

function-altering variants are expected to be found more often than neutral variants in

cancer patients. A data set providing variant counts of missense variants in TP53 has

been published by (Bouaoun et al., 2016). The counts are correlated with CADD model

scores. The HBB benchmark set consists of variants that are associated with three

disease severity levels of thalassemia and hemoglobinopathies (Giardine et al., 2007).

The model predictions from the three severity levels are evaluated via a Kruskal-Wallis

one-way analysis of variance test.

There are many more potential benchmark data sets. For example, a growing number

of DMS and MPRA data sets is continuously becoming available, like those collected in

99



MaveDB (Esposito et al., 2019). While these certainly present a good source for extended

model testing, they remain to be integrated into the testing system once better features

become available for functional variant interpretation. Many other data sets like protein

databases are under various forms of selection bias or, like HGMD, require a license

agreement to be used for analyses. Nevertheless, the number of available sets, as well as

the number of variants in existing sets, is continuously growing and will further improve

both training and benchmarking of variant prediction scores.

Most of the benchmarks listed here have been used for the validation of CADD models.

This includes the assessment of the different features used in the models, as well as

model selection. Based on machine learning best practices to prevent overfitting, a few

benchmarks were excluded from the validation stage and were only run once a new

model version had been selected. These ”hold-out” data sets also serve as an estimator

of how well the model would perform on other, unseen data. For genome-wide assays,

this is achieved via a per chromosome split into validation and test set. For example,

the comparison of pathogenic ClinVar variants and frequent variants from gnomAD is

split into variants on unevenly numbered chromosomes in the validation set and evenly

numbered chromosomes plus the gonosomes in the test set.

5.4 Model selection

CADD models are optimized and ultimately selected based on performance in the pre-

viously described benchmarks. In total, 13 benchmarks are used to evaluate models in

a grid search of regression penalty and training iteration parameters while another two

benchmarks are hold-outs for the final model test. Due to the number of benchmarks

that are implemented, usually no single model is the best in all of those. Instead, a

good model is supposed to work well on most of them. The different benchmark results

can be summarized in one overall score. Metrics and ranges of the individual results

are normalized per benchmark by subtracting the mean of all models and dividing by

the standard deviation. The normalized benchmark results are then weighted by how

important each benchmark is considered to be and aggregated into a single score by

multiplying each benchmark by its weight and calculating the sum over all benchmarks.

These benchmark results per model are not absolute but relative to all other models in

the comparison. Each score value is impacted by the model set explored, as for example

a very bad performing model can considerably affect the mean and standard deviation of

a benchmark. That means that smaller differences between all other models are weighted
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to a lesser degree in the final summary. An alternative would be to develop a fixed score

range for each benchmark based on performance. In conclusion, a summary benchmark

score can serve as a guide in model selection and has been used in the evaluation and

selection of CADD model parameters. Nevertheless, it is important to keep in mind

that the selection of which benchmarks are used, as well as which model parameters are

analyzed, influences which model scores best in each setting.

A good model is not selected only based on performance. Another model selection

criterion is consistency between versions. While CADD scores from multiple versions are

not supposed to be used in a single analysis, it is important that predictions for a single

variant or element do not fluctuate largely between releases. Besides the confusion, this

may lead users to involuntarily do multiple testing by probing multiple versions in hope

of finding some evidence for a hypothesis. Hence, annotations are only removed based

on evidence of overfitting or added based on improved prediction, and not because some

benchmark returns a slightly better result. For the same reason, annotations are closely

matched between genome builds (Chapter 6.4) and model parameters are adjusted only

after some consideration.

5.5 Pipelines for genome-wide scoring and final application

Due to the large number of variants, the genome-wide annotation process is different from

the previously described individual variant annotation. Instead of performing random

file accesses with tabix to retrieve annotations for each variant, annotation data files are

streamed consecutively. While the latter is not practical when subsequent variants are

far away, in genome-wide scoring subsequent SNVs are only one base pair apart. Here,

it turned out useful to compute all annotations from the second annotation step (VCF

annotating script) before the genome-wide annotation. Aside from these optimizations,

the pipeline for genome-wide annotation is identical to the training set annotation.

In order to generate a conversion table that links the raw model scores to Phred-scores,

SNVs are encoded and scored with the model. The scores of all SNVs are concatenated

and sorted from most to least pathogenic. A conversion table is generated from the

Phred-transformation of ranks retrieved from the sorted file. Finally, the Phred-scores

of prescored variants are obtained with a single look-up in that conversion table.

The fourth pipeline in the workflow is the scoring pipeline. The scoring pipeline is

used to evaluate any genomic SNV, InDel, or multi-nucleotide substitution. Based on

a provided VCF file, it generates the associated model scores and returns them with
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or without annotations in a gzip-compressed TSV file. Variant scoring is following the

same steps as described for benchmarking. In addition, a validation step at the beginning

checks the format of each variant (e.g. minimal InDel description) and removes variants

whose reference allele does not match the reference genome. To shorten the process,

the pipeline can use prescored files, such as generated by genome-wide scoring of SNVs.

All variants that are found in a prescored file are retrieved from there and only the

remaining ones are annotated and scored.

5.6 Distributing CADD scores

CADD scores are primarily made available via the website https://cadd.gs.washin

gton.edu. The data itself is hosted on a web server in the Department of Genome

Sciences at the University of Washington, Seattle. With CADD release v1.4, a relaunch

of the website moved all website traffic to https and considerably extended the services

provided. As was possible prior to the release, the user is able to score variants from

VCF files containing SNVs and short InDels online via the web server. A mirror of the

web server is available at https://cadd.bihealth.org.

Alternatively, it is possible to download prescored variant sets for offline use, in-

cluding the genome-wide scores of approximately nine billion potential SNVs. It was

found that many users are interested only in a small number of candidate variants.

For those, the score lookup process was simplified and accelerated through a new in-

terface that provides scores and annotations for a single SNV, a genomic coordinate,

or ranges thereof. Internally, this is processed via a tabix file access to the prescored

genome-wide SNV files. The score lookup includes further information about the vari-

ants of interest by linking to external resources including Ensembl (Ruffier et al., 2017),

NCBI Genome Data Viewer (https://ncbi.nlm.nih.gov/genome/gdv/), UCSC

Genome Browser (Kent et al., 2002) or the variant browsers of the gnomAD (Kar-

czewski et al., 2020) and TopMed/BRAVO (Taliun et al., 2021) projects. The same

access is available directly from the users command line via tabix, as well as a cus-

tom API (https://cadd.gs.washington.edu/api) that enables computer pro-

grams to retrieve variant scores. Additional files from model training are available at

https://cadd.gs.washington.edu/training and are intended for users that want

to replicate how CADD models are created or build their own variant classifier upon

CADD.

For each CADD version since CADD v1.3, a bigWig (Kent et al., 2010) file of the
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maximum SNV score per genomic position is provided. To visualize CADD scores in

genome viewers like the UCSC genome browser, Ensembl Gene Browser, NCBI Genome

Data Viewer or Integrative Genomics Viewer (IGV, Robinson et al., 2011), the bigWig

files can be loaded as browser tracks via a track hub (https://krishna.gs.washingto

n.edu/download/CADD/bigWig/CADD-browserTracks/hub.txt, Raney et al., 2014).

This form of score representation enables users to screen large genomic ranges quickly

(Fig. 24).

A

B

C

Figure 24: CADD score track in different genome browsers. A genome browser
track hub, originally developed for the UCSC Genome Browser (A) displays
the highest CADD SNV score for each genomic position. The tracks are
available for all CADD versions and can also be displayed in Ensembl Gene
Browser (B) and NCBI Genome Data Viewer (C).

In addition to the website, SNV scores are available as a plug-in for Ensembl VEP

and through a number of public web resources like dbNSFP (Liu et al., 2016), the

Ensembl Gene Browser, ANNOVAR (Wang et al., 2010), SeattleSeq (Ng et al., 2009),

ExAC/gnomAD, TopMed and PopViz (Zhang et al., 2018). For some of these third-

party sources, it can be hard to determine which version of CADD is provided, with new

versions often significantly delayed. For example, this caused lifted CADD v1.3 scores of

GRCh37 to be provided by third-parties for GRCh38. It is important to note that these

third-party sources are not developed and officially supported by the CADD authors.

Whether for privacy reasons or because millions of variants need to be evaluated, some

users want to score variants with CADD on their own system. To address these requests,
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offline releases of the scoring pipeline with all associated scripts and annotations have

been available for downloads for all releases since CADD v1.3. Releases starting from

v1.4 are available from GitHub (https://github.com/kircherlab/CADD-scripts)

and provide an installation script that downloads all annotations as well as optionally

the prescored files. As in internal processing, all dependencies are managed via conda

(https://conda.io).

5.7 Workflow summary

The established workflow is capable of training and applying variant scoring based on

very large training data sets. In total, we have integrated more than 100 different

annotations that translate almost 2,000 numeric features. Model training is optimized

for linear models but can be adapted to any kind of two-class supervised machine learning

algorithm like gradient boosting trees or deep neural networks. The workflow is very

simple to configure, enabling the selection of features and model parameters as well as

the benchmarking with different types of test sets. Users can try out many different

models and optimize for various objections. Using the also provided genome-wide and

user scoring pipelines, the developed models can be deployed and integrated into a web

service or local cluster installation. With those capabilities, the entire workflow has been

used extensively for the development of CADD models over the last years.

104

https://github.com/kircherlab/CADD-scripts
https://conda.io


6 Developing new CADD models

The implementation of the new variant effect scoring workflow simplified the develop-

ment of new CADD models. It made it easier to integrate new annotations and train

the model using different machine learning algorithms. Most of all, however, it enables

the possibility to train different models that, while similar to CADD, are independent

of the previously existing model.

This chapter documents the various steps undertaken to improve CADD with the new

workflow. Still using the library GraphLab, it first explores different machine learning

algorithms to improve the training accuracy of CADD models. Based on the finding

that there are limits to this due to the way the training data is derived and after the

switch to scikit-learn, an updated CADD model is developed. The chapter concludes

with a presentation of an entirely new model: CADD GRCh38-v1.4, the first variant

effect model that is entirely based on the human reference genome build GRCh38.

6.1 Other machine learning models

It has been an internal discussion among the CADD authors for some time, what kind of

machine learning algorithm is best for developing the CADD model. However, a deeper

investigation into this area was limited by the available software and technical resources.

In version 1.0, linear Support Vector Machines (SVMs) were trained to develop the

CADD model. With the adaption of the GraphLab library, this changed in version

1.1 to a logistic regression classifier. The same library enabled a further investigation

of more machine learning algorithms. Based on the annotations from CADD v1.3,

a random parameter search of different algorithms was performed in search of better

CADD models. In this comparison, models were trained using logistic regression, linear

SVM, boosting trees, and random forest algorithms from the GraphLab library.

Generally, the classification accuracy of CADD models on a 1% random hold-out from

the training set reaches between 55% and 60%. This relatively low accuracy is attrib-

uted to mislabeling in the training set since the proxy-negative set of simulated variants

is suspected to contain a high number of neutral variants while the proxy-neutral set

of human-derived variants certainly also contains a number of variants that may have

negative effects. With respect to that, the results from the initial boosting trees models

were astonishing, achieving a hold-out accuracy of more than 99%. On a comparison

benchmark of known pathogenic and benign variants, the same models did not perform
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better than random guessing. Analyzing the decision structure of the tree models, the

performance jump was found to be due to implementation mistakes in two annotations:

DNA shape factors and mutability index. DNA shape factors had been implemented

poorly for InDels which differentiated insertions from deletions. Since human-derived

variants developed from an ancestral genome version and are therefore scored by switch-

ing reference and alternative variants sequence, this enabled the classification of InDels

in the training set via decision trees. As it was found later that DNA shape factors do

not improve the performance for SNVs, they were removed entirely from the feature set.

Similarly, the mutability index was learned by the gradient boosting tree model to very

precisely distinguish SNVs between the CADD training categories. The effect can be

attributed to the fact that the human-derived variants from the positive training set are

a fraction of the variants used to generate the mutability index.

With DNA shape factors and mutability index excluded from the feature set, a new

set of classifiers was trained. These include linear models trained via logistic regression

and SVM, as well as decision tree models trained as random forest and gradient boosting

trees. Both logistic regression and linear SVM models were trained for up to 40 training

iterations, using a grid search over the parameters regression penalty, training iterations,

and class weights. Random forests were trained with a maximum tree depths of six and

up to 100 trees. Gradient boosting trees were trained with maximum depths of two,

six, or seven and in total up to 100 trees in the ensemble model. It was found that the

training accuracies reached on a hold-out from the training set were different depending

on the machine learning algorithm. Logistic regression and SVM models generally reach

an accuracy short of 60% while gradient boosting trees are more than 65% accurate on

the hold-out set. This apparent advantage in prediction does not transfer to the ClinVar

(release of 4th April 2017) benchmark of separating known pathogenic and benign SNV

(Fig. 25), where the linear model’s performance metric is better than those of the tree

models.

Similar observations have been reported by Quang et al. (2015) and Gupta (2016).

In both studies, neural networks were trained using the annotated and encoded training

set from CADD version 1.0. The developed models classify the category correctly for

between 66% and 68% of variants in a hold-out of the training set. While the Gupta

(2016) model is not publicly available, unpublished and no benchmark data on other

data set exist, the DANN model from Quang et al. (2015) generally has not been found

to outperform later CADD models (Biggs et al., 2020). In fact, the results from Quang
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Logistic Regression (0.743)

SVM (0.733)

Random Forest (0.574)

Gradient Boosting Tree(0.581)
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Figure 25: Machine learning algorithms trained on CADD training data tested
on SNV data. Different machine learning algorithms can learn a model
from the CADD training matrix. An auROC benchmark of those classifiers
on separating known pathogenic from benign variants in the ClinVar database
shows that linear models trained via logistic regression and SVM have the
best performance on curated data.

et al. (2015) indicate as well that logistic regression models perform better than more

complex neural networks on some benchmarks.

6.2 Estimating mislabeling in the CADD training set

It should not be a surprise that the classification rate of many models on the hold-

out from the training set is worse than on the stated benchmark. As stated in the

previous chapter, due to observation bias, neither the set of pathogenic nor benign

variants from ClinVar are a good representation of all genomic variants. Nevertheless,

pathogenicity classification is a simpler task than differentiating between variants from

the set of human-derived variants versus the simulated variants, as neither of these is an

accurate representation of neutral and pathogenic variants, respectively. As described

in the introduction of the CADD training set, it is assumed that only between five and

ten percent of all (simulated) variants are under strong purifying selection and have an
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impact on gene functions. It is further assumed that a small number of human-derived

variants have an impact on gene function. If we extend the number of pathogenic

variants in the negative training set to 15% and assume 99% neutral variants in the

human-derived variants, a theoretical best case scenario would results in an accuracy

of 0.5 × (0.15 × 1 + 0.85 × 0) + 0.5 × (0.99 × 1 + 0.01 × 0) = 0.57 correctly classified

variants. All models achieve higher accuracies than that on the random hold-out. It is

certainly possible that especially neutral variants in the two training classes come from

different distributions and are therefore to some degree distinguishable on basis of the

used annotations. One source, among many possibilities, could be sequence biases as

observed in cancer (Alexandrov et al., 2013) and DNA repair (Sabarinathan et al., 2016)

that are not considered in the simulation, not included in the feature set but lead to

enrichment in other features.

Different neutral variant distributions do not explain why linear models like logistic

regression and linear SVM are performing differently compared to decision trees and

neural networks. One hypothesis that would explain this phenomenon are nonlinear

interactions between features. In a linear model, a feature is given more weight by

assigning a larger coefficient or less weight via a smaller coefficient. In the CADD feature

set, this is extended by multiple defined feature crosses. In a decision tree or neural

network, many different features may be combined nonlinearly. If these (hypothetical)

interactions were specific to the training data and not related to the functional activity

of a genome segment, they would explain a better training accuracy while adding no

benefit to the pathogenicity predictions.

Another hypothesis is that the relative scaling of the features in a nonlinear model

overfits the data. The annotations that contribute the most to the total variance of the

final CADD scores are conservation scores like GERP, phastCons, and phyloP. Among

these, phastCons values calculated from the alignment of ten primate genomes have had

repeatedly the largest coefficient in the final models. The same primate phastCons score

is the first feature that is selected by the gradient boosting tree algorithm to classify

variants. PhastCons is a numeric feature defined in a range from 0 to 1. Where a linear

model can integrate the gradual increase in conservation level via a single coefficient, a

decision tree has to perform multiple threshold-based steps to classify the continuous

score in multiple bins. While this means that the gradient boosting trees may need

to learn many more parameters to achieve continuous grading of the input score, it

enables that the feature can be integrated nonlinear and therefore non-monotonous. As
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the relative number of negative training variants per primate phastCons conservation

bin is not increasing consistently over the entire score range (Fig. 45), a nonlinear

interpretation may enable the model to better evaluate the score. Furthermore, it was

found that the first decision tree learned by a gradient boosting tree model evaluates

primate phastCons multiple times over the decision structure from the root node to

the tree leaves. For the gradient boosting trees with a smaller maximum tree size of

two (a tree with one root split and two branch splits for a total of four leave nodes),

multiple consecutively learned trees pick the same feature for the root split. To test the

hypothesis of whether suited feature transformations may improve the learning rate, a

non-uniform, rank-based transformation of the three phastCons scores in CADD was

performed. For each possible value in the score range from minimum to maximum,

the transformed score was calculated as the fraction of variants from the positive set

among all variants from the CADD training set that have a greater conservation score

than that value. Since this transformation would not be monotone, for values where a

smaller value would be assigned to a higher score, that value is also assigned the higher

score. Using this transformed phastCons score as a feature, a new logistic regression

model reached higher accuracy on the hold-out of the training set of 62% but did not,

in accordance with the results of the boosting-tree models, achieve better performance

on predicting pathogenic from benign ClinVar variants.

6.3 CADD GRCh37-v1.4

At this point in the development history of CADD, the classifier was trained from over

30 million variants that were annotated from 29 main sources and more than 50 different

files plus Ensembl VEP. After Ensembl database release 76, VEP (McLaren et al., 2016),

a dependency that annotates gene, transcript, and protein information to each variant,

deprecated the previously used output format. At the same time, the system of custom

annotation scripts had grown harder and harder to maintain which limited the extension

to new annotations. The underlying software workflow was therefore refactored, as

described in more detail in chapter 4.1. Included is a change in the Ensembl VEP output

format was adapted, which enabled the integration of Ensembl database release 92. The

annotation model was developed into a flexible configuration system that enables the

addition or removal of annotations, feature transformations, and model parameter tests

via configuration files. The entire workflow was summarized as Snakemake pipelines that,

in addition to annotating the training set and training the model, integrate automated
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Table 5: Annotation changes in CADD GRCh37-v1.4

removed DNA shape factor (Zhou et al., 2013), lead to overfitting, undefined for
InDel

Mutability index (Michaelson et al., 2012), uses reference sequence (and
derived alleles) for calculation

updated Protein domain annotation based on VEP, data format change

Amino acid exchange masked exchanges that cannot appear in SNV

new Mutation density distance to next variant, number of variants in 100, 1k
and 10k bp window, based on gnomAD release 2.0.1 (Karczewski et al.,
2020)

dbscSNV (Liu et al., 2016), splice prediction based on two machine learn-
ing models

model validation and benchmarking on separately configured test data sets.

Enabled by the workflow changes and based on several test results, multiple annota-

tions were added, updated, or removed (Tab. 5). Two annotations that had just been

introduced into CADD in version 1.1 were excluded from the feature set. The mutab-

ility index was replaced by a mutation density annotation based on SNV counts from

the gnomAD database. Previous versions of CADD had further added several annota-

tions to the output files, including allele frequencies in the 1000 genomes data set or the

pathogenicity score fitCons (Gulko et al., 2015), that were never used by any of the mod-

els. While originally provided for convenience, these annotations had created confusion

among CADD users and were therefore dropped from the annotation files. The machine

learning implementation used in the pipeline was switched from the by then deprecated

GraphLab library to the free and open-source python library scikit-learn (Pedregosa

et al., 2011).

CADD GRCh37-v1.4 is the first CADD version that is not named only with a version

number (e.g. v1.2) but also the reference genome build. All previous versions of CADD

omit the genome build and are exclusive to GRCh37. The introduction of the genome
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build in the version string became necessary to distinguish CADD GRCh37-v1.4 from

CADD GRCh38-v1.4, which is introduced in the next chapter.

6.4 Variant effect scoring on another reference genome

In 2013, the Genome Reference Consortium (GRC, https://www.ncbi.nlm.nih.gov/g

rc) established a new reference for the human genome. Genome Reference Consortium

Human Build 38 (GRCh38), also named hg38 by UCSC, is a de novo genome assembly

that was generated by sequencing clone-based biological replicates. In comparison to the

previous genome build GRCh37, GRCh38 corrects numerous assembly issues, integrates

alternative haplotypes for complex genomic loci, and extends the genome sequence to

the centromeric regions of the chromosomes (Church et al., 2015). The total sequence

length is increased by about 150 million bp. GRCh38 increases the robustness of genetic

analyzes by minimizing artifact results and enables new biological insights (Schneider

et al., 2017). In the latest (as of March 2021) minor patch release GRCh38.p13, the

genome reference sequence includes a total of 3,099,706,404 bp of DNA in 998 contigs.

Establishing a variant prioritization framework for a new reference genome is a major

project. After all, any application that uses the, in name, same score on a different

genome reference assumes that the score is mostly equivalent to the previous version.

Otherwise, it would be a completely new score. For that, the software framework can

remain the same as long as it is not hard coded but parameterized and configurable. The

main challenge is that the training set and all features have to be replicated for the new

reference genome. For annotations where this is not possible, equivalent data sets have

to be found and validated. To ensure continuity, it is necessary to perform checks like

correlation analyses and test results. While the new genome reference may later enable

extensions that were missing or impossible in the old version, the first application on a

new reference genome should not divert too much from the previous version.

In principle, it is possible to transfer variant effect scores to other genome builds with

genome liftover. Liftover from GRCh37 to GRCh38 has been done for many variant

prioritization scores by projects like dbNSFP (Liu et al., 2016). The simplicity of liftover

enables scores and annotations to continue in the new genome coordinates. However, it

does not solve any of the problems why the new genome reference was established in the

first place. All genome segments added or fixed in the new references will be missing

from a lifted score. It also creates ambiguity for variants when the genome segment with

the variant’s location in the primary reference is split into multiple segments in the new
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one or vice versa.

GRCh38 annotations

We preferred a solution where variants and annotations are generated directly for GRCh38.

In principle, this does not require a lot of ingenuity as raw genomic data should be pos-

sible to be processed again by, instead of mapping reads to GRCh37, mapping them to

GRCh38, and from then on running the entire pipeline again. Unfortunately, most gen-

ome data sets are not generated by entirely reproducible workflows. Some of this is due

to hard coding when software is developed with a single data set in mind and therefore is

optimized for that data set and inflexible to adapt to other data. More time-consuming

however is insufficient and imprecise documentation of how software can be installed on

a new computer system and how previous analyses have been run. While rare, another

huge problem are software bugs, previously unknown errors in how a program executes.

Given a new data set that is handled differently or has more examples than anticipated,

it may fail to generate a result. Especially problematic are partially corrupted outputs,

as the person doing the analysis may, if it is not the developer of the software, not be

able to spot that an error occurred. Finally, the integration of annotations with small

changes in the data format is always at risk of producing incorrect annotations.

The best example for what can go wrong with the adaption of an annotation for a

new reference genome is the generation of the GERP (Davydov et al., 2010) conservation

score for GRCh38. The GERP annotation for GRCh37 had been downloaded from the

GERP website http://mendel.stanford.edu/SidowLab/downloads/gerp/ in a base-

wise format. The website also provided the source code to generate the conservation

score but did not specify any further information about the genome alignments used.

In correspondence with some of the original authors, the GERP source code had been

built and run on the BIH computing cluster using the 100 species vertebrate alignment

from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/multiz100way/. Based

on these alignments, base-wise GERP-N and GERP-S scores were generated separately

for each chromosome. In a second step, conserved GERP elements were then calculated

from these scores. The two generated files, one for GERP-N and GERP-S and one for

GERP elements, were in the same format as those downloaded for GRCh37: GERP-N

and GERP-S are stored per genome position, with four tab-separated columns CHRO-

MOSOME, POSITION, GERP-N, and GERP-S value. The GERP elements are stored

in a bedGraph-like format, with five tab-separated columns CHROMOSOME, START,
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END, GERP-RS score of the element and the associated P-VALUE. The first of these

two files were found to be unnecessarily large as subsequent positions often have the

same conservation score. It was therefore converted into a bedGraph-like format as well,

with the five tab-separated columns CHROMOSOME, START, END, GERP-N, and

GERP-S. Unfortunately, the annotation with this new file format was not tested thor-

oughly enough. Normal annotation of SNVs and InDels worked as intended. However,

genome-wide annotation of SNVs for whole-genome scoring of a CADD model is not run

via normal tabix file accesses but by streaming all annotation files at the same time.

This did not work as intended for the new GERP file which meant that the prescored

SNVs were in some cases annotated with the wrong GERP score. The CADD Phred-

score calculation was then based on these scores. Since InDels and SNVs scored at run

time were annotated correctly, this lead to a situation where most SNVs were associated

with two CADD scores. While the mistake was easily corrected in the source code, it

unfortunately affected the prescored files. Since edits to those files may produce version

incompatibilities for the CADD users, it was decided to publish corrected scores with a

new CADD version. The GERP annotation error, as well as another annotation error

with the TFBS annotation, were limited to the new reference. With the fixed annota-

tions, a new model was trained using the same pipeline as before. The new CADD

model and the associated score were published as CADD GRCh38-v1.5.

Unfortunately, this was not the end of the problems with GERP. As stated before,

the GERP conservation score is calculated for entire chromosomes. This means that

the GERP software reads multiple-alignment files for a chromosome and then calculates

the conservation for each position in those alignments. This calculation is, among other

things, based on the GC content of the chromosome. The GC content of a chromosome

is calculated by counting all bases in all genomes in the alignment. Base counts were

implemented in the GERP source codes as signed 32-bit integers. With the new 100

species alignment, the variable that counts the total nucleotide number exceeded the

maximum value for signed 32-bit integers, 231− 1 = 2, 147, 483, 647. In a process known

as integer overflow, counting continued from the smallest number that is possible to

store in such a variable: −231. All following calculations were affected by this mistake

and produced an incorrect score. To add to the confusion, the problem did not affect

GERP scores for all chromosomes but only those where the total alignment length was

greater than the 32-bit integer limit. Once the error had been discovered, it was simple

to fix the issue by replacing the affected variables with 64-bit integers. From there, it
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was necessary to generate new GERP scores, GERP conserved elements, and ultimately

a new CADD version. As with the previous error, this issue was reported by a CADD

user to the development team after the release of CADD GRCh38-v1.5. The fix was

integrated into the next release CADD GRCh38-v1.6.

In the end, not all GRCh38 annotations were generated newly from raw data (Tab.

6). Some, including the microRNA binding site predictions mirSVR and targetScan,

transcription factor motifs, and dbscSNV where raw data was not available, had to be

lifted from GRCh37. The bStatistic conservation score (McVicker et al., 2009) is even

older and was lifted from hg18/NCBI Build 36.1. Nevertheless, most other annotations

were either available for GRCh38 from the original data providers or could be generated

using available workflows. The training set was generated using the same process as for

GRCh38 from EPO primate alignments to GRCh38. The GRCh38 set of human-derived

variants contains 14 million SNV and 1.5 million InDel, about 1.3 million variants less

than for GRCh37, and was matched with the same number of simulated variants.

Training a model for GRCh38

Using the GRCh38 annotations as features, it became possible to train a CADD model

for GRCh38. CADD GRCh38-v1.4 was trained with the same workflow as CADD

GRCh37-v1.4. Employing the L-BFGS logistic regression algorithm implemented in

scikit-learn with the L2-regression parameter C = 1, the model was converged for nine

iterations. After fixing errors in the GERP and ReMap annotations, another CADD

release followed. Using the same workflow and parameter settings, that model was con-

verged for thirteen training iterations and is released as CADD GRCh38-v1.5. No CADD

model version 1.5 was released for GRCh37.

The CADD releases for GRCh37 are highly correlated. On 100,000 SNVs, randomly

selected from the prescored files, Phred-scores of versions 1.0 to GRCh37-v1.4 have pair-

wise Pearson correlations of 0.85 to 0.97 (Fig. 26 bottom-left). On the same variants

lifted to GRCh38, the two GRCh38 models are highly correlated as well (Pearson cor-

relation coefficient 0.98). For comparability, the GRCh38 scores can be lifted back to

GRCh37. Using this type of analysis, the CADD releases GRCh38-v1.5 and GRCh38-

v1.6 have Pearson correlations of between 0.66 to 0.79 to the GRCh37 releases, with the

highest correlation with the CADD GRCh37-v1.4. A lower correlation is expected as

the annotations are not perfectly identical between the genome builds.

The correlation between versions is generally lower when limited to the highest ∼ 10%
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Table 6: CADD annotations for GRCh38

Gene and transcript annotations processing as for GRCh37 via VEP, based on En-
sembl database release 92

Grantham unspecific of genome reference

phastCons, phyloP, GERP score calculation based on 100 vertebrate alignment of
GRCh38 from UCSC genome browser

bStatistic liftover from hg18/NCBI Build 36.1

mirSVR liftover from GRCh37

targetScan liftover from GRCh37

chromHMM adopted chromHMM 25 state model for GRCh38, limited to EN-
CODE/Roadmap cell types

mRNA expression, nucleosome position, histone modification, open chromatin
ENCODE reference epigenome data from 10 to 14 cell types, including assays
of total RNA-Seq, DNase-Seq and ChIP-Seq for 10 different histone modi-
fications; each is included as one feature with sum across cell types and one
feature with maximum across cell types; all signals are log-transformed

Segway replaced by Ensembl Regulatory Build (which is based on a Segway model,
Zerbino et al., 2015)

tOverlapMotifs liftover from GRCh37

TFBS replaced by data from ReMap2 (Chèneby et al., 2018), for every genomic
position the number of different TFs and the number of TF-cell-type hits are
counted

mutationDensity, nearestMutation same processing as for GRCh37 based on
BRAVO/TOPMed freeze 5

dbscSNV liftover from GRCh37 by the authors
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of variants. 10,079 of the 100,000 randomly selected variants have a Phred-score greater

than 10 in CADD GRCh37-v1.4. The GRCh37 CADD releases have Pearson correlation

coefficients on these variants in the range of 0.60 to 0.94 (Fig. 26 top-right). GRCh38

CADD releases have a correlation of 0.97 to each other and between 0.43 and 0.81 to

the GRCh37 releases. As for the entire 100,000 SNVs of this data set, CADD GRCh37-

v1.4 predictions have the highest correlation with the GRCh38 predictions among all

GRCh37 releases.
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Figure 26: Correlation between CADD versions. Pearson correlation coefficients
of Phred-scores between CADD models up to version 1.5. Correlations coef-
ficients are calculated on Phred-scores from 100,000 randomly selected SNV
throughout the genome (below the diagonal) and limited to those with Phred-
scores greater than 10 in CADDGRCh37-v1.4 (n=10,079, above the diagonal)

6.5 Performance in comparison to other variant effect scores

In order to compare the performance of the different CADD releases, known pathogenic

variants from ClinVar (release of July 29th, 2018) were scored and compared to fre-

quent variants (MAF > 0.05) from ExAC release 1 (Exome Aggregation Consortium

et al., 2016). Using the auROC metric as benchmark, CADD GRCh37-v1.4 outperforms

CADD v1.3 0.981 to 0.974 on all SNVs in the data set (Fig. 27A). Limited to short InDel

(Fig. 27C), the results of the two versions are very similar (v1.3: 0.895, GRCh37-v1.4:

0.896).
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Since the two sets of pathogenic and frequent variants come from different sources and

are distributed unequally over the chromosomes, a subset of matched coding effect SNVs

is selected. To perform the selection, all variants in both sets are annotated with Ensembl

VEP and filtered for coding effect SNVs (non-synonymous and stop-gain variants plus

all variants at canonical splice site). The numbers of variants per annotated gene are

counted for each set and matched for the largest common set so that the number of

variants per gene is the same in both sets. In total, 1,288 variants in 868 genes are

selected per data set. Using the matched SNVs as a benchmark, GRCh37-v1.4 has an

auROC of 0.901 versus 0.894 by CADD v1.3 (Fig. 27B).

Variants were compared across genome builds by lifting the initial data set from

GRCh37 to GRCh38 and back from GRCh38 to GRCh37, using CrossMap (Zhao et al.,

2014). The repeated liftover is performed in order to remove variants from the test set

that do not lift successfully between genome references. The GRCh38 models were scored

with variants lifted again from GRCh37 to GRCh38 and the generated scores were lifted

back from GRCh38 to GRCh37 to enable the comparison to the scores of the GRCh37

models. The GRCh38 models generally reach similar auROC scores as GRCh37-v1.4,

with GRCh38-v1.5 having the best results on all SNVs (GRCh38-v1.4: 0.979, GRCh38-

v1.5: 0.982) and the coding effect SNVs (GRCh38-v1.4: 0.898, GRCh38-v1.5: 0.903),

while GRCh38-v1.4 predictions are slightly better on the InDel set (GRCh38-v1.4: 0.896,

GRCh38-v1.5: 0.895).
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Figure 27: CADD v1.4 improves on separating pathogenic ClinVar from fre-
quent ExAC variants. ROC plot of different CADD versions and some of
its annotations on differentiating between pathogenic variants from ClinVar
and variants from ExAC with MAF > 0.05. Both, CADD GRCh37-v1.4 and
CADD GRCh38-v1.5, achieve greater auROC on all SNVs (A), a set of gene-
matched coding effect variants (B) and all InDels (C) in the data set.
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In order to compare CADD to other methods, variant effect scores and similar met-

rics were obtained from different sources. Eigen and Eigen-PC (Ionita-Laza et al., 2016),

FATHMM (Shihab et al., 2014), FATHMM-XF (Rogers et al., 2018), LRT (Chun & Fay,

2009), MutationAssessor (Reva et al., 2011), MutationTaster (Schwarz et al., 2014),

PrimateAI (Sundaram et al., 2018), PROVEAN (Choi et al., 2012), REVEL (Ioannidis

et al., 2016), SiPhy (Garber et al., 2009) and VEST (Carter et al., 2013) were down-

loaded from dbNSFP (Dong et al., 2015; Liu et al., 2016). PolyPhen-2 (Adzhubei et al.,

2010) and SIFT (Ng & Henikoff, 2003) values were obtained from Ensembl VEP. Deep-

SEA (Zhou & Troyanskaya, 2015) scores are obtained by uploading variant files to the

DeepSEA web server http://deepsea.princeton.edu and selecting the Disease Impact

Score prediction from the results. CDTS (di Iulio et al., 2018), DANN (Quang et al.,

2015), FunSeq2 (Fu et al., 2014), LINSIGHT (Huang et al., 2017) and REMM (Smedley

et al., 2016) are available for download as genome-wide, precomputed files. CDTS scores

were downloaded from http://www.hli-opendata.com/noncoding/Pipeline/CDTS

_diff_perc_coordsorted_gnomAD_N15496_hg19.bed.gz. It has to be noted that

due to the commercial interest of the involved parties, the CDTS scores available for

public download are not identical to the proprietary scores from the original publication.

DANN scores were downloaded from https://cbcl.ics.uci.edu/public_data/DAN

N/data/DANN_whole_genome_SNVs.tsv.bgz. FunSeq2 scores were downloaded from

http://org.gersteinlab.funseq.s3-website-us-east-1.amazonaws.com/funs

eq2.1.2/hg19_NCscore_funseq216.tsv.bgz. LINSIGHT scores (version 1.1) were

downloaded from http://compgen.cshl.edu/%7Eyihuang/tracks/LINSIGHT.bw in

bigWig format and converted to bedGraph format. REMM scores were downloaded from

https://zenodo.org/record/1197579/files/ReMM.v0.3.1.tsv.gz. The variants

of interest were selected from the genome-wide files using tabix (Li, 2011). Variants

missing the score for a method are imputed with the median score of all variants for

that method.

While CADD is designed for all variants genome-wide, most variant scoring methods

are specialized to certain types of variants like coding, splicing, or non-coding variants.

Accordingly, this method comparison separately evaluates coding and non-coding SNV

predictions. No comparison was performed for InDels as most methods other than

CADD only evaluate SNVs.

For the comparison of coding variant scores, the previously described benchmark of

gene matched coding effect SNVs from ClinVar pathogenic in comparison to frequent
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variants from ExAC is used (Fig. 28A). Compared to other variant pathogenicity scores,

CADD releases GRCh37-v1.4 and GRCh38-v1.5 perform very well. Better performance

than CADD is observed for VEST (auROC: 0.949) and REVEL (auROC: 0.927) whose

model training sets overlaps with the benchmark data.

Large, comprehensive non-coding data sets are rare. The benchmark data set of vari-

ants from non-coding regions is therefore also a subset of the comparison of pathogenic

ClinVar SNVs versus frequent SNVs from ExAC (Fig. 28B). The selection of non-coding

variants in the two sets is based on the assignment from LINSIGHT for GRCh37. Both

GRCh37-v1.4 and GRCh38-v1.5 have an auROC of greater than 0.99 on the non-coding

data set while all other methods have lower auROC values.
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Figure 28: Comparison of pathogenicity scores on differentiating pathogenic
ClinVar and frequent ExAC SNV. Different methods are compared on
coding (A) and non-coding (B) variants. For the coding variant prediction,
the set of 1,288 gene matched coding effect variants from the previous figure
was used. Non-coding variants are selected as well among pathogenic Clin-
Var and frequent ExAC variants, with the non-coding assignment based on
LINSIGHT.

It should be noted that all of the tested scores have been evaluated on ClinVar variants

before. Some methods (Zhou & Troyanskaya, 2015; di Iulio et al., 2018), have been

specially designed to fill gaps in current predictions that are heavily based on species

alignments and genome conservation and therefore do not use any conservation-based

annotation for variant prediction. Studies have shown that recent evolution has altered

non-coding regions of the genome which are therefore often not conserved between species

(Ponting, 2017). Conservation alone may therefore be a poor predictor for non-coding

variant pathogenicity. As described in the beginning, variants in ClinVar are very likely
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to be under strong observations bias, so pathogenic variants in the benchmark are skewed

for highly conserved variants. Other large data set are therefore necessary to better assess

the different methods.
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7 Improving splicing prediction in a genome-wide model

Notable among the annotations added in CADD v1.4 is dbscSNV (Liu et al., 2016).

dbscSNV uses two machine learning models, one AdaBoost and one random forest clas-

sifier, to predict the consequence of SNVs in the consensus region of splice sites. The

splice consensus region is defined as -3 to +8 bp from the splice junction at donor splice

sites and -12 to +2 bp from the junction at acceptor splice sites. All possible SNVs

close to known splice-junctions have been scored with the two models genome-wide by

the dbscSNV authors (version 1.1). The scores lifted to GRCh38 are available within

the same files. With version 1.4, both scores were added as numeric features without

transformation into CADD. A binary indicator variable was added that encodes whether

dbscSNV is defined for a position. With the new annotations and on the benchmark of

differentiating between known pathogenic variants from ClinVar and frequent variants

from ExAC, CADD GRCh37-v1.4 has an increased performance compared to CADD

v1.3 on prioritizing variants located within 20 bp of known splice junctions (Fig. 29A).

All intronic variants with that 20 bp window of a splice junction, as well as all synonym-

ous variants in the exons, are annotated as splice site variants by Ensembl VEP. For

those variants, the difference in auROC is particularly large (Fig. 29B), but limited to

variants where the dbscSNV annotations are defined (Fig. 29C). For splice site SNVs

where dbscSNV is not defined (Fig. 29C), only a small change in auROC is observed.

No improvements are observed for InDels, where dbscSNV scores are not defined.

7.1 A genome-wide data set of splicing variant effects

The set of variants used for training the dbscSNV machine learning models are partially

taken from the set of pathogenic ClinVar variants used in this analysis. While the

authors of dbscSNV have shown stable performance on a hold-out set, this meant that

further data was needed to verify the increase in performance was not due to overfitting.

Additional validation became possible with the publication of MFASS. Multiplexed

Functional Assay of Splicing using Sort-seq (MFASS, Fig. 30) is a MAVE that measures

the effect of thousands of SNVs in human exons and the surrounding intronic sequences

on RNA splicing (Cheung et al., 2019). For each tested variant, an exon and 40 bp of

intronic sequence to each side are inserted in a DNA sequence that encodes two GFP

exons. The entire sequence is placed in a gene located on a plasmid that is brought

into human cells. As the MFASS reporter gene is transcribed, the tested exon is either
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Figure 29: dbscSNV improves the prediction of CADD v1.4 on splicing vari-
ants. As shown in Fig. 27A, more recent versions of CADD test better than
CADD v1.3 on differentiating between known pathogenic variants from Clin-
Var and frequent variants from ExAC. A similar increase in auROC is seen
when limiting both data sets to SNVs within 20 bp of a known splice junc-
tion (A), especially when the test is restricted to intronic and synonymous
variants (B). The difference may be explained by the addition of dbscSNV
as a feature in CADD since the auROC on SNVs with a defined dbscSNV
score (C) improves from 0.844 (CADD v1.3) to 0.944 (CADD GRCh37-v1.4).
With these results, GRCh37-v1.4 has a higher auROC on these variants than
the conservation scores GERP, phastCons, and phyloP but worse than dbsc-
SNV itself. In C, only splice site SNVs where the random forest dbscSNV is
defined are shown. For splice site SNVs where dbscSNV is not defined (D),
the auROC increases much less from 0.845 (CADD v1.3) to 0.854 (CADD
GRCh37-v1.4), and is within the range of the conservation scores that are
used as features in CADD.
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spliced into the final mRNA or spliced out. Total expression of the gene is the absolute

number of all transcripts of that gene found via RNA-Seq. From that, the amount of

splicing is calculated via the metric percent-spliced-in (psi). The psi of a genomic exon

is defined as the relative fraction of total expression that this one exon is included in

(Katz et al., 2010). Hence, psi is always a value between 0 and 1. The change in psi

(∆psi) of a variant is determined as the absolute difference between psi values of the

exon with the reference sequence and the exon with the alternative sequence. Variants

with ∆psi > 0.5 are identified as splice disrupting variants (sdv) and contrasted to all

not splice disrupting variants (no-sdv).

All variants in the MFASS data set were originally selected from ExAC and are located

in short exons or within 40 bp of the nearby intronic sequence. With more than 27,000

SNVs from over 2,000 human genes evaluated, the data set is unprecedented and exceeds

previous studies of human splicing variants (Rosenberg et al., 2015; Soemedi et al., 2017).

In total, 1,050 sdv of exonic and intronic origin were determined. In the following, splice

effect prediction methods are benchmarked on differentiating between sdv and no-sdv.

The MFASS data set was downloaded from GitHub (https://github.com/Kosur

iLab/MFASS/). In total, the data set consists of 27,733 human SNVs in 2,196 exons

that are positioned on the human reference genome build GRCh37. For each SNV, the

data set contains the psi value that was measured using MFASS for the reference and

the alternative sequence of the variant. All psi measurements are in natural scale and

without any transformations. ∆psi is defined as the absolute change between the two

psi measurements. The MFASS study classifies sdv based on ∆psi > 0.5. All other

SNVs are defined as no-sdv. For the full data set, this split results in 1,050 sdv and

26,683 no-sdv. Due to the imbalance between sdv and no-sdv that is not due to selection

bias, different splicing prediction methods are compared in a PRC. As in all performance

comparisons, the number of variants in every single benchmark is reduced because of

variants that cannot be scored by all plotted methods, all of which are omitted.

Using the data set as a benchmark, the benefits of adding dbscSNV as a feature in

CADD were analyzed. As mentioned before, dbscSNV is defined only for a short window

of at maximum 12 bp around a known splice site. Furthermore, the dbscSNV models

and annotations have not been published but only released as prescored variant files.

Unfortunately, this means that not all canonical splice sites, as annotated by Ensembl

VEP, are included in those prescored files, either because the canonical splice site was

only found after the publication of dbscSNV or because it was omitted for unspecified
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Figure 30: MFASS reporter assay. Multiplexed Functional Assay of Splicing using
Sort-seq (MFASS) is a highly parallel reporter assay that was used to test
splicing effects of 27,733 genomic variants. The variant effects are studied via
a synthetic reporter library that inserts a short genome sequence of exonic
and intronic sequences in a reporter gene. Transcribed mRNA of the reporter
gene either integrates the exon or not, depending on if it is splice in or spliced
out. Variants that cause a change in exon integration, measured in percent-
spliced-in (psi), of more than 0.5 are identified as splice disrupting variants
(sdv).

reasons such as sequence ambiguity or regional constraint. To estimate the effect of

dbscSNV, the benchmark is split in two: (I) 3,612 variants where dbscSNV is defined

(Fig. 31A) and (II) the remaining variants where dbscSNV is not defined (Fig. 31B). In

the second set, CADD v1.3 and CADD GRCh37-v1.4 have an almost identical auPRC

of 0.049 and 0.050 respectively, while on variants where dbscSNV is defined, the auPRC

increases from 0.285 to 0.335. These results are another indication that the improvements

in splice effect prediction from Fig. 29 are due to the addition of dbscSNV and that

CADD predictions benefit from the new feature.

Based on these findings, further in silico prediction methods were explored as possible

CADD features. While generalized features like conservation scores have been found to

be better than random when predicting variants in intronic regions (Cheung et al., 2019),

specialized scores show improved performance and are necessary to successfully predict

splice variants residing within exonic regions. By now, a wide variety of specialized
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Figure 31: CADD benefits from dbscSNV on MFASS variant prediction. Meas-
ured in auPRC, variants where (A) dbscSNV is defined are better distin-
guished into sdv and no-sdv than (B) variants where dbscSNV is not defined.
CADD GRCh37-v1.4 performs very similar to CADD v1.3 on B while it has
a better auPRC on A where dbscSNV contributes as a feature to the model
score. For variants where it is defined, dbscSNV has a higher auPRC than
CADD. MMSplice and SpliceAI are defined for all variants and have higher
auPRC than CADD in both settings.

methods have been developed to predict changes in RNA splicing (Jian et al., 2014b).

Many of these predictors have been trained via machine learning (Abramowicz & Gos,

2018), including decision tree (Mort et al., 2014; Jian et al., 2014a; Soemedi et al.,

2017; Jagadeesh et al., 2019), probabilistic (Yeo & Burge, 2004) and k-mer-based (Ke

et al., 2011; Rosenberg et al., 2015) models. The first generation of splicing scores,

like MaxEntScan (Yeo & Burge, 2004), focus on the immediate neighborhood of splice

junctions, as most splicing variants have been found in these regions (Abramowicz & Gos,

2018). In the last few years, more distal splicing regulatory elements have been taken

into account (Mort et al., 2014; Soemedi et al., 2017; Jagadeesh et al., 2019). Recently,

deep neural networks (DNNs) achieved good results in predicting splice variants genome-

wide. The idea of using neural networks for splice predictions is almost three decades old

(Brunak et al., 1991; Reese et al., 1997). The first tool to leverage the recent progress

in deep learning technology was SPANR (also SPIDEX, Xiong et al., 2015), which is

trained on experimentally observed exon skipping events and predicts exon inclusion

percentages based on genomic features. Instead of using predefined features, two recent

tools, MMSplice (Cheng et al., 2019) and SpliceAI (Jaganathan et al., 2019), are limited

to genomic sequence as input for their prediction.
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To access strengths of different methods, the MFASS data set was split into intronic

(n=13,603) and exonic (n=14,130) variants based on the annotation by Cheung et al.

(2019). Again, the number of variants in each PRC is slightly smaller as only variants

were included for which all tested methods are defined.

A number of specialized methods were adopted for the MFASS benchmark. Hexamer

HAL (Rosenberg et al., 2015) scores were generated using HAL model scripts from Kipoi

(Avsec et al., 2019). HAL scores including percent-spliced-in (psi) were downloaded with

the MFASS data set, originally obtained via the HAL website https://splicing.c

s.washington.edu for exon skipping variants by the MFASS authors (Cheung et al.,

2019). S-CAP (Jagadeesh et al., 2019) (v1.0) scores were downloaded from https:

//bejerano.stanford.edu/scap/. All eight S-CAP scores were combined into one

score by taking the maximum per variant. Where specifically indicated and per S-CAP

definition, variants without a precalculated score were imputed as benign (S-CAP score

= 0). SPANR (Xiong et al., 2015) (v1.0, noncommercial) scores were downloaded from

https://assets.deepgenomics.com/spidex_public_noncommercial_v1_0.tar.

MMSplice (Cheng et al., 2019) scores were generated via the provided script release

(v1.0.2) as installed from pypi. The exon-intron boundaries were provided as GTF

gene annotation file downloaded from Ensembl release 95 (Aken et al., 2016). The

script generates model scores of the sequence with reference allele and with alternative

allele for five submodels (acceptor, acceptor intron, exon, donor, and donor intron).

The script also outputs the composite linear models delta logit psi and pathogenicity

that summarize the five submodels in one metric. delta logit psi scores were used in

performance comparisons. Prescored SpliceAI (Jaganathan et al., 2019) v1.3 scores were

downloaded from Illumina BaseSpace. For larger InDels unavailable from precomputed

scores, the variant scores were computed via an adapted version of the SpliceAI scripts

version 1.3 (https://github.com/Illumina/SpliceAI/) that is able to integrate

scores from prescored files in order to enable faster scoring. In comparisons of SpliceAI

with other scores, all four SpliceAI models were combined into a single score by using

the maximum score for each variant.

A combined score of MMSplice and SpliceAI, MMAI, was defined for evaluation on

the MFASS data set. To give equal weight to both MMSplice and SpliceAI, scores were

divided by their respective standard deviation across all MFASS variants (MMSplice

0.5291, SpliceAI 0.1206) and the normalized scores added. For SpliceAI, the maximum

score across all SpliceAI submodels was used while MMSplice is included via the model
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combination delta logit psi. Similar to MMAI, MMAIpsi was defined by adding normal-

ized psi as measured for the reference allele in the MFASS data set (standard deviation of

0.0622 across all MFASS variants) to MMAI. ”proportion expressed across transcripts”

(pext, Cummings et al., 2020) was downloaded in the version of 27 of February 2019.

While the file is not available from the original location anymore, the file has been

archived at https://doi.org/10.5281/zenodo.4447230. For intronic variants, the

pext value of the closest exon was annotated.

Besides dbscSNV, the splicing effect predictors methods HAL (Rosenberg et al., 2015),

MMSplice (Cheng et al., 2019), S-CAP (Jagadeesh et al., 2019), SPANR (Xiong et al.,

2015) and SpliceAI (Jaganathan et al., 2019) were benchmarked (Fig. 32). From these

methods, SpliceAI and MMSplice, both DNNs based solely on genomic sequence, showed

the best overall performance (Fig. 32A) with auPRC of 0.328 (SpliceAI) and 0.361

(MMSplice). While the performance of all methods is generally better and less variable

for introns (Fig. 32C) then exons (Fig. 32B), MMSplice and SpliceAI are the best

performing methods on both subsets.

In the original MFASS publication, some methods such as the conservation scores

PhyloP and PhastCons have very low auPRC values and appear to perform worse than

if predictions had been random. This finding could not be reproduced. It was found that

the authors of MFASS had inverted the values of these scores and that, when corrected,

those scores perform better than random guessing on predicting splice effects. However,

the predictive power of the species conservation measures for exonic variants remained

limited, because most exonic variants fall in the highest conservation score bin (Fig.

32B).

Despite their similar auPRC performance on the MFASS data set, Spearman correla-

tion between SpliceAI and MMSplice on MFASS variants is only around 0.6. While both

models are trained on different data sets, the dissimilarity may be based on the different

model architectures. MMSplice is a convolutional neural network that was trained on

data from a large MPRA library (Rosenberg et al., 2015) of random sequences and takes

into account 75 bp of sequence up and downstream of a known splice junction for splice

donors and splice acceptors. This is in contrast to SpliceAI that as a deep residual net-

work takes advantage of a much larger sequence window of 10,000 bp and was trained

on RNA expression data from different individuals and tissues in GTEx. Based on the

speculation that as both scores were derived very differently, they may complement each

other. Thus, an equally weighted linear combination of the two scores (MMAI) was
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evaluated. MMAI was found to reach an auPRC of 0.416 (Fig. 32), better than either

of its parents.

0 0.2 0.4 0.6 0.8 1
Recall

1

0.6

0.3

0.1

0.06

0.03

P
re

ci
si

on

all SNVs (n = 1042 vs 26430)

0 0.2 0.4 0.6 0.8 1
Recall

1

0.6

0.3

0.1

0.06

0.03

P
re

ci
si

on

exonic SNVs (n = 484 vs 13519)

0 0.2 0.4 0.6 0.8 1
Recall

1

0.6

0.3

0.1

0.06

P
re

ci
si

on

intronic SNVs (n = 558 vs 12911)A B C
CADD v1.3 (0.063)

CADD GRCh37-v1.4 (0.108)

CADD-Splice (0.187)

SPANR (0.266)

phastCons (0.054)

MMSplice (0.361)

SpliceAI (0.328)

MMAI (0.416)

S-CAP (0.216)

CADD v1.3 (0.059)

CADD GRCh37-v1.4 (0.068)

CADD-Splice (0.100)

SPANR (0.115)

phastCons (0.039)

MMSplice (0.172)

SpliceAI (0.152)

MMAI (0.218)

S-CAP (0.045)

CADD v1.3 (0.371)

CADD GRCh37-v1.4 (0.446)

CADD-Splice (0.485)

SPANR (0.435)

phastCons (0.206)

MMSplice (0.527)

SpliceAI (0.455)

MMAI (0.565)

S-CAP (0.357)

Figure 32: Additional splicing scores improve the performance of CADD on
MFASS. PRC of various prediction methods separating sdv from no-sdv.
The benchmark results are dependent on the selected variants and differ
between (A) all variants from MFASS, limited to (B) exonic or (C) intronic
variants. In all three cases, effect predictors specialized on splicing variants
like MMSplice, SPANR and SpliceAI have the highest auPRC. Further im-
provement is available in a linear combination of the predictors MMSplice and
SpliceAI (MMAI). The new CADD model CADD-Splice integrates MMSplice
and SpliceAI into its extensive feature set and hence outperforms previous
CADD models on the MFASS benchmark.

In Cheung et al. (2019), the predictor with the highest auPRC on exons is HAL

(Rosenberg et al., 2015, Fig. 33B). However, the sequence-hexamer-based model of

HAL further integrates psi of the reference allele as an additional assay-derived source

of information. ∆psi, a measure derived from psi, was used to define sdv and no-sdv

variants. psi of the reference alone separates sdv from no-sdv variants (Fig. S1B, auPRC

of psi 0.143, HAL with psi 0.274, HAL without psi 0.175). Any interpretation of the

increased performance therefore needs to consider the underlying circularity. Adding psi

in the linear combination of MMSplice and SpliceAI (MMAIpsi) results in an auPRC of

0.471 (Fig. 33A). MMAIpsi outperforms all other models on exons, where increased pre-

cision is specifically observed for high recall thresholds (Fig. 33B). Using HAL without

psi does result in the same performance as MMSplice (auPRC 0.175, Fig. 33B). Since

the application of HAL is by design limited to exons, MMSplice was chosen over HAL

for all further analysis.

As an assay-derived measure, the psi values from the MFASS study cannot be used

to predict splicing effects genome-wide. However, genome-wide availability would be
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a prerequisite for including psi as an unbiased feature in variant prediction. While

measures of psi can be derived for any RNA-Seq data set (Katz et al., 2010; Shen et al.,

2012) and are predictive of specific cell-types (Park et al., 2018), CADD would require

an organismal summary of all cell types and developmental stages. A possible candidate

metric (Ling et al., 2020) became available only after this analysis had finished. Here,

the proportion expressed across transcripts (pext, Cummings et al., 2020) is explored,

a close proxy of psi. pext is based on RNA-Seq transcript assemblies and quantifies the

expression of each nucleotide in an exon in relation to the entire transcribed sequence of

the gene. However, neither does pext separate sdv and no-sdv variants very well (Fig.

33A, auPRC of 0.058 versus 0.143 for psi) nor do we find any separation of splicing

variants in the CADD training set based on pext value. While better equivalents may

be considered, it is possible that psi values as measured in MFASS are very assay-

dependent.

7.2 New splicing features in CADD

Aggregating all findings, a new CADD model was developed by integrating SpliceAI and

MMSplice as features. In preparation for the integrating, the score distribution in the

two training set classes was analyzed for each submodel. For SpliceAI, this included the

four 10,000 bp submodels donor gain, donor loss, acceptor gain, and acceptor loss. Since

the generation of genome-wide scores from sequence proved to be too computationally

expensive, precomputed SpliceAI scores from Illumina BaseSpace were used. Since mod-

els require the reference nucleotide of a variant to match the human reference, variants

from the proxy-benign set (human-derived variants) of the CADD training data were

scored with reference and alternative alleles reversed. To adjust for this, gain and loss

model scores were swapped for donor and acceptor. In both training data set and final

scoring, predicted splice gains at annotated splice sites and predicted splice loss outside

of annotated splice sites were set to 0 (for donor and acceptor sites). This was previously

described for SpliceAI (Jaganathan et al., 2019) and has been referred to as masking.

Applied after the swap of gain and loss in human-derived variants, masking the SpliceAI

submodels resulted in a large depletion of high scores in the human-derived class while

unmasked scores (i.e. splicing loss outside of existing sites and splicing gain for already

existing sites) did not show class specificity (Fig. 34).

For MMSplice, the five models acceptor, acceptorIntron, donor, donorIntron, and

exon were evaluated separately. In the case of the proxy-deleterious class of simulated
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Figure 33: percent-spliced-in is a predictor of splicing disruption. PRC of psi,
pext, HAL and other scores for (A) all, and limited to (B) exonic and (C)
intronic variants tested with MFASS. Using reference psi value of the reporter
assay as a predictor to distinguish sdv and no-sdv is far better than random
guessing. In the original MFASS study, psi was used as additional input for
the HAL predictor (HALpsi) which produced the highest benchmark auPRC
of all predictors on exonic variants. The HAL predictor without psi does
reach lower auPRC values. MMAIpsi, the combination of MMAI with psi
performs better than HALpsi and is also available for intronic variants. pext,
which was explored as a genome-wide alternative to psi, performs worse at
distinguishing between sdv and no-sdv.

Figure 34: Figure on next page. Histograms of SpliceAI model scores for 10 million SNVs
in the CADD training set (human-derived: blue, simulated: green). Masked
variants (loss variants that influence a known splice junction (A) and gain
variants outside of a known splice junction (C)) are depleted in the simulated
category for variants with high scores. Other, unmasked, variants (gain at a
known splice junction (B) or loss outside of known splice junction (D)) are
not depleted. Plots are limited to donor gain (A & B) and acceptor loss (C
& D) submodel scores. Variants not annotated by SpliceAI are omitted, with
the number of variants per plot specified in the title as n = number simulated
/ number of human-derived variants.
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variants as well as in scoring applications of the CADD model, the reference score was

subtracted from the alternative score, as described by the authors. Since the MMSplice

script provides scores only for variants where the reference matches the genome refer-

ence, human-derived variants have to be scored in reverse and the alternative score is

subtracted from the reference score.

A depletion of human-derived variants was observed for negative scores, as most pro-

nounced for the acceptor, donor, and exon models (Fig. 35). No depletion of positive

scores could be observed in the human-derived variants. Instead, an enrichment of

human-derived variants was observed for strong positive scores. It was concluded that

positive score differences have to be set to 0 for all MMSplice submodels.

For variants annotated with multiple different consequence predictions as annotated

by Ensembl VEP, both MMSplice and SpliceAI scores were limited to the consequence

of the same gene. All variants not annotated by MMSplice or SpliceAI were imputed as

0. All nine MMSplice and SpliceAI sub-model annotations were further included in a

feature-cross with the consequence annotation. Independent of these splicing features,

the category ”unknown” was removed from the categorical consequence levels as only

two variants in the entire training set were annotated in this category. These variants,

classified by VEP as ”coding sequence variant” without further specification, were re-

assigned to the ”synonymous” consequence category. An issue specific to CADD v1.4

was corrected, which previously made it possible that highly conserved coding variants

could be scored as UTR of overlapping gene annotations. Hyperparameter optimization

was performed with the same strategy as for CADD v1.4/v1.5. The final model was

trained for 13 iterations with the L2-regression parameter C = 1 via the scikit-learn

implementation of L-BFGS logistic regression.

Figure 35: Figure on next page. Histograms of MMSplice model scores for 10 million
SNVs from the CADD training set (human-derived: blue, simulated: green).
Score distributions are different for the specialized models: acceptor (A),
acceptorIntron (B), donor (C), donorIntron (D) and exon (E). Variants not
annotated by MMSplice are omitted, with the number of annotated variants
per plot specified in the title as n = number simulated / number of human-
derived variants.
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7.3 Benchmarking CADD-Splice

The new model has the formal version tag CADD GRCh37-v1.6 but has been named

CADD-Splice to specifically highlight the improvements on predicting splicing effects.

CADD-Splice shows an increased auPRC of 0.185 on the entire MFASS data set (CADD

GRCh37-v1.4: 0.108), with better performance on both exonic and intronic variants

(Fig. 32). All MMSplice and SpliceAI features were learned with positive coefficients in

the CADD-Splice model, which indicates that increased scores in the splice models are

associated with increased deleteriousness in the combined model.

As mentioned above, in the original MFASS study (Cheung et al., 2019) variants were

split into categories based on the observed changes in psi: sdv have ∆psi > 0.5 while

no-sdv have ∆psi ≤ 0.5. While there is reasoning behind that threshold, other values

for ∆psi may be chosen for the evaluation of in-silico predictions. A lower threshold will

increase the number of variants classified as sdv, while a higher threshold will increase

the number of no-sdv. In Figure 36, results are shown for thresholds 0.7, 0.3 and 0.1

(Fig. 36A-C), as well as a two-step threshold of variants with ∆psi > 0.5 and variants

with ∆psi > 0.1 (Fig 36) that excludes uncertain variants between the two thresholds.

While the general performance of each method varies slightly depending on the chosen

thresholds and mostly declines with lower ∆psi thresholds, the relative ranks in terms

of auPRC are the same for each setting.

The correlation of CADD-Splice with previous CADD releases was analyzed using the

same type of correlation analysis described in chapter 6.4. On 100,000 genomic SNVs,

CADD-Splice has a Pearson correlation of 0.99 with CADD GRCh37-v1.4 (Fig. 37).

For 10,079 variants with a Phred-score greater than 10 in CADD GRCh37-v1.4, the

correlation to the latter is 0.97.

Score enrichments enable the attribution of the observed differences between versions

to certain variant categories. To perform the enrichment analysis, gnomAD SNV were

assigned to three allele frequency groups as frequent (MAF > 0.001), rare (MAF≤ 0.001,

allele count > 1) and singleton (allele count = 1). Variant types were annotated using

Ensembl VEP and limited to the broader consequence category used in CADD. To

compare scores between versions without taking category shifts into account, CADD raw

score percentiles of all variants in the same category were used as ranks. Enrichments

per category were calculated by selecting for each percentile all variants of the same

category with a rank larger than this percentile and dividing the number of observed

variants per frequency group by the number expected from random drawing. From
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Figure 36: MFASS auPRC rank is independent of ∆psi. All MFASS variants are
separated into sdv and no-sdv entirely based on ∆psi thresholds. Instead
of the default value of 0.5, thresholds of ∆psi > 0.7 (A), ∆psi > 0.3 (B),
∆psi > 0.1 (C) and a two-step threshold of ∆psi > 0.7 for sdv versus ∆psi <
0.1 for no-sdv (D) are shown.

the entire sample, 1,000 bootstrap iterations were drawn of which the 95% confidence

interval is used as variance estimate.

For all categories and models, high CADD scores are depleted in the group of frequent

variants and enriched in the group of singleton variants (Fig. 38). Larger differences

in enrichment are observed for variants around known splice sites, as apparent from

an increased depletion of high CADD scores for ”frequent” variants and enrichment of

gnomAD singletons in splicing related variant categories. In the splice site proximal

regions within 20 bp of a known splice site, this enrichment/depletion effect increases

from CADD v1.3 over v1.4 to CADD-Splice (Fig. 38A). However, for canonical splice
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Figure 37: CADD-Splice is highly correlated to previous CADD version. Pear-
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out the genome (below the diagonal) and limited to those with Phred-scores
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CADD GRCh37-v1.4 and CADD Splice, as well as CADD GRCh38-v1.5 and
GRCh38-v1.6 have correlation coefficients higher than 95%. The correlation
to and between previous version is lower.

sites, changes overlap within the 95% confidence interval of CADD-Splice (Fig. 38A). For

other variant categories such as intronic variants and coding mutations, score depletion

of CADD GRCh37-v1.4 and CADD-Splice increases for larger percentiles compared to

CADD v1.3 (Fig. 38C-E) but no significant difference is observed between the two latest

releases.

As described for previous versions, performance is benchmarked on pathogenic SNVs

from ClinVar in contrast to common SNVs from gnomAD that are suspected to be

overwhelmingly neutral (Fig. 39). Performance is compared based on auROC. The

ClinVar database (release April 20th, 2020) was downloaded from https://ftp.ncbi.n

lm.nih.gov/pub/clinvar/. ”pathogenic” SNVs were selected from the database based

on the assignment of ‘Variant Clinical Significance’, excluding variants with multiple

assignments. gnomAD (version 2.1.1) was downloaded from https://gnomad.broad

institute.org/. SNVs that did not pass all filters set by the gnomAD authors were

excluded. Common variants were selected by excluding all variants with a minor allele
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Figure 38: Enrichment of CADD scores by variant allele frequency. To compare
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are separated by line-style and CADD scores are converted into percentiles
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frequency (MAF) less than 0.05 across all gnomAD samples. In order to later score

GRCh37 variants with CADD GRCh38 models, variants were lifted to GRCh38 using

CrossMap (Zhao et al., 2014), excluding variants that did not lift back to the same

GRCh37 coordinates. The final ”benign” set contains 163,581 gnomAD SNVs and the

”pathogenic” set contains 68,479 ClinVar SNVs.

On intronic (Fig.39C) and splice site SNVs (Fig.39B), CADD-Splice (auROC intronic

0.957 and auROC splice site 0.978) outperforms not only previous versions of CADD

(GRCh37-v1.4: 0.879 and 0.938) but also the specialized scores MMSplice (0.886 and

0.970) and SpliceAI (0.869 and 0.959). For synonymous variants (Fig. 39D), smaller

increases in auROC were observed, possibly due to a mixture of splicing-related and

unrelated changes in the model. Only a few common SNVs in gnomAD are located at

canonical splice sites, limiting the meaningfulness of the canonical splice site benchmark

(Fig. 39E). From what can be observed, CADD-Splice does not improve the prediction

on this variant class as CADD GRCh37-v1.4 has the highest auROC. The ROC curves

of CADD-Splice and CADD GRCh37-v1.4 are almost identical for missense variants.

Since the ClinVar pathogenic benchmark had been used for model testing before,

likely-pathogenic SNVs were compared to low-frequency variants. As in the previous

benchmark, likely-pathogenic SNVs are selected based on the assigned clinical signific-

ance in ClinVar (incl. variants assigned the two terms ”likely-pathogenic” and ”patho-

genic”). In total 27,458 SNVs are selected. The set of low-frequency variants is selected

by randomly picking 300,000 SNVs with a minor allele frequency below 0.05 and an

allele count above 1 in gnomAD.

The benchmark results replicate the previous results while highlighting the excellent

performance of CADD on the complete variant set (Fig. 40). In addition, the benchmark

allows comparison to the specialized splicing scores S-CAP and SPANR whose training

set partially overlaps the ClinVar pathogenic set (Fig. 41). While SPANR does not

perform better than CADD-Splice in any of the comparisons, S-CAP outperforms CADD

on canonical splice site variants (Fig. 41B) and intronic SNVs (Fig. 41D). However,

precomputed S-CAP scores are missing for about 9% (5,980 out of 66,608) of splicing-

related variants in this test set (Fig. 41B-D). When interpreting missing variants as

benign rather than excluding them from all comparisons (Fig. 41E-H), most S-CAP

auROC values reduce substantially and increase only for canonical splice sites (Fig.

41F).
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Figure 39: Improvement on splicing related variants in comparison of ClinVar
pathogenic and common gnomAD variants. ROC benchmark of CADD
models and the new splicing features on separating ClinVar pathogenic SNVs
from gnomAD variants with minor allele frequency greater 0.05. Including the
entire data set in the benchmark (A), the three CADD versions achieve the
highest auROC values. CADD-Splice performs distinctly better than CADD
v1.3 and CADD GRCh37-v1.4 when the benchmark is limited to splice site
(variants within 20 bp of a known splice site B), intronic (C) or synonymous
SNVs (D). CADD GRCh37-v1.4 leads on canonical splice site SNVs (E),
while on missense SNVs (F), CADD-Splice and CADD GRCh37-v1.4 have
an almost identical ROC.

7.4 CADD-Splice for GRCh38

In the same way that CADD GRCh37-v1.4 was extended to CADD-Splice, SpliceAI and

MMSplice were added as features to the previous release for GRCh38, CADD GRCh38-

v1.5. CADD GRCh38-v1.6 further corrects the GERP (Chapter 6.4) and Ensembl Reg-

ulatory Build (Zerbino et al., 2015) annotations. For the first time, model parameters

used for training the models are the same for GRCh37 and GRCh38. Both models are

trained for 13 iterations using the same scikit-learn implementation of L-BFGS logistic
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Figure 40: ClinVar likely-pathogenic in comparison to rare gnomAD variants.
Description on next page.
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Figure 40: Figure on previous page. The benchmark data set of pathogenic variants from
ClinVar and common variants from ExAC or gnomAD has been frequently
used for testing and training of variant classifiers. An alternative benchmark
can be created by measuring ROC of likely-pathogenic variants from ClinVar
in comparison to rare (MAF < 0.05, allele count > 1) variants from gnomAD.
Similar to the findings in Fig. 39, CADD-Splice reaches a higher auROC for
all SNVs (A), splice site (B), intronic (C) and synonymous SNVs (E), while
only marginal increases in auROC are detected for missense (D) and canonical
splice site SNVs (F).

regression with the regression parameter C = 1. For benchmarking, scored variants

are lifted from GRCh38 to GRCh37 using CrossMap (Zhao et al., 2014) to enable the

comparison to CADD-Splice.

CADD GRCh38-v1.6 has similar performance improvements over the previous release

as CADD-Splice for the ClinVar pathogenic versus common gnomAD benchmarks. In-

creases in auROC are observed for splice site and intronic SNVs (Fig. 42B&C) while

predictions of all and only missense SNVs (Fig. 42A&D) have almost no change in

auROC.

Pearson correlation between CADD GRCh38-v1.5 and CADD GRCh38-v1.6 is 0.96

for both 100,000 genome-wide SNVs and the subset of 10,079 SNVs with a Phred-score

greater than 10 in CADD GRCh37-v1.4 (Fig. 37). With that, the correlation is lower

than between the last two GRCh37 releases. A possible explanation are the adjustments

to the GERP annotations specific to GRCh38. Those may also explain why CADD

GRCh38-v1.6 is slightly more correlated to any GRCh37 release than CADD GRCh38-

v1.5 (i.e. CADD GRCh37-v1.4 to CADD GRCh38-v1.5 0.79 and 0.81 versus CADD

GRCh37-v1.4 to CADD GRCh38-v1.6 0.80 and 0.81). On the same 100,000 SNVs,

the GerpS annotation from GRCh37 has a Pearson correlation coefficient of 0.32 with

the erroneous GerpS from CADD GRCh38-v1.5, while the correlation is 0.69 with the

fixed GerpS from CADD GRCh38-v1.6. However, no statistical analysis was run on

this question and the observed increase may as well be due to fluctuation in model

coefficients.

7.5 Conclusions from extending CADD with splicing annotations

When genomes are investigated for variants that affect phenotype, the causal molecular

process is usually unknown. Therefore, variant effect scores need to integrate knowledge
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Figure 41: Additional scores on ClinVar likely pathogenic in comparison to
rare gnomAD variants. Description on next page.
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Figure 41: Figure on previous page. The specialized splicing predictors S-CAP and
SPANR overlap in their training setting with the ClinVar pathogenic set and
are therefore benchmarked on ClinVar likely-pathogenic variants. While both
predictors have lower auROC than CADD on all (A) and splice site SNVs
(C), S-CAP achieves the highest performance for SNVs located in canonical
splice sites (B) and introns (D). The number of variants in the benchmark is
reduced since S-CAP misses many variants. According to the S-CAP manu-
script, missing variants should be classified as benign. If missing variants are
imputed as such, the auROC of S-CAP decreases for all (E), splice site (G)
and intronic SNVs (H). For canonical splice site variants where the number
of variants not scored by S-CAP is small, the auROC is less affected (F). The
auROC of other methods in is generally not affected by the change in variant
numbers.

across different processes in order to rank variants across variant consequences, e.g.

amino acid substitutions, truncating variants, and splicing alterations. To our know-

ledge, existing predictors scoring all types of genomic variants do not specifically take

RNA splicing effects into account, as evident by their limited performance on specialized

data sets (Mather et al., 2016; Li et al., 2017; Cheung et al., 2019). This chapter has

demonstrated that sequence-based models of splicing effect can improve the perform-

ance of existing annotation-based variant effect scores. Specifically, we have shown that

the integration of deep learning derived scores from MMSplice and SpliceAI into CADD

enables splice effect prediction with high accuracy.

We have benchmarked available splice predictions on the experimental MFASS data set

and on known disease-causing mutations from ClinVar. Even though MFASS does not

cover some types of variants like gain-of-function mutations and deep intronic variants, it

is a very valuable data set for splicing prediction and the most comprehensive data set for

experimental splice-site effects today. We were able to show that existing splice models

work well in predicting splice effects, provided that tools use the genomic context of each

variant and not the assay-specific sequence design as input for the prediction. It further

benefits methods when they are not only available as a precomputed score but provided

as software that can be run genome-wide and independent of reference genome build and

other annotations. We note that the performance of all methods differs between exonic

and intronic sequence (as expected due to different levels of constraints), as well as with

distance to the canonical splice site. Even CADD v1.3, which uses only a 20 bp distance

to canonical splice sites, has high precision in distinguishing pathogenic variants at
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Figure 42: CADD-Splice for GRCh38. ROC of pathogenic SNVs from ClinVar in
comparison to SNVs with MAF > 0.05 from gnomAD. CADD GRCh38-v1.6
has a higher auROC on all SNVs in the two data sets (A), splice site SNVs
(B) and intronic SNVs (C) compared to the previous release CADD GRCh38-
v1.5 while maintaining a similar auROC for missense SNVs (D).

canonical splice sites and shows reasonable performance for intronic variants. Based on

the results of the benchmark sets, it is unknown how far we can generalize observations

for intronic variants that are more than 40 bp away from a known splice junction as such

variants are not included in the MFASS data set and are rarely discovered from disease

studies (Mort et al., 2014).

Of note, our findings contradict the original MFASS publication (Cheung et al., 2019)

that found HAL among the best performing predictors. We show that including psi as

a feature provides an assay-specific predictive advantage and that without this feature,

HAL’s performance is comparable to MMSplice and SpliceAI. While part of this obser-
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vation is probably due to biases of the assay, i.e. that certain exons are more frequently

integrated into the reporter construct than others, some of it could be biological signal.

More specifically, it could be argued that prevalent splice junctions (high psi) are less

susceptible to disruption than less prevalent ones where multiple alternatives are gen-

erated. It has been previously observed that mutation effects scale non-monotonically

with the inclusion level of an exon, with mutations having maximum effect at a predict-

able intermediate inclusion level (Baeza-Centurion et al., 2019). It was suggested that

competition between alternative splice sites is sufficient to cause this nonlinear relation-

ship. We thought about integrating this in our model but could not determine a sensible

feature. The pext score that was investigated as a genome-wide psi substitute, did not

capture splice effect size.

The two models released as version 1.6 present the currently latest iteration of CADD.

The GRCh37 model CADD-Splice has a total of 1,029 features derived from 102 annota-

tions. 222 features Xn derive from 90 numerical annotations and one-hot-encoding of

12 categorical Boolean annotations. 14 Boolean indicators Wn express whether a given

feature or feature group (out of cDNApos, CDSpos, protPos, aminoacid-substitution,

targetScan, mirSVR, Grantham, PolyPhenVal, SIFTval, Dist2Mutation, chromHMM,

dbscSNV-ada, dbscSNV-rf, and SpliceAI) is undefined. 12 nucleotide and 189 amino acid

substitutions possible to create with SNVs correspond to another 201 features. Further,

16 different variant consequence categories and a set D consisting of the 37 annotations

bStatistic, cDNApos, CDSpos, Dst2Splice, GerpN, GerpS, mamPhCons, mamPhyloP,

minDistTSE, minDistTSS, priPhCons, priPhyloP, protPos, relcDNApos, relCDSpos, rel-

ProtPos, verPhCons, verPhyloP, Dist2Mutation, freq100, freq1000, freq10000, rare100,

rare1000, rare10000, sngl100, sngl1000, sngl10000, the four SpliceAI scores (acceptor-

gain, acceptorloss, donorgain, and donorloss) and the five MMSplice scores (acceptorIn-

tron, acceptor, donorIntron, donor and exon) are used to create a set of 592 consequence

interactions. The entire model fitted using the logistic regression implementation in
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scikit-learn is:

β0 +
222∑︂
i=1

βiXi +
4∑︂

i=1

3∑︂
j=1

γij1i-th Ref category and j-th Alt category,i ̸=j

+
189∑︂
i=1

δi1i-th amino acid exchange possible in SNV +
14∑︂
i=1

τiWi

+
16∑︂
i=1

∑︂
j∈D

αij1i-th Consequence categoryXj

(1)

For CADD GRCh38-v1.6 the number of total features is 1,028 derived from 120 annota-

tions. A full list of annotations included in CADD v1.6 is described in the release notes

on our website and the supplement of our latest manuscript Rentzsch et al., 2021.
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8 An alternative training data set

The success of the CADD method can be attributed to two main achievements: First,

the large training data set of more than 30 million variants that are not dependent on

any prior classified and therefore possibly biased set of variants. And second, the large

number of annotations that can be used with such a large training data set. While other

projects such as CAPICE (Li et al., 2020) have used features very similar to CADD

with another training data set, it has been a question for some time whether there are

other suitable data sets that can be used to train a variant interpretation model. One

option for such a data set are variants derived from population sequencing studies that

are divided into classes by minor allele frequency (MAF) in the human population.

In this project, SNVs and small InDels are split into sets based on allele frequencies.

Very similar to the CADD approach, variant simulations of these sets match the nuc-

leotide substitution patterns and genome-wide distribution. The generated variant sets

then serve as training instances for a CADD-like classifier using the same annotations

and model parameters as CADD GRCh38-v1.6. Finally, the new models are compared

in their performance to predict pathogenic variants.

8.1 Selecting variants by allele frequency

Variant allele frequencies are not created entirely by chance. For any variant appearing

in an individual, the same restrictions as for the human ancestral sequence apply. De-

leterious variants that may arise in a single individual are likely to be selected against

and are therefore expected at lower allele frequencies than neutral variants that may

proliferate in the population. Selected for only by drift, it has been found deleterious

alleles are younger than neutral alleles of the same frequency and more likely to decrease

in frequency in the near future (Kiezun et al., 2013).

Recent studies have made genome-wide variant calls from ten thousands of unrelated

humans available. The 1000 Genomes project expected to observe at minimum 95% of

SNVs that appear in more than 0.5% of individuals (The 1000 Genomes Project Consor-

tium, 2015). With the increased number of genomes involved in more recent population

studies like gnomAD (Karczewski et al., 2020), NHLBI BRAVO/TopMed (Taliun et al.,

2021) and NCBI ALFA (Phan et al., 2020), variant allele frequency estimates have ex-

tended further to less frequent variants.

This analysis is based on gnomAD version 3.0, as published on October 16th, 2019
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at https://gnomad.broadinstitute.org. Alternative sources of population variants

not used here would be gnomAD version 2.1.1 for the previous human reference build

GRCh37 and the BRAVO freeze 8 release from the TOPMed consortium. gnomAD v3.0

consists of variants called from WGS data of 71,702 unrelated individuals that were

mapped to GRCh38. The study includes individuals of many different subpopulations,

specifically highlighting humans with African and African-American, Amish, Latino and

admixed American, Ashkenazi Jewish, East Asian, Finnish, Non-Finnish European, and

South Asian ancestries. In total, there are 602 million SNVs and 105 million InDels

in the data set. The data was downloaded in one bgzip-compressed VCF file. For

each variant, this file contains the general VCF variant information (chromosome, po-

sition, dbSNP ID, reference, and alternative sequence), as well as information about

the gnomAD variant filtering, variant allele frequency (over all samples and frequency

in predefined human subpopulations), allele count (over all subpopulations), number of

individuals with sufficient coverage at the variants position, numbers of homozygous and

heterozygous allele counts and much more.

8.2 Training set preparation

All variants were filtered based on the filtering criteria described in the VCF file. In

addition, InDels longer than 50 bp were filtered out. Variants located on alternative

haplotypes, chromosome Y, and the mitochondrial genome were excluded from the ana-

lysis to prevent inconsistencies in annotations. After filtering, the data set contains 525

million SNVs and 68 million InDels. A large majority of these variants are observed

only in a few individuals, with 51.1% of SNVs and 41.3% of InDels being detected ex-

actly once (Fig. 43). On the other side of the spectrum, 2.8% of SNVs and 6.5% of

InDels have allele counts (AC) of more than 1,000. Due to the large total number of

variants, these apparently small fractions include millions of individual variants. In or-

der to correct for regional biases that affect the total number of haplotypes called at

each genomic position, allele frequency is a better descriptor than allele count for these

high-frequency variants. The variant distribution by minor allele frequency (MAF, Fig.

44) is very similar to that of allele counts, with more than 85% of SNVs and 70% of

InDels being observed with MAFs of less than 1 in 10,000. About 1.8 million SNVs

and 340,000 InDels are found with MAFs greater than 50%, meaning that the reference

allele is the actual minor allele. Allele frequencies specified for human subpopulations

are not analyzed.
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Figure 43: Distribution of allele counts in gnomAD. In total there are 71,702 indi-
vidual genomes or 143,404 haplotypes in gnomAD v3.0. Most variants appear
in a small fraction of these alleles with 3.0% of SNVs and 6.7% of InDels hav-
ing an allele count of more than 1,000. More than 40% of both SNV and
InDels are singletons.

Based on these frequency distributions, variants were split into four groups. The

largest group are all variants that were detected once as a haploid allele in the entire data

set (singletons: AC = 1). The smallest group are variants with MAF greater than 0.5

(inverse). All variants between these two groups are split into frequent and rare variants

(frequent: MAF ≥ 0.001, rare: MAF < 0.001, AC > 1). While the split threshold

between frequent and rare is arbitrary and not based on any biological meaning, it leads

to about 26 million SNVs in the frequent group, a number approximately twice as large

as the number of SNVs used in the CADD training categories.

Frequent, rare, and singleton variants were simulated based on genome-wide variant

statistics via the same process that has previously been described for CADD (Kircher

et al., 2014): A list of 819 gaps in the GRCh38 reference genome was downloaded from ht

tp://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/gap.txt.gz. 272 gaps

that are located on chromosome Y or alternative haplotypes like chr19 GL949746v1 alt

and missing from many annotations were excluded. Genome segments were defined as

the sequence between subsequent gaps. Segments longer than 200 kb were split into

consecutive sequence windows with a length of at minimum 100 kb.
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Figure 44: Distribution of Minor Allele Frequencies in gnomAD. Most of the
526 million SNVs and 68 million InDels are found only in a small minority
of samples. For 0.4% of SNVs and 0.5% of InDel (1.8 million SNVs and
342,009 InDels) the alternative allele is actually the major allele with an
allele frequency higher than 50%. 5.0% of SNVs and 13.1% of InDels have
MAFs between 0.5 and 0.001.

The obtained segments were used to adjust for local differences in mutation rates. For

each segment, GC content, the total number of InDels, and the number of SNVs detailed

per reference nucleotide were reported. In order to control for CpG-specific mutational

processes, CpGs and CpG variants were counted separately. While segmental counts

are per reference nucleotide (i.e. number of Ts mutated), the SNV numbers of each

substitution type (i.e. number of T to A mutation) were counted per chromosome.

Variants of the three frequency groups were simulated based on the generated statist-

ics. Two simulations were performed to account for different recombination dynamics:

one for chromosome X and one for the autosomes in which case the chromosome-wide

counts were joined. We define variant probability as the likelihood of a possible sub-

stitution at any position in the reference sequence to be part of the data set. Variant

probabilities were calculated for every substitution type of reference and alternative as

the fraction of reference-base nucleotides where that substitution type is observed in the

frequency group. An expected variant count is defined for each chromosome segment as

the count of each nucleotide times the variant probabilities of each possible substitution,
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summed over all nucleotides. For each segment, a local variant burden was calculated

by dividing the number of observed variants of each type by the expected count.

A sampling rate parameter was used to manage the number of variants generated.

Simulated SNVs were generated by iterating over all nucleotides, and selecting each

possible substitution with the likelihood of that substitutions variant probability (or

CpG substitution if the nucleotide is in a CpG) times local variant burden times the

sampling rate. Multiple variants could be chosen for every genomic position. In order

not to randomly obtain fewer variants than in the input data set even though variants

were evaluated and selected individually, an excess of variants was simulated via an

increase of the sampling rate. The final variants were then randomly selected from the

larger set.

InDels were generally simulated like SNVs. InDel variant probabilities were calculated

from counts and total sequence length, separately for insertions and deletions of each

length. Expected InDel count per segment was calculated as the total nucleotide count

times the sum of all InDel variant probabilities. The simulated InDels were generated

by iterating over all nucleotides and selecting variants at each position with a variant

probability of each insertion and deletion length, also multiplied by local InDel burden

and sampling rate. While deletions are constraint by the reference sequence, inserted

sequences are random strings of all four nucleotides.

The original human-derived and the six generated sets were analyzed for depletion

of highly conserved variants in comparison to the CADD simulation (Fig. 45). Among

all variants, the human-derived set contains the largest amount of variants with low

conservation and while variants with high conservation are strongly depleted. Similar,

but weaker, enrichment/depletion is observed for the variant sets frequent and rare. The

singleton-sim set is, in comparison to the CADD simulation, depleted of lowly conserved

variants and increased for highly conserved variants.

The substitution profile of a variant set is the relative fraction of variants with each

type of substitution, i.e. combination of reference and alternative allele. Complementary

combinations, like G to A and C to T, are considered jointly in such a profile. The

substitution profiles of the four frequency groups are very different (Fig. 46&47). While

rare and frequent SNVs substitution profiles are similar with about 40% C to T (including

G to A) and 27% T to C, singletons have similar fractions of about 30% for either

of these. For InDels, analyzed via lengths distribution instead of substitutions (Fig.

47), the numbers of insertions and deletions are almost the same in the frequent group
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Figure 45: Enrichment of phastCons scores in different variant sets compared
to the simulated set from CADD. 10,000,000 SNVs from each set are
grouped into 10 bins based on the primate phastCons conservation score.
For each bin, the number of variants in each set is compared to the set of
simulated variants from the CADD training set. Bins greater than 100% are
enriched while bins less than 100% are depleted relative to the simulation.
For example, human-derived variants are enriched in the bin of lowest con-
servation and increasingly depleted with higher conservation. Bins do not
indicate absolute variant numbers, with a majority of variants in each set
falling in the bin of lowest conservation ranging from 0 to 0.1.

while only about 40% of rare and singleton InDels are deletions. Besides the nucleotide

triplet shift that separates in-frame from frame-shift variants, reference and alternative

sequences of InDels are rarely informative for assessing the pathogenicity of a variant.

Nevertheless, the substitution is used as a feature in CADD to offset nucleotide biases

inherited from other features. The differences in the substitution profiles may therefore

be a problem when training models that use two frequency sets as positive and negative

class respectively.

It would be simple to omit the substitution feature from such a model. However, to

reduce the number of differences in the model structure compared to CADD, variants

from the rare and singleton sets are matched to the substitution profile of the frequent

set. This is done by using the larger size of the two sets and sampling each type of
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Figure 46: SNV substitution frequencies in different allele frequency groups.
The frequency of different SNV types based on references-alternative sub-
stitution depends on the allele frequency. SNVs with cytosine/guanine
(C) as reference nucleotide are more likely to be in the frequent (Freq,
0.5 >= MAF > 0.001) or rare (Rare, MAF <= 0.001, AC > 1) vari-
ant set than the entire gnomAD variant set (All). Singleton (Sngl, AC = 1)
variants are enriched for variants with adenine/thymine as reference base.
Completely opposite of the other frequency sets, inverse (Inve, MAF > 0.5)
variants have more T to C than C to T variants. Variants with adenine or
guanine in the reference position are joined with their complement.

substitution separately. For SNVs, the 6 possible substitutions in non-CpG nucleotides

(compare Fig. 46) and three substitutions in CpG nucleotides (C to G, C to A, and C

to T, with G substitutions counted on the - strand) are sampled separately while for

InDels, each length between 1 and 50 nucleotides is sampled separately for insertions and

deletions. The two created variant sets are called rare-matched and singleton-matched.

In summary, nine novel variant sets were generated via splitting, simulation, and

matching (Tab. 7). No data set of inverse variants was generated due to the relatively

small size of the group and the ambiguous definition of variants with MAF greater than

0.5 as minor allele. In order to perform model training with equally sized classes, all

data sets were randomly subsampled to the number of variants in the smallest group

(frequent: 26,255,876 SNVs, 8,864,604 InDels).
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InDel substitutions by frequency
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Figure 47: InDel substitution frequencies in different allele frequency groups.
Similar to SNVs, the relative numbers of small insertions and deletions vary
by allele frequency. For frequent (Freq) and inverse (Inve) variants, inser-
tions and deletions are found in similar quantities. In the rare (Rare) and
singleton (Sngl) group, there are more deletions than insertions. For single
nucleotide InDels, thymine and adenine as well as cytosine and guanine in
the reference (deletions) or alternative (insertions) position are joined.

8.3 Training models

Using combinations of the described data sets as input, 11 models were trained (Tab.

8). Included are the three variant sets frequent, rare, and singleton each in comparison

to the respective variant simulations. Further models were trained between the three

variant sets. Not all of the positive-negative set combinations were initially envisioned

but are motivated later by findings as outlined below. Notably, the variant substitution

matching was motivated by the finding that the combination frequent versus rare (fr)

sharing a similar substitution profile leads to better benchmark results than the model

trained from frequent versus singleton (fs), which do have very different substitution

profiles. The final model shown here, sim-only was trained by contrasting simulated

variants of the sets frequent and rare and serves as a control. For each data set, a 1%

random hold-out was excluded for testing. Each training set contains approximately

69,538,000 variants, compared to 31,085,862 in CADD GRCh38-v1.6. Variations in

data set size occur because the hold-out is determined by selecting each variant with a
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Table 7: Novel training data set

frequent variants from gnomAD v3.0 with MAF > 0.001

rare variants from gnomAD v3.0 with MAF ≤ 0.001, AC > 1

singleton variants from gnomAD v3.0 with allele count of 1

frequent-sim substitution and distribution matched simulation of frequent

rare-sim substitution and distribution matched simulation of rare

singleton-sim substitution and distribution matched simulation of singleton

rare-matched variants from rare, selected by substitution frequency of frequent

singleton-matched variants from singleton, selected by substitution frequency of
frequent

probability of 1%. All models were trained via the CADD pipeline and share the model

parameters of CADD GRCh38-v1.6 of 13 training iterations with L2-regression penalty

C = 1 using the L-BFGS logistic regression algorithm implemented in scikit-learn.

Table 8: Models trained from different positive and negative training sets

Identifier positive set negative set
f frequent frequent-sim
r rare rare-sim
s singleton single-sim
fr frequent rare
fs frequent singleton
rs rare singleton
frmatched frequent rare-matched
fsmatched frequent singleton-matched
rsmatched rare-matched singleton-matched
frmutden* frequent rare
sim-only frequent-sim rare-sim
CADD*,† human-derived simulation
* includes mutation density annotations
† CADD GRCh38-v1.6
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Model training accuracies were determined by predicting all variants in the respective

training set with the developed model. The baseline against which all new models are

compared is CADD GRCh38-v1.6, which has an accuracy of 62.2%. Based on the lower

level of depletion in any of the population variant data sets, it was expected that the

training accuracy of any population-variant model would be lower than that.

We observed that an initial batch of models, which used the same annotations and

features as CADD GRCh38-v1.6, reached accuracies higher than observed for CADD.

frmutden, an example for such a model, has a model accuracy of 62.9% (Fig. 48A).

An analysis of the model coefficients found, in comparison to all other model coeffi-

cients, increased weights of the mutation density annotations. Combined, the mutation

density annotations were responsible for 75% of the score variance observed on the 1%

hold-out from the training set. The largest coefficients were learned for the features

of variant count in a 100 bp window around the variant for frequent and rare variants.

While these variant counts per genome window are not variant-specific, are not based on

gnomAD but release 5 of the BRAVO variant server, and mask the presence or absence

of specific variant positions, it has to be assumed that there is some circularity between

the annotations and the training set. Without the mutation density annotations, ac-

curacies are between 52% and 58%. f, the model derived from frequent variants has

the highest accuracy of the three models of observed variants versus simulation while

s, the model derived from singleton variants has the lowest accuracy of that group.

Similarly, the training accuracy of fs, the model trained from frequent versus singleton

variants, is higher than that of fr and rs, the models trained from rare variants in com-

parison to either frequent or singleton. Both findings indicate an association between

class frequency and the previously observed enrichment levels in the three classes fre-

quent, rare, and singleton. The three models trained with substitution matched variant

sets, frmatched, fsmatched and rsmatched, have lower training accuracies than their

unmatched counterparts. rsmatched has the lowest accuracy of all trained models of

52.3%, followed by sim-only (52.4%). Due to the high number of instances in the data

sets, differences between training accuracies greater than 0.1% are significant.

Model correlations are calculated from the scores of 100,000 SNVs that had been

randomly selected genome-wide (Fig. 48B). Spearman correlations are calculated from

the raw model predictions of (set I) all SNVs and (set II) all 8,849 SNVs with a Phred-

score greater than 10 in CADD GRCh38-v1.6. Very high correlations of more than 0.95

of set I are found between f and r, r and s, in all combinations between fr, frmatched
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Figure 48: Training accuracy and model correlation with different training set
combinations. 11 models, as specified in Tab. 8, were trained based on
different combinations of the developed training data set. (A) Accuracy on
correctly classifying instances from the training set was measured after train-
ing for 13 L-BFGS iterations. Model accuracies are between 52% and 63%,
all within 0.1% of the respective accuracy on a 1% random hold-out from the
training set. Only the model frmutden, which uses mutation density annota-
tions that overlap with the training set, has a higher training accuracy than
CADD GRCh38 v1.6. (B) To characterize the differences between models,
Spearman correlation coefficients of raw model scores are calculated based
on predictions of 100,000 randomly selected SNVs (bottom-left), as well as
those 8,849 SNVs from the first set with a Phred-score greater than 10 in
CADD GRCh38-v1.6 (top-right). While all models are positively correlated,
the models frmutden and sim do have correlations of less than 0.5 with the
majority of all other models.

and fsmatched, and between fsmatched and rsmatched. On set II, correlations greater

than 0.95 are only observed in all combinations between fr, frmatched and fsmatched.

The other highly-correlated combinations from set I are nevertheless correlated between

0.85 and 0.91. On both sets, fsmatched and rsmatched are more correlated to the other

matched models than to their unmatched counterparts. While no negative correlations

are observed, frmutden has correlations of less than 0.5 with all other models on both

sets I and II. sim-only has correlations of less than 0.5 with seven other models on

both sets I and II. The lowest overall correlations are also observed for sim-only with

correlation coefficients of 0.26 on set I and 0.15 on set II compared to s and 0.28 on set
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I and 0.18 on set II compared to r. The latter is especially noteworthy since sim-only

and r use the same negative training set rare-sim. Aside from frmutden and sim-only,

only s and rs are correlated less than 0.5 with any model on any of the two sets.

CADD GRCh38-v1.6 is moderately correlated with most models aside frmutden and

sim-only, with correlations coefficients between 0.51 and 0.66 on set I and 0.38 and 0.74

on set II. On set I, correlations of more than 0.6 are observed with the three frequency

group versus simulation models f, r and s, while on set II, correlations higher than 0.7

are observed with f, fr, frmatched and fsmatched. All correlations are lower than

compared to the latest GRCh37 model of CADD (Fig. 37).

The eleven population-variant models were scored on the same benchmarks as previous

CADD releases. Since model development is still in the model testing and optimization

phase, all ClinVar benchmarks were not run on all chromosomes but limited to the

even-numbered chromosomes and chromosome X. The same hold-out had previously

been established CADD releases since version 1.4. On pathogenic variants from ClinVar

in comparison to common (MAF > 0.05) variants from gnomAD (Fig. 49), the best

performing new models (f, fr, frmatched and fsmatched) have slightly better auROC

on all variants than CADD. When limited to SNVs, CADD is the best model in this

benchmark with an auROC of 0.987 compared to 0.986 for f, fr and frmatched and

0.984 for fsmatched. In comparison to that, CADD is not the best model for InDels

with an auROC of 0.985 compared to 0.989 to 0.991 for the four mentioned new mod-

els. All of the highest performing new models use the frequent data set as its positive

class. The frequent class (MAF > 0.001 in whole-genome sequencing of gnomAD 3.0)

arguably overlaps with the positive class in the above-mentioned benchmark (MAF >

0.05 in exome sequencing of gnomAD 2.1, lifted to GRCh38), which may lead to inflated

results for the models that are using it as a training set. To estimate this effect, all

models were benchmarked to separate the same pathogenic variants from ClinVar from

benign variants of the same database (Fig. 50), as well as ClinVar variants classified as

likely-pathogenic from those classified as likely-benign (Fig. 51). The findings on these

benchmarks in terms of auROC are highly similar to the first comparison in that CADD

is performing best for SNVs, while a number of the new models outperform CADD on

InDels. It was further noted that variant matching, though increasing auROC for SNVs

for both fsmatched compared to fs and rsmatched compared to rs, did not increase

but rather decrease auROC for InDels in all three benchmarks. Further, in all three

subsets, sim-only did have a higher auROC than random while frmutden model has a
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worse auROC than fr on SNVs but the same auROC on InDels.
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Figure 49: ClinVar pathogenic in comparison to common gnomAD variants.
ROCs of variants classified as pathogenic in ClinVar compared to common
(MAF > 0.05) variants in gnomAD for SNVs and InDels (A), as well as
separately for only SNVs (B), and only InDels (C). Only variants on even
numbered chromosomes and chromosome X are scored.
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Figure 50: ClinVar pathogenic in comparison to ClinVar benign variants. ROCs
of variants classified as pathogenic in ClinVar compared to those classified as
benign in the same database. Panels show SNVs and InDels (A), only SNVs
(B), and only InDels (C). Only variants on even numbered chromosomes and
chromosome X are scored.

To assess model performance on protein-coding variants, SNVs tested in DMS assays

were used as a benchmark by correlating model prediction and assay readout (Fig. 52).

The four data sets adapted here are assays of E3 ligase activity of BRCA1 (Starita

et al., 2015), PDZ3-domain ligand binding of DLG4 (McLaughlin et al., 2012), thiopur-

ine methylation activity of TPMT (Matreyek et al., 2018) and WW-domain substrate
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Figure 51: ClinVar likely-pathogenic in comparison to ClinVar likely-benign
variants. ROCs of variants from the ClinVar database, contrasting those
classified as likely pathogenic to those classified as likely-benign. Panels dis-
play SNVs and InDels (A), only SNVs (B), and only InDels (C). Only vari-
ants on even numbered chromosomes and chromosome X are scored.

binding of YAP1 (Fowler et al., 2010). All data sets were filtered for protein amino-acid

substitutions that can be caused by one or more SNVs, with one SNV randomly chosen

in cases where multiple SNVs would lead to the same amino acid substitution. In all

cases, negative correlations are better since high model scores predict the functional im-

pact and low assay scores arise when the function of a protein is disrupted. Correlations

are considered separately for each protein. CADD has the highest (negative) Spearman

correlation coefficients for the benchmark set of DLG4 and TPMT, while frmatched

leads on those of BRCA1 and YAP1. No significant improvement is observed in the

substitution matched models as fr and frmatched perform very similar and for fs and

rs, the matched models perform better for BRCA1 but worse for DLG4 and YAP1. On

TPMT, fs correlates slightly better than fsmatched, while rsmatched correlates better

than rs. As for the ClinVar benchmark, the model f has the highest correlation of the

three frequency group versus simulation models, while r has a higher correlation than s

in three of the four proteins, with the exception being the smallest data set of 180 YAP1

variants. Of all tested models, sim-only has the lowest correlation with all four DMS

assays. frmutden has considerably lower correlations than fr in all four benchmarks.

8.4 Conclusions from training alternative models

As already concluded in previous chapters, the variation in conditions and selection

criteria of multiple benchmarks can favor different CADD models. It is therefore not
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Figure 52: Predicting deep mutational scanning results. Spearman correlation of
predictions of the eleven population-variant models and CADD GRCh38-v1.6
compared to assay readouts from DMSs of four human protein-coding genes.
Negative correlations are better since high model predictions (i.e. assumed
pathogenicity) should relate to low DMS values for assays like domain en-
zymatic activity or substrate binding.

surprising that it is impossible to select the one model trained from the alternative

training data sets that performs best on all four DMS data sets. Due to the small size

of the benchmark sets (the YAP1 data set consists of 180 SNVs) and the fact that all

variants are highly clustered in a small genomic window, the model coefficients of a

single annotation may have large effects on overall model performance. It is currently

unknown if this is causing inflated results for some models and should be clarified by

larger and more diverse data sets. Nevertheless, we conclude that frequency binning is a

suitable method to define sets of variants that are increasingly depleted of pathogenic or

deleterious variants. This is seen over all benchmarks as the model f generally performs

better than r which again generally performs better than s. The size of the training set

used here was defined by the number of frequent variants in gnomAD. There are more

than 200 million SNVs of each, the rare and singleton group, in gnomAD which would
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enable an even larger training set from those two groups.

While the depletion of potentially deleterious effects is lower in the three frequency

groups and hence the trained models have even lower training accuracies than CADD,

any of the trained models has an auROC higher than expected by pure chance on

distinguishing between known pathogenic and potentially neutral variants. That is re-

markable especially for sim-only which was trained from contrasting simulated variants

of frequent and rare variants. While different levels of enrichment were observed, it is

apparently enough to learn a model that separates between pathogenic and neutral vari-

ants. The auROC by sim-only is far smaller than that of other models and less than

single annotations like conservation scores. sim-only also has the lowest correlations

to the DMS data set. It remains possible that the random variant selection based on

genome-wide distribution leads to an enrichment in only a few annotations, as was found

for primate phastCons, but is not enriched or depleted in most other annotations. We

speculate that the different phases of chromatin could be enriched in the sequence win-

dows around frequent compared to rare variants. Nevertheless, the results clearly show

that the variants in the CADD simulation set are not entirely randomly selected from

the genome. Entirely random selection of variants from the entire genome remains not

advisable since not all regions of the genome do have the same level of sequence quality

and may lead to unfounded biases in the training set. A possible solution may be the

selection of variants genome-wide in regions associated with high-confidence mapping

by the Genome in a Bottle Consortium (Zook et al., 2019). The idea of using different

frequency groups for training mitigates the same problem insofar as all variants have

been identified through the same pipeline, although at different allele frequencies. The

obtained benchmark results are very positive, with multiple models exceeding CADD in

auROC on the ClinVar benchmark. This is in contrast to the results for SNVs where

CADD has the largest auROC.

It was found that the matching in the substitution frequencies in the models that

train on variants of multiple frequency groups generally decreases training accuracy and

increases model correlation, in between population-variant models and in comparison to

CADD. For fr and frmatched, the differences between models and model results are

generally smaller than is the case for fs or rs, most likely due to the smaller difference

in substitution frequencies in the unmatched model fr. Model performance especially

increases for fsmatched and rsmatched, though some DMS benchmarks are higher for

the unmatched models. Whether this is due to the small number of instances in the test
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sets or due to better representation of amino acid exchanges in the unmatched sets may

be clarified by more comprehensive test sets. Notably, the auROC of all three ClinVar

benchmarks on the subset of InDel variants decreases for rsmatched compared to rs. As

the auROC of the same benchmarks does barely increase for the other matched models

and due to the finding that even frequent InDels are often not found across multiple

large sequencing projects, InDel matching may need to be revised further.

With a maximum overall correlation of 0.66 (Fig. 48B), the observed correlations

to CADD GRCh38-v1.6 of any new model is much lower than between versions of

CADD (Spearman correlation of 0.96 between GRCh38-v1.5 and GRCh38-v1.6, Fig.

37), and even lower than across genome references (Spearman correlation of 0.80 between

GRCh37-v1.6 and GRCh38-v1.6). So far, it could not be determined which annotations

are responsible for this difference. The highest overall correlation with the three fre-

quency group versus simulation models (f, r and s) suggests that some of this is due to

the selection of variants from the simulation. The slightly higher correlations (greater

0.7 with f, fr, frmatched and fsmatched) on variants with a Phred-score greater than

10 indicates that the differences are founded in annotations that are less relevant for

scoring deleteriousness. In any case, the comparable performance of novel less correl-

ated models on the benchmarks may be suggesting that the overall good results are not

due to learning the same model from another training set.

8.5 Possible improvements in annotations compared to CADD

The trained models are only a first step in the process of creating models similar to

CADD based on standing variation. In that, it has been prerogative to keep the model

as similar as possible to CADD. However, data sets used for training the population-

variant models add new constraints regarding which annotations can be used as model

features. That some adaptions are necessary has been shown in the case of the frmutden

model, which has a much higher training accuracy than all other models including CADD

but is less correlated to other models and generally results in lower benchmark scores

than the fr model that is different in only the mutation density annotations. There may

be more biases in the annotations that have not yet been found, especially regarding the

InDel variants as we are still missing large InDel benchmarks.

Similar constraints arise from the CADD training data and limit which and how

annotations are used to train the CADD model. For example, the conservation scores

phastCons and phyloP are specifically generated for CADD by excluding the human
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reference sequence from the score calculation. This had been necessary since the human-

derived variants would all be recent changes in the human reference compared to the

other aligned sequences and therefore have decreased conservation score values. With

the human-derived variants out of the training set, it becomes possible again to use

”default” conservation scores that include the human sequence. Preliminary findings

have induced caution about such a step as phastCons scores generated by including

the human sequence have different boundary limits than those without human reference

(the end of the sequence alignment in phastCons with human is converging to 0.25 while

phastCons without human converges to 0, while both have same lower conservation

score limit of 0) and may need extended feature processing and evaluation. In how far

including the human genome, which is the result of a recent population bottleneck event,

negatively affects any conservation score may also have to be evaluated carefully.

Another big advantage of using standing variation over human-derived variants is that

the former are all defined as variants from the reference genome, while the latter are

variants where the genome evolved into the reference sequence. In VCF file format,

the reference sequence is always that of the reference genome. In the annotation of

the CADD training set, human-derived variants are therefore annotated in reverse, i.e.

with reference and alternative switched. The switch causes that any stop-gain variant

becomes a stop-loss variant and reverse. As the CADD simulation set is generated so

that it matches the human-derived set, but arriving from the reference sequence, the

switch has to be compensated by switching the annotated variants back in the encoding

step. However, some annotations are lost in the switch. The most prominent example

are start-loss variants since the opposite of a start-loss variant would be a start-gain and

it is not possible to annotate start-gain variants with the currently available methods. In

CADD, this is overcome by masking start-loss variants in the training set, as well as in

model application, as missense variants. Other annotations where switching is applied

are scores such as MMSplice and SpliceAI, where a prediction from the reference sequence

is subtracted from a prediction from the alternative sequence. The subtraction in those

scores is reversed in the human-derived set. This may cause an annotation bias when the

score distribution over all variants is not symmetrical, i.e. the difference between scores

of reference and alternative sequence is unequal from zero. Asymmetry has previously

been observed for MMSplice (Fig. 35) and was one of the reasons that lead to the

exclusion of DNA shape factors in CADD v1.4 (Tab. 5). With the new training data

set, such switching is not necessary, enabling the annotation of start-loss variants and
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simplifying the processing of other annotations.

Any new model will not necessarily be a replacement for CADD. Instead, it may only

be a slightly different weighting of the same annotations, which reduces outlier predic-

tions based on artifacts in one or a few features. The independent feature weights may

also put additional focus on different types of variants like non-coding effects, transcrip-

tion start sites, or insertions and deletions. Alternatively, the new model could use

a completely separate but not necessarily uncorrelated list of annotations that gener-

ates independent results and may increase or decrease the level of suspicion generated

by CADD for variants of unknown significance. Whether entirely complement or only

adding several features that can not be used in CADD, such a model may finally be

integrated with CADD in a single, even larger, meta-classifier.

8.6 Similarity to other projects

Using variants from population sequencing projects has been used in the development of

many variant scoring projects. Many classifiers use variant allele frequency as assessment

of pathogenicity. Others, including Eigen, FitCons, LINSIGHT, CDTS, CCR (Havrilla

et al., 2019) and CAPICE, use standing variation as part of their training set to establish

a variant classifier. Novel in this case is the split of variants into frequency groups and

then using these groups as class labels for training a supervised classification.

Similar to how CADD has been adapted for mouse, pig, and chicken, the population-

variant approach could be adapted for other organisms. With the current technology,

population sequencing projects like gnomAD are very expensive and it is hard to imagine

that thousands of individual WGS data sets may be generated for any non-human animal

or plant. However, another drop in sequencing cost and the economic incentives involved

in breeding projects such as highly prized cattle may lead to smaller but similar projects

for economically important domestic animal and crop species in the future.
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Discussion

The objective of this thesis was to advance genome-wide variant effect scoring. In the

first three chapters, I have outlined the fundamentals of machine learning and genomics,

followed by an introduction to variant effect scoring. Based on these foundations and the

observation that existing methods are complicated to improve on, I laid out considera-

tions to develop variant effect scores using the principles of reproducibility, extensibility,

and simplicity. These considerations lead to the implementation of a workflow that en-

ables fast and reliable development of variant effect scores. The workflow is applied to

the previously established variant effect score CADD. After evaluation of different ma-

chine learning algorithms, performance benchmarks, and genomic annotations, it leads

to the development of the first variant effect score based entirely on the human reference

genome build GRCh38 and greatly improved model predictions of RNA splicing effects.

Finally, I describe a novel variant effect score training data set of variants derived from

population sequencing whose properties could enable improved variant classification in

the future.

A new workflow increases flexibility regarding model development

When this project began in 2017, there were already a large number of machine learning

based methods for predicting all kinds of variant effects. In discussions with many

different people, we found that there was a lot of potential to address shortcomings

in all of these methods. Based on the fundamentals and existing solutions described in

chapter 3, I have developed a generalized concept for variant effect scoring. This concept

especially focuses on a number of critical components that I found sparsely described in

many other publications. In particular, I describe precomputed and ad hoc annotations,

scoring of multiple predicted outcomes for a single variant, and how SNVs and InDels can

be annotated in a joined evaluation. In addition, chapter 4 covers technical aspects like

sparse matrix notations that enable larger training matrices and discusses the necessary

steps between the trained machine learning model and the applied variant effect score.

The developed workflow described in chapter 5 implements all these principles. Ori-

ginally designed to replicate the previous iterations of CADD, four Snakemake pipelines

manage training set annotation, model training and benchmarking, genome-wide SNV

scoring, and finally user-defined variant scoring. All processing is split into multiple,

consecutively executed steps and interacts with a job scheduler. File access times and
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processing resources depend on the specific file system and working memory limits.

Accordingly, our implementation is optimized for the computational infrastructure at

the Berlin Institute of Health. It relies only on open source software, which provides

the highest guarantee that the entire process runs on any compute infrastructure or

can be adopted with minor adjustments. The individual components of the underlying

framework are similar to existing programs. Unique is the workflow that integrates pre-

computed and ad hoc annotations in a single model, versioned feature selection based

on configuration files, and parallel training and benchmarking of multiple models. Full

flexibility in terms of annotations, features, machine learning algorithm, training, and

benchmark data sets allowed us to explore many different settings. Automating the

entire process from training set to scored genomic variant greatly simplified the genera-

tion of score releases. For example, a collaborator once requested a CADD score release

that was excluding a single annotation. We were able to realize such a project, that

would previously have been dismissed for being too complex to be worth the effort, with

minimal hands-on time in approximately two weeks. In conclusion, the new capabilities

of the introduced variant effect scoring workflow significantly simplified and accelerated

the generation of the subsequently presented results.

CADD performs well on GRCh38

We leveraged the capabilities of the new workflow to reconsider several decisions that

had been made in the original development of CADD, including training data set com-

position, machine learning algorithm, and which annotations contribute to model per-

formance. However, the main quest of improving CADD was developing the first variant

effect score for the latest human reference genome GRCh38, as is described in chapter 6.

We note that variant effect scores specific to the previous reference GRCh37 had been

established for many years and there was no indication that the same would not be pos-

sible on other references. Instead, the main obstacle that had previously prevented the

development of such a score was obtaining all the required data, i.e. annotations and

training set. For the initial GRCh38 release of CADD (GRCh38-v1.4), we generated

these data either by repeating the required analyses or obtaining matching replace-

ments. We find that all developed CADD versions are strongly correlated, both within

and across genome references. On all performed testing and validation benchmarks, the

GRCh38 models are similar in performance to the respective GRCh37 models. Such

a high degree of similarity across genome references is expected since comparisons are
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limited to genome regions where variants (or scores) can be converted between refer-

ences. Benchmarks are also typically selected from well-studied genomic regions where

GRCh38 models are unlikely to benefit from better annotation quality. We note that

current CADD models are not able to take advantage of all improvements in GRCh38.

For example, variants on alternative haplotypes can currently not be scored as not all

annotations are defined in those regions. Nevertheless, the annotations and models bene-

fit from numerous fixes and generally higher quality of the GRCh38 reference sequence.

As the final step in a variant analysis pipeline, the lower error rates obtained during

read-alignment and variant calling to GRCh38 lead to more confidence in the evaluated

variants and ultimately fewer false positive results.

Specialized annotations increase performance and improve the prediction of

splice effects

In chapter 7, I presented the results of extending CADD with annotations that are pre-

dictive of RNA splicing effects. As a result of my analysis of an experimentally derived

splice variant set, the deep learning based scores MMSplice and SpliceAI are integrated

as annotations into CADD. Benchmarking results indicate that models which specifically

predict splicing effects are superior for identifying splice-altering variants when the only

possible variant effect is an alteration of RNA splicing. However, the causal molecular

process is unknown in most research or clinical applications of variant effect prediction.

In these cases, where only a difference in phenotype has been observed and different mo-

lecular consequences have to be evaluated, annotation-based variant effect scores like the

developed CADD-Splice model perform better than the specialized scores. Remarkably,

the improved performance of the combined scores is observed even when the compar-

isons are limited to splice proximal or intronic variants. We speculate that this is due

to a combination of the annotated splicing effects and features of species conservation.

The latter contradicts the conclusion by Cheung et al., 2019 that conservation scores

are almost uncorrelated with splicing effects, a finding that we could attribute to a pro-

cessing error in the study. Similarly, we could not support the previous finding that

measures of splice-isoform abundance are predictive of variant effects and would attrib-

ute the reported correlation to assay-specific effects. Our findings suggest that variant

effect scoring may generally be improved by integrating process-specific information. We

believe that this finding is universal and may improve prediction in many non-coding

genomic regions where current variant effect scores are of limited precision.
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Population-derived variants provide a larger and potentially more universal

training data set

The novel training set presented in chapter 8 further expands the scope of data sets

used to train variant effect scores. As demonstrated by benchmarking results similar

in performance to CADD, we find that low training accuracies of between 52% and

58% are not necessarily indicative of ineffective variant effect scoring. However, we

find that a single annotation that increases training accuracy can significantly decrease

model performance, serving as an important reminder that novel annotations have to

be tested rigorously before they are added to a model. This observation is similar to

that from chapter 6, where nonlinear models achieved higher training accuracy but lower

benchmark performance. Both results highlight the importance of independent testing

and validation. We conclude that while a large training data set may suffice for training a

good variant effect model, all involved components have to be evaluated carefully. With

nearly 70 million variants in the training data set, each of the novel models shown uses

more than twice as many training instances as CADD, demonstrating the scalability of

our approach. As population sequencing efforts are generating larger data sets every

year, this number may be scaled up further. The most interesting aspect of the novel

training sets is that they do not consist of variants that entered the current genome by

mutation from an ancestral sequence, while being equally distributed genome-wide. The

novel data set may hence enable us to adopt annotations for which the current CADD

training data set is biased.

Outlook

CADD is a widely used method for genomic variant scoring. This is reflected in more

than 100 weekly variant scoring requests on the CADD web servers, numerous support

requests via email, and the fact that CADD has been a pipeline component, source of

information, inspiration as well as a method to improve upon, in many other scientific

publications. As of November 2021, the first two CADD manuscripts (Kircher et al.,

2014 and Rentzsch et al., 2019) have been highlighted as high impact publications in

Web of Science and have accumulated, according to Google Scholar, more than 5,000

citations. The third manuscript (Rentzsch et al., 2021) complements these works and

describes the process that led to the development of CADD-Splice.

This is not meant to imply that CADD and other variant effect scores are perfect
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and their development is finished. Besides bug fixes and ideas for improvements to

the machine learning, training data set, or additional web services provided, there is

an almost endless list of possible variant features. Given that general pathogenicity

scores such as CADD include annotations from many different sources, developers have

to carefully assess the quality of each of those and ensure that features are not inher-

ently biased due to how they were generated. We are hopeful that community standards

such as the upcoming Matched Annotation from NCBI and EMBL-EBI (MANE) pro-

ject, along with an increase in sequence-based models that can be more easily adapted

to new, variant-specific annotations, will support the development of more stable, re-

producible, and better predictors. The new annotations introduced in CADD-Splice

(Rentzsch et al., 2021) are only a first step in integrating variant-specific predictions of

molecular processes like microRNA binding, polyadenylation, protein degradation, and

intrachromosomal interactions. We note that prediction of gain of function events, even

with highly variant-specific predictors like the deep learning based scores SpliceAI and

MMSplice, is currently unreliable and will need further investigation. In this regard,

our results highlight the importance of precise annotations of existing genomic elements

such as splice junctions.

Being able to score SNVs and InDels genome-wide, variant effect scores like CADD can

evaluate a lot more than ”just” coding variants. A number of methods rely on regional

CADD predictions to score large SVs (Ganel et al., 2016; Kleinert & Kircher, 2021),

indicating a possible path for scoring variants larger than 50 bp. Nevertheless, there

are a lot of variants in regions of the genome that we are currently unable to evaluate.

Heritability estimates of traits and complex diseases have found that detected variants

only explain some, in extreme cases less than 10%, of the observed variance (Manolio

et al., 2009). While the fraction of missing heritability attributed to variants has become

smaller with the inclusion of rare variants and SVs in the corresponding analyses (Génin,

2020), it raises the question of where and how the remaining phenotype affecting variants

may be detected. Strong effect signals have recently been discovered to be caused by

variable number tandem repeats, repetitive DNA elements which vary in copy number,

that are located in protein-coding sequences (Mukamel et al., 2021). However, variants

in repetitive regions and mobile elements are not well-investigated as variant calling with

current short-read sequencing technologies is severely limited in those genome segments.

The telomere-to-telomere consortium was recently able to complete many previously

unresolved genome segments using long-read sequencing and, for the first time, generated
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the complete sequence of a single human genome (Nurk et al., 2021). Although it is too

early to assess the benefit of the additional sequences, preliminary results are promising

better read mapping accuracies that could further improve annotation quality and reduce

the number of false positive variant calls (Aganezov et al., 2021). We note that it

is currently unclear whether all of these efforts will lead to a generally accepted new

genome reference. Without that, it will not only be challenging to score called variants,

but require a lot of effort to obtain comprehensive and unbiased annotations.

Most variant benchmarks test the performance of different variant effect scores in

isolation and classify variants based on the predicted effect alone. Clinical guidelines

recommend that multiple orthogonal methods may be used to evaluate variants, with

decisions being made based on majority vote (MacArthur et al., 2014; Richards et al.,

2015). They do not, however, encourage the use of multiple variant effect scores unless

those are based on independent principles. Instead, joint analysis of DNA and RNA

samples has proven very effective in identifying and prioritizing splice or regulatory

variants underlying differentially expressed genes (Li et al., 2017; Anderson et al., 2019;

Mohammadi et al., 2019). Tissue and cell-type specificity of most of these events requires

the availability of corresponding transcriptome data. We speculate that if the option

of sample-dependent data generation was feasible, computational predictions could mo-

tivate the collection of relevant tissues or the establishment of new cell lines. RNA

transcript data from the patient could then be used to validate, for example, an actual

splicing effect. In any case, the combination of variant effect scoring with RNA data

could be very effective and should be explored more.

It is clear that the significance of individual genes for specific diseases is not well-

represented in organismal and genome-wide models of variant effects (Havrilla et al.,

2019; Abramovs et al., 2020). Existing gene-disease links may therefore aid variant

prioritization in cases where such information is available. For example, information

about the specific phenotype (including pathways, gene interactions, or affected tissues)

is potentially of high relevance. They require careful phenotype recording via a unified

classification like the Human Phenotype Ontology (Robinson et al., 2008) or automated

image analysis (Hsieh et al., 2019; Gurovich et al., 2019). Features derived from affected

cell types, tissues, and the disease itself (e.g. interaction partners of known disease pro-

teins or tissue-specific gene expression) can aid variant scoring by highlighting associated

genomic regions or limiting analyses to a given gene set. Undiagnosed cases can be ana-

lyzed jointly based on similar phenotypes (Kaplanis et al., 2020; Matalonga et al., 2021)
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and knowledge about findings in similar cases may support the interpretation of vari-

ant scores. However, the same data could also impair the discovery of less well-studied

disease genes due to observation biases (Stoeger et al., 2018). Given that more than

75% of human genes have never been associated with a genetic disease (Posey et al.,

2019), we suspect that these approaches may guide us primarily to previously detected

loci, obscuring the discovery of novel disease mechanisms. Unfortunately, current model

validation procedures promote this behavior by benchmarking models on well-studied

disease variants. While it is obviously impossible to test performance on an unknown

metric, novel annotations should preferentially be available for all instances of an ef-

fect class and be void of large systematic biases. Thus, even though other information

may be useful for particular variant rankings, we remain skeptical regarding the naive

integration of broad-scale annotations that prioritize variants based on their location in

specific genomic regions.

Today, variant effect scores are evidently effective at predicting large variant effects,

as indicated by their use in numerous scientific studies. Integrated into complex variant

analysis pipelines, they are an important tool for identifying the cause of genetic diseases.

Outside of human biology and basic research, variant effect scores have found application

in agriculture and selective breeding. We are confident that variant effect scores can be

improved further and will continue to help us understand the effects of all types of

genomic variants.
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Glossary

accuracy rate of getting the correct result in a sequence

allele one of multiple versions of a gene

allele frequency frequency that an allele different from the reference appears in the total
population. If individuals have on average one copy: AF = 0.5

API Application Programming Interface, enables interactions between computer programs

AUC Area Under the Curve

auPRC area under the Precision-Recall Curve

auROC area under the Receiver Operator Characteristic

bp base pair, matching nucleotides on each of the two DNA strands

CADD ”Combined Annotation - Dependent Depletion” - variant classifier that is main topic
of this thesis

coding protein encoding region, region of the genome that gets translated into proteins

conservation metric that describes the stability of genome segments in terms of mutations on
evolutionary time scales

contig contiguous stretch of DNA sequence without gaps in a reference genome

DMS Deep Mutational Scan, assay that evaluates all possible amino acid substitutions in a
sequence

Ensembl genome data project by the European Bioinformatics Institute

exon part of a gene that encodes the final mRNA

GWAS Genome-Wide Association Study

gene segment of the genome that encodes the blue print for one or more functional products

genome entirety of an organisms genetic information (void of duplications)

genotype genetic information of an organism

haplotype one half of a diploid chromosome

human bipedal creature that tries to understand things, very common on earth

InDel Insertion andor Deletion, usually shorter than 50 bp to distinguish from SV

intron part of a gene that get excluded from the mRNA by splicing

kb kilo base, a sequence of a thousand nucleotide bases
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liftover genome coordinate transfer between reference builds

MAF Minor Allele Frequency, frequency of second most common allele in a population

MAVE Multiplexed Assays of Variant Effect - reporter assay that measures a biological readout
for many variants

MFASS Multiplexed Functional Assay of Splicing using Sort-seq

mutation directed change in a nucleotide sequence

NCBI National Center for Biotechnology Information

nucleotide sub-unit of DNA and RNA, containing a five-carbon sugar molecule, a nucleobase
and a phosphate group

one-hot-encoding transcribing a categorical term in one binary variable per category

pathogenicity potential to cause a disease

phasing determining if variants are on the same allele/haplotype

phenotype observable trait of an organism

Phred negative log 10 scaling of ranks, named after a software

PRC Precision-Recall Curve, metric to benchmark models on distinguishing two sets, depend-
ent on size of the sets

ROC Receiver Operator Characteristic, metric to benchmark models on distinguishing two
sets, independent of size of the sets

SNV Single Nucleotide Variant, mutation that substitutes a single base pair in a DNA sequence
by another

SV Structural Variant, large scale difference in a DNA sequence

TF Transcription Factor, DNA binding molecule whose binding influences the mRNA level

transcription copying of genetic information from DNA to RNA

translation protein synthesis by conversion of information from nucleotides (mRNA) to amino
acids

variant difference between two nucleotide sequences

VEP Variant Effect Predictor, software for annotating genetic variants
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