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Geometry of intersections of some secant varieties
to algebraic curves

Mara Ungureanu

Abstract

For a smooth projective curve, the cycles of subordinate or, more generally, secant divisors to a
given linear series are among some of the most studied objects in classical enumerative geometry.
We consider the intersection of two such cycles corresponding to secant divisors of two different
linear series on the same curve and investigate the validity of the enumerative formulae counting
the number of divisors in the intersection. We study some interesting cases, with unexpected
transversality properties, and establish a general method to verify when this intersection is empty.

1. Introduction

The study of the ways in which an algebraic curve can be mapped into projective space
has been a fruitful avenue of research for algebraic geometers since the nineteenth century.
Not only does it allow for a better understanding of the relationship between intrinsic and
extrinsic properties of projective curves, but it has also led to important results pertaining
to the birational geometry of the moduli space of abstract curves and it has found modern
incarnations in the subject of stable maps and its applications.

Moreover, the subject provides a rich source of enumerative questions. One of the most basic
such problems is to determine the number of singularities that occur on the image curve f(C)
under a mapping f : C → Pr, where C is a smooth algebraic curve. An elementary example
thereof is the calculation of the number of double points on the image curve f(C) under a
birational map to the quadric surface P1 × P1. Assuming the curve C has arithmetic genus g
and bidegree (d1, d2), the adjunction formula tells us that there are exactly

ν = (d1 − 1)(d2 − 1) − g (1.1)

ordinary double points.
This problem can be reformulated from the point of view of a class computation for

intersections of incidence varieties as follows: the map

C → P1 × P1

is given by a pair of pencils l1 and l2 of degree d1 and d2, respectively, on C and the double
points correspond to pairs of points (p1, p2) common to both linear series, that is, an effective
divisor D = p1 + p2 on the curve C such that

dim(l1 −D) � 0 and dim(l2 −D) � 0.

In other words, as we shall make precise below, the divisor D belongs to the incidence varieties
of both pencils l1 and l2 and the enumerative problem thus becomes the problem of counting the
number of divisors in the intersection of these two incidence varieties. One may therefore obtain
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the count by simply computing the fundamental class of the intersection. This computational
approach has the advantage of being immediately generalisable to maps given by linear series
of any degree and dimension, but as long as the geometry of the intersection is not known (that
is, whether it is smooth, reduced, of expected dimension, etc.), the result of the enumerative
calculation may not be considered meaningful.

The purpose of this paper is to study the geometry of such intersections of incidence (or
more generally secant) varieties to algebraic curves, with a focus on issues of transversality
of intersection.

To state the precise results, we introduce some terminology. Let C be a general curve of
genus g equipped with a linear series l of effective divisors of degree d and dimension r. Such a
linear series is called a grd. Let e � d be a positive integer and denote by Ce the eth symmetric
product of the curve. We set

Γe(l) := {D ∈ Ce | D′ −D � 0 for some D′ ∈ l} ⊂ Ce

or equivalently

Γe(l) := {D ∈ Ce | dim(l −D) � 0} ⊂ Ce

to be the incidence variety of all effective divisors of degree e that are subordinate to the linear
series l.

As a subspace of Ce, the space Γe(l) has the structure of a degeneracy locus, so it is indeed
a variety and it is easy to see that it has expected dimension r for an arbitrary linear series l
of type grd. We explain this in more detail in the course of the paper (see Section 2).

Suppose the divisor D belongs to an intersection Γe(l1) ∩ Γe(l2) of incidence varieties
corresponding to two different linear series l1, l2 on the same curve C. This of course imposes a
stronger condition on D inside Γe(l1) (or Γe(l2)) than the one from the definition of incidence
varieties. This stronger condition, depending on the geometric situation, may, for example, give
a higher bound on the dimension of the linear series l1 −D (or l2 −D), which in turn means
that D should belong to a certain subspace of Γe(l1) (or Γe(l2)). One way to keep track of
this is by means of a generalisation of the notion of incidence varieties, namely, that of secant
varieties: if C is a general curve of genus g endowed with a linear series l of type grd and if e
and f are positive integers such that 0 � f < e � d, then let

V e−f
e (l) = {D ∈ Ce | dim(l −D) � r − e + f} ⊂ Ce

be the secant variety of effective divisors of degree e which impose at most e− f independent
conditions on l. Equivalently, this space parametrises the e-secant (e− f − 1)-planes to the
curve C embedded in Pr via l. It is easy to see that incidence varieties are special cases of
secant varieties, namely, Γe(l) = V r

e (l) and f = e− r and, moreover, that V e−f
e (l) ⊂ Γe(l).

The cycle V e−f
e (l) of Ce is also endowed with a degeneracy locus structure (so it is an actual

variety) and it has expected dimension

exp dimV e−f
e (l) = e− f(r + 1 − e + f).

It was proven by Farkas [4] that, if non-empty, its dimension is the expected one for a general
curve C with a general series l of type grd.

Unlike incidence varieties, the general secant varieties have a more complicated geometry.
This is illustrated by the fact that existence results for the variety V e−f

e (l) when

e− f(r + 1 − e + f) � 0

are only known for some possible values of the parameters g, r, d, e, f : V e
e−f (l) �= ∅ for every

curve C of genus g and l = grd such that d � 2e− 1 and e− f(r + 1 − e + f) � r − e + f (cf. [2,
Theorem 1.2]); or for every l = grd with g − d + r � 1 if and only if ρ(g, r − e + f, d− e) � 0
(cf. [1, p. 356]).
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Furthermore, understanding of the geometry of secant varieties and their intersections is
worthwhile because they are interesting objects not only from the point of view of classical
algebraic geometry, but also from a modern perspective. For example, one may generalise the
notion of secant varieties to nonsingular projective surfaces S with a line bundle L. If |L| is a
linear system of dimension 3m− 2 inducing a map S → P3m−2, then the number of m-chords
of dimension m− 2 to the image of S (that is, the cardinality of the secant variety V m−1

m (|L|))
is given by the integral of the top Segre class∫

S[m]
s2m(H [m]),

where S[m] is the Hilbert scheme of points of S carrying a tautological rank-m bundle H [m].
Such Segre classes play a basic role in the Donaldson–Thomas counting of sheaves and appeared
first in the algebraic study of Donaldson invariants via the moduli space of rank-2 bundles on
S [12]. The exact result of the integral is the subject of Lehn’s conjecture [5] that states that
it can be expressed as a polynomial of degree m in the four variables

H2, H ·KS , K2
S , c2(S).

For a proof of this conjecture, see [11] and for a generalisation to K3 surfaces see [6].
To come back to our motivating enumerative problem, consider the following setup: equip

the general curve C of genus g with two complete linear series l1 = gr1d1
and l2 = gr2d2

and let

Γe(l1) = {D ∈ Ce | dim(l1 −D) � 0},
Γe(l2) = {D ∈ Ce | dim(l2 −D) � 0},

be the respective incidence varieties of dimensions r1 and r2, respectively. As mentioned earlier,
we are interested in counting the number of points in the intersection Γe(l1) ∩ Γe(l2), in the
cases when we expect this space to consist of a finite number of points, that is, when

dim Γe(l1) + dim Γe(l2) = r1 + r2 = e.

In fact, in [1, Chapter VIII, Section 3 ], a class computation shows that in this case, the number
is expected to be the coefficient of the monomial te−r1

1 te−r2
2 in

(1 + t1)d1−g−r1(1 + t2)d2−g−r2(1 + t1 + t2)g. (1.2)

Using this formula, we immediately recover the number of double points of the image curve
f(C) of genus g and bidegree (d1, d2) under a birational map f to the quadric surface P1 × P1.
Indeed, in this case r1 = r2 = 1 and e = 2. Thus, according to formula (1.2), the number we
are after is the coefficient of t1t2 in

(1 + t1)d1−g−1(1 + t2)d2−g−1(1 + t1 + t2)g,

which is exactly (d1 − 1)(d2 − 2) − g, that is, the same count obtained by geometric methods
in (1.1).

While in this case the class computation gives the correct number of points, as verified by the
geometric argument using the adjunction formula, (1.2) unfortunately also yields unexpected
zero counts in some other cases. A priori it is not at all clear whether these zero counts
correspond to an empty intersection of incidence varieties or to the degenerate situation of a
positive-dimensional intersection. Our main contribution in this context is the clarification of
this issue in some interesting cases. More precisely, we prove the following theorem.

Theorem 1.1. Consider a general curve C of genus g equipped with arbitrary complete
linear series l1 = gr1d1

, l2 = gr2d2
= KC − l1 with non-negative Brill–Noether numbers, so that

r1, r2 � 0, and let e � min (d1, d2) be a positive integer. If e = r1 + r2, d2 = r1 + 2 (or
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equivalently r2 = 1), and the Brill–Noether number ρ(g, r1, d1) vanishes, then the intersection
Γe(l1) ∩ Γe(l2) is empty.

The discussion above shows that another sensible direction is to consider directly the
intersection of an incidence variety and a secant variety on a smooth general curve C, namely,

Γe(l1) ∩ V e−f
e (l2),

where l1 = gr1d1
and l2 = gr2d2

are linear series on C and e and f are integers such that 0 � f <
e � min (d1, d2). We investigate the expected emptiness of the intersection when the sum of the
dimensions of the two varieties Γe(l1) and V e−f

e (l2) inside Ce is less than e. As in Theorem 1.1,
we again focus on the case l2 = KC − l1. Our main result in this context is the following.

Theorem 1.2. Let C be a general curve of genus g equipped with an arbitrary complete
linear series l1 = gr1d1

such that ρ(g, r1, d1) � 0 and dim(KC − l1) � 0. If f = 1 and

dim Γe(l1) + exp dimV e−f
e (KC − l1) � e− ρ(g, r1, d1) − 1, (1.3)

then the intersection Γe(l1) ∩ V e−f
e (KC − l1) is empty.

Note that if equality holds in (1.3) and f = r1 + 1 + ρ(g, r1, d1), then dim(KC − l1) −
e + f = 0 and it follows that V e−f

e (KC − l1) = Γe(KC − l1). We discuss the geometric
interpretation of this case when l1 is a pencil in Section 6.1, Part I.

We prove Theorem 1.2 by degeneration to a nodal curve using limit linear series and by
exploiting an ingenious construction of Farkas [4]. Furthermore, we provide in fact a method
to check the emptiness of such intersections for any f , but the case f = 1 seems to be the one
with the most tractable computations.

In the course of the proof of Theorem 1.2, we also find an interesting example that contradicts
the expectation of non-emptiness of secant varieties V e−f

e (l), where l = grd, when the expected
dimension

exp dimV e−f
e (l) = e− f(r + 1 − e + f) � 0.

We explain this in Remark 2 of Section 6.
The paper is organised as follows: in Section 2, we establish some preliminary results on

incidence and secant varieties and we describe their tangent space in Section 3. We prove
Theorem 1.1 in Section 4. We then construct degenerations of secant varieties for families of
curves with nodal fibres of compact type using limit linear series in Section 5 and we use them
to prove Theorem 1.2 in Section 6.

2. Preliminaries on incidence and secant varieties

We begin by fixing the notation. Let C be a smooth curve of genus g and denote by Cd its dth
symmetric product. Furthermore, let Gr

d(C) parametrise linear series of type grd, that is,

Gr
d(C) := {l = (L, V ) | L ∈ Picd(C), V ∈ G(r + 1, H0(C,L))}.

Furthermore, given a divisor D ∈ Cd, denote by |D| the complete linear system of effective
divisors linearly equivalent to D. Let Cr

d be the subvariety of Cd parametrising effective divisors
of degree d on C moving in a linear series of dimension at least r:

Cr
d := {D ∈ Cd | dim |D| � r},
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and W r
d (C) be the associated variety of complete linear series of degree d and dimension at

least r, that is,

W r
d (C) := {L ∈ Picd(C) | h0(C,L) � r + 1} ⊆ Picd(C).

We focus on Brill–Noether general curves, meaning that Gr
d(C) is a smooth variety and its

dimension is given by the Brill–Noether number

ρ(g, r, d) = g − (r + 1)(g − d + r) � 0. (2.1)

Let e, f be integers such that 0 � f < e � d. As mentioned in Section 1, incidence varieties
are special cases of secant varieties V e−f

e (l) with r − e + f = 0, namely, Γe(l) = V r
e (l).

Secant (and therefore incidence) varieties V e−f
e (l) of effective divisors of degree e imposing

at most e− f conditions on l have a degeneracy locus structure inside the symmetric product
Ce, obtained as follows: let E = OCe

⊗ V be the trivial vector bundle of rank r + 1 on Ce and
Fe(L) := τ∗(σ∗L⊗OU ) be the eth secant bundle, where U is the universal divisor

U = {(p,D) | D ∈ Ce and p ∈ D} ⊂ C × Ce,

and σ, τ are the usual projections:

Let Φ : E → F be the bundle morphism obtained by pushing down to Ce the restriction σ∗L →
σ∗L⊗OU . The space V e−f

e (l) is then the (e− f)th degeneracy locus of Φ, that is, where
rkΦ � e− f . To see that this is indeed the case, note that fibrewise, the morphism Φ is given
by the restriction:

ΦD : H0(C,L) → H0(C,L/L(−D)).

Now by definition, D ∈ V e−f
e (l) if and only if dim ker ΦD = h0(L−D) � r + 1 − e + f , which

is equivalent to the aforementioned condition rkΦ � e− f . The dimension estimate for V e−f
e (l)

follows immediately from its degeneracy locus structure:

dimV e−f
e (l) � e− (r + 1 − e + f)(e− e + f) = e− f(r + 1 − e + f).

In particular,

dim Γe(l) � r.

On the other hand, since D ∈ Γe(l) is equivalent to the existence of a divisor E ∈ l such that
E −D � 0, and since the dimension of the locus of such divisors E inside l is at most r, we
immediately have that

dim Γe(l) = r

for any linear series l of type grd on C. Using the Porteous formula, one obtains (see [1, Chapter
VIII, Lemma 3.2]) that the fundamental class of Γe(l) is given by

γe(l) =
e−r∑
j=0

(
d− g − r

j

)
xkθe−r−j

(e− r − j)!
,

where θ is the pullback of the fundamental class of the theta divisor to Ce and x is the class
of the divisor q + Ce−1 ⊂ Ce.

To obtain formula (1.2) giving the number (when expected to be finite) of divisors in the
intersection

Γe(l1) ∩ Γe(l2),
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where l1 = gr1d1
and l2 = gr2d2

, one may compute the product

γe(l1)γe(l2) ∈ H2e(Ce,Z) 
 Z,

which, as shown in [1, Chapter VIII, p. 343], yields the desired count.
Unfortunately, the situation is not so simple in the general case of secant varieties with

r − e + f > 0. Indeed, the fundamental class of V e−f
e (l) has been computed by MacDonald

and its expression is very complicated and thus of limited practical use, as can be seen in [1,
Chapter VIII, Section 4]. For a study of the dimension theory of secant varieties, we refer the
reader to [4].

In this paper, we are concerned instead with the study of intersections of incidence and
secant varieties on a given general smooth curve and with the geometric interpretation of some
unexpected enumerative results that arise in this context.

3. Infinitesimal study of secant varieties

This section is dedicated to the infinitesimal study of secant varieties. More precisely,
given a complete linear series l we compute the tangent space of V e−f

e (l) at a point D ∈
V e−f
e (l) \ V e−f−1

e (l) whose support consists of distinct points. Using this we then write down
a transversality condition for the intersection Γe(l1) ∩ Γe(l2) for two complete linear series l1
and l2.

In Section 2, we expressed V e−f
e (l) as a degeneracy locus of a map of vector bundles over Ce.

We find the tangent space by using a local description of such loci, arguing in the same spirit
as in the tangent space computation for the variety Cr

d (see [1, Chapter IV, Lemma 1.5]).
Let l = (L, V ) ∈ Gr

d(C) be a complete linear series and D =
∑n

i=1 aipi ∈ Ce, where the points
pi are distinct and the ai are positive integers such that

∑n
i=1 ai = e. Choose a basis {s0, . . . , sr}

of the vector space H0(C,L). Then D ∈ V e−f
e (l) if and only if the matrix below has rank at

most e− f :

φ(D) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s01(0) · · · sr1(0)

s′01(0) · · · s′r1(0)

...
...

1
(a1−1)!s

(a1−1)
01 (0) · · · 1

(a1−1)!s
(a1−1)
r1 (0)

s02(0) · · · sr2(0)

s′02(0) · · · s′r2(0)

...
...

1
(a2−1)!s

(a2−1)
02 (0) · · · 1

(a2−1)!s
(a2−1)
r2 (0)

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where sji denotes the section sj in a local coordinate system centred around the point pi, with
j ∈ {0, . . . , r} and i ∈ {1, . . . , n}.

Let M denote the variety of e× (r + 1) matrices. We then interpret φ as an M -valued map-
ping defined in a neighbourhood of D. Hence, by definition, V e−f

e (l) is in this neighbourhood
the pullback via φ of the determinantal subvariety Me−f ⊂ M of all those matrices whose rank
does not exceed e− f . Moreover, the Zariski tangent space to V e−f

e (l) at D is the pullback
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of the tangent space to Me−f at A = φ(D) under the differential of φ. From [1, Chapter 2,
Section 2], we have that, if A /∈ Me−f−1, then:

TA(Me−f ) = {B ∈ M | B · kerA ⊂ A · Cr+1}.
Since we are interested in the case D ∈ V e−f

e (l) \ V e−f−1
e (l), the condition A /∈ Me−f−1 is

satisfied. Thus, for A = φ(D),

TD(V e−f
e (l)) = φ−1

∗ (TA(Me−f ))

= {v ∈ TD(Ce) | φ∗(v) · kerA ⊂ imA}.
Recall that the tangent space TDCe = H0(C,OD(D)) and note that by identifying the vector
space Cr+1 on which A acts with H0(C,L) we see that A is the matrix representing the
restriction map

αl : H0(C,L) → H0(C,L⊗OD).

Hence, we may write φ∗(v) · kerA as the image of v ⊗H0(C,L−D) under the cup-product
homomorphism

βl : H0(C,OD(D)) ⊗H0(C,L−D) → H0(C,L⊗OD).

Thus, the condition φ∗(v) · kerA ⊂ imA is equivalent to

∀s ∈ H0(C,L−D), ∃s′ ∈ H0(C,L) : βl(v ⊗ s) = αl(s′).

Denote by δl the coboundary mapping

H0(C,L⊗OD) → H1(C,L−D)

and let

β′
l : H0(OD(D)) ⊗H0(C,L−D) → H1(C,L−D)

v ⊗ s → δl(βl(v ⊗ s)).

Thus, we see that βl(v ⊗ s) ∈ im(αl) if and only if β′
l(v ⊗ s) = 0 for all s ∈ H0(C,L−D). We

can express this condition using the Serre duality pairing 〈·, ·〉 as follows:

〈σ, β′
l(v ⊗ s)〉 = 0, ∀σ ∈ H0(C,KC − L + D), s ∈ H0(C,L−D).

Consider now the following commutative square:

where the map β′′
l is the cup-product mapping and δ : H0(C,OD(D)) → H1(C,OC) is the

coboundary map with dual given by the restriction map

α : H0(C,KC) → H0(C,KC ⊗OD).

Then we have

〈σ, β′
l(v ⊗ s)〉 = 〈σ, β′′

l (δv ⊗ s)〉
= 〈μl(σ ⊗ s), δv〉
= 〈αμl(σ ⊗ s), v〉,
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where μl is the cup-product map

μl : H0(C,KC − L + D) ⊗H0(C,L−D) → H0(C,KC).

To sum up, v ∈ TD(V e−f
e (l)) if and only if v ∈ im(αμl)⊥, where the superscript ⊥ denotes

orthogonality with respect to the natural pairing given by the residue between H0(C,OD(D))
and TD(Ce)∨ = H0(C,KC ⊗OD).

Therefore, we found that TD(V e−f
e )(l) = im(αμl)⊥, for l complete and D /∈ V e−f−1

e (l).
Recall that Γe(l) = V r

e (l). Hence, the intersection Γe(l1) ∩ Γe(l2), where l1 ∈ Gr1
d1

(C) and
l2 ∈ Gr2

d2
(C) are complete linear series, is transverse at D =

∑n
i=1 aipi ∈ Ce, with distinct points

pi, if

im(αμl1)
⊥ + im(αμl2)

⊥ = TDCe,

or equivalently

im(αμl1) ∩ im(αμl2) = 0.

In what follows, we exhibit some classes of examples for which this transversality condition
cannot hold.

4. Intersections of incidence varieties — proof of Theorem 1.1

In this section, we investigate the failure of transversality for intersections of incidence varieties
in certain interesting cases and in doing so we prove Theorem 1.1.

Recall that for two linear series l1 = gr1d1
and l2 = gr2d2

on a general curve C and for the
positive integer e = r1 + r2, we expect there to be a finite number of divisors in the intersection
Γe(l1) ∩ Γe(l2) and this number is given by formula (1.2).

Consider the linear series l1 = gr1d1
, the pencil l2 = g1

d2
, and e = r1 + 1. Formula (1.2) gives

that the number of divisors D ∈ Cr1+1 common to both l1 and l2 is

(d1 − r1)
(
d2 − 1
r1

)
− g

(
d2 − 2
r1 − 1

)
. (4.1)

This number was first computed by Severi in the context of the theory of correspondences and
coincidences on curves (see [10, Section 74]).

From our point of view, this choice of parameters provides an interesting example of a zero
count when d2 = r1 + 2 and ρ(g, r1, d1) = 0 because now

(d1 − r1)
(
d2 − 1
r1

)
− g

(
d2 − 2
r1 − 1

)
= ρ(g, r1, d1) = 0.

Thus, we expect this intersection not to be well behaved in the case of vanishing ρ(g, r1, d1).
We now clarify when the zero count comes from an empty intersection or from a degenerate

positive-dimensional intersection. Note that since ρ(g, r1, d1) = 0, it immediately follows that:

d1 = r1(s1 + 1),

g = s1(r1 + 1),

where s1 := g − d1 + r1 be the index of speciality of the linear series l1. Moreover, since the
curve C is general, the Brill–Noether number corresponding to the pencil l2

ρ(g, 1, r1 + 2) = s1(r1 + 1) − 2(s1 − 1)(r1 + 1) = (r1 + 1)(2 − s1)

must be non-negative. This is only possible if s1 = 1 or s1 = 2. If s1 = 1, then l1 = KC and we
have the following proposition.
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Proposition 4.1. Let C be a general curve of genus g, KC its canonical linear series, and
l2 = g1

d2
. If d2 = r1 + 2, then there are two possibilities for the intersection Γe(l1) ∩ Γe(l2).

(i) It is empty if l1 = KC and l2 is base point free.
(ii) It is strictly positive dimensional if l1 = KC and l2 is not base point free.

Proof. Let D ∈ Γr1+1(l1) ∩ Γr1+1(l2). Then KC −D � 0 for all D ∈ Cr1+1 = Cg satisfying
g − (r1 + 1) + dim |D| = dim |D| > 0. Hence, D ∈ Γg(KC) if and only if |D| = g1

g . If l2 is
base point free, then the intersection Γg(KC) ∩ Γg(l2) is empty. Otherwise, the intersection
Γg(KC) ∩ Γg(l2) is at least 1-dimensional, hence not a finite, discrete set. �

If s1 = 2, then l1 = gr13r1
and l2 = g1

r1+2. In particular, this is the case when l1 = gr13r1
=

KC − l2 and we find ourselves in the situation of Theorem 1.1(i), which we now prove.

Proof of Theorem 1.1(i). Assume that there exists an effective divisor D ∈ Γr1+1(l1) ∩
Γr1+1(l2). Hence, there exists an effective divisor E1 of degree 2r1 − 1 such that

|D + E1| = l1

and an effective divisor E2 of degree 1 such that

|D + E2| = l2.

Since the Brill–Noether number of l2 vanishes, l2 is a general linear series and hence base point
free. It is also complete, as (2r1 + 2) − (r1 + 2) + 1 = r1 + 1 > 0. Using the base point–free
pencil trick on the cup-product mapping

μ0 : H0(C,D + E2) ⊗H0(C,KC −D − E2) → H0(C,KC)

and the fact that C is a general curve, we get that h0(KC − 2D − 2E2) = 0. Combining this
with Riemann–Roch, we obtain that dim |2D + 2E2| = 2.

Next, 0 � dim |E1| = dim |l1 −D| = dim |KC − l2 −D| = dim |KC − 2D − E2| which we
plug into Riemann–Roch to get

dim |2D + E2| = h0(KC − 2D − E2) + 1 � 2.

We conclude that dim |2D + E2| = 2. Moreover, the linear system |2D + 2E2| is base point free
and since E2 is a point, this implies dim |2D + 2E2| = 3, which is a contradiction. Hence, the
intersection Γr1+1(l1) ∩ Γr1+1(l2) is empty in this case. �

5. Degenerations of secant varieties

In this section, we construct a space of degenerations of secant varieties for families of curves
of compact type using limit linear series and the idea of degeneracy loci.

Before doing so, we recall some well-known facts about limit linear series. Consider a family
π : X → B of curves of genus g together with a section σ : B → X such that B = Spec(R)
for some discrete valuation ring R with uniformising parameter t. Assume further that X
is a nonsingular surface, projective over B. Let 0 ∈ B denote the point corresponding to
the maximal ideal of R and η, η̄ the generic and geometric generic point of B, respectively.
Moreover, let the special fibre X0 be a reduced curve of compact type, while Xη̄ is assumed
to be a smooth, irreducible curve of the same genus.

Let (Lη̄,Vη̄) be a grd on Xη̄. We now briefly explain how this gives rise to a limit series on X0,
after possibly replacing nodes of X0 by smooth rational curves via base change. For details, see
[3]. After the base change we may assume that (Lη̄,Vη̄) comes from a series (Lη,Vη) of type
grd on Xη. This then determines a grd on each irreducible component Y of X0 as follows: since
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X is smooth, Lη extends to a line bundle on X unique up to tensoring with a line bundle of
the form OX (C), where C is supported on X0. There exists therefore an extension LY to Lη,
unique up to isomorphism, such that deg(LY |Y ) = d and for any irreducible component Z of
X0 with Z �= Y , deg(LY |Z) = 0. We set VY = (Vη ∩ π∗LY ) ⊗ k(0) and it follows that

VY 
 π∗LY ⊗ k(0) ⊆ H0(LY |X0)

is a vector space of dimension r + 1 which we will moreover identify with its image in
H0(LY |Y ). Hence, the pair (LY |Y ,VY ) is a grd on Y , which is called the Y -aspect of (Lη,Vη).
The collection of aspects

l = {(LY |Y ,VY ) | Y component of X0}
is called the limit of (Lη,Vη).

Now, for a curve X of compact type a crude limit linear series l is

l := {lY a grd on Y | Y component of X}
together with a compatibility condition on the vanishing sequence at the point p ∈ Y

0 � a0(lY , p) < a1(lY , p) < · · · < ar(lY , p) � d,

where the ai(lY , p) are the orders with which non-zero sections of lY vanish at p. The
compatibility condition is: if Z is another component of X0 with Y ∩ Z = p, then for all
i = 0, . . . , r,

ai(lY , p) + ar−i(lZ , p) � d. (5.1)

It follows (for a proof, see [3]) that the limit of (Lη,Vη) from above is a crude limit linear
series. Note that if we have equality in (5.1), then we have a refined limit linear series. In
general, we omit the adjectives ‘crude’ or ‘refined’ unless necessary.

Recall also the definition of the ramification sequence at the point p ∈ Y :

0 � α0(lY , p) < α1(lY , p) < · · · < αr(lY , p) � d− r,

where αi(lY , p) = ai(lY , p) − i.
The Plücker formula for refined limit linear series (cf. [3, Proposition 1.1]) states the

following: if X is a genus g curve of compact type and l is a limit linear series of type grd
on X, then

∑
q smooth point of X

( r∑
i=0

αl
i(q)

)
= (r + 1)d +

(
r + 1

2

)
(2g − 2). (5.2)

An alternative description for limit linear series has been developed by Osserman in a series
of papers starting with [7] and we use it in our construction of degenerations of secant varieties
to a family of nodal curves of compact type. We now give a summary of the most important
facts and definitions in this approach. We base our discussion on the papers [8] and [9] to
which we will frequently refer for details.

Case 0. We start with the description of limit linear series on a single nodal curve X of
compact type. Let Γ be the dual graph of X and denote by V (Γ) its set of vertices and by
E(Γ) its set of edges. For a vertex v ∈ V (Γ), let Y v be the corresponding irreducible component
of X and Y v

c the closure of the complement of Y v in X. We call an enriched structure (cf. [8,
Definition 2.14]) a collection {Ov}v∈V (Γ) of line bundles on X such that

⊗
v∈V (Γ) Ov 
 OX

and, for any v ∈ V (Γ):

Ov|Y v 
 OY v (−(Y v ∩ Y v
c )) and Ov|Y v

c

 OY v

c
(Y v ∩ Y v

c ).

Such structures always exist and since X is of compact type they are unique. Now let L be a
line bundle of degree d on X. A multidegree �d = (dv)v∈V (Γ) of d is a vector with integer entries
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dv satisfying
∑

v∈V (Γ) dv = d. Set �dv := (0, . . . , 0, d, 0, . . . , 0) with entry d at v and 0 elsewhere.

We say that L has multidegree �d if degL|Y v = dv for all v ∈ V (Γ). Note that multiplying L with
Ov alters the multidegree in the following way: deg(L⊗Ov)|Y v decreases by the number of
vertices adjacent to v in Γ; if v′ �= v is an adjacent vertex to v, then deg(L⊗Ov)|Y v′ increases
by 1; if v′ �= v is not adjacent to v, then deg(L⊗Ov)|Y v′ remains unchanged. We call the
bundles Ov twisting bundles of L and we say that L⊗Ov is a twist of L at v.

We may reorganise the twisting bundles of L by considering instead a collection
{O(e,v)}v∈V (Γ),e∈E(Γ) of line bundles on X, where v is a vertex adjacent to the edge e,
and satisfying the following: given an edge e ∈ E(Γ) and v �= v′ its two adjacent vertices
we have O(e,v)|Y(e,v) 
 OY(e,v)(−(Y v ∩ Y v′

)) and O(e,v)|Y(e,v′) 
 OY(e,v)(Y
v ∩ Y v′

), where Y(e,v)

denotes the union of the irreducible components of X whose vertices lie in the same connected
component of Γ \ e as v. We have that X = Y(e,v) ∪ Y(e,v′), so that line bundles on X are
uniquely determined by their restrictions to Y(e,v) and Y(e,v′). We also see that O(e,v) ⊗O(e,v′) 

OX , and furthermore one can check that Ov = O(e1,v) ⊗ · · · ⊗ O(en,v), where e1, . . . , en are
all the edges adjacent to v. Note that there is a canonical section OX → O(e,v) determined
as the zero map on Y(e,v) and the canonical inclusion on Y(e,v′). Moreover, the isomorphism
O(e,v) ⊗O(e,v′) 
 OX together with the above section induce a map O(e,v′) → OX . Analogously
one obtains a canonical section OX → O(e,v′) and a map O(e,v) → OX .

Given a line bundle L of degree d on X of multidegree �d and another multidegree �d′ of d
one can always find a unique minimal sequence of twists of L such that the resulting twisted
bundle has multidegree �d′. Denote the product of line bundles Ov (or O(e,v)) occurring in the
aforementioned minimal sequence of twists by O�d,�d′ .

Now let L be a line bundle of degree d and fixed multidegree �d0 on X. For any other
multidegree �d �= �d0 of d, set L�d := L⊗O �d0,�d

and Lv := L
�dv |Y v . Given two multidegrees �d, �d′ of

d, the twists O�d,�d′ induce a morphism f�d,�d′ : L�d → L
�d′ . We now describe how such a morphism

is obtained (see [8, Notation 2.19] for more details and for treatment also in the case of nodal
curves not of compact type). Assume first that �d and �d′ are such that L

�d = L
�d′ ⊗O(e,v) or

L
�d′ = L

�d ⊗O(e,v′) for some edge e ∈ E(Γ) and its two adjacent vertices v �= v′. We define a
map fe : L�d → L

�d′ as follows: in the first case fe is induced by the map O(e,v) → OX and in the
second case fe is induced by the section OX → O(e,v′). If �d and �d′ are such that O�d,�d′ consists of

a product of several twist bundles O(ei,vi), then we define f�d,�d′ : L�d → L
�d′ as the composition

of the maps fei as above. We also obtain an induced morphism H0(X,L
�d) → H0(X,L

�d′).
A limit linear series of type grd on the nodal curve of compact type X with enriched structure

{Ov}v∈V (Γ) and fixed multidegree �d0 of d consists of a tuple (L, (V v)v∈V (Γ)), where L is a line
bundle of degree d and multidegree �d0 and the V v are subspaces of H0(X,Lv), such that for
all multidegrees �d of d, the natural morphism

H0(X,L
�d) →

⊕
v∈V (Γ)

H0(Y v, Lv)/V v,

induced by the maps f�d, �dv and restrictions to irreducible components has kernel of dimension
at least r + 1 (see [8, Definition 2.21] for details).

We now summarise the construction of the moduli scheme of limit linear series for families
of curves. From now on, let B be a scheme and f : T → B a B-scheme.

Case 1. First, let X → B be a smooth proper family of smooth curves of fixed genus equipped
with a section. The functor G r

d (X /B) of linear series of type grd is defined by associating to
each B-scheme T the set of equivalence classes of pairs (L ,V ), where L is a line bundle
of relative degree d on X ×B T and V ⊆ π2∗L is a subbundle of rank r + 1, where π2 :
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X ×B T → T is the usual projection. We say that the pairs (L ,V ) and (L ′,V ′) are equivalent
if there exists a line bundle M on T and an isomorphism ϕ : L → L ′ ⊗ π∗

2M such that π2∗ϕ
maps V into V ′. The last condition makes sense because of the following: by the projection
formula, there is a natural isomorphism π2∗(L ′ ⊗ π∗

2M ) 
 (π2∗L ′) ⊗ M , which means that
there is an induced morphism π2∗L → (π2∗L ′) ⊗ M . Take an open cover {Ui} of T such that
M |Ui


 OUi
. Thus, for each Ui we have induced isomorphisms π2∗L |Ui

→ (π2∗L ′|Ui
) ⊗OUi

=
π2∗L ′|Ui

. The condition requires that the above morphism restricts to a morphism V |Ui
→

V ′|Ui
for all Ui. One can see that if the condition is satisfied by a trivialising cover {Ui}i∈I ,

then it will be satisfied by any other such cover {Ũj}j∈J because the transition functions of M

on Ui ∩ Ũj are elements of O∗
Ui∩˜Uj

which leave the V ′|Ui∩˜Uj
unchanged. The functor we just

described is represented by a scheme Gr
d(X /B) which is proper over B.

Case 2. Next, let X → B be a flat proper family of nodal curves of compact type of fixed
genus such that no nodes are smoothed and where B is regular and connected. For details
of the constructions and results, we refer to [9]. All fibres will have the same dual graph Γ
and for each vertex v ∈ V (Γ), we denote the corresponding irreducible component of X by
Y v. For a line bundle L of relative degree d on X ×B T , we say that it has multidegree
�d = (dv)v∈V (Γ) if L |Y v×BT is of relative degree dv, for all v ∈ V (Γ). We also have an enriched
structure {Ov}v∈V (Γ) on X defined as in the case of a single curve, that is, the line bundles
Ov on X satisfy

⊗
v∈V (Γ) Ov 
 OX and for all v ∈ V (Γ):

Ov|Y v 
 OY v (−(Y v ∩ Y v
c )) and Ov|Y v

c

 OY v

c
(Y v ∩ Y v

c ),

where Y v ∩ Y v
c should be interpreted as the corresponding divisor on Y v. As before, we also

have the alternative formulation of the twist bundles in terms of the O(e,v), defined as in the
case of the single nodal curve (replacing of course Y by Y ).

Now fix a choice of multidegree �d0 of d. Given a line bundle L of relative degree d on
X ×B T and multidegree �d0 and another multidegree �d �= �d0 of d, we construct a line bundle
L

�d on X ×B T of multidegree �d as in the case of single curves via a minimal sequence of
twists of L by bundles π∗

1Ov, where π1 : X ×B T → X is the projection. As before, given
two multidegrees �d and �d′ of d, let f�d,�d′ : L

�d → L
�d′ be the unique map obtained by performing

the minimal number of twists.
The Picard functor P

�d0(X /B) is defined by associating to each B-scheme T the set of
isomorphism classes of line bundles L of relative multidegree �d0 on X ×B T . Similarly,
Pd(Y v/B) denotes the Picard functor of line bundles of relative degree d. We now define
P as the following fibre product:

where for all v ∈ V (Γ), φv : G r
d (Y v/B) → Pd(Y v/B) is the forgetful morphism (M ,V ) →

M and ψv : P
�d0 → Pd(Y /B) maps L to L v = L

�dv |Y v×BT via twists and restriction to
Y v ×B T . A T -valued point of P consists of equivalence classes (equivalence relation as in
Case 1) of tuples (L , (V v)v∈V (Γ)), where L is a line bundle of relative multidegree �d0 on
X ×B T and the V v are rank-(r + 1) subbundles of π2∗L v.
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We define the functor G r
d (X /B) as a subfunctor of the functor of points of P as follows: a

tuple (L , (V v)v∈V (Γ)) as above is a T -valued point of G r
d (X /B)(T ) if for all multidegrees �d

of d, the map

π2∗L
�d →

⊕
v

(π2∗L v)/V v (5.3)

induced by the restriction to the component Y v and the twist maps f�d,�dv has its (r + 1)st
degeneracy locus equal to the whole of T . The functor we constructed is also represented by a
scheme Gr

d(X /B) proper over B and can be shown to be independent (up to isomorphism) of
the choice of fixed multidegree �d0.

Case 3. Now assume π : X → B is a family of curves of compact type with nodes that may
be smoothed and satisfying the conditions listed in [7, Definition 3.1]. We call such a family a
smoothing family. In this case, the dual graph of the fibres may vary and the components Y v

may not be defined over all of B. Denote by Γb the dual graph of the fibre Xb for some b ∈ B.
One can check that if b specialising to b′ are points of B, then there is a unique contraction map
clb,b′ : Γb′ → Γb induced on vertices by associating to a component Y ′ of Xb′ the component Y
of Xb containing Y ′ in its closure. On edges, clb,b′ maps e ∈ E(Γb′) to the corresponding edge
of Γb if there is a node of Xb specialising to the node on Xb′ corresponding to e; otherwise, e
is contracted. If b′ specialises to b′′, then clb,b′′ = clb,b′ ◦ clb′,b′′ . Assume also that there exists
a unique maximally degenerate fibre over some b0 ∈ B with dual graph Γ0 and that, for each
b ∈ B, there exist contractions clb : Γ0 → Γb (unique up to automorphism of Γ0) such that if
b specialises to b′, then clb = clb,b′ ◦ clb′ . For details, see [9, Section 2]. With this additional
assumption, the family is called an almost local smoothing family.

If a node corresponding to e is not smoothed by π and occurs in the fibre Xb, we call its
corresponding edge eb. To make sense of the twist bundles O(e,v), we need to first introduce
some notation (for details we again refer to [9, Section 2]). Let Δ′ denote the non-smooth locus
of π and, for e ∈ E(Γ0), let Δ′

e denote the connected component of Δ′ consisting of the union
of non-smoothed nodes corresponding to edges eb of the dual graphs of fibres Xb. Let Δe ⊂ B
denote the image of Δ′

e under π and, given a v ∈ V (Γ0) adjacent to e, let Y(e,v) ∈ π−1(Δe) be
the unique closed set such that for each b ∈ Δe, the fibre (Y(e,v))b is equal to the union of the
components of Xb corresponding to the vertices of Γb lying in the same connected component
as v in Γb \ eb. Furthermore, one can show that Δe is a divisor of B and if v �= v′ are two
vertices adjacent to an edge e ∈ Γ0, then Y(e,v) ∪ Y(e,v′) = π−1Δe and Y(e,v) ∩ Y(e,v′) = Δ′

e. In
this case, Y(e,v) is a divisor in X and we set O(e,v) = OX (Y(e,v)). Moreover, we now have that
the O(e,v) ⊗O(e,v′) are isomorphic to OX only locally on B: O(e,v) ⊗O(e,v′) = OX (π−1Δe) =
π∗OB(Δe), so for an open cover {Ui}i∈I of B trivialising π∗OB(Δe) we have

(O(e,v) ⊗O(e,v′))|π−1(Ui) 
 Oπ−1(Ui). (5.4)

From now on we fix such a cover {Ui}i∈I of B.
Let L be a line bundle on X ×B T of relative degree d and fixed multidegree �d0. This means

that its restriction to Xb0 ×B T has multidegree �d0, while the restrictions to the other Xb ×B T

have the unique multidegree �db0 resulting as follows: if the edge e ∈ E(Γ0) is contracted, then we
replace the vertices v �= v′ adjacent to e by a vertex w and set (db0)w = (d0)v + (d0)v′ ; if e is not
contracted, then (db0)v = (d0)v and (db0)v′ = (d0)v′ for the adjacent vertices v �= v′ to e. Given
another multidegree �d �= �d0 of d, we obtain a line bundle L

�d on X ×B T of multidegree �d from
L by multiplying with twisting bundles π∗

1O(e,v) as in Case 2. Given any two multidegrees �d

and �d′ of d and i ∈ I, we have maps

f�d,�d′,i : L
�d|π−1(Ui) → L

�d′ |π−1(Ui),

induced in a similar way as in Case 2, but this time using the local isomorphisms (5.4).
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To define the functor G r
d (X /B) in this case, we consider the functor that associates to T

the set of equivalence classes of tuples (L , (V v)v∈V (Γ0)), where L is a line bundle of fixed
multidegree �d0 on X ×B T and for each vertex v ∈ V (Γ0), the V v are subbundles of rank
r + 1 of the π2∗L

�dv

, where we now use the bundles L
�dv which may be defined over the whole

family instead of the bundles L v which required the existence of the components Y v. Set
f : T → B. We say that a T -valued point (L , (V v)v∈V (Γ0)) is in G r

d (X /B)(T ) if for all i ∈ I

and all multidegrees �d of d, the map

π2∗L
�d|(f◦π2)−1(Ui) →

⊕
v

(
π2∗L

�dv |(f◦π2)−1(Ui)

)
/V v|f−1(Ui), (5.5)

induced by the local versions of the twist maps, has its (r + 1)st degeneracy locus equal to all
of Ui. It can be shown that the functor described above is independent (up to isomorphism) of
choice of open cover {Ui}i∈I and fixed multidegree �d0.

Relation between Cases 2 and 3. Note that Case 2 can be seen as a special case of Case 3, that
is, with Δe = B for all edges e ∈ E(Γ0). One can show that in this case, the two constructions
yield isomorphic moduli functors of limit linear series and the natural isomorphism between
them is induced by restriction to the components Y v of X .

All the constructions above are compatible with base change and the fibre over t ∈ B is a
space of Eisenbud–Harris limit linear series when Xt is reducible and a space of usual linear
series when Xt is smooth.

We now describe a scheme that parametrises secant varieties for a family of nodal curves of
compact type equipped with limit linear series.

Proposition 5.1. Fix a family of curves X → B over a scheme B like in Cases 1, 2, or 3
above and equipped with a linear series � of type grd. There exists a scheme Ve−f

e (X , �) proper
over B, compatible with base change, whose point over every t ∈ B parametrises pairs [Xt,Dt]
of curves and divisors such that Dt is an (e− f)th secant divisor of �t. Furthermore, every
irreducible component of Ve−f

e (X , �) has dimension at least dimB + e− f(r + 1 − e + f).

Proof. We construct the functor Ve−f
e (X , �) as a subfunctor of the functor of points of the

symmetric product Syme(X /B) (which we also denote by Syme(X /B)). From the degeneracy
locus construction, it follows that it is representable by a scheme that is proper over B and
compatible with base change and which we also denote by Ve−f

e (X , �).
Case 1. Suppose first that the family X → B is like in Case 1 and all the fibres of the family

are nonsingular. In this case, for any T → B scheme over B, we saw above that � = grd on X /B
is given by a pair (L ,V ), where L is a line bundle of degree d on X ×B T and V ⊆ π2∗L is
a vector bundle of rank r + 1 on B, where π2 is the second projection from the fibre product
onto T . Let U ⊂ X ×B Syme(X /B) denote the universal family and UT = U ×B T . Consider
the following diagram

where τ1 and τ2 are the usual projections. Then the T -valued point [X ×B T,D ] ∈
Syme(X /B)(T ) belongs to V e−f

e (X , �)(T ) if the (e− f)th degeneracy locus of the map

V → (τ2)∗(τ∗1 L ⊗OUT
)
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is the whole of T . By construction V e−f
e (X , �) is compatible with base change, so it is a functor,

and it has the structure of a closed subscheme, hence it is representable and the associated
scheme is proper.

Case 2. Now suppose that we are in Case 2 above and the fibres have nodes that are not
smoothed by the family X and as usual let Γ denote the dual graph of the fibres. As we saw
above, in this case � = grd on X is, for any T → B scheme over B, a tuple (L , (V v)v∈V (Γ)),
with L a line bundle of fixed multidegree �d0 of d on X ×B T and V v ⊂ (π2)∗L v a subbundle
of rank r + 1 on T subject to the condition on the map in (5.3). We define V ′(Y v,V v) ⊂
Syme(Y v/B) as follows: we say that a T -valued point [Y v ×B T,E v] ∈ Syme(Y v/B)(T )
belongs to V ′(Y v,V v)(T ) if the (e− f)th degeneracy locus of the map

V v → (τ2)∗(τ∗1 L v ⊗OUT
)

is the whole of T , where the τ1, τ2, and UT are defined analogously for the family Y v.
Thus, a T -valued point [X ×B T,D ] ∈ Syme(X /B)(T ) belongs to V e−f

e (X , �)(T ) if, for
all vertices v of Γ, the T -valued points [Y v ×B T,Dv + qvi ] belong to V ′(Y v,V v)(T ), where
Dv now denotes the specialisation of the relative divisor D on the component Y v ×B T and qvi
denote the preimages of the nodes belonging to Y v ×B T (that may appear with multiplicity, so
that the relative divisor Dv + qvi is of correct degree e). While this is the most useful description
for practical applications, representability is best seen by treating Case 2 as a special case of
Case 3 as explained in the summary above.

Case 3. Now suppose the family X is a local smoothing family as in Case 3 above. As
we have seen already, a limit linear series � of type grd on X is, for any T → B scheme over
B, a tuple (L , (V v)v∈V (Γ0)), where Γ0 is the dual graph of the unique maximally degenerate
fibre Xb0 of the family, L is a line bundle of fixed multidegree �d0 on X ×B T , and for each
v ∈ V (Γ0), the V v are subbundles of rank r + 1 of the twists π2∗L

�dv

, subject to condition on
the maps in (5.5).

As we mentioned before, in this case we do not always have access to components Y v

globally. We make use instead of the bundles L
�dv

which are defined everywhere. The main
advantage is the following useful property, which follows from the rules governing multidegrees
of line bundles on smoothing families as described: for any b ∈ B, the restriction L

�dv |Xb×BT

has degree d only on the component of Xb whose vertex corresponds to the image clb(v); its
degree on any other component vanishes.

We say that the T -valued point [X ×B T,D ] belongs to Ve−f
e (X , �)(T ) if, for every v ∈

V (Γ0) the (e− f)th degeneracy locus of the map

V v → (τ2)∗(τ∗1 L
�dv ⊗OUT

) (5.6)

is the whole of T , where τ1, τ2, and UT are defined as in the smooth case. That Ve−f
e (X , �) is

represented by a closed subscheme of Syme(X /B) proper over B follows from the properties
of degeneracy loci, as in Case 1.

Note that if T = {b}, with b ∈ B belonging to the image of the smooth locus of π and if f :
T → B is the inclusion, the degeneracy locus condition becomes exactly the one from Section 2.
If on the other hand, b ∈ Δe′ , for some edge e′ ∈ E(Γ0) and f : T → B is the inclusion, then
X ×B T = Y(e′,v) ∪ Y(e′,v′), with v, v′ adjacent vertices to e′ and using the notation from Case 0
above. As before, set Δ′

e′ = Y(e′,v) ∩ Y(e′,v′) and let D(e′,v) be the restriction of the divisor D to
Y(e′,v). Then the degeneracy locus condition for the vertex v asks that the divisor D(e′,v) + Δ′

e′

belongs to the (e− f)th degeneracy locus of the map (5.6) restricted to Y(e′,v), where Δ′
e′ may

appear with multiplicity. Now let Dv denote the restriction of D(e′,v) to the component Y v

corresponding to v and let Δ′
e1 , . . . ,Δ

′
em denote the nodes corresponding to the components of

Y(e′,v) adjacent to Y v. Using the properties of limit linear series, one sees that the degeneracy
locus condition translates to the condition that the divisor Dv + Δ′

e′ + Δ′
e1 + · · · + Δ′

em (where
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the Δ′
ei and Δ′

e′ are understood to occur with the correct multiplicity) of degree e on Y v belongs
to the (e− f)th degeneracy locus of the map (5.6) restricted to Y v.

The dimension bound follows from the degeneracy locus construction of Ve−f
e (X , �). �

For a linear series �1 of type gr1d1
on X , denote by Γe(X , �1) the relative secant variety

Vr1
e (X , �1). Thus, in this paper we are interested in the intersection Γe(X , �1) ∩ Ve−f

e (X , �2),
as we shall see explicitly in what follows.

6. Intersections of incidence and secant varieties

In this section, we give a proof of Theorem 1.2. We recall the setup: consider a complete linear
series l1 = gr1d1

on a general curve of genus g. We study the intersection of Γe(l1) and V e−f
e (l2),

where l2 = gr2d2
= KC − l1 is the residual linear series to l1, when

dim Γe(l1) + exp dimV e−f
e (l2) � e− ρ(g, r1, d1) − 1 (6.1)

and prove that it is empty for an arbitrary linear series l1 ∈ Gr1
d1

(C) when f = 1.

Remark 1. To get the correct dimensional estimate when we allow for the series l1 to vary in
moduli (so we do not consider just the general series of type gr1d1

), consider the correspondence

Λ = {(D, l1) ∈ Ce ×Gr1
d1

(C) | D ∈ Γe(l1) ∩ V e−f
e (KC − l1)} ⊂ Ce ×Gr1

d1
.

By construction, Λ has expected dimension

exp dim Λ = ρ(g, r1, d1) + dim Γe(l1) + dimV e−f
e (KC − l1) − e,

so if this number is negative, we expect Λ to be empty.

6.1. The case of minimal pencils

Before proving Theorem 1.2 in general, we first focus on the case of minimal pencils. This will
serve as a prototypical example of the strategy we develop in Section 6.2 to check the emptiness
of the intersection of incidence and secant varieties

Γe(l1) ∩ V e−f
e (KC − l1)

when condition (6.1) is satisfied. We chose to treat this special case separately as the
computations are easier to follow than in general and they therefore better illustrate the
argument. In addition, it allows us to discuss a counterexample to the existence of secant
divisors, which would otherwise be lost in the analysis.

Let l1 = g1
d1

be a minimal pencil, that is, such that the Brill–Noether number

ρ(g, 1, d1) = 1.

It follows that

g = 2d1 − 3. (6.2)

Let l2 = gr2d2
= KC − l1 = gd1−3

3d1−8. Then dim Γe(l1) = 1 and, as mentioned in Section 1

exp dimV e−f
e (KC − l1) = e− f(r2 + 1 − e + f).

Thus, the non-existence condition (6.1) of Theorem 1.2 becomes

1 + e− f(r2 + 1 − e + f) � e− 2.

To ease the computation and presentation, we deal here with the particular case

1 + e− f(r2 + 1 − e + f) = e− 2. (6.3)
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We show that if (6.3) is satisfied, then the intersection

Γe(l1) ∩ V e−f
e (l2)

is empty. Condition (6.3) is equivalent to

f(r2 + 1 − e + f) = 3

and we distinguish the following two possibilities.

(I) If f = 3, then r2 − e + f = 0 and V e−f
e (l2) = Γe(l2). Moreover,

e = r2 + f = (d1 − 3) + 3 = d1. (6.4)

Thus, as expected from the discussion in Section 4, we are in a degenerate situation and we
are in fact looking at the inclusion of l1 = g1

d1
inside l2 = KC − l1 = gd1−3

3d1−8. More precisely,
suppose there exists a divisor D ∈ Ce such that

D ∈ Γe(l1) ∩ Γe(l2).

Thus, from (6.4) we have that |D| = l1 and, as we have seen in the proof of Proposition 4.1,
we have

|2D + D′| = KC

for some effective divisor D′ of the correct degree. More precisely, the condition that D ∈ Γe(l2)
is equivalent to

dim(l2 −D) = dim(KC − l1 −D) = dim |D′| � 0. (6.5)

Since the curve is general, the Petri map

μ0 : H0(C,D) ⊗H0(C,KC −D) → H0(C,KC)

is injective. Combining this with the base point–free pencil trick, we get

H0(C,KC − 2D) = H0(C,D′) = 0.

This then yields a contradiction with condition (6.5). Hence, the intersection Γe(l1) ∩
V e−f
e (KC − l1) is empty in this case.

Remark 2. This actually provides an interesting example that contradicts the expectation
of non-emptiness of secant varieties (see [4, Theorem 0.5]). The inclusion of l1 = g1

d1
in l2 =

gr2d2
= gd1−3

3d1−8 can be reformulated from the point of view of secant varieties as follows: there
should exist an effective divisor D′ ∈ C2d1−8 such that g1

d1
+ D′ = gd1−3

3d1−8. In other words, the
secant variety V e−f

e (l2), where e = 2d1 − 8 and f = d1 − 4 should be non-empty and this is
indeed the expectation from dimensional considerations as

e− (r2 + 1 − e + f) = 0.

However, as we saw above, there are no such effective divisors D′.

(II) If f = 1, then e = d1 − 4 and r2 − e + f = 2. Assume towards a contradiction that there
exists a divisor

D ∈ Γe(l1) ∩ V e−f
e (l2).

Hence, there exists an effective divisor E ∈ C4 such that D + E = l1. Moreover,

l2 −D = KC − l1 −D = gr2−e+f
2d1−4 = g2

2d1−4.

Taking the residue yields

l1 + D = g2
2d1−4.
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We have therefore obtained a ‘system of equations’ for a pair of effective divisors (D,E) ∈
Cd1−4 × C4:

|D + E| = g1
d1

|2D + E| = g2
2d1−4.

(6.6)

By our assumption, a solution for this system exists.
A short computation shows that ρ(g, 1, d1) = 1 implies ρ(g, 2, 2d1 − 4) = 2d1 − 12 which is non-
negative if and only if d1 � 6. Therefore, in order for the system above to make sense, we let
d1 � 6 from now on.
Furthermore, let l̃ := |2D + E| = g2

2d1−4. Hence, (6.6) implies D ∈ V 1
d1−4(l̃) and we have

exp dimV 1
d1−4(l̃) = −d1 + 6.

Thus, we expect V 1
d1−4(l̃) �= ∅ for d1 = 6 and we know from [4, Corollary 0.3] that if d1 > 6 and

l̃ is general, then V 1
d1−4(l̃) = ∅. Unfortunately, l̃ may not be assumed general in our case. The

non-existence result for secant varieties corresponding to arbitrary linear series is [4, Theorem
0.1 ] which states that if

ρ(g, 2, 2d1 − 4) + exp dimV 1
d1−4(l̃) = d1 − 6 < 0,

then V 1
d1−4(l̃) = ∅. Since we let d1 � 6, this does not impose any further constraints on the

existence of solutions to the system (6.6).
Using a degeneration argument with limit linear series, we now show that if the pair (D,E)
is a solution to (6.6), then we have a contradiction. The idea is to exploit a result of Farkas
[4] to obtain a flag curve R̃ such that all the d1 points coming from the limit of the effective
divisors (D,E) specialise to a connected subcurve Y of R̃ having arithmetic genus at most d1.
This configuration gives rise to ‘too much’ ramification at the point of intersection between Y
and its complement in R̃ and the contradiction follows.

We first fix some notation. Following [4], consider all ‘flag curve’ degenerations of curves of
genus g that we describe using the ‘flag map’

j : M0,g → Mg

[R, q1, . . . , qg] → [R ∪q1 E1 ∪q2 . . . ∪qg Eg] =: [R̃],

which attaches to each stable curve [R, q1, . . . , qg] ∈ M0,g fixed elliptic tails E1, . . . , Eg at
the points q1, . . . , qg, respectively. Let pR : R̃ → R be the projection onto R, which collapses
the elliptic tails, that is, pR(Ei) = qi for i = 1, . . . , g. Denote by C g = Mg,1 the universal
curve over Mg, and more generally by C g,n = Mg,n+1 the universal curve over Mg,n. Let

πd : C
d

g,n → Mg,n be the dth fibre product of C g,n over Mg,n for some positive integer d and

M0,g ×Mg
C

d

g the fibre product corresponding to the morphisms j and πd. Finally, we define
χ to be the map that collapses the elliptic tails at the level of the moduli space:

χ : M0,g ×Mg
C

d

g → C
d

0,g

([R, q1, . . . , qg], (y1, . . . , yd)) → ([R, q1, . . . , qg], pR(y1), . . . , pR(yd)].

To apply this setup to our problem, let W ⊂ C
d1

g be the closure of the locus of divisors
(D,E) satisfying (6.6), that is, the closure of the locus

{[C, y1, . . . , yd1 ] ∈ C d1
g | ∃g1

d1
, g2

2d1−4 with
∣∣∣ d1∑
i=1

yi

∣∣∣ = g1
d1

and
∣∣∣g2

2d1−4 −
e∑

j=1

yij

∣∣∣ = g1
d1
}.
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We have assumed that for a general [C] ∈ Mg the above locus is non-empty. This implies

πd1(W ) = Mg. Let U := χ(M0,g ×Mg
W ) ⊂ C

d1

0,g. We therefore get πd1(U) = M0,g and that
the minimal fibre dimension of the map πd1 |U : U → M0,g is d1 −m for some 0 � m �
d1. Hence, dim(U ∩ π−1

d1
([R, q1, . . . , qg])) � d1 −m for every point [R, q1, . . . , qg] ∈ M0,g with

equality for a general point [R, q1, . . . , qg] ∈ M0,g.

We now apply [4, Proposition 2.2 ]: let U ′ ⊂ C
d1

0,g be an irreducible component of the closure
of the locus of limits of the divisors (D,E) on flag curves from Mg. Assuming dimU ′ = g − 3 +
d1 −m with 0 � m � d1, there exists a point ([R, q1, . . . , qg], (y1, . . . , yd)) inside M0,g ×Mg

W
corresponding to a flag curve

R̃ := R ∪ E1 ∪ . . . ∪ Eg and points y1, . . . , yd1 ∈ R̃

such that either:

(i) y1 = · · · = yd1 ∈ R \ {q1, . . . , qg}, or else
(ii) y1, . . . , yd1 lie on a connected subcurve Y of R̃ of arithmetic genus pa(Y ) � min(m, g)

and |Y ∩ (R̃ \ Y )| = 1.

To summarise, if we assume that for a general [C] ∈ Mg the system (6.6) has a solution, then
the same should be true for a flag curve R̃ equipped with limit linear series g1

d1
and g2

2d1−4 and
such that the points in the support of the limit of the divisors (D,E) satisfy (i) or (ii) above.

We now obtain the sought after contradiction. Case (i) is immediately dismissed via a short
computation using the Plücker formula.

We focus on case (ii). Since g = 2d1 − 3, it means that g > d1 � m for d � 2, hence without
loss of generality, we say that the points y1, . . . , yd1 lie on a connected subcurve Y with

pa(Y ) = d1. Let p = Y ∩ (R̃ \ Y ) and let Z := R̃ \ Y and let RY , RZ denote the rational spines
corresponding to Y and Z, respectively.

By assumption, [R̃, y1, . . . , yd1 ] ∈ W , so there exists a flat, proper morphism π : X → B such
that:

• X is a smooth surface and B is the spectrum of a discrete valuation ring with uniformising
parameter t. Moreover, in the notation of Section 5, the special fibre X0 = π−1(0) is a curve
stably equivalent to R̃ while the general fibre Xη is a smooth projective curve of genus g.
Finally, there are d1 sections σi : B → X such that the σi(0) = yi are smooth points of X0 for
all 1 � i � d1. Without loss of generality, let σ1, . . . , σe be the sections corresponding to the
divisor D;
• Xη is equipped with a series (Lη,Vη) of type g2

2d1−4. Furthermore,

dim Vη ∩H0
(
Xη,Lη

(
−

e∑
j=1

σj(η)
))

= 2.

As explained in Section 5, after possibly making a base change and resolving any resulting
singularities, the pair (Lη,Vη) induces a refined limit linear series of type g2

2d1−4 on R̃, which
we denote by l̃. Moreover, the vector bundle

Vη ∩ π∗
(
Lη ⊗OXη

(
−

e∑
j=1

σj(η)
))

induces a refined limit linear series l1 = g1
d1

on X0.
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For a component X of X0, denote by (LX ,VX) ∈ G2
2d1−4(X) the X-aspect of l̃. There

exists therefore a unique effective divisor DX of degree e supported only at the points of
(X ∩⋃e

j=1 σj(B)) ∪ (X ∩ X0 \X) such that the X-aspect of l1 is of the form

l1,X = (LX ⊗OX(−DX),WX ⊂ VX ∩H0(X,LX ⊗OX(−DX))) ∈ G1
d1

(X).

The collection of aspects {l1,X}X⊂Y forms a refined limit (l1)Y of type g1
d1

on Y with a vanishing
sequence that is a subsequence of the vanishing sequence of l̃. We call l̃Y the limit linear series
induced by l̃ on Y . Moreover, the collection of aspects of l1 on Z also yield a refined limit
linear g1

d1
on Z whose vanishing sequence at p is a subsequence of the one of l̃. Furthermore,

we obtain refined limits of l1 and l̃ on both RY and RZ which we call (l1)RY
, (l1)RZ

(of type
g1
d1

) and l̃RY
, l̃RZ

(of type g2
2d1−4), respectively.

To reach the desired contradiction, we obtain various bounds for the ramification sequences
of the series l1 and l̃ and show that they cannot be simultaneously satisfied.

Note that the points of attachment q1, . . . , qg of the elliptic tails to the rational spine are all
cusps, hence for j = 1, . . . , g,

α((l1)RY
, qj) � (0, 1) and α((l1)RZ

, qj) � (0, 1), (6.7)

α(l̃RY
, qj) � (0, 1, 1) and α(l̃RZ

, qj) � (0, 1, 1). (6.8)

Moreover, using the Plücker formula (5.2) on RY , we have

for l1 = g1
d1

:
∑

q smooth point

(
α0((l1)RY

, q) + α1((l1)RY
, q)

)
= 2d1 − 2, (6.9)

for l̃ = g2
2d1−4 :

∑
q smooth point

(
α0(l̃RY

, q) + α1(l̃RY
, q)

)
= 6d1 − 18. (6.10)

Combining (6.7), (6.9), and (6.10), we obtain that on RY the ramification at p is at most

for l1 : α0((l1)RY
, p) + α1((l1)RY

, p) � d1 − 2, (6.11)

for l̃ :
2∑

i=0

αi(l̃RY
, p) � 4d1 − 18, (6.12)

while on RZ we have the upper bounds

for l1 : α0((l1)RZ
, p) + α1((l0)RZ , p) � d1 + 1, (6.13)

for l̃ :
2∑

i=0

αi(l̃RZ
, p) � 4d1 − 12. (6.14)

A further constraint for the ramification sequence at p is given by the following vanishing
conditions.

• If {σC | C ⊆ Y irreducible component} is the set of compatible sections corresponding to
the divisor D + E and if p ∈ C, then ordp(σC) = 0.
• Similarly, the compatible sections {σC | C ⊆ Y irreducible component} corresponding to

the divisor 2D + E also have the property that, if p ∈ C, then ordp(σC) = 0.

The important observation in both cases is that the supports of D + E and of 2D + E are
contained in Y and that deg(D + E) = d1 = deg l1 and deg(2D + E) = 2d1 − 4 = deg l̃. For a
detailed proof, see [13, Lemma 5.2]. Concretely, this means that the vanishing sequences at
p of both (l1)Y and l̃Y must have 0 as their first entry and consequently also those of both
(l1)RY

and l̃RY
.
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Combining this with the compatibility conditions for the vanishing of the sections (5.1) and
the fact that vanishing sequence at p of l1 is a subsequence of the one of l̃ we see that the only
possibility for the vanishing sequences at p of l1 is

a((l1)RY
, p) = (0, d1 − 4) and a((l1)RZ

, p) = (4, d1)

and for the vanishing sequence of l̃ at p is

a(l̃RY
, p) = (0, d1 − 4, 2d1 − 8) and a(l̃RZ

, p) = (4, d1, 2d1 − 4).

However, the ramification sequence corresponding to the vanishing sequence

a((l1)RZ
, p) = (4, d1)

is

α((l1)RZ
, p) = (4, d1 − 1),

which certainly breaks the upper bound in (6.13) and we have obtained the desired contradic-
tion.

6.2. Proof of Theorem 1.2

This section is dedicated to prove Theorem 1.2, which states that for any linear series l1 = gr1d1

on a general curve C there are no divisors D ∈ Ce in the intersection

Γe(l1) ∩ V e−f
e (KC − l1)

whenever f = 1, and

dim Γe(l1) + exp dimV e−f
e (l2) � e− ρ(g, r1, d1) − 1. (6.15)

In fact, we give a general method to check this non-existence statement and apply it to the
case f = 1, where the computations are most tractable.

For the linear series l1 = gr1d1
on a general curve C of genus g, set

ρ := ρ(g, r1, d1) � 0.

Then we have an expression of the genus g in terms of ρ:

g =
(r1 + 1)d1 − ρ

r1
− r1 − 1. (6.16)

Moreover, an easy computation shows that the residual linear series to l1 is l2 = gr2d2
, where

r2 =
d1 − ρ

r1
− 2 (6.17)

d2 =
(r1 + 2)d1 − 2ρ

r1
− 2r1 − 4. (6.18)

The non-existence condition (6.15) becomes

r1 + e− f(r2 + 1 − e + f) � e− 1 − ρ,

or equivalently

f(r2 + 1 − e + f) � r1 + 1 + ρ, (6.19)

where we used dim Γe(l1) = r1 and exp dimV e−f
e (l2) = e− f(r2 + 1 − e + f).

Assume towards a contradiction that there exists a divisor D ∈ Ce such that

D ∈ Γe(l1) ∩ V e−f
e (l2).
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It follows that we also have a divisor E = l1 −D ∈ Cd1−e. Then

l2 −D = KC − l1 −D

is a linear series of dimension r2 − e + f and degree

(r1 + 2)d1 − 2ρ
r1

− 2r1 − 4 − e.

By residuation, we conclude

l1 + D = gr1+f
d+e . (6.20)

We have therefore obtained a ‘system of equations’ for two divisors (D,E) ∈ Ce × Cd1−e:

|D + E| = gr1d1
,

|2D + E| = gr1+f
d1+e ,

(6.21)

and by assumption a solution should exist. We impose further that the Brill–Noether number
of l̃ := |2D + E| = gr1+f

d1+e is also non-negative.
We may view the condition |2D + E| = gr1+f

d1+e also from the point of view of de Jonquières
divisors: the dimension of the space of pairs (D,E) satisfying this is

d1 − (d1 + e) + (r1 + f) = r1 − e + f � 0,

hence no contradiction is detected. On the other hand, we see that D ∈ V f
e (l̃) which has

exp dimV f
e (l̃) = f(r1 + 1) − r1e.

Just like in the minimal pencil case, the non-existence condition

ρ(g, r1 + f, d1 + e) + exp dimV f
e (l̃) < 0

of [4] for secant varieties corresponding to arbitrary linear series does not impose further restric-
tions.

We may therefore still assume that there exists a pair of divisors (D,E) ∈ Ce × Cd1−e

satisfying the system (6.21) and we now produce a contradiction. Assume furthermore that
g > d1 (we shall see later that in the case f = 1 this assumption does not lead to any loss of
generality). We consider again all flag curve degenerations as in the case of minimal pencils
and let W be the closure in C

d1

g of the locus

{[C, y1, . . . , yd1 ] ∈ C d1
g | ∃gr1d1

, gr1+f
d1+e with

∣∣∣ d1∑
i=1

yi

∣∣∣ = gr1d1
and

∣∣∣gr1+f
d1+e −

e∑
j=1

yij

∣∣∣ = gr1d1
}.

Applying [4, Proposition 2.2 ], there exists a point [R̃ := R ∪ E1 ∪ . . . ∪ Eg, y1, . . . , yd1 ] ∈ W ,
where R is a rational spine (not necessarily smooth) and the Ei are elliptic tails such that
either:

(i) y1 = · · · = yd1 , or else
(ii) y1, . . . , yd1 lie on a connected subcurve Y of R̃ of arithmetic genus pa(Y ) = d1 and

|Y ∩ (R̃ \ Y )| = 1. This is possible since we have taken g > d1.

Case (i) immediately leads to a contradiction via a short computation using the Plücker for-
mula.

We focus on case (ii). Let p = Y ∩ (R̃ \ Y ) and let Z := R̃ \ Y and let RY , RZ denote the
rational spines corresponding to Y and Z, respectively. Just as in the case of minimal pencils,
we have refined limit linear series l1 of type gr1d1

and l̃ of type gr1+f
d1+e on R̃ and hence on both

RY and RZ .
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The strategy again is to constrain the vanishing (or, equivalently, ramification) sequence at
p of the limit linear series l1 and l̃ on each of the components RY and RZ . In the same notation
as for minimal pencils, we make use of four important facts.

(1) For refined limit linear series, the vanishing sequences at the point p must satisfy the
following equalities:

ai((l1)RY
, p) + ar1−i((l1)RZ

, p) = d1 for i = 0, . . . , r1,

ai(l̃RY
, p) + ar1+f−i(l̃RZ

, p) = d1 + e for i = 0, . . . , r1 + f.
(6.22)

(2) The vanishing sequence at p of l1 = gr1d1
is a subsequence of the one corresponding to

l̃ = gr1+f
d1+e .

(3) The Plücker formula (5.2) applied to both limit linear series on both components. The
Plücker formula on RY yields:

for l1 :
∑

q smooth point of RY

( r1∑
i=0

αi((l1)RY
, q)

)
= (r1 + 1)(d1 − r1), (6.23)

for l̃ :
∑

q smooth point of RY

(r1+f∑
i=0

αi(l̃RY
, q)

)
= (r1 + f + 1)(d1 + e− f − r1). (6.24)

The curve RY contains the points q1, . . . , qd1 which are all cusps, and therefore have ramification
sequences at least (0, 1, . . . , 1). Combining this with (6.23) and (6.24), we obtain upper bounds
for the ramification at p:

for l1 :
r1∑
i=0

αi((l1)RY
, p) � (r1 + 1)(d− r1) − d1r1, (6.25)

for l̃ :
r1+f∑
i=0

αi(l̃RY
, p) � (r1 + f + 1)(d1 + e− f − r1) − (f + r1)d1. (6.26)

Using the same reasoning on RZ , we obtain the following bounds on the ramification at p:

for l1 :
r1∑
i=0

αi((l1)RZ
, p) � (r1 + 1)(d− r1) − (g − d1)r1, (6.27)

for l̃ :
r1+f∑
i=0

αi(l̃RZ
, p) � (r1 + f + 1)(d1 + e− f − r1) − (f + r1)(g − d1). (6.28)

Since for a linear series l of type grd,
r∑

i=0

αi(l, p) =
r∑

i=0

ai(l, p) − r(r + 1)
2

, (6.29)

the upper bounds for the ramification give equivalently bounds for the vanishing at p.
(4) The statement of [13, Lemma 5.2] applied to the current situation, as in the case of the

minimal pencils. We again obtain that both the vanishing sequence of (l1)RY
and that of l̃RY

must have 0 as their first entry.

Putting everything together, the vanishing sequence at p corresponding to l1 on RY is

a((l1)RY
, p) = (0, x1, . . . , xr1),
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for some strictly positive integers x1, . . . , xr1 smaller than d1, while the sequence on RZ is

a((l1)RZ
, p) = (d1 − xr1 , . . . , d1 − x1, d1).

On the other hand, the vanishing sequence at p corresponding to l̃ on RY is

a(l̃RY
, p) = (0, y1, . . . , yr1+f ),

where the strictly positive integers yi, with i = 1, . . . , r1 + f , are all smaller than d1 + e.
Moreover, since the vanishing subsequences of l1 are subsequences of those of l̃, then exactly
one of the yi is equal to e and for each index i = 1, . . . , r1 there exists an index j such that
xi = yj . Finally, the vanishing sequence at p of l̃ on RZ is

a(l̃RZ
, p) = (d1 + e− yr1+f , . . . , d1, . . . , d1 + e),

which must also contain the terms d1 − xr1 , . . . , d1 − x1.
Let x = x1 + · · · + xr1 . Using (6.25), (6.27), and (6.29) and the fact that

g − d1 =
d1 − ρ

r1
− r1 − 1, (6.30)

we have

r1

(
d1

r1
− r1 + 1

2

)
− ρ � x � r1

(
d1

r1
− r1 + 1

2

)
. (6.31)

To prove the non-existence statement, one finds a contradiction to the inequality (6.31). As
mentioned before, we restrict ourselves to the case f = 1.

We now have l̃ = gr1+1
d1+e and (6.19) yields

e � r2 − r1 − ρ + 1 =
d1 − (r1 + 1)ρ

r1
− r1 − 1. (6.32)

Moreover, from (6.30) and (6.32) we get that if f = 1, then 0 < e � g − d1. Hence, the
assumption g > d1 needed in general in order to have a proper subcurve Y � R̃ with pa(Y ) =
d1 < g is superfluous in this case.

Suppose first that none of the xi with i = 1, . . . , r1 is equal to e. Thus, the vanishing sequence
at p corresponding to l̃ on RY is

a(l̃RY
, p) = (0, e, x1, . . . , xr1),

up to a permutation of the terms e, x1, . . . , xr1 . We note that the exact order of the terms in
the vanishing sequence does not matter in the arguments below, as we are always considering
the sums of their entries. Combining (6.28) and (6.29) yields the inequality

(r1 + 2)(d1 + e) − e− x− (r1 + 1)(r1 + 2)
2

�(r1 + 2)(d1 + e− 1 − r1)

− (r1 + 1)
(
d1 − ρ

r1
− r1 − 1

)
which, after plugging in the expression (6.32) for e, reduces to

x � (r1 + 1)(r1 + 2)
2

+ (r1 + 1)
(
d1

r1
− r1 − 1

)
.

This contradicts the upper bound in (6.31). Hence, this vanishing sequence cannot occur.
One the other hand, if e is one of the xi with i = 1, . . . , r1, then, abusing notation as before,

the vanishing sequence at p corresponding to l1 on RY is

a((l1)RY
, p) = (0, e, x1, . . . , xr1−1)
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and on RZ

a((l1)RZ
, p) = (d1 − xr1−1, . . . , d1 − x1, d1 − e, d1). (6.33)

Moreover, the vanishing sequence at p corresponding to l̃ on RY is

(0, e, x1, . . . , xr1−1, y),

for some positive integer y, and the one on RZ is

(d1 + e− y, d1 + e− xr1−1, . . . , d1 + e− x1, d1, d1 + e). (6.34)

Since the sequence (6.33) must be a subsequence of (6.34), we see that

d1 + e− y = d1 − xi,

for some index i. In other words, y = e + xi. Combining (6.28) and (6.29) again yields the
inequality

(r1 + 2)(d1 + e) − e− xi − x− (r1 + 1)(r1 + 2)
2

� (r1 + 2)(d1 + e− 1 − r1)

− (r1 + 1)
(
d1 − ρ

r1
− r1 − 1

)
.

This leads to a contradiction with the upper bound in (6.31) in the same way as above.
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