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Abstract Dynamics of excitable cells and networks depend on the membrane time constant, set 
by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of 
ionic conductances of excitable membranes are routine in electrophysiology, experimental control 
over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows 
electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional 
application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively 
modulate capacitance in a mathematical neuron model and then confirm the functionality of capac-
itance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold 
virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe 
and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental 
electrophysiology.

Editor's evaluation
The manuscript introduces a new enhancement to the dynamic clamp technique, CapClamp that, 
analogous to the artificial conductances of standard Dynamic Clamp, allows the experimenter to 
adjust the somatic time constant by setting a new membrane artificial capacitance independent of 
any change in input resistance. The technique is shown to have application for studying temporal 
integration, energetic costs of spiking and bifurcations. The technique is rigorously tested in model 
and physiological application and is robust when sampling frequency of the feedback (clamp) loop 
is fast compared to the fastest electrical event in a neuron (usually action potentials), and for verte-
brate neurons it should be 20KHz or faster and yet faster for fast spiking neurons.

Introduction
Membrane capacitance is a major biophysical parameter in neurons and other excitable cells, 
which determines how fast the membrane potential changes in response to a current (Golowasch 
et al., 2009; White and Hooper, 2013). How capacitance impacts electrical signaling and neuronal 
processing, however, can rarely be observed experimentally, because besides reduced values in 
myelinated axons (Hartline and Colman, 2007) most membranes appear to have a specific membrane 
capacitance in the range of 0.7–1.0 μF/cm2 (Gentet et al., 2000). The effects of capacitance changes 
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can, therefore, so far only be compared via mathematical simulations, where capacitance is simple to 
control. Such modeling, for example, suggests that the reduced membrane capacitance observed in 
human pyramidal cells can serve to increase synaptic efficacy or propagation speed of action poten-
tials (Eyal et al., 2016, but see Beaulieu-Laroche et al., 2018). In contrast, experimental manipula-
tion of capacitance remains challenging; in particular because changes in membrane area, thickness 
and lipid composition that affect capacitance might influence other membrane functions, such as the 
embedding of ion channels, with potentially unintended and uncontrolled consequences for electrical 
behavior. Here, we address this technical challenge by introducing capacitance clamp (CapClamp): an 
intracellular recording mode based on the dynamic clamp that emulates altered capacitance values 
in biological neurons (Robinson, 1994; Sharp et  al., 1993). Via CapClamp, the voltage dynamics 
governed by the actual biophysics of a cell – active ion channels and synaptic inputs – can thus be 
flexibly probed under multiple ‘virtual’ capacitance conditions, which provides precise experimental 
control over this hitherto inaccessible parameter.

In addition to the analysis of biological capacitance adaptations, control over capacitance offers a 
distinct way to probe cellular electrical dynamics. Capacitance has a unique temporal role, because its 
direct effects are restricted to the membrane time constant whilst leaving the steady state I-V function 
unaltered. In this way, capacitance differs from leak conductance, the other determinant of the time 
constant, as the latter also alters steady-state response amplitudes. For this reason, theoretical studies 
preferentially vary capacitance to investigate ion channel dynamics (Jaffe and Brenner, 2018; Franci 
et al., 2018) and qualitative switches (bifurcations) in neural excitability (Kirst et al., 2015; Hesse 
et al., 2017). Furthermore, effects of an altered capacitance can be informative about more complex, 
time scale-related parameters like temperature or ion concentrations (Contreras et al., 2020). Such 
computational predictions, however, often rely on simplified neuron models, so a similar experimental 
control over capacitance would be desirable to test them in biological cells.

The proposed CapClamp alters capacitance in a virtual manner, combining the simplicity of compu-
tational control with the complex biophysics of a real neuron. It is inspired by the dynamic clamp 
technique, which has originally been developed to simulate the presence of additional conductances 
in a biological neuron relying on a fast feedback loop between intracellular recording and a compu-
tational model (Robinson, 1994; Sharp et  al., 1993; Prinz et  al., 2004; Economo et  al., 2010). 
The precise control over these virtual conductances enables electrophysiological experiments that 
are more difficult or even impossible with traditional pharmacological or genetic means (Turrigiano 
et al., 1996; Svirskis et al., 2004; Prescott et al., 2008b; Hasenstaub et al., 2010; Szűcs et al., 
2017; Pfeiffer et  al., 2020). Here, we demonstrate how the dynamic clamp can be extended to 
enable manipulations of the apparent membrane capacitance by currents designed to speed up or 
slow down dynamics of the membrane potential. We derive a simple expression for these CapClamp 
currents, which can be applied in all excitable cells and only requires the experimenter to specify the 
original cell and the desired target capacitance. In an experiment based on a hardware-implemented 
RC circuit, we verify that the CapClamp indeed correctly modifies the time constant. Via numerical 
simulations, we confirm that a clamped model neuron exhibits the same pronounced changes of firing 
and spike shape as a control cell with an altered capacitance. For an experimental demonstration, we 
clamp the near-somatic capacitance of rat dentate gyrus granule cells and analyze how the induced 
local capacitance change affects their spiking behavior. Finally, we illustrate how the CapClamp can 
be used to probe signal integration and energy consumption of excitable cells in ways that so far were 
experimentally inaccessible.

Results
Capacitance clamp: A dynamic clamp protocol to mimic capacitance 
changes
Dynamic clamp relies on a fast feedback loop between an intracellular recording of a neuron and a 
computer that simulates virtual cellular or circuit components online. Originally, the dynamic clamp 
has been developed to study how a membrane conductance alters the neuron’s voltage dynamics 
(Sharp et al., 1993; Robinson, 1994). In each sampling interval (i.e. time interval between two voltage 
samplings), a digital model of the conductance receives the sampled membrane potential, updates 
the conductance state and sends the corresponding current value back to the amplifier. Given a 
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sufficiently high update rate fdyn (often ≥10  kHz), this current injected via the recording electrode 
makes the dynamics of the neuron appear as if the virtual channels represented by the conductance 
model were physically present in the membrane.

Whereas conductances gate ionic currents across the membrane, the capacitance determines 
how fast these currents can change the membrane potential. Every altered membrane property 
that results in a modified capacitance value, such as membrane area, thickness or lipid composition, 
affects this rate of change of the membrane potential (Figure 1A). To artificially mimic a modified 
capacitance, we therefore first asked whether a dynamic clamp protocol with its fast feedback loop 
between voltage sampling and current injection could adjust the ‘speed’ of a cell’s membrane poten-
tial (Figure 1B). Using the current balance equation, the basic mathematical description of membrane 
voltage dynamics, we derived a capacitance clamp (CapClamp) scheme with a simple expression for 
the clamping current ‍Idyn‍ (see "Derivation of the CapClamp current" in Methods),

	﻿‍
Idyn,i = Cc−Ct

Ct

(
Cc

Vi−Vi−1
∆t − Idyn,i−1

)
,
‍� (1)

B

C

DA

Figure 1. Adding or removing artificial capacitance via the CapClamp. (A) Physically, membrane capacitance varies with surface area, thickness and 
lipid composition (B) Virtual capacitance modification via the CapClamp is a form of dynamic clamp, a fast feedback loop between intracellular voltage 
sampling and computer-controlled current injection: given the measured cell capacitance ‍Cc‍, the target capacitance ‍Ct‍, recorded membrane potentials 
and the sampling interval ‍∆t‍, the computer calculates clamping currents required to mimic the desired change of capacitance (see Equation 1). (C) 
Clamping a hardware-implemented model cell (RC circuit) at a decreased (left) or increased (right) capacitance leads to faster respectively slower 
charging of the ‘membrane potential’ ‍V ‍ to the same steady-state voltage response (top row, black: recordings, dashed red and blue: exponential fits 

‍
∆V

(
1 − e−

t
τ

)
‍
, gray: recording at original ‍Cc‍) in response to a step current ‍Iext‍ (2nd row) due to the clamping currents ‍Idyn‍ (3rd row). As a result, the 

current through the resistance ‍IR = −V
R ‍ (4th row) has a different profile and the apparently deposited charge ‍∆Q(R, ext) =

´
dtIR + Iext‍ (bottom row, 

black) by the ‘cellular’ transmembrane currents decreases, respectively, increases as expected for a capacitance change. The real deposited charge 

‍∆Qtotal‍ (bottom row, gray), taking into account the clamping currents, has the same steady-state amplitude in all three cases, because the physical 
capacitance did not change. (D) Measured time constant ‍τ ‍, voltage responses ‍∆V ‍, resistance ‍R‍, deposited charge ‍∆Q‍ (apparent and total) and 
capacitance ‍C‍ versus target capacitances.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Impedance analysis of an RC circuit coupled to the capacitance clamp.
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which only requires the experimenter to measure the cell capacitance ‍Cc‍ in order to set a new 
target capacitance ‍Ct‍. In every sampling interval ‍∆t = fdyn

−1
‍, the CapClamp uses the measured cell 

capacitance value ‍Cc‍ and the voltage derivative ‍
Vi−Vi−1

∆t ‍ to estimate the present membrane current 
and then increases (‍Ct < Cc‍) or decreases (‍Cc < Ct‍) the net current by insertion of a correction current 
in the next time bin. In this way, despite a physically unaltered capacitance, the membrane potential 
changes faster or, respectively, slower – as if the clamped cell actually had the different capacitance ‍Ct‍ 
selected by the experimenter. In the following, we will demonstrate the CapClamp in simulated and 
experimental scenarios with increasing complexity ranging from a passive RC circuit up to biological 
neurons with a spatially extended morphology.

Clamping capacitance in a passive cell
The simplest scenario to apply the CapClamp is a single compartment passive cell, equivalent to an 
RC circuit. In the absence of active conductances, the effects of a capacitance change can be precisely 
formulated: the capacitance ‍C‍ sets the membrane time constant ‍τ = RC‍, determining how fast the 
membrane potential changes in response to a current. Note that, in contrast to the resistance ‍R‍, the 
change in capacitance leaves the voltage amplitude of the steady-state response unaltered. To quanti-
tatively confirm the effects of clamping capacitance and the ability of an exclusively temporal control, 
we measured time constant and capacitance of a clamped RC circuit in experiment and analyzed the 
temporal filtering properties of a modeled clamped circuit using mathematical analysis.

To experimentally characterize a clamped passive cell, we implemented the CapClamp scheme 
in a dynamic clamp setup (see "Dynamic clamp setup" in Methods) and recorded voltage responses 
to current pulses from the simplest possible model cell, that is, a hardware implemented RC circuit, 
while clamping it at a range of target capacitances (Figure 1C). As expected for an RC circuit, the 
charging curve of the unclamped model cell was fit well by a single exponential, whose time constant 
(‍τ ‍ = 11.1ms) and voltage amplitude (‍∆V ‍ = −9.9 mV) allowed us to determine the circuit’s resistance 
‍R‍=99.4 MΩ and capacitance ‍C‍=112.3 pF. This capacitance value was then used as the cell capacitance 
‍Cc‍ input for the CapClamp. Clamped at a decreased capacitance, the time constant shortened (‍Ct‍ = 
67.4 pF: ‍τ ‍=6.6ms) and at an increased capacitance, it lengthened (‍Ct‍ = 336.9 pF: ‍τ ‍=33.0ms), but in 
both cases the steady state voltage amplitude remained the same. Accordingly, the measured capaci-
tance of the clamped circuit confirmed the chosen target capacitance for the whole tested range from 
a 0.6- up to a 3-fold change with respect to the original capacitance (e.g. ‍Ct‍=67.4 pF: ‍C‍=67.5 pF; 
‍Ct‍=336.9 pF: ‍C‍=338.1 pF), whereas the measured resistance remained constant (Figure 1D).

As a consequence of the correctly transformed voltage response, the leak current in the clamped 
RC circuit also behaved as if the capacitance had changed. When the circuit was clamped, the leak 
current through the resistance, ‍IR = V

R ‍, exhibited a shorter (‍Ct < Cc‍) or longer (‍Ct > Cc‍) transient until 
reaching steady state. Further, the charge ‍∆Q(IR, Iext)‍ deposited on the capacitance by the apparent 
‘transmembrane’ current, the sum of leak and external stimulus current, reduced (‍Ct < Cc‍) or increased 
(‍Ct > Cc‍) to the extent expected for an altered capacitance (Figure 1C). In contrast, the overall depos-
ited charge ‍∆Q(IR, Iext, Idyn)‍, including the clamping current, attained the same steady-state amplitude 
in the clamped and the original circuit, reflecting that the physical capacitance did not change. For 
the simple RC circuit considered here, the distinction between the clamping current and the intrinsic 
‘cellular’ currents might appear artificial, because all currents use the same charge carrier. In a biolog-
ical neuron, however, this distinction becomes relevant, because the clamping currents through the 
recording electrode might rely on other charge carriers (depending on the used intracellular solution) 
than the cellular currents governed by multiple ion selective channel types.

For more complex stimuli than a simple current pulse, the temporal filtering properties of a clamped 
membrane determine how well the CapClamp mimics the chosen capacitance change. To generally 
assess these filtering properties, we analytically derived the frequency-dependent impedance of a 
modeled clamped RC circuit using linear control theory (Figure 1—figure supplement 1b A, see 
"Impedance of a capacitance-clamped RC circuit" in Appendix 1). The derived impedance profiles 
confirmed the experimentally observed altered time constants. For example, an RC circuit clamped at 
an increased capacitance further attenuated non-zero frequencies reflecting its longer time constant. 
Overall, impedance amplitudes of a clamped RC and the corresponding target circuit fit well up to 
a tenth of the dynamic clamp frequency fdyn, that is up to ≈2 kHz for a 20 kHz dynamic clamp system 
as used here (Figure 1—figure supplement 1B and C ). As high frequencies are heavily attenuated 
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by the low pass filter of a cell’s membrane, these differences lead to relatively small deviations in the 
voltage responses. The mathematical analysis thus suggests that for a fast dynamic clamp system ( 
> 20 kHz), the CapClamp is expected to work well for most stimuli with time scales in the physiological 
range.

Simulation of the capclamp in a biophysical neuron model
In neurons with active spike-generating conductances, capacitance changes impact neuronal firing via 
the interplay of the altered membrane time constant and the gating kinetics of the channels involved. 
As gating dynamics can be in the sub-millisecond range, for example for transient sodium channels, 
the CapClamp is expected to require a sufficiently high dynamic clamp frequency to accurately repro-
duce changes of spike shape or firing rate. To understand these requirements and lay the ground for 
investigations of capacitance changes in biological neurons, we simulated the CapClamp in a neuron 
model with biophysical channel dynamics and a single-compartment morphology (see "Biophysical 
neuron model" in Methods). The simulation allowed us to compare the firing of the clamped neuron 
to the expected firing at this modified capacitance.

Specifically, we inspected the spiking responses to a depolarizing current for the original 150 pF, 
a decreased 90 pF and an increased 210 pF capacitance, for the latter two comparing clamped and 
expected dynamics (Figure  2A). Capacitance changes exerted a notable influence on both firing 
frequency and spike shape, which was mostly well-captured by the simulated CapClamp (Table 1). 
When the capacitance was decreased to 90 pF, spiking became faster and action potentials had a 
larger peak amplitude, a decreased duration and an increased afterhyperpolarization (AHP). When 
the capacitance was increased to 210 pF, the effects were opposite: spiking became slower and action 
potentials had a smaller peak amplitude, an increased duration and a reduced AHP. At decreased 
capacitances, spike amplitudes of the clamped neuron were larger than in the respective control 
simulation, a consequence of the limited tracking of the fast sodium current at the dynamic clamp 
frequency used (Figure 2B and C). Except for this brief overshoot, the CapClamp overall forced the 
membrane potential on the expected trajectory and correctly adjusted the resulting ionic currents and 
the gating variable dynamics of the active conductances. For example, at a reduced capacitance of 
90 pF, sodium channels inactivated less during the fast rise of the AP and therefore the sodium current 
exhibited a second peak during AP repolarization (see the sodium inactivation variable ‍h‍ at AP peak 
time in Figure 2B).

A subsequent comparison of simulated spiking for the whole range of tested target capacitances 
from 75 pF to 225 pF confirmed that the CapClamp reliably reproduced the main effects of a modified 
capacitance on spike shape (Figure 2D) and firing frequency (Figure 2E). Furthermore, the obtained 
frequency-current curves fit well with the theoretically expected reduction of excitability at higher 
capacitance: a decrease of gain proportional to ‍

1
C‍ and a constant rheobase current (see "Analytically 

expected effect of capacitance on the form of the f-I curve" in Methods). A crucial factor for the 
CapClamp, especially for a good quantitative fit of the spike shape, is the dynamic clamp frequency – 
observable differences at a 20 kHz sampling frequency were strongly reduced for a sampling frequency 
of 100  kHz (Figure  2C and D). In this regard, the chosen neuron model is especially demanding 
because its rapid gating dynamics are fit to a fast spiking interneuron (Wang and Buzsáki, 1996). 
Taken together, our simulations show that capacitance impacts neuronal spiking from firing frequency 
to action potential shape and that the CapClamp is well-suited to study these effects.

Experimental demonstration of the CapClamp in rat dentate gyrus 
granule cells
Biological neurons differ from the simple ‘cells’ considered so far, that is RC circuit and single compart-
ment neuron model, in one major aspect: they can have complex morphologies, where the membrane 
potential varies between different compartments and membrane capacitance is distributed across 
the neuronal structure. As the CapClamp in contrast operates locally through the recording elec-
trode, the emulated capacitance change is expected to be localized to the recorded compartment 
instead of affecting all compartments. To demonstrate such localized capacitance changes and study 
their effects on neuronal spiking, we applied the CapClamp in in vitro patch-clamp recordings of rat 
dentate gyrus granule cells (DGGCs). Among morphologically complex cells, DGGCs appear well-
suited to test the CapClamp, because their morphological structure, consisting of a central soma and 

https://doi.org/10.7554/eLife.75517
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one to four primary apical dendrites as shown in Figure 3A (Rihn and Claiborne, 1990), translates to 
a relatively compact electrotonic structure (Schmidt-Hieber et al., 2007; Wybo et al., 2019).

Measurement of local near-somatic capacitance
Most capacitance measurements aim to provide an accurate estimate of the global capacitance of a 
neuron (Golowasch et al., 2009; White and Hooper, 2013). To correctly infer the transmembrane and 
axial current, however, the CapClamp requires the local capacitance value of the compartment where 
the electrode is placed at. For the somatic DGGC recordings, we exploit that the current clamp step 
method – fitting charging curves via a sum of exponential terms – can also provide local capacitance 

ED

A

C

B

Figure 2. Simulation of the capacitance clamp in a conductance based neuron model. (A) Neurons coupled to the CapClamp are compared with 
control neurons with an altered capacitance (depicted as a difference in membrane area). (B) Spiking at 0.6-fold decreased (90 pF), original (150 pF) 
and 1.4-fold increased capacitance (210 pF) with from top to bottom: spike shape, dynamic clamp current, ionic currents (Na+, K+) and gating states (h: 
sodium inactivation gate, n: potassium activation gate). Clamped and original traces in black or color, control in gray. All currents are shown with the 
sign they appear with in the current-balance equation (Equation 2). (C) Comparison of spike shapes in the V-‍

dV
dt ‍-plane (black: original, red and blue: 

clamped, gray: control). (D) Comparison of spike amplitude ‍hAP‍ (top left), spike width ‍wAP‍ (top right), after hyperpolarization amplitude ‍AHP‍ (lower 
left) and timing ‍tAHP‍ (lower right) across different capacitances with two dynamic clamp frequencies (solid: 20 kHz, dotted: 100 kHz, gray:control). (E) 
Top: Comparison of f-I curves for capacitances in B. Bottom: Gain and rheobase current of the f-I curves across capacitances (solid: 20 kHz, dotted: 
100 kHz, gray: control) compared with the theoretical predictions (orange, dashed) of a decreasing ‍gain(C) = α

C ;α = gain(Cc)Cc‍ and a constant 
rheobase (see "Analytically expected effect of capacitance on the form of the f-I curve" in Methods).

https://doi.org/10.7554/eLife.75517
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information (Golowasch et al., 2009). DGGC charging curves consisted of a slow (‍τ0‍: 15.1 ± 4.8 ms, 
R0: 127 ± 45 MΩ) and a fast (‍τ1‍: 0.77 ± 0.24 ms, R1: 35 ± 15 MΩ) component. Such a response can be 
understood in terms of a two compartment circuit consisting of a near compartment, comprising the 
patched soma and its surrounding, coupled to a far, mostly dendritic, compartment as depicted in 
Figure 3A (for details on the mapping, see "Capacitance measurements" in Methods). Importantly, 
the slow and fast components can be mapped to the corresponding five circuit parameters: near 
capacitance ‍Cn‍ (21.0 ± 9.4 pF), near resistance ‍Rn‍ (854 ± 394 MΩ), coupling resistance ‍Ra‍ (53 ± 20 MΩ),  
far capacitance ‍Cf ‍ (106 ± 33 pF), and far resistance ‍Rf ‍ (156 ± 60 MΩ) (Figure 3C). Accordingly, this 
near-somatic capacitance ‍Cn‍ represents the summed capacitance of the membrane area that is elec-
trotonically close to the recording site and thus is the value that the CapClamp requires as input and 
should be able to modify.

Altered near-somatic capacitance in DGGCs
To confirm the localized effect of the CapClamp, we repeated the above capacitance measurement 
while clamping DGGCs at values ranging from 0.6 to 3 times the original near capacitance. Figure 3B 
depicts how the charging of the membrane potential in an exemplary cell changed its shape in reac-
tion to the clamp. Both slow and fast time constant lengthened with capacitances, whereas the associ-
ated resistances increased and decreased, respectively, such that their sum, the total input resistance 
(which is expected to be independent of capacitance), remained constant. These measured time 
constants and amplitudes matched the predicted ones for a two compartment circuit with a near 
capacitance at the chosen target values and all other circuit parameters at their original values. In a 
multicompartment simulation of a morphologically reconstructed DGGC, we could reproduce both 
the two compartment structure of DGGCs and the isolated modification of the near capacitance, 
further confirming the local control via the CapClamp.

Across 18 recorded cells, the CapClamp robustly altered DGGC charging curves and modified their 
charging time constants. Within the tested capacitance range, the slow time constant ‍τ0‍ decreased by 
–0.8 (-1.0 to -0.6) ms, median and interquartile range in parentheses, and increased up to 3.0 (2.4 to 
3.9) ms, whereas the fast time constant ‍τ1‍ changes ranged from –0.24 (-0.29 to -0.20) ms up to 0.60 
(0.36 to 0.86) ms (Figure 3D). To quantify how well these changes reflected an altered near capac-
itance, we evaluated the goodness of fit between the observed and expected time constants and 
resistances. In the majority of cells, R-squared values were close to 1, indicating that the CapClamp 
induced the expected changes (‍τ0‍: 0.87 (0.76 to 0.92), R0: 0.77 (0.56 to 0.89), ‍τ1‍: 0.76 (0.32 to 0.97), 
R1: 0.85 (0.75 to 0.91)). The largest mismatches occurred for the fast time constant, especially at high 
capacitances, where the measured time constant was often shorter than predicted (Figure 3D). A small 
bias toward a shorter fast component is to be expected and also present in the multicompartment 
simulation, because this time constant was only about ten times longer than the sampling interval of 
50 µs limiting its slowing-down by the CapClamp currents. Larger deviations of ‍τ1‍ however could not 
be reproduced in numerical simulations and likely result from other error sources, such as the difficulty 
of fitting this small and short time constant in the presence of noise or imprecise estimates of the 
original near capacitance (see "Online measurement of capacitance" in Methods). Overall, in terms of 
circuit parameters, the capacitance measurements confirmed the targeted near capacitance change 
for 12 out of 18 cells within an average error of 10% (Figure 3E). In summary, the CapClamp achieved 
an isolated change of the near-somatic capacitance in DGGCs and thereby allows to control the time 
constants of their passive voltage dynamics.

Table 1. Spike shape and firing frequency in a biophysical neuron model at 60 pA as well as f-I curve gain and local gain reduction for 
a decreased, the original and an increased capacitance, comparing simulations of an actually altered capacitance with the CapClamp.
Values are shown as actual(clamped).

C (pF) f (Hz) ‍hAP‍(mV) ‍wAP‍(ms) AHP (mV) Gain (Hz/‍
√

pA‍)

Δ
Gain (Hz/‍

√
pA‍ per 

10 pF)

decreased 90 34.9 (34.3) 45.7 (55.0) 0.30 (0.30) –77.8 (-79.7) 6.5 (6.5) –0.67 (-0.67)

original 150 22.1 33.9 0.39 –71.5 3.8 –0.22

increased 210 17.8 (18.9) 21.4 (20.1) 0.48 (0.48) –66.0 (-64.7) 2.9 (2.9) –0.11 (-0.10)

https://doi.org/10.7554/eLife.75517
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Figure 3. Clamping capacitance in rat dentate gyrus granule cells (DGGCs). (A) Morphology of a DGGC (left) and response to a hyperpolarizing 
current injected at the soma, fit via a sum of exponential terms with a slow ‍τ0‍, v0 and a fast component ‍τ1‍, v1 (middle), which can be mapped to two 
resistively coupled RC-circuits (right) with a near (somatic) compartment ‍Cn‍ and ‍Rn‍, resistive coupling ‍Ra‍ and a far (dendritic) compartment ‍Cf ‍ and ‍Rf ‍. 
(B) Left: Voltage responses of a recorded (top) and a simulated morphologically-reconstructed (bottom) DGGC to a current pulse (exp: –27 pA, sim: 
–50 pA) clamped at 0.6- to 3-fold the cell’s near capacitance (black: original near capacitance, color: target near capacitances). Middle: Slow and fast 
components versus target capacitance. Right: Circuit parameters versus target capacitance. ◀, ▶: before and after clamping, blue square: clamped, 
dashed line: expected values. (C) Measured near ‍Cn‍ and far ‍Cf ‍ capacitances for 18 DGGCs (gray dotted: mean). Inset: histogram of near capacitances. 
(D) Changes of slow and fast components in all recorded cells versus relative targeted change of near capacitance (squares: mean, horizontal line: 
median, vertical line: std, shaded area: std of expected changes). (E) Relative changes of circuit parameters versus relative targeted change of near 
capacitance. Legend same as in D and individual cells shown with transparent blue lines.

https://doi.org/10.7554/eLife.75517
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Near-somatic capacitance governs action potential shape and firing 
frequency in dentate gyrus granule cells
In neurons such as the recorded DGGCs, where the axon directly emerges from the soma, the 
ability to clamp the near-somatic capacitance provides control over the major capacitive load for the 
action potential generating site in the axon initial segment. Consequently, the CapClamp, although 
acting locally, is expected to impact action potential (AP) dynamics and excitability of a morpho-
logically complex DGGC as demonstrated earlier for the simplified single-compartment neuron 
model (Figure 2). To illustrate how the CapClamp can be applied to characterize neuronal firing, we 
compared spiking responses and f-I curves across near capacitances ranging from 0.6 to 3 times the 
original value, corresponding to a range from 10 pF to 60 pF for the near and from 110 pF to 160 pF 
for the total (near and far) capacitance.

Clamping the near-somatic capacitance in DGGCs, we observed pronounced changes in the spiking 
response to depolarizing current step, clearly visible in the raw voltage traces (Figure 4A). The most 
apparent change was an altered AP shape (Figure 4B) – a continuous reduction of AP peak amplitude 
(from 60 ± 10 mV at 0.6 ‍Cn‍ to 22 ± 17 mV at 3 ‍Cn‍ for 9 DGGCs) and a simultaneous broadening of AP 
width (from 0.78 ± 0.15 ms at 0.6 ‍Cn‍ to 1.33 ± 0.48 ms at 3 ‍Cn‍) with increasing capacitance (Figure 4C 
and D). In addition, fast afterhyperpolarization (fAHP) was diminished and disappeared in the majority 
of cells after increasing capacitance (fAHP in 8/9 cells at 0.6 ‍Cn‍ and 2/9 at 3 ‍Cn‍). Importantly, the 
observed disappearance of fAHP cannot be explained by increased capacitive filtering alone, as an 
increased capacitance would reduce the fAHP amplitude, but not abolish it. Thus, our data suggests 
that the somatic capacitive load in DGGCs is able to influence the AP generating currents.

To illustrate the interplay of capacitance and the AP generating currents, we compared the observed 
spikes with hypothetical ones obtained by assuming unaltered currents with respect to those at the 
original capacitance (see "Protocol 2: Analysis of f-I curves and spike shapes" in Methods). Recorded 
and hypothetical spike shapes exhibited marked differences (Figure 4B). At 0.6-fold decreased capac-
itances, for example, the recorded AP amplitude was significantly smaller than the hypothetical one 
(rec.: 60 ± 10 mV, hyp.: 94 ± 19 mV, one-sided Wilcoxon signed-rank ‍Z ‍=0, p<0.001), presumably 
reflecting a reduction of the driving force for the sodium current when the AP peak approaches 
the reversal potential of sodium. Furthermore, at threefold increased capacitance, as noted above 
the recorded spikes exhibited no fAHP in most cells while the hypothetical ones still did (fAHP rec: 
2/9, hyp: 8/9) – potentially a result of a reduced activation of potassium channels due to lower AP 
amplitudes and/or earlier closing during the slowed AP repolarization. In contrast to driving force 
and gating dynamics, the channel kinetics, for example their activation curves, cannot be altered by 
capacitance. Correspondingly, the spike threshold, which reflects the voltage where sodium channels 
start to massively open, was not significantly correlated with near capacitance (Pearson correlation r = 
0.10, p = 0.42). Taken together, our analysis indicates that an altered somatic capacitance affects both 
sodium and potassium currents underlying APs in DGGCs.

Near-somatic capacitance also impacted DGGC excitability. With increasing capacitance, DGGCs 
became less excitable and firing frequencies significantly decreased (Figure 4D and F). From 0.6- 
to 3-fold of the original near capacitance, the decrease was modest for low firing rates close to 
threshold (from 9.7 ±3.2 Hz to 7.8 ±3.9 Hz, Wilcoxon signed-rank ‍Z ‍=45, p=0.002) and became more 
pronounced for high firing rates at the largest injected currents (from 23.3 ±6.4 Hz to 18,6 ±4.8 Hz, 
‍Z ‍=45, p=0.002). In terms of the firing rate-current (f-I) curves, the gain of the DGGCs significantly 
decreased with capacitance (from 1.82 ± 0.40 Hz/‍

√
pA‍ at 0.6 ‍Cn‍ to 1.48 ± 0.34 Hz/‍

√
pA‍ at 3 ‍Cn‍, ‍Z ‍=45, 

p=0.002), whereas the rheobase current remained relatively constant (from 185 ±82 pA at 0.6 ‍Cn‍ to 
184 ±77 pA at 3 ‍Cn‍, two-sided, ‍Z ‍=12, p=0.25). Across cells, the gain reduction obtained by linear 
regression was –0.10 (-0.13 to -0.06) Hz/‍

√
pA‍ per 10 pF near capacitance (median and interquartile 

range, significant slope in 8/9 cells, p < 0.1). Compared to the simulated neuron with a gain reduc-
tion of –0.22 Hz/‍

√
pA‍ per 10 pF over the same capacitance range as in the DGGC experiments (see 

Figure 2D), DGGCs thus exhibit a weaker gain dependence on near capacitance. A biological factor 
for this reduced effect in the DGGCs is their overall smaller gain – reflecting the different set of ionic 
conductances compared to the Wang-Buzsáki model designed to mimic a fast-spiking cortical inter-
neuron. Assuming a scaling of gain with 1/C (as predicted theoretically for neurons with a continuous 
f-I curve, see "Analytically expected effect of capacitance on the form of the f-I curve" in Methods), 
the gain reduction is expected to be -gain(‍Cc‍)/‍Cc‍, which is approximately twice as high for the model 

https://doi.org/10.7554/eLife.75517
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Figure 4. Repetitive spiking and action potential shapes in DGGCs clamped at different capacitances. (A) Spiking at decreased 0.6-fold (left), original 
(middle) and increased 3-fold (right) near capacitance ‍Cn‍. (B) Spike shapes (top) and capacitance clamp currents (bottom) for increasing capacitances 
from 0.6 to 3-fold of the original near capacitance (black: mean, light gray: single spikes, orange: expected spike shape for unaltered intrinsic currents 
as described in protocol-2-analysis-of-f-i-curves-and-spike-shapesMethods, dotted: spike shape at original capacitance). (C) Comparison of spike 
shape (left) and temporal structure (right) across tested near capacitances. (D) Measured f-I curve at 0.6-, 1- and 3-fold near capacitance with fit 

‍f = gain
√

I − Irheo ‍ (dashed lines). Extracted gain and rheobase for all tested near capacitances (dotted line: values at original capacitance 13.7 pF, solid 
line: linear regression with slope value reported if significantly different from zero p<0.1). (E) Effect of near capacitance changes on spike shape (left) and 
temporal structure (right) for all recorded DGGCs (solid: mean, shaded: std). To compare different cells, the capacitance is shown relative to the original 
near capacitance and spikes were compared at 1.2-fold of the cell’s rheobase. (F) Effect of near capacitance changes on firing frequency, low firing (blue) 
at 1.2 fold rheobase and high firing (red) at 2.0-fold rheobase (left), gain (middle) and rheobase (right) for all recorded DGGCs (solid: mean, shaded: std).

https://doi.org/10.7554/eLife.75517
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(‍≈ −
3.8 Hz√

pA
150pF = −0.25‍ Hz/‍

√
pA‍ per 10 pF) compared to the average DGGC (‍≈ −

1.8 Hz√
pA

127pF = −0.14‍ Hz/‍
√

pA‍ 
per 10 pF). A further technical factor for a weaker effect in the DGGCs is the local nature of the 
capacitance modification. Depending on the particular location and geometry of the axon initial 
segment, the influence of the clamped somatic compartment on AIS excitability can differ (Goethals 
and Brette, 2020). The altered excitability in the majority of DGGCs, however, demonstrates that 
clamping their near capacitance was sufficient to affect the capacitive load of their AIS. We conclude 
that a somatic capacitance clamp, altering perisomatic capacitance alone, is able to modify the input-
output relationship of a real neuron.

Applications of the CapClamp
The CapClamp lends itself to either test hypotheses on the impact of capacitance or to exploit the 
control over the membrane time constant in order to to alter neuronal dynamics in informative ways. 
In the following, we briefly illustrate applications of the CapClamp from these two fields, applying the 

Energe cs of spiking
C D E

F

Temporal integra on
A B

Figure 5. Applying the capacitance clamp to study neuronal signaling and physiology. Temporal integration: (A) 
Brief current pulses of 3ms length with interstimulus intervals of 5ms and 50ms (top) and voltage responses of an 
exemplary DGGC at a decreased (12 pF) and an increased (62 pF) near capacitance (voltage scale adapted to first 
response height). (B) Ratio of fifth and first response as a measure of temporal integration for a 0.6-fold decreased 
capacitance in comparison to a threefold increased one at 5ms and 50ms ISI. Energetics of spiking: (C) Spike shape 
(top), sodium, potassium and total ionic current (middle, shown with the sign they appear with in the current-
balance equation, see Equation 2) and deposited sodium ‍QNa+‍ as well as depolarizing ‍Q+‍ charge (bottom) in the 
Wang-Buzsáki neuron model for a 90 pF and a 210 pF capacitance. (D) Sodium ‍QNa+‍ and depolarizing ‍Q+‍ charge 
per action potential versus capacitance (dot and triangle: clamped from an original capacitance of 150 pF, gray: 
control). (E) Spike shape and depolarizing charge for a dentate gyrus granule cell clamped at decreased 10 pF and 
increased 52 pF near capacitance. (F) Deposited depolarizing charge versus relative change of near capacitance in 
recorded DGGCs (black: mean, gray: individual cells).

https://doi.org/10.7554/eLife.75517
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technique to experimentally explore effects of capacitance on temporal integration and energetic 
costs of spiking.

Temporal integration
A basic processing step in neuronal computation is temporal integration, the summation of time-
separated synaptic inputs (Krueppel et al., 2011; Athilingam et al., 2017). An upper limit for temporal 
integration, at least in the absence of dedicated active channels, is set by the membrane time constant 
‍τ = RC‍, which is directly proportional to the cell’s capacitance. Hence, increasing the capacitance of a 
cell should make it a better integrator: if two brief inputs arrive separated by less than the membrane 
time constant, the cell will summate the responses so that the membrane potential after the second 
is higher than after the first one. Indeed, when we compared the responses of DGGCs clamped at 
decreased and increased near-somatic capacitances to current pulse trains, increasing the capacitance 
allowed the cell to better “sum” 3ms pulses at an inter stimulus interval (ISI) of 5 ms as apparent by 
the stair-like voltage response with a higher ratio of last to first pulse response. (Figure 5A and B). At 
an ISI of 50ms, in contrast, neither capacitance was sufficient for temporal integration. The biological 
relevance of tailoring capacitance to temporal processing can, for example, be observed in auditory 
cells of the barn-owl, which have no dendrites to reduce capacitive and resistive load and hence 
shorten their time constant such that they can perform sub-millisecond coincidence detection (Ashida 
et al., 2007).

Energy consumption during spiking
Action potentials are energetically expensive, because the contributing sodium and potassium ions 
need to be pumped back using ATP (Laughlin et al., 1998; Hasenstaub et al., 2010). The minimal 
amount of ionic charge required for an action potential is dictated by the capacitance as ‍Q = C∆VAP‍, 
suggesting that a smaller capacitance is energetically favorable. In order to gauge how capacitance 
affects charge accumulation and energy consumption, we reexamined spike shapes for a fixed 
current input at different capacitances both in the simulated neuron and in the recorded DGGCs 
(Figure 5C and E). We found that despite a reduced amplitude at larger capacitances, these smaller 
spikes still required more depolarizing charge ‍Q+ = C∆VAP‍ (Figure 5D and F). In the model, we 
tested whether this depolarizing charge provided a reliable indication of the sodium charge ‍QNa+‍, 
which finally determines pump activity and energy consumption (Figure 5D). Due to the overlap of 
sodium and potassium currents, the sodium charge exceeded the net depolarizing charge, but as 
this overlap remained roughly constant, both charge measures increased by the same amount with 
capacitance. Taken together, in the tested model and the recorded DGGCs, energy consumption 
per action potential appears to be reduced at smaller capacitances. In line with this observation, 
it has been reported that perineuronal nets could decrease membrane capacitance of fast-spiking 
interneurons, thereby facilitating high-frequency firing, while keeping energetic costs at bay (Tewari 
et al., 2018).

Discussion
The dynamic clamp is a valuable tool in intracellular recordings to examine the diverse roles of ionic 
conductances in excitable cells (Sharp et al., 1993; Prinz et al., 2004; Wilders, 2006; Economo et al., 
2010). In this study, we introduced the capacitance clamp (CapClamp), an application of the dynamic 
clamp that allows electrophysiologists to mimic a modified membrane capacitance in a biological 
neuron. Via simulations of a biophysical neuron model, we confirmed that the CapClamp correctly 
captures how capacitance affects spike shapes and firing frequency. In recordings of rat dentate gyrus 
granule cells, we further verified that the CapClamp could accurately control the capacitance of the 
recorded somatic compartments. Moreover, we clamped this near-somatic capacitance of DGGCs 
during spiking and found that, as predicted by our simulations, capacitance can modify the fI curve 
and alter the course of the spike generating currents. CapClamp can serve as a new probe to neuronal 
signaling and physiology. In the following, we highlight requirements for the CapClamp and discuss 
how this experimental control over capacitance can benefit the study of cellular electrical behavior.

https://doi.org/10.7554/eLife.75517
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Precise, flexible and local control over capacitance in all excitable cells
To our knowledge, the CapClamp is the first tool to experimentally study capacitance changes in a 
precise and flexible manner. The CapClamp owes its precision and flexibility to the virtual nature of 
the altered capacitance. In contrast, methods to physically modify the capacitance are affected by 
various undesired side effects. Dendritic pinching, decoupling dendrites from the soma, for instance 
greatly reduces membrane area and thereby capacitance, but also removes all dendritic conduc-
tances (Bekkers and Häusser, 2007). Capacitance alterations have also been reported after appli-
cation of mefloquine, a drug binding to membrane phospholipids, but it also blocks gap junctions 
(Szoboszlay et al., 2016). A notable exception is the recent demonstration of engineered polymer 
synthesis in neuronal cell membranes, which alters their capacitance, but not their input resistance (Liu 
et al., 2020). In comparison, however, the CapClamp provides more accurate and dynamic control by 
allowing experimenters to test multiple selected capacitance values in a single cell (Figures 3 and 4), 
while being significantly simpler to implement.

The CapClamp can be applied in every excitable cell. Here, we focused on neurons, but the 
proposed clamping currents can also be used to study capacitance changes in other cells, including 
for example heart cells (Wilders, 2006; de Oliveira et al., 2015). In particular, no prior knowledge 
about the ionic or external currents in the clamped cell is required, so that the capacitance can be 
clamped during any experimental protocol (step current, ramp current, etc.) or during synaptic input. 
Furthermore, capacitance can be clamped in both electrotonically compact cells like oocytes (Ori 
et al., 2020) and non-compact cells like most neurons (Wybo et al., 2019), although in the latter case 
the CapClamp is limited locally to the capacitance of the recorded compartment (Figure 3). Conse-
quently, the effects of clamping capacitance depend on the cell’s morphology and the recording 
site. The soma, for example, represents the major capacitive load for spike generation in vertebrate 
neurons, where the axon predominantly emerges close to the soma (Figure 4), but it is expected to 
exert less influence in neurons, where the axon comes out of the dendritic tree, a common feature 
of invertebrate neurons (Hesse and Schreiber, 2015), but also seen in mammalian neurons (Martina 
et al., 2000; Thome et al., 2014).

The major prerequisite to apply the CapClamp is a reliable capacitance measurement of the 
clamped compartment, which can be challenging, especially for electrotonically complex cells 
(Golowasch et al., 2009; White and Hooper, 2013). An imprecise capacitance estimate leads to erro-
neous clamping currents, which increase high-frequency noise for small errors and might even induce 
instabilities for larger errors. The measurement method presented for the recorded DGGCs, that is 
mapping the charging response to a two compartment circuit, could in principle be extended to cells 
with a larger number of compartments e.g. pyramidal cells (Edwards and Mulloney, 1984; Wybo 
et  al., 2021). Yet, accurate multi-exponential fitting is demanding and the assumption of uniform 
membrane properties underlying the mapping is a simplification, shown to be violated in some cells, 
such as GABAergic interneurons (Nörenberg et al., 2010). As an alternative, measurement protocols 
could be exploited that inherently yield local capacitance estimates, including fast voltage ramps 
(Golowasch et al., 2009) or sampling of voltage responses to fast fluctuating currents (Badel et al., 
2008). Reliable capacitance measurements can further be used to compare measured and target 
capacitance of the clamped cell, which can serve as a first simple test to ensure the quality of the 
CapClamp.

A CapClamp on every rig
As a novel application of the established dynamic clamp technique, the CapClamp is an accessible 
and low-cost extension of a standard electrophysiology stack (Prinz et al., 2004; Economo et al., 
2010). For an existing dynamic clamp setup, the sole requirement is to implement the calculation of 
the clamping currents (see Equation 5). Otherwise, multiple open source frameworks exist that only 
require a dedicated computer with a data acquisition card to enable the dynamic clamp in a conven-
tional electrophysiology setup (Dorval et al., 2001; Benda et al., 2007; Kemenes et al., 2011; Linaro 
et al., 2015; Patel et al., 2017; Desai et al., 2017; Amaducci et al., 2019). To facilitate the usage of 
the technique, we provide code for the CapClamp scheme in the RELACS and RTXI frameworks (see 
"Data and software availability" in Appendix 1).

In CapClamp recordings, as in all dynamic clamp applications, a high sampling frequency and 
accurate voltage monitoring are key (Bettencourt et al., 2008). Whether a sampling frequency is 

https://doi.org/10.7554/eLife.75517
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sufficiently high can be tested by assuring that the observed voltage dynamics for example the spike 
amplitudes are invariant when the sampling frequency is decreased from the maximal possible value 
(Robinson, 1994). For the simulated fast-spiking interneuron, we found a satisfactory clamp at a 
frequency of 20 kHz, which we expect to also be sufficient for most excitatory neurons, because they 
tend to have slower voltage dynamics (Hasenstaub et al., 2010). In our single electrode recordings, 
we focused on careful electrode compensation to avoid electrode artifacts in the recorded voltages 
which would lead to incorrectly estimated membrane currents and eventually instabilities. To improve 
voltage monitoring, future applications could either apply active electrode compensation (Brette 
et al., 2008; Bal and Destexhe, 2009) or resort to two electrode recordings, where current injection 
and voltage recordings are separated.

Modifying capacitance as a probe for cellular electrical dynamics
Via the CapClamp, experimenters can ask a question that was previously accessible only in theoretical 
work: What if capacitance was different? In contrast to the theoretical approach, the answers to this 
question do not have to rely on models of channel dynamics or other membrane properties, because 
the latter are provided by the biological cell itself (Sharp et al., 1993). Modifying capacitance with the 
CapClamp can serve either to investigate changes in this biophysical parameter or, more broadly, to 
alter the membrane time constant of a cell as a way to characterize its electrical dynamics.

Understanding the role of capacitance
The virtual capacitance changes induced by the CapClamp could serve to address two crucial ques-
tions about actual membrane biophysics: why capacitance appears to be biologically mostly constant 
(Gentet et al., 2000) and how exceptions to this rule can facilitate or deter neuronal function (Amzica 
and Neckelmann, 1999; Hartline and Colman, 2007; Eyal et al., 2016; Tewari et al., 2018). Capac-
itance is for example rarely tested for optimality - a common question in ion channel kinetics, which 
appear optimized for function and energy expenditure (Hasenstaub et al., 2010; Sengupta et al., 
2010). Regarding energy consumption, our CapClamp experiments in DGGCs indicate that action 
potentials become energetically cheaper at lower capacitances (Figure  5E and F). Interestingly, 
reports of exceptional capacitance values mostly find reductions e.g. for myelinated axons (‍Cm ≈‍ 0.05 
uF/cm2 for a 10-fold wrapped myelin sheath, see Castelfranco and Hartline, 2015) or human pyra-
midal cells (‍Cm ≈‍ 0.5 uF/cm2, see Eyal et al., 2016) suggesting that indeed the metabolic cost of AP 
generation could have been a contributing factor to capacitance adaptations. In addition, the recent 
hypothesis that perineuronal nets can reduce capacitance of interneurons in a similar way as myelin-
ation of axons suggests that capacitance adaptation could be more widespread in the brain than 
often assumed (Tewari et al., 2018). Moreover, understanding the role of capacitance can contribute 
to an improved understanding of infrared (Shapiro et al., 2017; Carvalho-de-Souza et al., 2018) and 
ultrasonic (Krasovitski et al., 2011; Plaksin et al., 2014) stimulation of neural activity, whose effects 
are assumed to rely on rapid alteration of the capacitance.

Another application of the CapClamp might be to investigate changes of excitability associated 
with neuronal growth. During development, cell size can increase considerably, necessarily accompa-
nied by a larger membrane capacitance (McComb et al., 2003). To maintain neural function, neurons 
need to compensate for this altered capacitance via a corresponding regulation of ionic conductances 
– a homeostatic process that is hypothesized to involve activity-dependent channel expression (Gorur-
Shandilya et al., 2020). To disentangle the contributions of capacitance in this concurrent alteration 
with ionic conductances, the CapClamp could be combined with the ‘classic’ dynamic clamp, for 
example parallel changes of both capacitance and a leak conductance.

Altering the membrane time constant
A key contribution of the CapClamp is the isolated experimental control of the membrane time 
constant via changes in capacitance while leaving the ion channel conductances unaffected. In neuron 
models, monitoring response properties when changing the membrane time constant has been used 
to characterize a cell’s dynamical repertoire (Kirst et al., 2015; Hesse et al., 2017; Franci et al., 
2018). As an experimental analogue, the CapClamp introduces this option for the characterization of 
biological neurons.

https://doi.org/10.7554/eLife.75517
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To optimally support neural processing, nerve cells exhibit qualitatively different response prop-
erties, which in some cases can be flexibly adapted to context. For example, neurons with class 2 
excitability (marked by a jump of the f-I curve to non-zero frequencies when exceeding threshold) can 
be switched to class 1 excitability (marked by a smooth transition with arbitrarily low frequencies) via 
neuromodulation (Stiefel et al., 2008; Stiefel et al., 2009), transforming them from resonators to inte-
grators. These qualitative differences in response and processing properties can be characterized by 
bifurcation analysis (Izhikevich, 2006; Prescott et al., 2008a; Kirst et al., 2015; Hesse et al., 2017). 
Capacitance as a canonical parameter can induce transitions between excitability classes and the 
underlying bifurcation types, including the switch of neuronal dynamics from class 1 excitability (with 
regularly spiking neurons) to dynamics that include bistable firing with stochastic switches between 
spiking and rest (Hesse et al., 2017). Because computational properties can be expected to change 
with such qualitative switches in dynamics, it may be of interest to determine how close the dynamics 
of a given cell is to a transition. An estimate of this proximity to switches that can be obtained via the 
CapClamp by monitoring firing properties and qualitative changes thereof as a function of membrane 
capacitance. Dynamics in the vicinity of capacitance-induced switches are likely to be also susceptible 
to switches induced by other parameters with similar temporal effects, such changes in temperature 
(Hesse et al., 2017) or ionic concentrations (Contreras et al., 2020). As such switches can involve 
regimes of exceptionally fast dynamics, for such measurements extra care should be given to ensure 
that the temporal resolution of the dynamic clamp is sufficiently high.

In addition to such qualitative changes of dynamics, the broad impact of the time constant (and 
therefore the capacitance) on firing frequency and spike shape could be applied for more quantita-
tive studies of neuronal activity. On the one hand, observations of neural activity at different capac-
itances could for example be used to further constrain and improve fitting of conductance-based 
neuron models (Podlaski et al., 2017; Gouwens et al., 2018; Franci et al., 2018). On the other 
hand, it could serve to examine activity-dependent physiological processes such as ion concentration 
dynamics (Contreras et al., 2020) or calcium controlled channel homeostasis (O’Leary et al., 2014; 
Temporal et al., 2014; Santin and Schulz, 2019).

Conclusion
Taken together, the presented CapClamp enables an accurate and flexible control over capacitance 
in biological neurons, a basic determinant of cellular excitability, that so far has been inaccessible in 
experiment. We expect that the CapClamp will, therefore, broaden and enrich the electrophysiolog-
ical study of neurons and other excitable cells. With expanding techniques to sense and manipulate 
neural activity, the combination of modeling and targeted closed-loop feedback that underlies the 
CapClamp (and more generally the dynamic clamp Chamorro et al., 2012) will further unlock exper-
imental control over other previously inaccessible aspects of single neuron (Ullah and Schiff, 2009; 
Rivera et al., 2015; Harrigan et al., 2018) and network dynamics (Newman et al., 2015; Hocker 
and Park, 2019).

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Rattus norvegicus, male and 
female) Wistar Rat (wild type)

Wistar Institute of 
Philadelphia, Pennsylvania

Peptide, recombinant protein
Avidin conjugated 
AlexaFluor-647 Thermo Fisher Scientific RRID:AB_2336066

Software, algorithm
Fiji distribution of ImageJ 
software imagej.net RRID:SCR_003070

Software, algorithm Neutube neutracing.com https://doi.org/10.1523/ENEURO.0049-14.2014

Software, algorithm RELACS

relacs.  
 
sourceforge.net RRID:SCR_017280

https://doi.org/10.7554/eLife.75517
https://identifiers.org/RRID/RRID:AB_2336066
https://imagej.net/software/fiji/
https://identifiers.org/RRID/RRID:SCR_003070
https://www.neutracing.com/
https://doi.org/10.1523/ENEURO.0049-14.2014
http://www.relacs.sourceforge.net
http://www.relacs.sourceforge.net
http://www.relacs.sourceforge.net
https://identifiers.org/RRID/RRID:SCR_017280
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm RELACS CapClamp This paper https://doi.org/10.5281/zenodo.6322768

Capacitance clamp code 
for RELACS, see "Data and 
software availability" in 
Appendix 1

Software, algorithm RTXI rtxi.org https://doi.org/10.1371/journal.pcbi.1005430

Software, algorithm RTXI CapClamp This paper https://doi.org/10.5281/zenodo.5553946

Capacitance clamp code for 
RTXI, see "Data and software 
availability" in Appendix 1

Software, algorithm Brian 2

brian-team/  
 
brian2 https://doi.org/10.7554/eLife.47314

 Continued

Derivation of the capclamp current
In order to derive a dynamic clamp feedback scheme for the CapClamp, we compare the actual 
membrane potential dynamics at the original capacitance ‍Cc‍ with the target dynamics at the chosen 
capacitance ‍Ct‍. The actual dynamics of the cell, which for the moment is assumed to be isopotential, 
is given by the current-balance equation of a single compartment

	﻿‍
dV
dt = I(V,t)+Idyn(t)

Cc
,‍� (2)

with capacitance ‍Cc‍, membrane currents ‍I(V, t)‍ (comprising all ionic and synaptic currents, as well 
as external stimuli) and the dynamic clamp current ‍Idyn(t)‍. Note that ionic and synaptic contributions 
to the membrane currents ‍I(V, t)‍ are voltage-dependent, both with respect to driving force and gating 
dynamics, so that a voltage trajectory governed by a different capacitance also leads to a modified 
shape of the membrane currents. In the target dynamics, the dynamic clamp current is absent and the 
capacitance is modified to the desired value

	﻿‍
dV
dt = I(V,t)

Ct
.‍� (3)

Both membrane potential trajectories would coincide, if we chose a dynamic clamp current such 
that the right-hand sides of actual (Equation 2) and target dynamics (Equation 3) become identical,

	﻿‍ Idyn(t) = Cc−Ct
Ct

I(V, t).‍�

Generally, an exact model for the membrane currents ‍I(V, t)‍ will not be available, as it would require 
knowledge about all active conductances and incoming synaptic inputs. Instead, the membrane 
current can be estimated from the stream of incoming voltage data using the discrete version of 
Equation 2

	﻿‍ I(Vi−1, ti−1) ≈ Cc
Vi−Vi−1

∆t − Idyn,i−1‍� (4)

where ‍∆t‍ is the sampling interval. A prerequisite is the measurement of the cell capacitance ‍Cc‍. 
Furthermore, for the estimation to be accurate, the samplin ginterval needs to be shorter than the 
fastest time scales of changes in the membrane currents for example sodium gating time constants. 
With this estimated membrane current, the complete expression for the CapClampcurrent reads

	﻿‍
Idyn,i = Cc−Ct

Ct

(
Cc

Vi−Vi−1
∆t − Idyn,i−1

)
.
‍� (5)

The above derivation assumes that the cell is isopotential. In the case of an electrotonically non-
compact cell, the steps are identical, but the cell capacitance ‍Cc‍ has to be replaced by the capacitance 
of the compartment where the recording electrode is located. Consequently, in a non-isopotential 
neuron, the mimicked capacitance modification is restricted to the compartment at the tip of the 

https://doi.org/10.7554/eLife.75517
https://doi.org/10.5281/zenodo.6322768
https://rtxi.org
https://doi.org/10.1371/journal.pcbi.1005430
https://doi.org/10.5281/zenodo.5553946
https://github.com/brian-team/brian2
https://github.com/brian-team/brian2
https://github.com/brian-team/brian2
https://doi.org/10.7554/eLife.47314
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recording electrode - a constraint known as the space clamp that is shared by all clamping techniques 
(Prinz et al., 2004; Bar-Yehuda and Korngreen, 2008).

The indexing above assumes a voltage sampling ‍Vi = V(i∆t)‍ and a quasi-immediate current injection 

‍Idyn,i = Idyn(i∆t)‍ . However, sampling can take a non-negligible amount of time, so that depending on 
the sampling system the currently available voltage actually represents the voltage from the previous 
cycle ‍Vi = V((i − 1)∆t)‍ . In this case, for a correct estimation of the membrane currents, the dynamic 

clamp current index has to be shifted correspondingly to 
‍
Idyn,i = Cc−Ct

Ct

(
Cc

Vi−Vi−1
∆t − Idyn,i−2

)
‍
.

Capacitance measurements
To apply the CapClamp, a prerequisite is to measure the capacitance of the recorded local compart-
ment. Here, we use the current clamp protocol, which estimates the capacitance from the voltage 
response to a current step with amplitude ‍Iext‍,

	﻿‍
V(t) =

∑
i vi

(
1 − e−

t
τi

)
= Iext

∑
i Ri

(
1 − e−

t
τi

)
,
‍� (6)

where an ordering in terms of these time scales is assumed i.e. ‍τ0 > τ1 > . . .‍. Depending on the 
morphology, this sum can have a large number of components (Major et al., 1993), but in practice 
often only two or three components can be reliably extracted. As described in Golowasch et al., 
2009, the slowest component ‍τ0‍ is the membrane time constant and allows to infer the total capaci-
tance of a neuron by ‍C = τ0

R0
= τ0

v0
Iext‍. In the case of an isopotential cell, the membrane time constant 

is the only component in the charging curve and the total capacitance can be used for the CapClamp.

Measurement of near capacitance
For the case of two components ‍τ0, R0‍ and ‍τ1, R1‍ in the charging curve (Equation 6), an equivalent 
two compartment circuit can be identified comprising a near compartment with capacitance ‍Cn‍ and 
resistance ‍Rn‍ connected via a coupling resistance ‍Ra‍ to a far compartment with capacitance ‍Cf ‍ and 
resistance ‍Rf ‍ (Golowasch et al., 2009). With the additional assumption of a uniform membrane time 
constant ‍τm = RnCn = RfCf ‍, the fitted two components can be mapped to the values of these five 
circuit parameters, which in particular provides the near capacitance ‍Cn‍ required for the CapClamp

	﻿‍
Cn = τ0τ1

τ1R0 + τ0R1
.
‍�

(7)

When the capacitance is subsequently clamped to a k-fold different value, ‍Ct = kCn‍, the uniformity 
assumption has to be correspondingly adjusted to ‍RnCn = kRfCf ‍ (see "Mapping between a charging 
curve with two components and a two compartment circuit" in Appendix 1).

CapClamp in dentate gyrus granule cells
Electrophysiology
Acute brain slices were produced as described earlier (Booker et al., 2014). Briefly, rats were anes-
thetized (3% Isoflurane, Abbott, Wiesbaden, Germany) and then decapitated. Brains were removed 
quickly and transferred to carbogenated (95% O2 / 5% CO2) ice-cold sucrose-ACSF containing (in ‍mM‍): 
87 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 25 glucose, 75 sucrose, 7 MgCl2, 0.5 CaCl2, 1 Na-pyru-
vate, 1 ascorbic acid. Horizontal brain slices of 300 µm thickness were cut using a Vibratome (VT1200 
S, Leica, Wetzlar, Germany). Hippocampal tissue slices, were collected and placed in a submerged 
holding chamber filled with carbogenated sucrose ACSF at 32-34 °C for 30 min and then at room 
temperature for 15 min before recording. Experiments were alternated between left and right hemi-
sphere slices to prevent bias due to slice condition.

For recording, slices were transferred to a submerged chamber and superfused with pre-warmed, 
carbogenated ACSF containing (in ‍mM‍): 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 25 glucose, 
1 MgCl2, 2 CaCl2, 1 Na-pyruvate, 1 ascorbic acid. The bath temperature was set to 32-34 °C with 
a perfusion rate of 12-13 ml/min. Slices were visualized using an upright microscope (AxioScope; 
Zeiss) equipped with infrared differential inference contrast optics and a digital camera (Retiga EX 
QImaging CCD, Teledyne Photometrics, AZ, USA). Granule cells from the DG were chosen based on 
their anatomical location within the cell body layer as well as their morphological appearance.

https://doi.org/10.7554/eLife.75517
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Whole-cell patch-clamp electrodes were 
produced from borosilicate glass capillaries 
(outer diameter , inner diameter 1 mm, Hilgen-
berg, Germany) using a horizontal puller (P-97, 
Sutter Instruments, CA, USA) and filled with 
an intracellular solution consisting of (in ‍mM‍): 
K-gluconate 130, KCl 10, HEPES 10, EGTA 10, 
MgCl2 2, Na2ATP 2, Na2GTP 0.3, Na2Creatine 1 
and 0.1% biocytin (adjusted to pH 7.3 and 315 
mOsm), giving a series resistance of 2.5-4 MΩ. 
All recordings were performed with a SEC LX10 
amplifier (npi electronic, Germany), filtered 
online at 20 kHz with the built-in Bessel filter, and 
digitized at 20 kHz (National Instruments, UK). 
Following breakthrough into whole-cell configu-
ration, we adjusted the bridge and capacitance 
compensation before switching to the dynamic 
clamp mode for recording. Cells were excluded 
if resting membrane potential was more depolar-
ized than -45 mV. The liquid junction potential was 
not corrected.

Neuronal visualization and 
immunohistochemistry
Following recording, selected cells were immer-
sion fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB, pH 7.4) at 4 °C for 24–48 hr, 
slices were then transferred to fresh PB. Prior to immunohistochemical processing, slices were rinsed 
in PB, followed by PB buffered saline (PBS, 0.9% NaCl). Slices were then rinsed in PBS and incubated 
in a fluorescent-conjugated streptavidin (Alexa Fluor-647, 1:1000, Invitrogen, UK) in PBS solution 
containing 3% NGS, 0.1% TritonX-100 and 0.05% NaN3 for 24 hr at 4 °C. Slices were rinsed in PBS 
and then desalted in PB before being mounted (Fluoromount-G, Southern Biotech) on 300-µm-thick 
metal spacers, cover-slipped, sealed, and stored at 4 °C prior to imaging.

Confocal imaging and reconstruction
DGGCs were imaged on a laser scanning confocal microscope (FV1000, Olympus, Japan). First, a 
low magnification (4 x, Olympus, Japan) overview image was taken to confirm the cellular type and 
localization to the DG, then high resolution z-stacks were obtained with a 30x silicone oil immersion 
objective (N.A. 1.05, UPlanSApo, Olympus) over the whole extent of the cell (1 µm axial steps). Image 
stacks were stitched offline using the FIJI software package (https://imagej.net/software/fiji/imagej.​
net), then the cells were reconstructed and volume filled using Neutube (https://www.neutracing.​
com/neutracing.com) (Feng et al., 2015).

Dynamic clamp setup
Data acquisition and dynamic clamp loop were controlled by RELACS, V0.9.8, RRID:SCR_017280 
using a dedicated computer with a Linux-based real time operating system (https://www.rtai.org/rtai.​
org). The sampling frequency was set to 20 kHz and the recordings were performed in discontinuous 
current clamp with a duty cycle of 16.5 µs. We implemented a CapClamp procedure for RELACS that 
allows the user to online specify the measured capacitance ‍Cc‍ and the desired target capacitance ‍Ct‍ 
(for documentation and installation instruction, see "Data and software availability" in Appendix 1).

Online measurement of capacitance
For the online measurement of the local capacitance, DGGCs were subjected to twenty hyperpolar-
izing pulses of ‍200 ms‍ length with ‍400 ms‍ pauses and an amplitude chosen to produce a response of 
‍−5 mV‍ in order to minimize interference from active ionic currents. Responses were averaged and the 
resulting mean trajectory was fit with a sum of exponentials using the Levenberg-Marquardt method 

Table 2. Multi-exponential fit and corresponding 
circuit parameters in the recorded dentate gyrus 
granule cells (N = 18) and a multicompartment 
model based on a reconstructed DGGC 
morphology (see "Multicompartment model of a 
dentate gyrus granule cell" in Methods).

DGGCs (mean ± std) Multicomp. model

Exp. fit

‍τ0‍ 15.1±4.8 ms 15.1 ms

R0 127.1±44.6 MΩ 119.2 MΩ

‍τ1‍ 0.77±0.24 ms 0.18 ms

R1 34.5±14.7 MΩ 12.3 MΩ

Circuit

‍Cn‍ 21.0±9.4 pF 13.0 pF

‍Rn‍ 854.2±394.0 MΩ 1158.0 MΩ

‍Ra‍ 52.5±19.8 MΩ 15.5 MΩ

‍Cf ‍ 105.8±33.0 pF 113.7 pF

‍Rf ‍ 155.5±59.9 MΩ 132.8 MΩ

https://doi.org/10.7554/eLife.75517
https://imagej.net/software/fiji/imagej.net
https://imagej.net/software/fiji/imagej.net
https://www.neutracing.com/neutracing.com
https://www.neutracing.com/neutracing.com
https://identifiers.org/RRID/RRID:SCR_017280
https://www.rtai.org/rtai.org
https://www.rtai.org/rtai.org
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from the python library scipy (Virtanen et al., 2020). Fits were performed with one, two and three 
components and were compared via the F-statistic (Bardsley et al., 1986). In all recorded DGGCs, 
the two component fit was significantly better than the one exponential fit (‍p < 0.05‍, 18/18), whereas 
no cell exhibited a significant third component (‍p < 0.05‍, 0/18). Finally, the extracted two components 
were mapped to a two compartment circuit as explained above and the near capacitance was then 
used in the subsequent CapClamp (Table 2).

An offline reexamination revealed that in several recorded cells the above fitting procedure 
yielded inaccurate estimates of the exponential components, e.g. very short fast components due 
to an artefactual voltage dip before pulse onset. To circumvent these problems, improved offline 
fits were performed for the artifact-free recharging at the pulse end ( see "Adapted fitting proce-
dure of dentate gyrus charging curves" in Appendix 1). In 8/18  cells, the offline and the original 
online estimate of the near capacitance differed by less than 20%, but overall the offline measurement 
yielded higher capacitance values than originally used for the CapClamp (offline: ‍21.0 ± 9.4 pF/‍, online: 

‍14.9 ± 4.8 pF/‍). In contrast to the online measurement, the offline procedure reported a better fit with 
three components for a subset of cells (‍p < 0.05‍, 7/18), but for the analysis presented here the result 
of the two component fit is used in all cells.

Protocol 1: Verification of altered capacitance
After online measurement of the capacitance, each DGGC was clamped at a range of capacitances 
from 60% to 300% of the original near capacitance. For each clamped capacitance, the above offline 
capacitance measurement protocol was repeated to see how the CapClamp altered the slow and 
fast components. These time scale and amplitude changes were then mapped to the corresponding 
two compartment circuit parameters to compare them to the target capacitance (see Measurement 
of near capacitance). Due to the difference between online and offline estimate of the original near 
capacitance, we corrected the original target capacitance to ‍Ccorr

t = Coff
c + ∆Ct‍, which preserves the 

targeted capacitance change ‍∆Ct = Ct − Con
c ‍. Equally, the clamping factors in the mapping were 

updated to 
‍
k = Ccorr

t
Coff

c ‍
.

Protocol 2: Analysis of f-I curves and spike shapes
In a subset of cells, after measuring near capacitance, an fI curve was obtained for the original capac-
itance and for target capacitances in the above range. Current pulses were 1 s long and repeated 
three times, at amplitudes ranging from 90% to 200% of an estimated rheobase. This rheobase was 
estimated by the first occurrence of spiking in response to a ramp (length: 5 s, height: 250 pA). For a 
quantitative comparison, the resulting fI curves were fit by a square-root function

	﻿‍ f(I) = Θ(I − Irheo)gain
√

I − Irheo ‍� (8)

which captured their type 1 firing with a continuous frequency-current relationship (Izhikevich, 
2006, p. 168). Cells with more than 30% varying input resistance within the protocol and/or a non-
monotonically increasing fI curves were excluded from the analysis.

Spikes were detected as a minimum 10 mV elevation over the average depolarization during the 
pulse. For the mean action potential (AP) shape, varying spike forms from the initial (< 300 ms) part 
of the pulse were discarded. The extracted AP features were peak amplitude, threshold voltage and 
threshold time to peak (voltage derivative crossing 10 mV/ms), height (difference between peak and 
threshold), temporal width at half of the height and fast afterhyperpolarization (fAHP; a voltage dip of 
–0.5 mV or larger within 10 ms after the spike). For threshold and fAHP detection, the spike shape was 
filtered with a digital 4th order Butterworth filter with critical frequencies 3.3 kHz, respectively 1 kHz.

To detect, whether changes in capacitance affect the action potential generating currents, we 
compared the recorded spikes with hypothetical ones obtained by assuming unaltered currents with 
respect to the original near capacitance. For a target capacitance ‍Ct‍, such a hypothetical spike would 
be a scaled version of the original spike,

	﻿‍ Vhypo(t) = Vc(t0) + Cc
Ct

(
Vc(t) − Vc(t0)

)
,‍�

https://doi.org/10.7554/eLife.75517
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where ‍Vc(t)‍ is the spike form at the original cell capacitance ‍Cc‍ and the initial time t0 was chosen 
to be ‍tspike − 3ms‍ short before onset of the spike generating currents. Changes in the measured spike 
shape compared to this hypothetical shape signal a change of the underlying currents.

Simulations of the CapClamp
Simulations of neuron models coupled to the CapClamp were implemented using the neuron simu-
lator Brian2 (Stimberg et  al., 2019) and the CapClamp was realized using the Brian2 provided 
NetworkOperation that updated the clamp current every sampling interval using Equation 5 with 
zero delay between voltage sampling and current injection (for links to the available code, see "Data 
and software availability" in Appendix 1).

Biophysical neuron model
In order to test the CapClamp in the presence of active ionic conductances, a Wang-Buzsáki (WB) 
neuron, a single compartment model of hippocampal interneurons, was used (Wang and Buzsáki, 
1996). Gating dynamics and peak conductances of the transient sodium current and the delayed 
rectifier potassium current were modeled as described earlier (Hesse et  al., 2017, Appendix A). 
The specific membrane capacitance was chosen as ‍Cm = 0.75 µF

cm2 ‍ and the membrane area was set to 

‍A = 20000µm2
‍, so that the original cell capacitance was 150 pF. When the capacitance is varied, the 

WB neuron undergoes a well-characterized series of bifurcations; in particular it exhibits a saddle-
node loop (SNL) bifurcation at ‍Cm = 1.47 µF

cm2 ‍ accompanied by an abrupt doubling of the firing rate 
(Hesse et al., 2017). For the demonstration of the CapClamp here, we decided to restrict the tested 
capacitances to the regime below this critical value, but we confirmed via additional simulations that 
the CapClamp continues to work beyond the bifurcation (data not shown).

Simulations were performed with the second order Runge-Kutta method, a time step of 1 ‍µs‍ and 
dynamic clamp loop frequencies up to 100 kHz. Analysis of spike shapes and f-I curves was performed 
in the same way as for the recorded cells.

Analytically expected effect of capacitance on the form of the f-I curve
How the form of the f-I curve depends on capacitance can be analytically calculated for a single-
compartment conductance-based neuron model undergoing a saddle-node on a limit cycle bifurca-
tion at spiking onset like the WB model considered here (Izhikevich, 2006), pp. 162–168; (Schleimer 
and Schreiber, 2018). In this case, the time between two spikes ‍Tisi‍ is dominated by the slow traversal 
T2 of the saddle node, which close to threshold is multiple times longer than the brief duration T1 of 
the spike and can be derived by considering solely local dynamics

	﻿‍
Tisi = T1 + T2 ≈ T2 = π√

ac
(

I−Irheo
)
‍�

where ‍a‍ and ‍c‍ parametrize the normal form of the dynamics around the saddle node and ‍Irheo = Isn‍ 
is the current value where the saddle node bifurcation occurs. Inverting the inter spike interval to get 
the frequency then gives the square root form of the f-I curve (see Equation 8). Under the assumption 
of fast gating kinetics, the ‍gain =

√
ac
π ‍ is expected to be proportional to the inverse of the capaci-

tance ‍
1
C‍, because the relevant time scale for the local slow dynamics around the saddle node is the 

membrane time constant implying that the traversal duration scales as ‍T2 ∝ τ ∝ C‍. The rheobase 
current in contrast is expected to remain constant, because equilibrium points are independent of the 
time scales of the dynamics. Formally calculating the normal form parameters ‍a‍ and ‍c‍ confirms these 
expectations (see "Formal derivation of f-I curve gain and rheobase dependence oncapacitance" in 
Appendix 1).

The ‍
1
C‍ dependence of the gain allows to estimate an expected gain reduction for small capacitance 

changes around the original capacitance ‍Cc‍ by Taylor expansion

	﻿‍ ∆gain = gain(Cc) − gain(Cc + ∆C) ≈ − gain(Cc)
Cc

∆C‍�

which we compare for both simulated neuron and DGGCs to the observed gain reduction.

https://doi.org/10.7554/eLife.75517
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Multicompartment model of a dentate gyrus granule cell
For a controlled test of the CapClamp in an electrotonically non-compact cell, a morphologically 
reconstruction of a recorded DGGC was used as the basis for a multicompartment simulation. Soma 
and the two dendritic trees had a total area of 14,126 ‍µm2

‍. The axon was removed for the simula-
tion. Membrane properties were assumed to be uniform and chosen such that they reproduced the 
average values of the total capacitance and the membrane time constant observed in the experiments: 

‍Cm = Cn+Cf
A ≈ 0.9 µF

cm2 ‍ and ‍Rm = τ0
Cm

≈ 16800Ωcm2
‍. The axial resistivity was chosen as ‍Raxial = 300Ωcm‍. 

Simulations were performed with exponential Euler integration, a time step of 10 ‍µs‍ and a dynamic 
clamp sampling frequency of 20 kHz. Capacitance measurement and clamp procedure were the same 
as in the recorded DGGCs (Table 2).
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Appendix 1
Impedance of a capacitance-clamped RC circuit
The impedance of a cell captures its linear response to the whole range of input frequencies (see 
Figure 1—figure supplement 1b). In the following, we derive the impedance of a passive membrane, 
an RC circuit, with capacitance ‍Cc‍ coupled to the CapClamp and compare it to the impedance of an 
RC circuit with the target capacitance ‍Ct‍.

Analysis of the dynamic clamp via the Z-transform
In general, the dynamic clamp technique forms a digital filter, mapping the incoming sampled 
voltages to injected currents. For a sampling interval ‍∆t‍, a linear mapping such as the CapClamp 
has the form

	﻿‍ Idyn(i∆t) =
∑N

j=0 νjV
(
(i − j)∆t

)
+
∑M

k=1 γkIdyn
(
(i − k)∆t

)
,‍� (9)

where ‍N ‍ and ‍M ‍ determine history of voltage and current values, respectively, taken into account. 
For the CapClamp, the coefficients depend on cell capacitance ‍Cc‍, target capacitance ‍Ct‍ and the 
sampling interval (see Equation 5),

	﻿‍

ν0 = CC − Ct
Ct

CC
∆t

,

ν1 = −ν0,

γ1 = −CC − Ct
Ct

.
‍�

(10)

This linear mapping can be represented and analyzed using the Z-transform (Dorf and Bishop, 
2010, Ch. 13),

	﻿‍ Î(z) = Fdyn(z)V̂(z),‍� (11)

	﻿‍
Fdyn(z) =

∑N
j=0 νjz−j

1−
∑M

k=1 γkz−k .
‍�

(12)

where the transfer function follows from the properties of the Z-transform: linearity ‍λXi
Z−→ λX̂(z)‍ 

and delay transformation ‍Xi−1
Z−→ z−1X̂(z)‍ (Dorf and Bishop, 2010, Table 13.2),

If the cell also forms a linear system, like the RC circuit, the transfer function of the coupled 
system Appendix 1—figure 1 is given by Dorf and Bishop, 2010, Table 2.6.

	﻿‍ Hcell+dyn(z) = Hcell(z)
1−Hcell(z)Fdyn(z) ,‍� (13)

where ‍Hcell(z)‍ is the Z-transform of the membrane filter, e.g. ‍Hcell(z) = HRC(z)‍.
The transfer function of the coupled system ‍Hcell+dyn(z)‍ can then be compared with the one of the 

target system ‍Htarget(z)‍ (Appendix 1—figure 1). Additionally, the frequency-dependent impedance 
can be retrieved from the transfer function by

	﻿‍ Zcell+dyn(f) = Hcell+dyn(ei2πf∆t).‍� (14)

https://doi.org/10.7554/eLife.75517
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A B

C
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Appendix 1—figure 1. Analysis of the capacitance clamp as a discrete feedback filter. (A) Block diagram of 
the coupled system: RC circuit with original capacitance Cc and capacitance clamp feedback current. (B) Block 
diagram of the target system: RC circuit with target capacitance Ct. (C) Pole-zero plot of the transfer functions at a 
decreased (left), the original and an increased capacitance. In addition to mimicking the pole of the target system, 
the clamped system has an additional pole and an additional zero. (D) Pole and zero position versus capacitance.

Transfer function of the CapClamp
The Z-transform of the CapClamp filter can be read directly from the general form of the transfer 
function (Equation 12) and the CapClamp feedback coefficients (Equation 10),

	﻿‍
Fdyn(z) = Cc−Ct

Ct
Cc
∆t

1−z−1

1+ Cc−Ct
Ct

z−1 .
‍�

(15)

Transfer function of the RC circuit
In an RC circuit, the dynamics of the voltage are

	﻿‍ C dV
dt = −V

R + I.‍�

Thus, in a single time step ‍∆t‍, when the current is fixed, the voltage evolves as

	﻿‍ V(k∆t) = V((k − 1)∆t)e−
∆t
τ + RI(1 − e−

∆t
τ ),‍�

where ‍τ = RC‍ is the time constant. Applying the Z-transform results in the transfer function

	﻿‍
HRC(z) = R

(
1 − e−

∆t
τ

)
1

z−e−
∆t
τ

,
‍�

(16)

which is subsequently used as the cell’s transfer function ‍Hcell(z) = HRC(z)‍.

Transfer function of the clamped RC circuit
Introducing ‍K = Cc−Ct

Ct ‍ and ‍hc = ∆t
τc ‍, the RC circuit (Equation 16) and CapClamp (Equation 15) 

transfer functions can be combined using Equation 13 to get the transfer function of the combined 
system

	﻿‍
Hcell+dyn(z) = R(1 − e−hc ) z+K

z2+(K−e−hc− 1
hc

K(1−e−hc ))z−K(e−hc− 1
hc

(1−e−hc )) .
‍� (17)

https://doi.org/10.7554/eLife.75517
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In comparison, the transfer function of the target RC circuit reads

	﻿‍
Htarget(z) = R

(
1 − e−ht

)
1

z−e−ht ‍�

with ‍ht = ∆t
τt

= ∆t
RCt ‍ reflecting the different target capacitance.

Figure  1—figure supplement 1b compares the resulting impedances for decreased and 
increased capacitances. As discussed in the "Results" section , the impedance amplitudes fit well up 
to a tenth of the dynamic clamp frequency. A closer look at the transfer function explains the fit at 
low frequencies and the deviations at higher frequencies.

Input resistance is preserved
The input resistance is equal to the impedance at zero frequency, that is at ‍z = ei2π0 = 1‍, which for 
both coupled and target system is the original resistance,

	﻿‍ Hcell+dyn(1) = Htarget(1) = R.‍� (18)

Poles and zeros
For a further comparison, poles and zeros of the transfer functions are calculated. To simplify the 
expressions, it is assumed that the time constant of the original and target circuits are much larger 
than the sampling interval, that is ‍hc ≪ 1‍ and ‍ht ≪ 1‍.

Target circuit
The target circuit has no zero and a single pole located at

	﻿‍ p(1)
t = e−ht = 1 − ht + . . .‍� (19)

Capacitance clamped circuit
The coupled system has one zero at

	﻿‍ r(1)
c = −K = 1 − Cc

Ct
.‍� (20)

The clamped circuit has two poles at

	﻿‍ p(1)
c = 1 − (1 + K)hc + . . .‍� (21)

and

	﻿‍ p(2)
c = K

2 hc + . . .‍� (22)

Comparison of poles
All poles and zeros for an RC circuit in its original state and clamped at decreased and increased 
capacitances are shown in Appendix 1—figure 1. The first pole of the clamped circuit coincides with 
the one of the target circuit: ‍p

(1)
c = 1 − Cc

Cc
∆t
RCc

= 1 − ht = p(1)
t ‍. As these pole lies close to ‍z = 1‍, they 

determine the lower frequency response, which explains why the impedance amplitudes fit so well 
in this range.

In addition to moving the existent pole of the cell circuit to the one of the target circuit, the 
CapClamp creates an additional pole ‍p

(2)
c ≈ hc

2 ( Cc
Ct

− 1)‍ and a new zero ‍r
(1)
c = 1 − Cc

Ct ‍. Thus, at an 
increased capacitance ‍Ct > Cc‍, the new pole lies in the left half of the unit circle and thereby increases 
the impedance at higher frequencies. In contrast, at a decreased capacitance, the additional zero 
moves into the left half of the complex plane and thereby decreases the impedance at higher 
frequencies.

Stability
For the investigated RC circuit with ‍R‍=100 MΩ and ‍C‍ = 150 pF and a sampling interval of 50 us, 
both poles of the capacitance clamped system remain within the unit circle (Appendix 1—figure 1) 
for the tested range from 0.1 to 10 times the original capacitance. As the coupled system is naturally 
causal, this implies that the transfer function of the clamped circuit is stable for this range of target 
capacitances, i.e. there are no unstable oscillations.

https://doi.org/10.7554/eLife.75517
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Mapping between a charging curve with two components and a two 
compartment circuit
In the following, we explain how a charging curve of a cell with two components can be mapped to 
the parameters of a two compartment circuit, which we used to extract the local capacitance in the 
recorded dentate gyrus granule cells (see Figure 3). We first report the approach and results derived 
earlier (Golowasch et al., 2009) and then explain how to extend the mapping when the capacitance 
is clamped to a modified value.

Golowasch et al. derived expressions for the near capacitance and the other circuit parameters 
by comparing the impedance of a two compartment circuit in Figure 3A

	﻿‍

Z(s) = 1
1

Rn
+sCn+ 1

Ra+ 1
1
Rf

+sCf ‍�
(23)

with the impedance of a system whose response to a step currents is a sum of two exponentials

	﻿‍ Z(s) = R0
1

1+sτ0
+ R1

1
1+sτ1

.‍� (24)

The comparison of these two impedances gives four equations linking the circuit parameters and 
the two components of the charging curve:

	﻿‍
R0 + R1 =

RaRn + RfRn

Ra + Rf + Rn
,
‍�

(25)

	﻿‍
R0τ0 + R1τ1 =

RaRnRfCf
Ra + Rf + Rn

,
‍�

(26)

	﻿‍
τ0 + τ1 =

(Ra + Rn)CfRf + (Ra + Rf)CnRn

Ra + Rf + Rn
,
‍�

(27)

	﻿‍
τ0τ1 =

RaCnRnCfRf
Ra + Rf + Rn

.
‍�

(28)

To solve this set of equations, they assume that the membrane time constant is the same in 
all compartments ‍CnRn = CfRf = τc‍. However in a clamped neuron, where the near capacitance is 
targeted to be modified to a k-fold different value, this equation becomes

	﻿‍ CnRn = kCfRf,‍� (29)

where ‍k = Cn,clam.
Cn,orig. ‍.

For the unclamped case, ‍k = 1‍, the mapping from the two components to the circuit parameters is

	﻿‍
Rn = R0 + τ0

τ1
R1,

‍� (30)

	﻿‍
Cn = τ0τ1

τ1R0 + τ0R1
,
‍�

(31)

	﻿‍
Rf = R0τ1

R1τ0

(
R0 + τ0

τ1
R1

)

‍�
(32)

	﻿‍
Cf = R1τ0

R0τ1

τ0τ1
τ1R0 + τ0R1 ‍� (33)

	﻿‍
Ra = τ1

τ0 − τ1

(
R0 + τ0

τ1
R1

)(
1 + R0τ1

R1τ0

)
.
‍� (34)

For the clamped case, ‍k ̸= 1‍, we used the python package sympy to solve the equations.

https://doi.org/10.7554/eLife.75517
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Adapted fitting procedure of dentate gyrus charging curves
The initial online capacitance measurement was based on fitting the charging curve at the beginning 
of the current pulse. Posterior analysis showed an artefactual voltage drop of –0.2  mV starting 
about 0.2ms before pulse onset (probably due to coupling of the DAQ measurement card and the 
motherboard of the dynamic clamp computer), which limited the reliability of the online fit for cells 
with a small fast component. As no such artifact was observed for the recharging at the end of the 
pulse, this part was used in an improved offline fit. Additional measures to improve the fit were: cut 
of the first 0.2ms after pulse end to minimize electrode artifacts, limiting the fit to the first 60 ms (3–4 
times ‍τ0‍) after the pulse to prioritize the early part of the charging curve and a switch to the python 
package lmfit for better evaluation of parameter confidence bounds (https://lmfit.github.io/lmfit-​
py/). Furthermore, the finite rise time of the current injection by the amplifier was taken into account 
by adapting the original form of the charging curve (Equation 6) to

	﻿‍

V(t) = Iext


 ∑

i;τi ̸=τa

Ri
τi − τa

(
τi

(
1 − e−

t
τi

)
− τa

(
1 − e−

t
τa

))
+

∑
i;τi=τa

Ri

(
1 − e−

t
τi − t

τi
e−

t
τi

)
 ,

‍�

(35)

where the current rise time of the amplifier ‍τa‍ (‍87 ± 2µs‍) was obtained by fitting the recorded 
injected current for the current step command by a simple exponential. A comparison of the two 
exponential components and the resulting circuit parameters for the online and offline fitting 
procedures is show in Appendix 1—table 1.

For the charging curves under capacitance clamp, the fitting procedure for the charging curve 
with two exponentials was initialized with values as expected for the targeted capacitance change: 
mapping the fitting results of the unclamped response to a two compartment circuit, changing 
the near capacitance to the targeted value and finally mapping this altered circuit back to the 
expected time scale and amplitudes. This initialization improved the fits especially at increased near 
capacitances, where the amplitude of the fast component becomes smaller.

Formal derivation of f-I curve gain and rheobase dependence on 
capacitance
To confirm the expectations of gain and rheobase dependence on capacitance in a single 
compartment neuron model (see "Analytically expected effect of capacitance on the form of the f-I 
curve" in Methods), we here sketch the calculation of the normal form parameters ‍a‍ and ‍c‍ following 
Izhikevich, 2006, pp. 162–163. In principle, ‍a‍ and ‍c‍ can be calculated for arbitrary gating kinetics by 
projecting the dynamics on the center manifold (Schleimer and Schreiber, 2018). For the assumption 

Appendix 1—table 1. Comparison of online and offline fits to charging curves in the recorded 
dentate gyrus granule cells (N = 18).

Online fit (mean ± std) Offline fit (mean ± std)

Two comp.

‍τ0‍ 14.9±4.8 ms 15.1±4.8 ms

R0 136.9±47.5 MΩ 127.1±44.6 MΩ

‍τ1‍ 0.41±0.23 ms 0.77±0.24 ms

R1 25.1±14.1 MΩ 34.5±14.7 MΩ

Circuit

‍Cn‍ 14.9±4.7 pF 21.0±9.4 pF

‍Rn‍ 1106.3±519.3 MΩ 854.2±394.0 MΩ

‍Ra‍ 34.9±19.9 MΩ 52.5±19.8 MΩ

‍Cf ‍ 99.1±33.7 pF 105.8±33.0 pF

‍Rf ‍ 159.6±58.1 MΩ 155.5±59.9 MΩ

https://doi.org/10.7554/eLife.75517
https://lmfit.github.io/lmfit-py/
https://lmfit.github.io/lmfit-py/
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of small gating time constants, however, they can be expressed in simpler terms using the steady 
state I-V relation of the neuron divided by its membrane capacitance

	﻿‍
I(V, I) = 1

C
(
I − I∞(V)

)
= 1

C

(
I −

∑N
i=1 gi

∏Mi
j=1 xij,∞(V)pij (V − Ei)

)
‍�

taking the form 
‍
a = 1

2
∂2I(V,I)
∂V2

∣∣∣
V=Vsn,I=Isn‍

 and 
‍
c = ∂I(V,I)

∂I

∣∣∣
V=Vsn,I=Isn‍

, where the saddle node voltage ‍Vsn‍ 

and current ‍Isn‍ are given by the equations

	﻿‍

I(V, I)|V=Vsn,I=Isn = 0,
∂I(V,I)
∂V

∣∣∣
V=Vsn,I=Isn

= 0.
‍�

In summary, both ‍a‍ and ‍c‍ are proportional to ‍
1
C‍ and the rheobase current ‍Irheo = Isn = I∞(Vsn)‍ is 

independent of capacitance, thus confirming the expected scaling.

Data and software availability
•	 Electrophysiological recordings of capacitance clamped dentate gyrus granule cells: Pfeiffer, 

P., & Tomás F. J. B. (2021). Capacitance clamp demonstration in rat dentate gyrus granule cells. 
https://doi.org/10.5281/zenodo.5552207 

•	  Project repository with capacitance clamp module for https://scicrunch.org/resolver/RRID:​
SCR_017280RELACS and custom analysis/simulation in python: Pfeiffer, P., Tomás, F. J. B., Wu, 
J., Schleimer, J.-H., Vida, I., & Schreiber, S. (2021). Software for: A dynamic clamp protocol to 
artificially modify cell capacitance. https://doi.org/10.5281/zenodo.6322768 

•	  Capacitance clamp plugin for http://rtxi.org/RTXI, a real-time data-acquistion and control 
application for biological research that allows to extend a conventional electrophysiology 
setup for dynamic clamp experiments (Patel et al., 2017). Capacitance_clamp_rtxi_module: 
https://doi.org/10.5281/zenodo.5553946  

https://doi.org/10.7554/eLife.75517
https://doi.org/10.5281/zenodo.5552207
https://scicrunch.org/resolver/RRID
https://identifiers.org/RRID/RRID:SCR_017280RELACS
https://identifiers.org/RRID/RRID:SCR_017280RELACS
https://doi.org/10.5281/zenodo.6322768
http://rtxi.org/RTXI
https://doi.org/10.5281/zenodo.5553946
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