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Zusammenfassung

Herzinsuffizienz ist ein klinisches Syndrom, welches durch funktionelle und strukturelle Anoma-

lien des Herzens verursacht wird, und ist weltweit die häufigste Todesursache. Die dilata-

tive Kardiomyopathie, welche durch eine Vergrößerung der linken Herzkammer definiert ist,

und die arrhythmogene Kardiomyopathie, welche im Gegensatz durch eine Dysfunktion der

rechten Herzkammer definiert ist, sind eine der häufigsten Ursachen für Herzinsuffizienz.

Trotz vieler Bemühungen die molekularen Veränderungen der Herzinsuffizienz zu charakter-

isieren, sind Zelltypzusammensetzung, Genexpressionsänderungen, und zelluläre Interaktio-

nen unter pathologischen Bedingungen unbekannt.

Um diese Fragen zu adressieren wurde ein Protokoll zur Isolation intakter Zellkerne entwick-

elt um Einzelkernsequenzierung im Herzen durchzuführen. Anschließend wurde mit dem en-

twickelten Protokoll die zelluläre Zusammensetzung des erwachsenen gesunden menschlichen

Herzens charakterisiert. Hier war mein Fokus die Charakterisierung und Identifikation von

Subformen von Fibroblasten, und deren Genexpressionsunterschiede in den linken und rechten

Vorhöfen und Herzkammern. Basierend auf dieser Annotation wurden die Zelltypen und Sub-

typen von ungefähr 900.000 Zellkernen von 61 nicht-ischämischen Herzinsuffizienzpatienten

mit unterschliedlichen pathogenen Varianten in DCM- und ACM-assoziierten Genen oder

idiopathischen Erkrankungen charakterisiert und mit 18 gesunden Spenderherzen verglichen.

Dieser Datensatz zeigte spezifische Unterschiede des linken und rechten Ventrikels mit dif-

ferenziell regulierten Genen und Signalwegen, and Veränderungen in der Zusammensetzung

der verschiedenen Zelltypen und Subtypen. Um genotyp-spezifische Antworten unabhängig zu

bestätigen wurden Algorithmen des maschinellen Lernens angewendet, welche die zugehörige

Genotyp-Untergruppe des Patienten mit hoher Genauigkeit vorhersagten. Zusammenfassend

stellen die in dieser Arbeit veröffentlichten Daten das vorherrschende Dogma in Frage, dass

Herzinsuffizienz auf einen gemeinsamen finalen Signalweg zurückzuführen ist.
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Litviňuková et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

17 Patients included in the heart failure cohort. A) Age and sex distri-

bution of patients with pathogenic variant (PVpos), no identified pathogenic

variant (PVneg), and healthy controls. The number of patients and donors

per age bin are shown on the patients. B) Number of males and females in the

main genotype classes, genotypes with more or equal to 6 patients. C) Tissue

sources per genotype group. For explant tissue, multiple regions are available,

while for patients undergoing LVAD implantation, only apical cores were ob-

tained. D) For some genotypes only low number of patients were available,

but have not been analysed in depth. Figure A) was part of the publication

Reichart et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8



18 Evaluation of clinical parameters between genotypes. A) Left ventric-

ular inner diameter in systole and B) diastole (LVIDd, LVIDs), C) patient

age at transplantation, D) GFR and E) RVEDD distribution plotted across

genotypes. Dotted lines indicate normal ranges as reported in the clinical lit-

erature (Harkness et al., 2020; Mewis et al., 2006). A GFR of 60 or higher is

considered as healthy (Wetzels et al., 2007). Clinical information per patient

were provided in T1 of the online supplement . . . . . . . . . . . . . . . . . . 68

19 Sample quality information for samples included in the DCM Heart

Cell Atlas study. A) Correlation of median UMI counts across all nuclei per

sample compared to the cDNA concentration measured per sample. Samples

with low cDNA concentration tend to have low numbers of UMIs recovered.

B) Estimated number of nuclei per sample. C) Origin of libraries included in

this study. D) Distribution of storage time in years for all samples. Sample

quality were provided in T2 of the online supplement. . . . . . . . . . . . . . 70

20 Quality of the generated snRNAseq data. A) 4 cardiac regions were

sampled and nuclei were isolated. LV Apex was only available as apical cores

received upon VAD implantation. The other cardiac regions were sampled from

explanted hearts. The obtained 880.081 nuclei, post quality filtering, identified

nine cardiac cell types. B) Marker genes per cardiac cell type. C) Barcode

rank plot for the first 100.000 droplets. A two-plateau (”shoulder-and-knee”)

shape is optimal, in which the first plateau represents droplets containing a

nucleus. The lower plateau represents the level of technical noise, ambient

RNA, in the dataset. On the right, all droplets containing nuclei as identified

by Cellrangers EmptyDrops are shown (turquoise), while empty droplets (red)

are not included in any downstream analysis. D) Quality metrics for the nine

cardiac cell types. n genes: Identified genes per nucleus. n counts: Identified

UMIs per nucleus. percent mito: Percentage of unique reads mapping to the

mitochondrial genome. percent ribo: Percentage of unique reads mapping to

ribosomal (RPS and RPL) genes. solo score: Softmax-score representing the

likelihood of nuclei being doublets. This figure was part of the publication

Reichart et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9



21 Regionality of cellular composition. A) Exemplary image of a processed

cardiac tissue piece. Scale bar: 1cm B) Composition of cardiac cell types

per sample. Replicates are separated by dashed lines. The analyzed nuclei

number per sample are shown on the right. C) Correlation of the proportion

of each cell type (denoted in %) between the two replicates within one sample.

Dots are colored by cell type as indicated in B). Shape of dots represents the

replicates. For H40 (square), LV1 (Replicate1) was correlated against LV2

and LVW (Replicate2). Both axes are logarithmic. D) A first iteration of

subclustering was done and differential abundance analysis was performed. At

first, differences in abundance were tested in apex vs. left ventricular free

wall (top), followed by AP and FW jointly vs. septum (bottom). Only a

very low number of states were found to be significantly different, which is

why the three regions were jointly reported as LV. This figure was part of the

publication Reichart et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . 74

22 Compositional analysis of control and failing heart samples in LV

and RV. A) Upper panel: Mean abundance of identified cardiac cell types

in LV and RV of healthy controls. Boxplots with individual data points are

provided in Figure S3. Lower panel: Proportional change of cell types in

the genotype subgroups and control. The DCM group aggregates all patients

with DCM diagnosis. Color scale indicates increase in disease (red) or con-

trol (blue). log2-fold changes were computed based on percentages. P values

indicated significantly altered proportional changes (FDR ≤ 0.05) based on

CLR-transformed proportions. B) Cell type abundance ratios in the aggre-

gated DCM group and genotype subgroups in LV (left) and RV (right). P val-

ues indicated significantly altered proportional changes (FDR ≤ 0.05) based

on CLR-transformed proportions. This figure was part of the publication Re-

ichart et al. (2022). Cell type abundances were provided in T3 and T4 of the

online supplement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10



23 Collagen accumulation was observed in heart failure patients. Colla-

gen content of cardiac tissue samples measured using the hydroxyproline assay

on A) LV-free wall and B) RV samples. p values of significant hydroxypro-

line enrichment in genotype subgroups compared to controls are shown above.

C) Dotplot shows collagen expression across all cardiac cell types. Collagen

expression was enriched in fibroblasts, and to lower extend also observed in

mural cells and adipocytes. D) Gene set score enrichment for collagen ex-

pression in fibroblasts. E) Dotplot shows expression of pro-fibrotic receptors

across cardiac cell types. color, mean expression. Expression was scaled from

0 (minimal expression across all states) to 1 (maximum expression across all

states). F) Dotplot shows differential gene expression of TGFβ1-3 across geno-

types in LV FBs compared to controls. G) Dotplot shows EGFR and AGTR1

expression across genotypes in LV FBs compared to controls. Size of dot shows

fold-change (logFC) and size significance (-log10(FDR)). Significant results are

highlighted with framing. Results of differential gene expression were calcu-

lated using edgeR. This figure was part of the publication Reichart et al. (2022). 77

24 Fibroblast states identified in the healthy human and heart failure

patient combined manifold. A) UMAP embedding delineated 6 fibroblast

states. B) Dotplot shows selected marker genes of FB states. Dot size rep-

resents fraction of expressing cells within a cluster; color, mean expression.

Expression was scaled from 0 (minimal expression across all states) to 1 (max-

imum expression across all states). C) Comparison of annotations per nucleus

annotated in the Heart Cell Atlas and the current project. The heatmap shows

the fraction of healthy control nuclei in the heart failure dataset (y-axis) and

their FB state annotation in the Healthy Human Heart Cell Atlas (x-axis).

Single-molecule fluorescent in situ hybridization targeting D) APOD (vFB1.1)

and E) DAAM1 (vFB1.2). DCN is used as a FB marker (turqouise), nuclei

are DAPI-stained (blue), cell boundaries are delineated using wheat-germ ag-

glutinate (green). Scale bars, 10um. This figure was part of the publication

Reichart et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

11



25 Compositional analysis of fibroblast states. A) Upper panel: Mean

proportion of FB states in LV and RV of healthy controls. Boxplots with in-

dividual data points are provided in Figure 26A. Lower panel: Proportional

change of FB states in the genotype subgroups and control. The DCM group

aggregates all patients with DCM diagnosis. Color scale indicates increase

in disease (red) or control (blue). log2-fold changes were computed based

on percentages. P values indicated significantly altered proportional changes

(FDR ≤ 0.05) based on CLR-transformed proportions. B) Cell type abun-

dance ratios in the aggregated DCM group and genotype subgroups in LV

(left) and RV (right). P values indicated significantly altered proportional

changes (FDR ≤ 0.05) based on CLR-transformed proportions. This figure

was part of the publication Reichart et al. (2022). . . . . . . . . . . . . . . . . 80

26 Compositional and differential gene expression analysis of fibroblast

states. A) Fibroblast state composition in the aggregated DCM group and

genotype subgroups in LV (left) and RV (right). P values indicated signifi-

cantly altered proportional changes (FDR ≤ 0.05) based on CLR-transformed

proportions. B) Number of differential expressed genes based on the edgeR

analysis per genotype subgroup (x-axis) and per cell state (y-axis). Only signif-

icantly upregulated genes with log2FC ≥ 0.5 and FDR ≤ 0.05 are shown. C)

Only significantly downregulated genes with log2FC ≤ −0.5 and FDR ≤ 0.05

are shown. This figure was part of the publication Reichart et al. (2022). . . 82

27 Intersection of upregulated genes across genotype subgroups. A)

Barplot showing the fraction of uniquely upregulated genes per genotype sub-

group with log2FC ≥ 0.5 and FDR ≤ 0.05 across all fibroblast states in LV

(left) and RV (right). The absolute number is shown in the bars. B) UpSet

plot for all upregulated genes (Figure 26B) depicting the intersection of de-

tected upregulated genes across genotype subgroups. Only unique genes are

shown for A) and B), upregulated genes across multiple states are counted as

one. This figure was part of the publication Reichart et al. (2022). . . . . . . 83

12



28 Selected up-and down-regulated genes in vFB2 and vFB3 A) Gene set

enrichment of TGFβ-activated genes in vFB2 LV (left) and RV (right). Scores

per nucleus were computed per patient. B) Mean expression of IL11 across all

vFB2 per patient. *, p− value ≤ 0.05, hypergeometric test. C) Expression of

IL11 across all vFB states. IL11 is enriched in vFB2. D) Gene set enrichment

of OSM-pathway genes across vFB3 LV. Scores per nucleus were computed per

patient. E) Single-molecule fluorescent in situ hybridization targeting CCL2.

DCN is used as a FB marker (turquoise), nuclei are DAPI-stained (blue), and

cell boundaries are delineated using wheat-germ agglutinate (green). Scale

bars, 10um. F) log-fold change (color) and FDR (dot size) of CCL2 in vFB3

LV as computed by edgeR. The gene shows strong downregulation across all

genotypes. This figure was part of the publication Reichart et al. (2022). . . . 84

29 Myeloid states identified in failing human hearts. A) uMAP embed-

ding delineated 14 states, including three unclassified states. B) Cell-cycle

classification across myeloid states. Highest scores are assigned to a cluster,

which was subsequently annotated as proliferating myeloids. G2M- and S-

scores were enriched in this state. C) Dotplot shows selected marker genes for

tissue-resident LYVE1 states. D) Dotplot shows MHCI and II gene expression

for all myeloid states. E) Dotplot shows selected marker gene expression for

cDC1 and cDC2. F) Dotplot shows selected marker gene expression for all

myeloid states. Dot size represents fraction of expressing cells within a cluster;

color, mean expression. For D) and F), expression was scaled from 0 (minimal

expression across all states) to 1 (maximum expression across all states). This

figure was part of the publication Reichart et al. (2022). . . . . . . . . . . . . 88

30 Proportions of myeloid states. Myeloid state composition in the genotype

subgroups in LV (left) and RV (right). P values indicated significantly altered

proportional changes (FDR ≤ 0.05b). This figure was part of the publication

Reichart et al. (2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

13



31 Compositional analysis of myeloid states. A), B) Upper panel: Mean

proportion of myeloid states in LV and RV of healthy controls. Boxplots with

individual data points are provided in Figure 30. Lower panel: Proportional

change of myeloid states in the genotype subgroups and control. The DCM

group aggregates all patients with DCM diagnosis. The color scale indicates

an increase in disease (red) or control (blue). log2-fold changes were computed

based on percentages. P values indicated significantly altered proportional

changes (FDR ≤ 0.05) based on CLR-transformed proportions. C), D) Cell

type abundance ratios in the aggregated DCM group and genotype subgroups

in LV (left) and RV (right). P values indicated significantly altered propor-

tional changes (FDR ≤ 0.05) based on CLR-transformed proportions. This

figure was part of the publication Reichart et al. (2022). . . . . . . . . . . . . 91

32 MHC II gene expression in myeloids. Mean enrichment score of anti-

gen presenting MHC II genes in LVs across antigen presenting myeloid states

(cDC1, cDC2, MO CD16, MO VCAN, MP FOLR2 and MP LYVE1 lo-MHC

II hi) per patient. This figure was part of the publication Reichart et al. (2022). 92

33 Multiclass genotype subgroup classification using logistic regression.

ROC curves showing a function of true and false prediction per nucleus per

genotype subgroup (color). The AUC per genotype is shown in brackets in the

legend. ROC: Receiver operating characteristic, AUC: Area under the curve. 94

34 Probability of true genotype probability per cell type per patient

returned by GAT. A) Top: Relative number of nuclei which have been

assigned with the correct genotype subgroup label per patient. Only LV of

the shown cell types was considered. Bottom: Cell type probabilities were

then aggregated to calculate a genotype probability per patient. B) Relative

number of nuclei which have been assigned with the correct genotype subgroup

label per patient’s RV. C) Relative number of nuclei that have been assigned

with the correct genotype subgroup label per patients LV of lower abundant

cell types. This figure was part of the publication Reichart et al. (2022). . . . 95

35 Differences in Gene and UMI detection of the V3 and V3.1 chem-

istry. No significant changes have been observed. Per patient variability

exceeds differences of the 10x chemistry. . . . . . . . . . . . . . . . . . . . . . 96

14



36 Ambient RNA per genotype subgroup. Median ambient RNA levels

were calculated per sample per genotype subgroup. No significant difference

between genotype subgroups was identified. . . . . . . . . . . . . . . . . . . . 98

37 Location of mutations of patients in the RBM20 subgroup. The

protein track from Uniprot was plotted on top, with location of the RS domain

highlighted. Each arrow on top of the track corresponds to the mutation of

one patient. One patient, H33, had a double mutation in RBM20 (turquoise).

The stacked barplot below shows the probabilities per genotype per patient,

as shown in Figure 34. On the right, the patient age (years) and mutations in

other genes are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

S1 Pilot study using free-walls of 3 wildtype and 3 Phospholamban

(PLN)-mutant mice. (A) 2-dimensional tSNE embedding of in total 12.000

nuclei. Each nucleus was colored according condition (top) and sample (bot-

tom). (B) Distribution of sample size required to reach significance for one

gene. Analysis was repeated for all genes. A large number of genes can be

determined as differentially expressed with a low cohort size (n 10). Larger co-

hort sizes will yield deeper insights into the molecular mechanisms underlying

DCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

S2 FACS purification of nuclei from human heart tissue homogenate.

The P1 gate was used to remove very small particles representing cell debris.

P4 was used to sort out NucBlue stained nuclei. . . . . . . . . . . . . . . . . . 127

S3 Relative abundance of cardiac cell-types in control and failing heart

samples in LV and RV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

S4 Latent space learned by scanVI. A) Without label shuffling and B) with

label shuffling. For label shuffling, genotypes of patients were randomly assigned.129

15



List of Tables

1 NIM1 buffer recipee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 NIM2 buffer recipee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 HB buffer recipee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 SB buffer recipee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Percoll solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Reagents and Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 RNAscope probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Instruments and Pipettes . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 List of main Python packages and version number. Python 3.9 was

used for this project (Van Rossum and Drake, 2009). GPU-based tools were

run on a Tesla-T4 with CUDA 11.0. . . . . . . . . . . . . . . . . . . . . . . . 45

11 List of main R packages and version number. R 3.6.3 was used for this

project (R Core Team, 2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12 Cardiac cell type marker genes. Mast cells here are part of the myeloid

cell population, but split up as a separate cluster in the Failing Heart Project

described in chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

16



1 Graphical Abstract

Figure 1: Graphical abstract

17



2 Summary

Heart failure is a clinical syndrom and leading cause of death worldwide, caused by func-

tional and structural abnormalities of the heart. Dilated Cardiomyopathy, defined by a left

ventricular enlargement, and arrhythmogenic cardiomyopathy, defined by a right ventricu-

lar dysfunction, are leading causes of heart failure. Despite previous efforts to characterise

molecular changes in the failing heart, little is known on cell-type specific abundance and ex-

pression changes under pathological conditions, and how individual cell-types interact during

heart failure and cardiac remodelling.

To address this question, a protocol for the isolation of intact nuclei was firstly established to

perform robust single-nucleus RNA sequencing in the heart. Next, the cell-type composition

of the healthy adult human heart was characterised. Here my focus was on the fibroblast

nieche by characterising fibroblast states, their composition and their atria- and ventricle-

specific expression patterns. Cell type and state annotation was then used to characterize

the transcriptome of roughly 900,000 nuclei from 61 failing, non-ischemic human hearts with

distinct pathogenic variants in DCM and ACM genes or idiopathic disease and compared

those to 18 healthy donor hearts. This dataset revealed distinct responses of the right and

left ventricle with differently regulated genes and pathways, and compositional changes across

cell types and states. To independently confirm genotype-specific responses, machine learning

approaches were applied, predicting genotype subgroups with high accuracy. Taken together,

the findings published in this thesis upend the prevalent dogma that heart failure results in

a final common pathway.
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3 Introduction

3.1 Anatomy of the human heart

The heart is a multi-chamber organ pumping blood through the circulation (Figure 2). Within

the four chambers of the human heart, biophysical stimuli vary dramatically during a heart

beat for example due to large blood pressure differences between the chambers. Already

130 years ago, the surgeon Robert H. Woods reported a relationship between the density

of muscle fibres, heart chamber volume, and cellular stress, relating to the law of Laplace,

linking cellular architecture and gene activity with heart function (Woods, 1892). 23 years

later, the first reports on pressures and volumes of the four chambers were reported by

the American physiologist Carl J. Wiggers (Wiggers, 1915). The right atrium (RA) is the

chamber with the thinnest wall (around 2mm) and lowest systolic pressure (2-6 mmHg). The

LV in contrast has a reported wall thickness of 8-10mm and systolic pressure can reach up

to 130 mmHg. The concept that the normal function of the human heart relies on highly

heterogeneous cell populations with specialized functions that are governed by differential

gene expression was then addressed multiple times in the past (Katz and Katz, 1989). The

precise cellular composition in the adult healthy human heart and disease-associated changes

remained incompletely understood. Despite previous efforts to characterize molecular changes

in the failing heart, little is known on cell-type specific abundance and expression changes

under physiological conditions, and how cell types interact during heart failure and cardiac

remodelling.

3.2 Heart failure and cardiomyopathies

Heart failure (HF) is a clinical syndrome of different etiologies with symptoms caused by func-

tional or structural abnormality, elevated blood levels of natriuretic peptide, and systemic

congestion (Bozkurt et al., 2021). The estimated number of people living with heart failure

worldwide is 64.3 million (James et al., 2018), with an estimated prevalence of known heart

failure of 1-2% in the adult population of developed countries (Groenewegen et al., 2020).

HF encompasses a broad spectrum of cardiac disorders, of which, among others, cardiomy-

opathies can be an underlying cause. Cardiomyopathies describe structural and functional

heart muscle dysfunction and are subdivided using different criteria (Kumar et al., 2017).

Broadly, cardiomyopathies are divided into ischemic and nonischemic cardiomyopathies. Is-

chemic cardiomyopathies are caused by the lack of oxygen supply, as observed in patients
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Figure 2: Cross-section of the adult human heart showing both atria, ventricles,

and the interventricular septum. Created with BioRender.com

with coronary artery diseases (Felker et al., 2002), comprising about half of all heart failure

cases (Adams Jr et al., 2005; Felker et al., 2002). As ischemic cardiomyopathies arise from

secondary myocardial damage, for example, systemic hypertension or atherosclerosis in coro-

nary arteries, the disease is not emerging from the myocardium itself (Maron et al., 2006).

Two often occurring forms of nonischemic cardiomyopathies, dilated cardiomyopathy (DCM)

and arryhthmogenic cardiomyopathy (ACM) were studied in detail in this work.

3.2.1 Dilated Cardiomyopathies (DCM)

DCM is characterized by a left- or biventricular chamber enlargment, systolic dysfunction

with abnormal loading conditions (Maron et al., 2006; Pinto et al., 2016b) (Figure 3). Com-

monly used diagnostic methods include Echocardiography or cardiac MRI (Hershberger and

Jordan, 2021). In the majority of cases DCM manifests in the fourth to sixth decade. Pre-

vious studies highlighted the higher occurance in males compared to females (with varying

ratios of 3-4:1) (Lyden et al., 1987; Fairweather et al., 2013).

The reported prevalence estimate worldwide for DCM is 1:250 (Goldman and AI, 2019). Re-

ported cases are not only high for the western world, but also for other continents. One

example is the African continent, where DCM accounts for 17-48% of all cardiac conditions
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observed at autopsies (Maharaj, 1991; Hakim and Manyemba, 1998; Amoah and Kallen,

2000). Causes for DCM are various, including genetics (McKenna and Judge, 2021), drugs

such as alcohol and cocaine (Awtry and Philippides, 2010), or certain infectious diseases

such as Coxsackievirus B and parvovirus B19 (Kindermann et al., 2008). The fraction of

genetic DCMs was reported to be 25-35% (Kumar et al., 2017). Understanding the genetics

of DCM is at the moment of high interest to understand predisposition and the epidemiology

of the disease. In the past genetic studies focused on Mendelian patterns typically affecting

younger patients, as interpreting the clinical genetics in adults is often more complex due to

environmental factors, especially for genetic variants of lower penetrance. In a recent study

adult and pediatric DCM were reported to have distinct features such as increased sarcomere

thickness in adult DCM, absence of myocardial fibrosis in pediatric DCM, and microvascular

alterations (Patel et al., 2017).

DCM associated genes encode a hetergenous group of proteins involved in contractile force

transmission and generation, cytosceletal architecture, nuclear scaffolding, transcription,

splicing, and electrolyte homeostasis (Burke et al., 2016) (Figure 4). Notably, most cardiomy-

opathy genes are important for biological processes in cardiomyocytes with few exceptions.

Despite first reports that there are differences between DCMs arising from different pathogenic

variants, a non-specific diagnosis of genetic DCM is commonly made, instead of a specific,

such as LMNA-DCM, TTN -DCM.

3.2.2 Arrythmogenic Cardiomyopathy (ACM)

Arryhthmogenic Cardiomyopathy (ACM) is characterized by electrical and myocardial ab-

normalities, arryhthmias and fibrofatty replacement of the apoptotic areas (Marcus et al.,

1982; Elliott et al., 2019) (Figure 3). Commonly used diagnostic methods include echocardio-

graphy, cardiac MRI or electrocardiography. In the majority of cases ACM manifests in early

adulthood. ACM accounts for 10% of sudden cardiac death (SCD) cases and is the leading

SCD cause in athletes (D’Ascenzi et al., 2018). Higher mortality rates have been reported

for males compared to females (Lin et al., 2017).

The reported prevalence estimate worldwide for ACM is 1:5000 (Goldman and AI, 2019). In

more than 50% of the patients, a mutation in desmosomal proteins is detected (Groenewegen

et al., 2020): PKP2, DSG2, and DSP (Figure 4).

Arryhthmogenic right ventricular cardiomyopathy (ARVC) is the most common form of in-

herited ACM, often without LV dysfunction until the late stages of the disease (McKenna
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Figure 3: Comparison of morphology and pathology of healthy control, DCM

and ACM hearts. (Left) Cross-sections show left ventricular dilation in DCM hearts

and fibrofatty degeneration in the RV in ACM hearts. (Right) Masson trichrome staining.

Cardiomyocytes are colored red, while fibrotic areas are shown in blue. Fibrofatty plagues

are white (magnification 100x, bar 10m). Figure from Reichart et al. (2022).

and Judge, 2021). Although very rare, forms with LV- and biventricular involvement have

been previously reported (Coats et al., 2009). Biventricular involvement has recently been

incorporated in the 2020 international diagnostic criteria for ACM (’Padua criteria’) (Cor-

rado et al., 2020).

ACM, despite many similarities, has, in contrast to DCM, a more right ventricular phenotype,

hence it is often referred to as arryhthmogenic right ventricular cardiomyopathy (ARVC). Due

to left and right ventricular abnormalities described in this work, ACM is the preferred ter-

minology. Molecular profiling of patients with ACM helps to further characterize differences

in disease onset and progression.
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Figure 4: Schematic of genes harboring mutations associated with DCM and

ACM. Genes are grouped by the encoding proteins’ subcellular location. Definitive DCM-

associated genes are highlighted in bold. Figure from Burke et al. (2016).

3.2.3 Current treatment strategies in dilated cardiomyopathy

Current treatment strategies rarely improve heart conditions, but are shown to dampen dis-

ease progression. A Japanese long-term study reported significant improvement in therapies

over the last 20 years, associated with the increased use of angiotensin-converting enzyme

inhibitors (ACEi), angiotensin receptor blockers (ARBs), and B-blockers (Matsumura et al.,

2006). Depending on comorbidities such as congestion (peripheral edema), mineralocorticoid

antagonists (MRA) or loop diuretics are administered. Statins are often applied to pre-

vent atherosclerotic cardiovascular disease. In case arryhthmias are observed, antiarryhthmic

drugs such as amiodarone are prescribed.

Previous studies have shown that cardiomyopathy treatment outcomes differ on the disease

origin. One early reported example was amiodarone (Singh et al., 1995), for which higher

survival rates are reported for patients with DCM in contrast to ischemic cardiomyopathy.
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More recent clinical studies now include the genotype information in the study design, such as

the Phase 3 ARRY-371797 study from Pfizer. The study was first submitted in 2018, with an

estimated primary completion date in 2024. In this study, specifically LMNA A/C mutants

with symptomatic DCM are included. The primary outcome measure is better performance

in the 6MWT (6-minute walk test). A recent study with human induced pluripotent stem

cells furthermore suggested the increased benefits of statins in DCM-laminopathies (Sayed

et al., 2020). Although the outcome and patient benefits of the suggested treatments are

uncertain, investigating genotype-stratified studies of heart failure patients is mandatory to

improve molecular interventions. Due to the different functions and localizations of affected

genes we hypothesized that individual pathogenic variants in mutated genes evoke distinct

single-cell molecular phenotypes.

If drug therapies don’t improve the patient’s conditions or can’t prevent disease progression,

device therapies or cardiac transplantation are the last options. Heart transplantation is

the method of choice, which is however limited by the availability of suitable donor hearts.

Alternatively, an LV assist device, (LVAD) is implanted (Ammirati et al., 2014), serving as

a bridge to cardiac transplantation. The inflow cannula of the assistance device is placed

through the apex, blood from the left ventricle then enters the pump chamber and is then

pumped to the aorta into the systemic circulation. The obtained apical core, despite its

small size, is large enough for pathology or sensitive assays (Maybaum et al., 2007). Cardiac

improvement was reported in some patients with LVAD support, however, after 4-5 years

50% of the LVAD patients need to receive a transplant (Miller et al., 2019).

3.2.4 Cardiac Fibrosis accompanies heart failure

A common feature of cardiomyopathies is the loss of cardiomyocytes due to apoptosis and

necrosis. Upon injury, cardiac fibroblasts are activated to initiate wound healing. Fibroblasts,

an essential cell type in every organ, and the myocardium, synthesize extracellular matrix

and play a pivotal role in structural and mechanical homeostasis (Souders et al., 2009). This

process is in interplay with other cell types, such as macrophages. As macrophages and fi-

broblasts are not highly abundant cell types in the heart, single-cell technologies are valuable

to study those populations, as their transcriptional signatures are overlayed in bulk RNA-seq

data with that of more abundant cell types.

In normal wound healing, fibroblast activation is downregulated over time. This regulatory
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mechanism is dysfunctional in cardiomyopathies, where fibroblasts are frequently activated.

The continuous deposition of ECM impacts tissue function, stiffness and oxygenation (Beyer

et al., 2009). Cardiac fibrosis is often subdivided into three subtypes, replacing, interstitial

and perivascular fibrosis (Thomas and Grisanti, 2020). Replacing fibrosis fills gaps after car-

diomyocyte loss with extracellular matrix, while interstitial and perivascular fibrosis refers

to increased ECM deposition without cardiomyocyte loss. Due to the high incidence of fi-

brotic diseases, especially cardiac fibrosis, many scientific studies deal with elucidating disease

mechanisms to identify new druggable mechanisms (Zhao et al., 2020).

3.3 Molecular profiling of tissues and single-cells

Next-generation sequencing technologies are the current state-of-the-art technology to mea-

sure gene activity based on mRNA abundance with a high dynamic range (Lindberg and

Hübner, 2021). Previous bulk RNA studies have defined the underlying molecular mechanism

of heart failure (Heinig et al., 2017; van Heesch et al., 2019; Ramirez Flores et al., 2021). How-

ever, these studies cannot assign disease-associated transcriptional and proportional changes

to specific cell types in the heart. Recently emerging single-cell sequencing technologies are

promising to define cell type-specific compositional and transcriptional changes in a high-

throughput and unbiased manner.

3.3.1 Profiling of transcriptomic responses on the single-cell level

The workflow starts with fresh tissue, which is enzymatically digested to obtain a single-cell

suspension. Single cells are then loaded on a microfluidics chip, where single cells are encap-

sulated in aqueous droplets with sequencing reagents and barcoded beads capturing mRNA

transcripts. Although protocols to profile diverse organisms and organs are available, appli-

cation in adult cardiac tissue is challenging (Gladka, 2021).

For example, cardiac cell types are very heterogenous in size, which makes sorting- or

microfluidics-based single-cell sequencing strategies rather challenging. Cardiomyocytes for

example are around 60-140 µm with a length-to-diameter ratio of 5:1 (Tracy and Sander,

2011), accompanied by multinucleation and therefore don’t fit through the channels of a

standard microfluidics chip (Bensley et al., 2016). In contrast, vascular endothelial cells are

around 30µm in width and size, which varies along the vascular tree (Krüger-Genge et al.,

2019).
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One option is to enrich particular cell types, with the disadvantage of losing information

on the responses of other neighboring cell types. In the early phases of cardiac single-cell

sequencing, primarily the non-myocyte fraction was analyzed in the adult heart (DeLaughter

et al., 2016; Skelly et al., 2018). As cardiomyocytes are the primary cell type expressing

sarcomeric and DCM-associated genes, this is the primary affected cell type and hence of

significant interest.

Optimization of dissociation protocols is challenging, as cell types require different diges-

tion conditions. For example, large cardiomyocytes are rather sensitive to digestion, while

obtaining a single-cell suspension out of a fibrotic plague requires rather harsh dissociation

conditions (Skelly et al., 2018; Wang et al., 2020). A previous study furthermore provided ev-

idence for the induction of transcriptomic stress signatures during warm dissociation (van den

Brink et al., 2017). Tissue dissociation furthermore requires the availability of fresh tissue,

where the logistical set-up from the hospital and to the lab is complex and requires staff

being available round the clock. The selection of a protocol that applies to frozen or fixed

tissue is preferred, which also enables studies on pre-established biobanks to have access to

large cohorts.

An alternative to single-cell sequencing technologies is single-nucleus sequencing (snRNAseq),

which is applicable to frozen tissue and overcomes the size restriction to specific cell-types

(Krishnaswami et al., 2016; Lake et al., 2016).

3.3.2 Single-cell sequencing technologies

In recent years, single-cell sequencing platforms based on different technologies have entered

the market. A broad separation can be done between microfluidics- and well-based platforms

(Kolodziejczyk et al., 2015; Svensson et al., 2018). The microfluidics-based platform by

10x Genomics is currently one of the most commonly used single-cell platforms due to its

reproducible chemistry, and high capturing and recovery rate relative to loaded nuclei (Figure

5). The platform is furthermore compatible with single nucleus RNA-sequencing.

For the first steps, Gel Beads, a master mix containing cells, template switch oligos,

reagents and enzymes for reverse transcription, and Partitioning Oil are required (Figure

6). The 10x system works with the formation of Gel Bead-in-Emulsion (GEMs), in which

one barcoded bead is encapsulated into a nanoliter-sized droplet. In total, more than 100,000

GEMs are formed by the Chip while being in the 10x Chromium Controller. Depending on the

loading, only 1-10% of GEMs normally contain a cell. Each bead-immobilized oligo contains
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Figure 5: Scale of sequenced cells per single-cell sequencing platform. A) Key

single-cell sequencing technologies ordered by year of publication and amount of cells which

can be sequenced. B) Cell numbers reported in publications using different platforms. Figure

from Svensson et al. (2018).

the bead-barcode, an unique molecular identified (UMI) to detect PCR duplicates, and a Poly-

dT tail to capture the 3’ end of polyadenylated transcripts. After reverse transcription and

cDNA pooling, the libraries are sequenced on an Illumina sequencer, which is the currently

most often used NGS platform (Lindberg and Hübner, 2021).

3.3.3 Processing of single-cell sequencing data

After sequencing, read mapping to the genome, and PCR duplicate removal, a count matrix

(cell barcodes by genes) is generated and stored in the h5 or sparse matrix format. Multiple

single-cell analysis pipelines are well established in the field with similar working principles, of

which scanpy was chosen for downstream analysis, a python implementation of Seurat (Satija

et al., 2015; Butler et al., 2018; Wolf et al., 2018). In short, the overall goal of this pipeline

is to identify nuclei with high similarity in their gene expression profile and manually assign

their cell type based on statistically significantly enriched or depleted marker gene signatures

(clustering). This is done by embedding high-dimensional data, here nuclei, defined by their

gene expression profile, into a low-dimensional space in multiple steps, such as the selection

of highly variable genes, and principal component analysis followed by a nonlinear dimension

reduction method. Currently, uniform manifold approximation and projection (uMAP) is

the most often used low-dimensional projection method, as this algorithm preserves local

and global distances of nuclei in the original transcript space (McInnes et al., 2018). At the
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Figure 6: Schematic representation of the 10x Genomics workflow. Barcoded beads

are required for Gel Bead-in-Emulsion (GEM) formation. Each GEM contains one cell, of

which a cDNA library is generated. Figure from 10x Genomics (2019a).

beginning of this project, no standardized annotation strategy or comprehensive marker list

for all cell types of the adult human heart was established. The first studies on cardiac tissue

were published in 2016 and 2018 by multiple labs (DeLaughter et al., 2016; Pinto et al., 2016a;

Skelly et al., 2018; Gladka et al., 2018). Due to technical challenges, only a small number of

samples were reported, limiting the focus to highly abundant cell types. Furthermore, many

studies were only done with murine tissue. Before the characterization of heart failure-specific

signatures, a reference list with marker genes per cell types was needed.

Large single-cell datasets not only allow the dissection of different cardiac cell types but also

have the resolution to robustly identify different states of each cell type. Nuclei in the dataset

which are annotated as the same cell type are therefore subsetted and are reclustered. This

allows the separation of smaller transcriptional differences within one cell type, which are

not picked up during the pre-dimensional reduction, such as the selection of highly variable

genes, defined by their mean expression and dispersion, or running a principal component

analysis.
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4 Methods

4.1 Data reporting

Power calculation was performed on murine data to estimate a suitable sample size for the

disease cohorts. A sample size of 8 allows the identification of a high fraction of differentially

expressed genes with high confidence without exceeding experimental budget and exhausting

experimental resources (Figure S1). Calculation was performed with power 80% (β = 0.2)

and α = 0.05. Power calculation of compositional differences remained challenging in the

pilot project due to low effect sizes due to large standard deviations of cell-type abundance

between individuals. Processing of samples obtained from the Bad Oeynhausen Heart and

Diabetes Center was blinded to avoid batch effects.

4.2 Ethics statement

Experiments on murine tissue in the initital trial phase were conducted under killing license

X 9006/13.

For the healthy heart study, 14 unused transplant organs were collected at the NIHR Cam-

bridge Biomedical Centre Hospital, UK, and Mazankowski Alberta Heart Institute, Canada

(Litviňuková et al., 2020). Donor information was anonymized and used after Research Ethics

Committee Approval:

a) East of England Cambridge South Research Ethics Committee (ref 15/EE/0152)

b) Mazankowski Alberta Heart Institute (MAHI, Edmonton, Canada); Human Organ Pro-

curement and Exchange Program (HOPE, Pro00011739)

For the comparative analysis with DCM tissue, 12 previously published non-failing control

hearts were included, due to library quality (D11) and elevated stress signature identified in

D3). Six additional donors from the Bad Oeynhausen Heart Center were included (Reichart

et al., 2022), which were processed together with heart failure samples. Discarded disease

heart samples were obtained in the context of clinical patient care after heart explantation.

All cardiac tissues were anonymized by their study centers and used with approved protocols

reviewed by the ethics committees listed below:

a) Bad Oeynhausen Heart Center; Ethics Board of the Ruhr-University Bochum (Approvals

2020-640-1; 21/2013)

b) Mazankowski Alberta Heart Institute (MAHI, Edmonton, Canada); Human Explanted
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Heart Program (HELP, Pro00011739)

c) Cardiovascular Research Centre Biobank at the Royal Brompton and Harefield Hospitals,

Guys and St. Thomas NHS Foundation Trust (EC reference 09/H0504/104 +5)

d) Imperial College (REC reference16/LO/1568)

e) Mass General Brigham Human Research Protection Committee (Protocol 1999P010895)

f) Harvard Longwood Campus Institutional Review Board (Protocol M11135)

4.3 Cohort samples and patient inclusion criteria

For the Heart Cell Atlas Study, transmural tissue pieces of six different cardiac regions (left

and right atria and ventricles, left ventricular apex and intraventricular septum) have been

sampled. For the Heart Failure Atlas Study, biobanked full-thickness myocardial specimens

obtained either during ventricule assist device (VAD) implantation (n=15, only apical core

sample available) or after heart explantation (n=31, left and right ventricular free wall and

septum) were collected. Regions of high epicardial fat deposits or macroscopic areas of high

fibrosis were excluded. Further information on tissue availability per patient is provided in

table S1 of the Heart Failure Atlas publication (Reichart et al., 2022).

4.4 Patient genotyping

Disease patients have been genotyped using assays applied before genetic counseling of pa-

tients in the hospital. For the cohort collected at the HDZ NRW and processed at MDC, DNA

from blood samples from patients was isolated using the High Pure PCR Preparation Kit

(Roche Diagnostics GmbH) or Genomic DNA Extraction Kit (Qiagen). Sequencing libaries

were generated using the TruSightTM Rapid Capture Sample Preparation Kit (Illumina), and

sequencing was performed on a MiSeq. Libraries were enriched for protein-coding exonic reads

using the TruSightTM Cardio (174 genes) or the TruSightTM Cardiomyopathy (46 genes)

Sequencing Panel (Illumina) and variants were called using the VariantStudioTM Software

(Illumina). Classification and interpretation of variants were done according to the ACMG

criteria, if no information was available via Clinvar (Landrum et al., 2018). Information on

all genotyping assays per patient is provided in table S1 of the publication (Reichart et al.,

2022). Patient genotype information was collected during the course of patient treatment at

the Heart and Diabetes Center (HDZ) in the lab of Prof. Dr. Hendrik Milting.
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4.5 Isolation of single nuclei for single-nucleus RNA-seq

For this protocol 20-50 mg tissue pieces were used, depending on the sample source. Apical

cores obtained from LVAD implantation were smaller than those tissue pieces obtained after

heart explantation.

The following buffers are prepared in advance:

Reagent Final Concentration [mM] Volume [µl] (for 3 samples)

1.5M Sucrose 250 2500

2M KCl 25 187.5

1M Magnesium chloride 5 75

1M Tris HCl (pH 8) 10 150

NFW - 12087.5

Total - 15000

Table 1: NIM1 buffer recipee

Reagent Final Concentration [mM] Volume [µl] (for 3 samples)

NIM1 - 4895

1mM DTT 1 µM 5

50x Protease Inhibitor 1x 100

Total - 5000

Table 2: NIM2 buffer recipee

Reagent Final Concentration [mM] Volume [µl] (for 3 samples)

NIM2 - 4850

40U/µl RNaseIn Plus 0.4 U/µl 50

20U/µl SuperaseIn 0.2 U/µl 50

10% (v/v) Triton X-100 0.1% 50

Total - 5000

Table 3: HB buffer recipee
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Reagent Final Concentration Volume (for 3 samples)

PBS (–) - 1492.5 µl

BSA 4% 60 mg

40 U/µl Protector RNAseIn 0.2 U/µl 7.5 µl

Total - 1500

Table 4: SB buffer recipee

Dounce homogenizer and liquids need to be consistently on ice. The tissue piece was

then transferred into a precooled 7ml Dounce homogenizer filled with 3 ml of HB buffer and

homogenized with 7-12 strokes of the loose, and 7-12 strokes of the tight pestle. Tissue ho-

mogenate was then filtered through a 40µl cell strainer into a 50ml Falcon tube, followed by

2x 1ml washing of the homogenizer with HB buffer and centrifuged for 5min, 4 C at 500g to

pellet the nuclei. The supernatant was removed without rupturing the unstable pellet. The

pellet was then resuspended in 500µl SB buffer. From this step, three methods of purification

where compared.

Reagent Volume [ml]

Percoll 4.5

PBS (10x) 0.5

Total 5000

Table 5: Percoll solution

Additional 9.5ml SB was added to the resuspended pellet, and resuspended with Percoll

solution to obtain a final Percoll concentration of 20%, here 2.86 ml. The solution was

centrifuged for 15,000g for 20min at 4C. Nuclei were collected from the cell-containing phase

using a wide-opening 1ml pipette tip. Nuclei were washed 3x 500 µl SB buffer.

For the filtration protocol, additional 500µl SB buffer were added to the resuspension. 3x

50ml Falcon tubes with a 70µm, 40µm and 10µm strainer were prepared, the filters were

wetted with SB to avoid excessive loss of nuclei. The resuspension was filtered through all 3

filters. After filtration, the collection tube was centrifuged for 5min, 4C at 500g to pellet the

nuclei and resuspended in 500 µl SB buffer.

Nuclei undergoing purification were transferred to a FACS sorting tube. 50µl per suspension

was set aside as a negative unstained control. The other 450µl were stained with 1 drop of
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NucBlue for sorting and stained for approximately 10min. A third Eppendorf tube was filled

with 100µl SB buffer and serves as a collection tube for nuclei. Nuclei are then FACS sorted

into the pre-chilled collection tube until 150,000 events are sorted, which took around 20min

per sample. After sorting, the collection tube is centrifuged for 5min, 4C at 500g to pellet

the nuclei, supernatant was removed and resuspended in SB in a ratio of 1.000 FACS events

per 1µl, with 70µl minimum resuspension volume.

Nuclei quality was qualitatively assessed under a brightfield microscope. The number of nuclei

in suspension was automatically counted using a Countess II. Nuclei suspension was diluted to

target recovery of 5,000 nuclei per run as described in the 10x V3 3’ RNA sequencing protocol

(10x Genomics, 2020). Recovered nuclei per run are shown in Table S2 of the publication

(Reichart et al., 2022).

The protocols were published for open access (Litviňuková et al., 2020; Nadelmann et al.,

2021).

4.6 Library preparation using the 10x 3’ chemistry

Single-cell libraries for murine tissue were prepared using the V2 in the pilot phase according

to the manufacturer’s protocol (10x Genomics, 2019a). Chromium Single Cell Reagent Kits

V3 has been used for all disease and control samples generated in our lab (10x Genomics,

2020). Chromium Single Cell Reagent Kits V3.1 were used for three samples to confirm

compatibility with data analysis workflow for future projects (10x Genomics, 2019b). Frag-

ment size and libraries were quantified using the Bioanalyzer High Sensitivity DNA Analysis

(Agilent) and the KAPA Library Quantification kit. Analysis was done according to the

manufacturer’s protocol (Technologies, 2013; KAPABiosystems, 2017). Single-cell libraries

were sequenced using an Illumina HighSeq 4000 with a targeted read number of 30,000-50,000

reads per nucleus.

4.7 Preprocessing of sequencing data, mapping, and generation of count

matrix

Bcl files from the Illumina sequencer were converted to fastq files using bcl2fastq. Each

sample was mapped to the human reference genome GRCh38 with a modified pre-mRNA

gtf file of Ens84 using the CellRanger package. Reads mapping into exonic and intronic

regions were counted, but were discarded when overlapping multiple sequence features. The

CellRanger suite was used with default parameters and expected cell count of 5,000. Each
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library’s mapping quality was assessed and resequenced if a high number of low-confidence

base callings were identified. Empty droplets as identified by Emptydrops, integrated into

the CellRanger pipeline, were removed from the raw feature bc matrix.h5 and stored as fil-

tered feature bc matrix.h5. Two external datasets exceeded the read number per nucleus of

200,000 reads and were downsampled to 100,000 reads per nucleus on the molecule info.h5 file

to remove technical noise and overamplification of empty droplets. For this, the downsam-

pleReads function available in the DropletUtils package in R was used. After importing all

Filtered feature bc matrix.h5 files, adata objects were generated, aggregated, and metadata

was merged to the .obs data frame.

4.8 Doublet prediction using scrublet and solo

The aggregated anndata object was split into individual adata files by sample and doublet

scores with the scrublet package were computed on the unprocessed UMI counts stored in

adata.X (Wolock et al., 2019). Scores have been computed on a log- (scrublet score log) and

z-transformed (termed scrublet score z) UMI counts.

For solo score computation, sample-specific h5ad files were used as input (Bernstein et al.,

2020). The model json file for the learning contained the following parameters n hidden: 384,

n latent : 64, n layers : 1, cl hidden: 128, cl layers : 1, dropout rate: 0.2, learning rate: 0.001,

valid pct : 0.10. The softmax score was stored as output and stored in the column solo score.

4.9 Quality control filtering, batch correction and low dimensional mani-

fold embedding

For the murine pilot project, the R Seurat environment was used (Satija et al., 2015; Butler

et al., 2018). For the analysis of healthy and diseased human hearts, pythons scanpy was

used due to improved CPU usage (Wolf et al., 2018; Zappia and Theis, 2021).

For the aggregated anndata object, the number of detected UMIs (n counts), genes (n genes),

and fraction of UMIs mapping to the ribosomal (percent ribo) and mitochondrial genes

(percent mito) per nucleus were computed. Based on the distribution of quality parame-

ters, filtering criteria were applied: 300 ≤ n counts ≤ 15000, 300 ≤ n genes ≤ 15000,

percent mito ≥ 1%, percent ribo ≥ 1%, solo score ≥ 0.5.

At first, UMI counts were normalized to a total size of 10,000 using sc.pp.normalize, 1 was

added and values were logarithmized using the sc.pp.log1p function. The normalized counts

are then stored in adata.raw.X. To reduce lowly expressed or equally distributed genes for
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clustering (such as housekeeping genes), genes were filtered based on dispersion and mean ex-

pression, resulting in a set of highly-variable genes (HVG). For pre-dimensional reduction and

initial denoising principal component analysis was applied. For the Heart Cell Atlas, cell and

nuclei-separated adata objects were first independently batch-corrected with BBKNN with

”patient” as batch prior to umap embedding (McInnes et al., 2018; Polański et al., 2020).

Due to better performance in benchmarking experiments and cross-platform compatibility,

sample integration for failing hearts was done using harmonypy, followed by construction of

neighboring graph and umap embedding (Korsunsky et al., 2019; Tran et al., 2020). Leiden

clustering via sc.tl.leiden was used for graph-based clustering to detect cellular communities

(termed cell-type or -states) based on optimizing modularity (Traag et al., 2019). If the

spearman correlation of distinct cellular communities was very high and no high number

of distinguishing marker genes was identified, highly-correlating cellular communities were

merged to avoid over-clustering. SCCAF was used to additionally evaluate clustering robust-

ness (Miao et al., 2020).

For the Heart Cell Atlas, samples from different modalities (cells or nuclei) were subsequently

integrated in a supervised manner using scGen (Lotfollahi et al., 2019).

4.10 Differential gene expression analysis

Marker genes for cell types and states have been computed using a Wilcoxon rank sum test,

as implemented in scanpy. p-values were corrected for multiple testing by false discovery rate

(FDR) controlling using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

Fold changes are reported on log2 scale. Only genes with FDR ≤ 0.05 are reported.

To compute pairwise gene expression changes between control and genotype groups in the

DCM cohort, edgeR was redesigned to be compatible with single-nucleus RNA-seq data

(Robinson et al., 2010). Only genes with a minimum mean expression of 0.0125 in the

control and disease groups were tested. Raw UMI counts were summed up per cell type

or state per patient per region and considered as one sample. Only genes with absolute

log2FC of 0.5 and FDR ≤ 0.05 were considered as significantly changed. To receive robust

results from edgeR, only cell types or states with ≥ 5 nuclei were detected within ≥ 3

patients. Using this approach allows for the inclusion of more covariates in the model and gives

patients equal weight in downstream analysis independent of subgroup size or recovered nuclei

number. Intersections of differentially expressed genes were visualized using the UpSetR

package (Conway et al., 2017).
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4.11 Gene set score enrichment analysis

Enrichment of pathways and custom-defined gene sets was calculated using sc.pp.score genes

on library-size normalized, log-transformed and scaled UMI counts (Wolf et al., 2018). The

following gene sets were used: OSM pathway (Dey et al., 2013; Abe et al., 2019; Litviňuková

et al., 2020), TGFB-stimulation (curated from Schafer et al. (2017) using ldFC > 0.7 and

FDR of 0.05), Antigen presentation (MHCII) score (Shiina et al., 2009), and all expressed col-

lagen genes. Cell-cycle scoring was done using the scanpy function sc.pp.score genes cell cycle

according the manual.

4.12 Differential abundance analysis

Compositional data analysis was performed to determine genotype-specific differences in cell

type abundances, excluding unassigned nuclei. To account for the compositional nature of

the data, raw cell type counts were transformed using the centered log ratio (CLR) transfor-

mation per cell-type or -state C (Van den Boogaart and Tolosana-Delgado, 2008), as shown

in equation 1:

clr(c) =

[
ln

ci
g(c)

; ...; ln
cD
g(c)

]
(1)

where g(c) = D
√
ci...cD was the geometric mean of the proportions vector. c was the

proportions vector and D the total number of cell types or cell states. To assess statistical

differences between the control vs. genotype group, a linear model and t-test were performed

to determine the significance of the regression coefficient. The abundance of cell types or

states was assessed between genotypes and controls and compared among each other. P-

values were adjusted for multiple testing using the Benjamini and Hochberg method for all

performed tests. Differential abundance of cell types and states was computed separately

by region. Only samples with ≥ 10 nuclei per sample were included in the cell type and

state-specific analysis.

In addition to CLR values, percentages of abundance differences were reported for improved

interpretability. The proportional changes in mean percentages of control and disease samples

were reported. Reported positive values indicate higher abundance in the heart failure group.

In addition to CLR values, log ratios of abundances for cell type (or state) pairs between

genotypes and controls were ascertained and reported.
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4.13 Collagen quantification via hydroxyproline measurement

Extracellular matrix content was measured using hydroxyproline (4OH-P) as a surrogate

using a previously published protocol (Stegemann and Stalder, 1967; Kassner et al., 2021). In

short, 10 mg transmural tissue pieces were incubated at 6M HCl at 110C for 16h. Next, 4OH-

P in the hydrolysate was converted with Chloramine T to pyrrole. Pyrrole was converted

to a chromophore using p-di-methylaminobenzaldehyde at 60C, which was measured by a

photometer at 550nm. This assay was performed at the Heart and Diabetes Center (HDZ)

in Bad Oeynhausen in collaboration with the lab of Prof. Dr. Hendrik Milting.

4.14 Validation of differential gene expression and cell-states using single-

molecule fluorescent in-situ hybridization with RNAscope probes

Fresh-frozen tissue pieces were fixed overnight in 4% paraformaldehyde solution and then

placed in 30% sucrose in PBS until submerged. Fixed tissue pieces were embedded in OCT

using a cryo mold and sliced to 5 µm thickness on a cryotome. Tissue slices were mounted

on a Superfrost Plus slide and incubated for at least 1h at -20C in horizontal position. Slides

were stained with probes according to the manufacturer’s protocol for fixed-frozen tissue

(RNAScope Multiplex Fluorescent Reagent Kit V2, ACDBiotechne). Protease IV showed the

best results for digestion by measuring signal intensity. For each tissue positive and negative

control staining was performed using the accompanying control probes. Probe multiplexing

was done according to the manufacturer’s protocol. Sections were counterstained with DAPI

(Wavelength: 358/461 nm) and WGA (Biotium CF633 WGA Wavelength: 630/650nm).

Imaging was done using an LSM710 confocal microscope (Zeiss, for samples collected in

North America) with 20x or 40x oil immersion objectives (1.3 oil, DIC III) or an SP8 confocal

microscope (Leica, for samples obtained and processed in Germany) with a NA 1.4 63x oil

immersion objective. Following fluorophores were used and conjugated to the probes: Opal

520 (Wavelength: 494/525 nm), Opal 570 (Wavelength 550/570 nm), Opal 620 (Wavelength

588/616 nm), Opal 690 (Wavelength 676/694 nm) dyes (Akoya Bioscience). Spectral bleed-

through was corrected via subtraction using Fiji. WGA was diluted in PBS instead of HBSS

as recommended, as HBSS diminished the fluorescence signal of opal dyes or probe binding

to its RNA target.
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4.15 Computing differential cell-cell signaling using Cellchat

Cellchat was used to compute cell-cell interactions between cell states in LV and RV separately

using the database provided at: http://www.cellchat.org/cellchatdb/ (Jin et al., 2021). If

cell types are shown, communication probabilities across all cell states per cell type are

aggregated using the mergeInteractions() functionality. Differences in signalling were inferred

by comparing control samples with genotype subgroups separately. Cellchat was applied on

library-size normalized and log-transformed counts, and accounting for population size as

suggested by the developers. The output from the rankNet() function was used to generate

interaction heatmaps. P values were adjusted for multiple testing using false discovery rate

(FDR) controlling using the Benjamini-Hochberg method. Fold changes are reported on the

log2-scale.

4.16 Models of Genotype classification using traditional machine learning

models

4.16.1 Using traditional machine learning models for genotype subgroup classi-

fication

Machine learning models were trained on the raw counts with library size normalization, and

logarithmized with adding prior one pseudocount. The training was done on LV and RV

data separately, as joint training lead to reduced model performance. Model performance

was furthermore decreased when applying the model across all cell types, hence the anndata

object was split by cell type before training. The training was furthermore done using the

k-fold cross-validation. To avoid overfitting to patient-specific transcriptional signatures,

training was conducted by removing all nuclei from one patient, whose nuclei are then assigned

the most-likely genotype class (Leave one out cross-validation policy). At first, multiple

logistic regression, LASSO, and linear kernel SVM were applied due to the high level of

interpretability, which however showed low performance.

4.16.2 Using graph attention networks for genotype subgroup classification

The first graph attention model was published in 2020 Ravindra et al. (2020), whose model

architecture was here further developed. The described GAT architecture is based on the

PyTorch framework. This developed GAT model furthermore implements knowledge derived

from the modelling with traditional machine learning models, such as the cell type and

region separated models and leave-one-out-cross-validation training policy. Details on model
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architecture are published in Reichart et al. (2022). The model was developed in collaboration

with Nikolay Shvetsov and Prof. Dr. Christoph Lippert at the Hasso Plattner Institute.
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5 Materials and Software

5.1 Reagents and Equipment

Reagent/Equipment Producer Catalogue number

BSA Sigma-Aldrich A3059-50G

Chromium Next GEM Chip

G Single Cell Kit, 48 rxns

PN-1000120

10x Genomics PN-1000120

Chromium Next GEM Sin-

gle Cell 3 GEM, Library &

Gel Bead Kit v2.0, 16 rxns

10x Genomics PN-120237

Chromium Next GEM Sin-

gle Cell 3 GEM, Library &

Gel Bead Kit v3.0, 16 rxns

10x Genomics PN-1000075

Chromium Next GEM Sin-

gle Cell 3 GEM, Library &

Gel Bead Kit v3.1, 16 rxns

10x Genomics PN-1000121

DNA LoBind Tubes, 1.5 ml Eppendorf 022431021

DNA LoBind Tubes, 2.0 ml Eppendorf 022431048

DTT LIFE Technologies P2325

DynabeadsTM MyOneTM

SILANE

Thermo Fisher Scientific PN-2000048

EB Buffer Qiagen 19086

Ethanol Millipore Sigma E7023-500ML

Glycerin (glycerol), 50%

(v/v) Aqueous Solution

Ricca Chemical 3290-32

High Sensitivity DNA Kit Agilent 5067-4626

High Sensitivity D5000

ScreenTape/Reagents

Agilent 5067-5584

ImmEdge Hydrophobic Bar-

rier Pen

ACD Biotechne 310018
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Reagent Producer Catalogue number

KAPA Library Quantifica-

tion Kit for Illumina Plat-

forms

KAPA Biosystems KK4824

Low TE Buffer (10 mM

Tris-HCl pH 8.0, 0.1 mM

EDTA)

Thermo Fisher Scientific 12090-015

Magnesium chloride (MgCl,

1M)

LIFE Technologies AM9530G

NucBlue LIFE Technologies R37605

Nuclease-free Water Thermo Fisher Scientific AM9937

OCT-Compound/Tissue-Tek Sakura Finetek Germany sa-4583

Opal 520 Reagent Akoya Biosciences Inc. FP1487001KT

Opal 570 Reagent Akoya Biosciences Inc. FP1488001KT

Opal 620 Reagent Akoya Biosciences Inc. FP1495001KT

Opal 690 Reagent Akoya Biosciences Inc. FP1497001KT

PCR Tubes 0.2 ml 8-tube

strips

Eppendorf 951010022

Percoll VWR 17-0891-02

PI pellets Sigma-Aldrich 11873580001

pluriStrainer 40µm pluriSelect 43-50040-50

pluriStrainer 20µm pluriSelect 43-50020-50

pluriStrainer 5µm pluriSelect 43-50005-50

Polypropylene Conical Tube

(50ml)

VWR International 352070

Protector RNAseIn 40U/ul Sigma-Aldrich 03335402001

ProLong Gold Antifade

Mountant-10ml

LIFE Technologies P36930

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32854

RNAscope 4-Plex Ancillary

Kit for Multiplex Fluores-

cent Kit v2

ACD Biotechne 23120
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Reagent Producer Catalogue number

RNAscope 4-plex Negative

Control Probe

ACD Biotechne 321831

RNAscope 4-plex positive

Control Probe - Hs

ACD Biotechne 321801

RNAscope Multiplex Fluo-

rescent Reagent Kit v2

ACD Biotechne 323100

RNAscope Probe Diluent ACD Biotechne 300041

RNAscope Wash Buffer

Reagents

ACD Biotechne 310091

RNAseIn Plus 40 U/ul Promega N2611 (2500U) and N2615

(10000 U)

Round bottom Polystyrene

Test Tube (5ml)

Neolab 352235

Safe-Lock Tubes PCR clean,

DNA low bind

Sarstedt SARS72.706.700

Safe-Lock Tubes Ambra,

1.5ml

VWR International 0030120.191

Single Index Kit T Set A, 96

rxns

10x Genomics PN-1000213

Sodiumchloride (KCl, 2M) LIFE Technologies AM9640G

SPRIselect Reagent Kit Beckman Coulter B23318

Sucrose Sigma-Aldrich S0389

SuperaseIn 20 U/ul LIFE Technologies AM2696

Superfrost Plus microscope

slides

Thermo Fisher Scientific

Inc., Waltham, MA

J1800AMNZ

TempAssure PCR 8-tube

strip

USA Scientific 1402-4700

Tween 20, 10% Bio-Rad 1662404

Tris buffer, pH 8 (1M) LIFE Technologies AM9855G

Triton X-100 10% (v/v) Sigma-Aldrich T8787
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Reagent Producer Catalogue number

UltraPure SSC, 20x-1 L LIFE Technologies 15557044

Wheat Germ Agglutinin, CF

405M Conjugate

LINARIS 29028

Wheat Germ Agglutinin, CF

568 Conjugate

Biozol Diagnostica BOT-29077-1

Wheat Germ Agglutinin CF

633

BioTrend Chemikalien b-29024-1

X50 BLADE MB35 PRE-

MIER LP

Fisher Scientific 11992345

Table 6: Reagents and Equipment

5.2 RNAscope probes

Target gene Catalogue number

C1QA 485451-C2

CCL2 423811-C4

DAAM1 1047161-C2

DCN 589521

IL11 425281-C2

POSTN 409181-C3

TOP2A 470321-C3

Table 7: RNAscope probes
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5.3 Instruments and Pipettes

Machine Manufacturer

HyBEZ Hybridisierungssystem with Batch

Slide System

ACD Biotechne

Avanti J 26XP Beckmann Coulter

CM3050S Leica

FACSAria I BD

FACSAria II BD

FACSAria III BD

FACSAria Fusion BD

Centrifuge 5417R Eppendorf

Centrifuge 5810 R Eppendorf

Chromium Controller 10x Genomics

Chromium Next GEM Secondary Holder 10x Genomics

Magnetic Separator 10x Genomics

Pipette LTS L1000 Rainin

Pipette LTS L200 Rainin

Pipette LTS L20 Rainin

Pipette LTS L2 Rainin

Qubit Flourometer (4.0) Thermo Fisher Scientific

TapeStation Agilent

Vortex Adapter 10x Genomics

Vortex Mixer VWR

Waterbath 1003 GFL

Table 8: Instruments and Pipettes
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5.4 Software

Package name Version

Agilent Bioanalyzer 2100 Laptop Bundle

bcl2fastq 2.19.0

CellRanger pipeline 3.0.2

Fiji Image software 2.1.0, v1.53c

Jupyter Notebook 6.0.3

Leica Application Suite X software 3.5.2

Table 9: Software

Package name Version

anndata 0.7.3

bbknn 1.3.6

Cellchat 1.1.0

harmonypy 0.1

Keras 2.3.1

leidenalg 0.8.0

pandas 1.0.3

scanpy 1.5.1

SCCAF 0.0.10

scGen 1.1.4

scikit-learn 0.22.2

scipy 1.4.1

scrublet 0.2.1

seaborn 0.10.1

solo 0.1

tensorflow 1.13.1

umap-learn 0.4.2

Table 10: List of main Python packages and version number. Python 3.9 was used

for this project (Van Rossum and Drake, 2009). GPU-based tools were run on a Tesla-T4

with CUDA 11.0.
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Package name Version

BiocManager 1.30.10

BioBase 2.46.0

BioGenerics 0.32.0

CellChat 1.1.1

DropletUtils 1.6.1

dplyr 1.0.6

edgeR 3.28.1

ggplot2 3.3.3

igraph 1.2.6

IRkernel 1.1.1.9000

limma 3.42.2

magrittr 1.5

plyr 1.8.6

Seurat 3.2.2

SeuratData 0.2.1

SeuratDisk 0.0.0.9013

UpSetR 1.4.0

Table 11: List of main R packages and version number. R 3.6.3 was used for this

project (R Core Team, 2021).

Python and R environments are available as .yml files. Anaconda (4.8.3) was used as package

managers during this PhD project (ana, 2020) on the High Performance Cluster of the Max-

Delbrück Center for Molecular Medicine, Berlin. Scripts and functions established during are

published on github (https : //github.com/heiniglab/DCMheartcellatlas).

5.5 Data availability

Processed and annotated data were deposited on CZIs cellxgene (https://cellxgene.cziscience

.com/ collections/e75342a8-0f3b-4ec5-8ee1-245a23e0f7cb) and raw count matrices were up-

loaded on Zenodo (https://zenodo.org/record/6962685# .YuyuihxBzKE). Raw fastq files

were deposited on EGA under accession number EGAS00001006374. The supplementary

tables of this thesis are provided in a zenodo repository under doi 10.5281/zenodo.7312018.
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6 Results

6.1 Protocol optimization for isolation of intact nuclei in murine and hu-

man tissue

6.1.1 Purification and integrity of isolated nuclei

Due to the large rod-shape of Cardiomyocytes, isolation and sequencing of nuclei is the

preferred method of single-cell sequencing in the heart. A hypotonic homogenization buffer

(here HB) is used together with manually induced shear stress to rapture the outer cellular

membrane, leading to the separation of cytoplasmic content and intact nuclei. Due to the

excessive amount of cellular debris as observed under the microscope, purification is suggested

prior to loading on the 10x Chromium Controller. Different purification strategies for tissue

homogenates have been suggested, such as gradual filtration, density gradient centrifugation

and FACS sorting (for example Lake et al. (2019); Grindberg et al. (2013); Krishnaswami

et al. (2016); Lake et al. (2016)). One method is based on density gradient centrifugation

using a Percoll gradient. Purification by filtration uses multiple iterations of filteration with

reducing filter pore size to step-wise remove debris. For FACS sorting, previously NucBlue-

stained nuclei are sorted into a separate tube. Details on gating strategy are shown below.

To test effects of the purification method on nuclei quality and the amount of spurious

signals (ambient RNA), perfused murine left-ventriclar tissue were processed in the Dounce

homogenizer followed by three different purification protocols, loading on the 10x Chromium

controller and sequencing (Figure 7)). To evaluate nuclei quality, detected transcripts of all

genes per droplet are summed-up and plotted in numeric order, x- and y-axis are logarithmised

(”Barcode-rank plot”). Transcripts are quantified with a 10 nucleotide long unique molecular

identified (UMI), which is a primer bound to the 10x Gel bead. For the barcode-rank plot,

a double plateau-shaped curve is expected. The first plateau represents nuclei containing

droplets, the second showing the levels of ambient RNA. Only one sample was tested per

purification method.

The FACS purified nuclei showed the highest average number of UMIs compared to the

other methods, despite increased number of ambient RNA-derived UMIs detected in empty

droplets. As the average detected UMIs per nuclei are 5-fold higher in the FACS-sorted

group, with clearer separation between the both plateaus, FACS purification shows higher

quality nuclei yield by gating-out small sized particles.

FACS sorting furthermore allows the counting of isolated nuclei and recovery of low numbers
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Figure 7: Barcode-rank plots for three samples purified using filtration (red),

FACS (green) and density gradient centrifugation (blue). The detected UMIs per

droplet are shown on the y-axis. Droplets determined to contain a cell according to Cellranger

V2 are highlighted in light colors, droplets with no cells are shown in dark colors. The red

horizontal line demarks 100 UMIs. Adult murine cardiac tissue was used for this pilot.

of nuclei in high volume, which is more difficult to achieve with the other methods. Grad-

ual filtration for example has high nuclei loss in each filtration step, while density gradient

centrifugation is error-prone in a setting of low nuclei recovery. We consider FACS especially

suited for processing of smaller tissue pieces, such as apical cores, which are normally smaller

compared to tissue pieces obtained during heart explantation. Although the filtration and

centrifugation allow increased sample multiplexing, FACS sorting takes around 20 minutes

per sample, FACS sorting was chosen as the method to proceed for processing failing human

heart samples. Mild FACS sorting preserved nuclei integrity and yielded intact nuclei (Figure

8).
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Figure 8: Isolation of intact nuclei from adult human cardiac tissue. A) Cellular

homogenate before purification. Scale bar: 50µm. B) Homogenate after FACS purifica-

tion. Scale bar: 50µm. C) Assessment of nuclear blebbing after nuclei isolation and FACS

purification. Scale bar: 10um.

6.1.2 FACS purification strategies for unbiased cell type recovery

While FACS sorting nuclei, different bands are observed on the GFP-A vs. DAPI-A (Figure

9). The GFP-A measurement is used as a negative control for autofluorescence, while the

DAPI-A gating was used to isolate NucBlue stained nuclei. Proportions of sorted particles are

measured using the forward (FSC) and sidewards scatter (SSC). The P1 gate (determined

via SSC-A and FSC-A) is used to remove very small or oversized particles and select the

particles of interest based on size and granularity. P2 (FSC-W and FSC-H), measuring dis-

proportion of forward scatter or particle size, and P3 gates (SSC-W and SSC-H), measuring

disproportions in particle complexity, are commonly used to exclude doublets without the

need for area scaling. Here gates are used to remove extreme outlier particles. Most particles

(here 99.5%) are retained with the P2 and P3 gates.

Normally during FACS sorting, size gating is used to remove doublets, which are two

particles stuck to each other. To investigate the implications of such a gating procedure,

nuclei falling into the distinct DAPI-A bands were sorted into different tubes, processed and

sequenced individually. The recovered cellular populations were investigated using snRNAseq

(Figure 10).

Marker genes used for annotation are listed in chapter 2 of this monogram. While most

non-myocyte nuclei are in the P5 gate (yellow), most isolated cardiomyocyte nuclei are in

gate P6 (green). Previous reports have shown polyploidy in adult cardiomyocytes, suggest-

ing that additional bands reflect polyploid nuclei, in contrast to diploid nuclei, which were

possibly captured in gate P5 (Liu et al., 2010; Derks and Bergmann, 2020). Only nuclei from

cardiomyocytes showed a significant increase of detected genes and UMIs when comparing
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the P5 and P6 gates (Figure 11, 12). No distinct marker genes were identified separating

nuclei from gates P5 and P6.

This dataset helped to optimise the FACS gating strategy. No strict doublet filtering on

the FACS machine was performed. This allowed unbiased recovery of all cardiac cell types,

such as cardiomyocytes.
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Figure 9: FACS purification of nuclei from human heart tissue homogenate. The

P1 gate is used to remove very small particles representing cell debris. P4 is used to sort out

NucBlue-stained nuclei. The settings used to purify all samples are shown in Figure S2. The

sample used for this analysis was D21 (Sample ID BO H61 S0), a septal tissue piece from a

patient with DCM without known pathogenic mutation (PVneg).
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Figure 10: Cellular composition observed per FACS gates P4, P5, and P6. The

cellular composition is shown as stacks, with proportions per cell type. The absolute number

of nuclei included in this analysis shown on top of the bar plot. The gates from the FACS

sorting are shown in Figure 9. SMC: Smooth muscle cells. EC: Endothelial cells.
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Figure 11: Violin plots of numbers of detected genes per nuclei gated out in gates

P4, P5, and P6. The plot is split by identified cell type. Multiple testing adjusted p-values

are shown, if ≤0.05. SMC: Smooth muscle cells. EC: Endothelial cells.
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Figure 12: Scatterplot of numbers of detected genes and counts per nucleus. Data

points are colored by the gate.
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6.2 The fibroblast population of the healthy adult human heart revealed

by single-cell sequencing

At the beginning of this project, no standardized annotation strategy or comprehensive

marker list for all cell types of the adult human heart was established. The first studies

on the cardiac cell composition were published in 2016 and 2018 by multiple labs (DeLaugh-

ter et al., 2016; Pinto et al., 2016a; Skelly et al., 2018; Gladka et al., 2018). Due to technical

challenges, the mentioned studies report only a small number of samples, limiting the focus

to highly abundant cell types. Furthermore, studies with low sample sizes do not have the

statistical power to differentiate between states of the same cell type. Especially the hetero-

geneity of the cardiac non-myocyte fraction remained elusive until 2020, whose evaluation

was part of the Healthy Human Heart Cell Atlas Consortium (Litviňuková et al., 2020).

Single-cell and single-nucleus RNA-seq data of 6 regions of 14 donor hearts were generated in

the course of this project and jointly analyzed to identify cardiac cell types and states. My

focus within this Consortium was the analysis of the fibroblast population and region-specific

transcriptional signature. This was addressed by analyzing approximately 75000 fibroblast

nuclei and cells from multiple donors. Annotation results were then further refined when

comparing healthy human hearts to heart failure patients, which is summarized in chapter 3

of this thesis.

The results presented in this chapter are published in Litviňuková et al. (2020); Barallobre-

Barreiro et al. (2021); Quaife et al. (2022).

6.2.1 Marker genes to identify fibroblasts and other cell types in the heart

A marker gene list with specific cell type markers was collected based on literature research

and analysis of the generated scRNAseq and snRNAseq data.

Differentially expressed genes per cell type are returned when testing for significant enrich-

ment or depletion of a gene with a Wilcoxon rank-sum test (see Methods). Enriched Gene-

Ontology terms were then computed for the top 100 upregulated genes using GProfiler2

(Kolberg et al., 2020). Although this approach can often give quick functional insights into

identified clusters, no cell-type/-state label is returned. A far more efficient approach for an-

notation was to extract membrane-bound and secreted proteins from the list of upregulated

genes and continue with literature research. Lists of membrane-bound and secreted proteins

were obtained from the Human Protein Atlas (HPA) (Uhlén et al., 2015; Thul et al., 2017;

Uhlén et al., 2019). On top of that, pathway databases such as KEGG, Reactome or Wiki
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Pathways contain manually curated gene lists, which can then be used for gene set enrichment

analysis (Kelder et al., 2012; Fabregat et al., 2018; Kanehisa et al., 2021). Future single-cell

projects, especially in the heart, will benefit from the annotation efforts described in this

thesis and other projects published since 2017. A list of literature-known marker genes used

to annotate cell types is shown below (Table 12 and Figure 13).

Cell type Marker gene

Adipocytes ADIPOQ, GPAM, LEP

Cardiomyocytes TNNT2, MYH7, MYL2

Endothelial cells VWF, PECAM1, CDH5

Fibroblasts DCN, GSN, PDGFRA

Lymphoid cells THEMIS, CD8A, IL7R

Myeloid cells F13A1, C1QA, CD68

Neuronal cells NRXN1, NRXN3, PLP1

Mural cells

Pericytes KCNJ8, CD38, ABCC9

Smooth Muscle Cells MYH11, SLIT3, ITGA8

Mast cells KIT, CPA3, TPSB2

Table 12: Cardiac cell type marker genes. Mast cells here are part of the myeloid

cell population, but split up as a separate cluster in the Failing Heart Project described in

chapter 3.

It is worth highlighting, that fibroblasts showed similarities to adipocytes, endothelial

cells, mural cells, and neuronal cells (spearman rho=0.96 (all genes), 0.93 median correlation

with all cell types). Several in the literature described marker genes for fibroblasts don’t

show a specific expression exclusive for fibroblasts, but are also shared between multiple cell

types. Two examples are Cx45 (GJC1) and Cx40 (GJA5), which have both been described

to be specific for cardiac fibroblasts, but are detected with higher RNA levels in Mural cells,

endothelial cells and adipocytes.

6.2.2 scRNAseq and snRNAseq of fibroblast in the healthy adult human heart

In total, nearly 500,000 cells and nuclei were analyzed, delineating 9 different cell types (Fig-

ure 14A). Some cell types show distinct regional profiles, such as cardiomyocytes or fibroblasts

(Figure 14B). Fewer fibroblast cells were observed in scRNAseq data with a total yield of
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Figure 13: Dotplot shows selected marker genes of cardiac cell types. Dot size

represents fraction of expressing cells/nuclei within a cell type; color, mean expression. Ex-

pression was scaled from 0 (minimal expression across all states) to 1 (maximum expression

across all states).

2857 fibroblast cells across all donors (Figure 14C), indicating loss of FBs during isolation

or insufficient digestion. On average, 1% of the isolated ventricular cells are FBs compared

to 18% abundance in the snRNAseq data. This shows that snRNAseq is better suited for

studying cardiac fibrosis than scRNAseq. Transcriptomes of cells and nuclei correlated with

a spearman correlation of 0.75 across all fibroblast states. This difference is due to many

factors, such as differences in transcriptional complexity (detected UMIs per gene), enriched

identification of mitochondrial-genome-encoded and ribosomal genes, and nuclear export dy-

namics vs. cytosolic RNA stability (Figure 14D, E).
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Figure 14: Regional abundance of fibroblasts and quality metrics of fibroblast

cells and nuclei. A) UMAP embedding delineated 9 cell types. B) UMAP embedding

of the major cell types colored by region. Notably, atrial and ventricular cardiomyocytes

show distinct transcriptional signatures. C) Stacked bar plots show cell type distribution

across regions in scRNAseq (Cells) and snRNAseq (Nuclei). D) Scatterplot shows number of

genes (n genes) and number of UMIs (n counts) per fibroblast. On top and right probability

densities are shown for n counts and n genes. For scRNAseq more UMIs are detected per

gene. E) Violin plots show percent UMIs mapping to mitochondrial (left) and ribosomal

genes (right) for fibroblasts only. This figures were part of the publication Litviňuková et al.

(2020).
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6.2.3 Fibroblast heterogeneity in the healthy adult human heart

To evaluate similarities among different fibroblasts and identify fibroblast states, subcluster-

ing was performed. Five distinct fibroblast states were identified (FB1-5), plus two clusters

(FB6 and 7) resembling chimeric profiles with fibroblasts and vascular cells and cardiomy-

ocytes (Figures 15A-G). Whether these clusters represent true biological states, elevated

background RNA noise (soup), or multiplets is unclear. Using RNA in situ hybridization, no

overlap of CM and fibroblast marker genes in the same cell was identified, rather indicating

that those states represent multiplets.

FB1 showed only a low number of enriched markers, such as SCN7A, BMPER, or ACSM1

with no detection of specific marker genes. Due to their low number of discriminative markers

and increased proportion in the four ventricular regions (AP, S, LV, RV), this population was

termed canonical ventricular fibroblasts. In contrast, FB2 showed enriched expression for

CFH, ID4 and KCNT2. As for FB1 and FB2, canonical genes were similarly expressed in all

FB from the respective chambers, I propose that these genes define a basal, chamber-specific

FB expression program. This observation is in line with previously described differences be-

tween atrial and ventricular cardiac fibroblasts, such as stronger profibrotic response in the

atria, for example in the context of atrial fibrillation (Burstein et al., 2008) (Figure 15D).

FB3 significantly upregulated cytokine receptors such as OSMR and IL6ST with decreased ex-

pression of extracellular matrix proteins. Gene set enrichment analysis using the Oncostatin-

M pathway gene set showed elevated expression of genes involved in this pathway (Figure

15C) (Dey et al., 2013; Abe et al., 2019). Two fibroblast populations were identified with

upregulation of genes, involved in extracellular matrix production. FB4 showed upregulation

of TGFβ activated genes such as POSTN, TNC, and FN1, resembling activated fibroblasts.

In a collaboration with the Barton lab the physiological role of the microprotein encoded by

LINC01013 was studied, a gene that was so far annotated as non-coding. FB5, in contrast,

upregulated genes involved in extracellular matrix organization, remodeling, or cleavage, such

as matrix metalloprotease 2 (MMP2), PCOLCE2, or Fibulin 2 (FBLN2). FB3 were less abun-

dant in the left ventricle, while FB4 and FB5 are less abundant in the right atrium (Figures

15E). FB3-5 have been validated by using fluorescence in situ hybridization using RNAscope

v1 probes (Figures 15F, G).

The transcriptional signature per fibroblast cell state provides valuable information on study-

ing cell state-specific gene expression. For example, Quaife et al. have studied the microprotein-

encoding lncRNA LINC01013, which is higher expressed in TGFβ stimulated fibroblasts
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(Quaife et al., 2022). This Healthy Human Heart Cell Atlas allowed analysis of cell state-

specific expression of LINC01013, which was found to be enriched in fibroblasts and specifi-

cally expressed in ECM-producing, TGFβ stimulated FB4.
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Figure 15: Fibroblast states in the healthy adult human heart. A) UMAP embedding

delineates 9 cell-types. For subclustering, only those nuclei annotated as fibroblast (red) were

used. B) UMAP depicting FB states in all tissue samples. C) Dotplot shows selected marker

genes of FB states. Dot size represents fraction of expressing cells within a cluster; color,

mean expression. Expression was scaled from 0 (minimal expression across all states) to

1 (maximum expression across all states). D) Oncostatin M patway was enriched in FB3.

The gene list used for scoring can be found in Supplementary Table 12 of (Litviňuková

et al., 2020). E) Regional distribution per FB state. FB2 and FB3 are enriched in atria

(left and right), while FB1, FB4 and FB5 are enriched in ventricular samples (left, right,

apex and interventricular septum). Single-molecule fluorescent in situ hybridization targeting

LINC01013, fibroblast activated protein (FAP) and PTX3 confirmed F) FB4, FB5 and G)

FB3. DCN is used as a FB marker, C1QA for macrophages, nuclei are DAPI-stained (blue).

Scale bars, 5um. This figures were part of the publication Litviňuková et al. (2020).

6.2.4 Regional differences of fibroblast gene expression

Separate clustering of atrial and ventricular FBs recapitulated the populations described

above, such as an OSM-stimulated population in each chamber (aFB4 and vFB3) (Figure

16A-D). In addition, distinct chamber-specific extracellular matrix (ECM) producing FBs

were identified (aFB2 versus vFB2) (aFB1 versus vFB4) (Figure 16E). For example, while

COL15A1, COL6A6, and COL4A4 were higher expressed in the atria, COL8A1, COL6A3,

and COL1A1 showed elevated expression in the ventricles. Similarly, ECM modulators

showed chamber-specific expression patterns. Furthermore, other region-enriched gene signa-

tures were identified. For example, APOD, which is responsible with the lecithin:cholesterol

acyltransferase (LCAT) for esterification of cell-derived cholesterol (Francone et al., 1989),

was significantly higher abundant in the ventricles. CFH, a protein important for complement

activation and wound healing (Wu et al., 2009; Argenziano et al., 2019), was atrial enriched.

This was validated using single-molecule RNA fluorescent in situ hybridization (Figure 16G-

H).

Together with the lab of Manuel Mayr, the regional specificity of ECM genes was investi-

gated (Barallobre-Barreiro et al., 2021). ADAMTS5, the highest expressed ADAMTS gene

in cardiac fibroblasts cleaving proteoglycans such as versican, was higher expressed in the

ventricles than in atria. This finding was independently confirmed using proteomics data

(Figure S8C from Barallobre-Barreiro et al. (2021)). VCAN expression was downregulated in
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ventricles and higher expressed in the atria. Taken together, this dataset shows differences in

ECM composition in the different heart chambers suggesting different mechanical properties.
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Figure 16: Fibroblast states in the atria and ventricles. A) UMAP embedding de-

lineates 6 fibroblast states in the atria. B) Dotplot shows selected marker genes of atrial FB

states. Dot size represents fraction of expressing cells within a cluster; color, mean expres-

sion. Expression was scaled from 0 (minimal expression across all states) to 1 (maximum

expression across all states). C) UMAP embedding delineates 6 fibroblast states in the ven-

tricles. D) Dotplot shows selected marker genes of atrial FB states. Dot size represents

fraction of expressing cells within a cluster; color, mean expression. Expression was scaled

from 0 (minimal expression across all states) to 1 (maximum expression across all states).

E) Dotplot shows selected atrial and ventricular-enriched ECM genes. Dot size represents

fraction of expressing cells within a cluster; color, mean expression. Expression was scaled

from 0 (minimal expression across all states) to 1 (maximum expression across all states). F)

Pseudobulked average expression for ADAMTS5 and VCAN across cardiac fibroblasts in the

left atrium and ventricle per donor. G) Single-molecule RNA fluorescent in situ hybridization

targeting ventricle enriched APOD and CFH (atrial enriched) in an apical sample. DCN is

used as a FB marker, nuclei are DAPI-stained (blue). Scale bars, 5um. H) Dotplot shows

expression of ventricle enriched APOD and atrial enriched CFH. This figures were part of

the publication Litviňuková et al. (2020).
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6.3 From the Healthy Heart Cell Atlas to understanding heart failure

The Healthy Heart Cell Atlas allowed studying transcriptional and compositional changes of

previously characterized cell types and states in genetic cardiomyopathies, a common cause

of end-stage heart failure. Here in total 196 snRNAseq libraries from ventricular samples

of 61 heart failure patients and 18 healthy controls were analyzed for changes in cellular

composition and transcription. Common heart failure and genotype-specific signatures were

quantified, upending the current dogma that heart failure results in a final common pathway.

The results of this chapter have been published in Reichart et al. (2022), of which I am a

shared first author and co-corresponding author.

6.3.1 Patient samples

Heart failure patient samples were collected for snRNAseq from biobanks located at the Heart

and Diabetes Center (HDZ) in Bad Oeynhausen (Germany), the Harvard Medical School

(USA), the Mazankowski Hospital in Alberta (Canada), and the Imperial College London

(UK). Cardiac tissue sections from in total 61 genotype-stratified patients were available

(Figure 17), with an additional six healthy donor hearts obtained from the HDZ in Bad

Oeynhausen. The six healthy donors were combined with ventricular tissues from healthy

donors, which have been processed and published during the Heart Cell Atlas project, de-

scribed in chapter 4.2 of this thesis. In total 61 patients with pathogenic mutations in

different known DCM- and ACM-associated genes were included and compared to 8 patients

with no identified pathogenic mutation (Figure 17A). Major genotype subgroups (≤6 pa-

tients) of DCM comprised patients with mutations in LMNA, TTN, and RBM20 genes, and

for ACM patients with a mutation in PKP2. More males than females were in the study

cohort (Figure 17B), which is due to increased male prevalence of DCM and ACM (Lyden

et al., 1987; Fairweather et al., 2013). The majority of available cardiac tissue was obtained

from explanted ventricular tissues, both LV and RV samples were available and sequenced,

allowing comparison of left and right ventricular changes (Figure 17C). For tissue material

obtained during left ventricular assist device (LVAD) implantation, only the apical core, a

piece of the left ventricular free wall, was available. Samples of patients with rare mutations

or low sample size have been also sequenced but were not as deeply analyzed as the other

genotypes due to the lack of statistical power to define disease mechanisms (Figure 17D). All

sequencing libraries are now publically available to the scientific community to further study

genotype-specific differences in heart failure.
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6.3.2 Differences in clinical metadata between patients

Patients in individual genotype subgroups were analyzed for differences in clinical records.

This information is independent of the sequencing results and was evaluated after patient

sample collection from the biobanks. For patient characterization, hard data (measurable

parameters) and soft data (qualitative information) were collected, but only hard data were

statistically evaluated. Clinical information per patient were provided in T1 of the online

supplement.

Left ventricular inner diameter diastole (LVIDd, mm) and systole (LVIDs, mm) were highest

in RBM20 patients, with differences to TTN and LMNA patients (Figure 18A, B). RBM20

mutated patients showed the lowest age at transplantation and highest kidney function, quan-

tified by the estimated glomerular filtration rate (eGFR), compared to the other genotype

groups (Figure 18C, D). For LMNA and TTN patients, a Spearman correlation of -0.6 (p-

value=0.009) was observed for heart failure duration and eGFR. PKP2 patients showed the

highest right ventricular end-diastolic diameter (RVEDD) (Figure 18E). RBM20 patients

were the only DCM genotype where no cardiac resynchronization therapy (CRT) was re-

ported, while 4/12 in the LMNA group, 5/12 in the TTN group and 2/8 in the PVneg

group were reported. An implanted CRT device stimulates both left and right ventricles and

thereby helping to recover normal heart rhythm, but also fulfills the same functionality as a

implantable cardioverter defibrillator (ICD).
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Figure 17: Patients included in the heart failure cohort. A) Age and sex distribution

of patients with pathogenic variant (PVpos), no identified pathogenic variant (PVneg), and

healthy controls. The number of patients and donors per age bin are shown on the patients.

B) Number of males and females in the main genotype classes, genotypes with more or equal

to 6 patients. C) Tissue sources per genotype group. For explant tissue, multiple regions are

available, while for patients undergoing LVAD implantation, only apical cores were obtained.

D) For some genotypes only low number of patients were available, but have not been analysed

in depth. Figure A) was part of the publication Reichart et al. (2022).
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Figure 18: Evaluation of clinical parameters between genotypes. A) Left ventricular

inner diameter in systole and B) diastole (LVIDd, LVIDs), C) patient age at transplantation,

D) GFR and E) RVEDD distribution plotted across genotypes. Dotted lines indicate normal

ranges as reported in the clinical literature (Harkness et al., 2020; Mewis et al., 2006). A

GFR of 60 or higher is considered as healthy (Wetzels et al., 2007). Clinical information per

patient were provided in T1 of the online supplement
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6.3.3 Quality of the human heart failure samples

Patient samples were sequenced using snRNAseq. Criteria, which were determined to be

essential for determining library quality, are summarized in Figure 19: First, the barcode-

rank plot indicates droplets containing cells and the relative proportion of ambient RNA

levels in the dataset. Second, the cDNA yield (ng/mul) was determined to be an important

measure to exclude samples of low quality. This measure was returned as the most dominant

feature in a logistic regression model, trained on metrics obtained during and after library

preparation to classify libraries of high and low quality (data not shown). Figure 19A shows,

that samples with low UMI counts tend to have a low cDNA yield, which can be explained

by increased RNA degradation, comparable to the RIN value in bulk RNAseq. This value

is rarely reported despite its significant meaning for sample and library quality. Third, the

estimated number of nuclei in relation to the originally targeted nuclei number, which was

for this study always 5000 nuclei (Figure 19B). Sequencing libraries were generated in-house

and in two additional centers (Harvard Medical School and Imperial College London), with

12 healthy controls from Cambridge (CB) and Harvard Medical School/the Mazankowski

Hospital in Alberta being published in Litviňuková et al. (2020) as the Healthy Human

Heart Cell Atlas (HCA) (Figure 19C). Despite the large range of storage times, we have not

identified this as a predictor of poor quality, suggesting that preprocessing before freezing

and interruption of the cold chain are more determining factors of sample quality.
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Figure 19: Sample quality information for samples included in the DCM Heart

Cell Atlas study. A) Correlation of median UMI counts across all nuclei per sample com-

pared to the cDNA concentration measured per sample. Samples with low cDNA concen-

tration tend to have low numbers of UMIs recovered. B) Estimated number of nuclei per

sample. C) Origin of libraries included in this study. D) Distribution of storage time in years

for all samples. Sample quality were provided in T2 of the online supplement.
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6.3.4 Cell type and state annotation in heart failure

Cell-type and -state marker gene sets established during the healthy human heart project were

projected on a healthy control and heart failure combined manifold. Overall we identified

9 major cardiac cell types with 71 distinct states (Figure 20A). All cell types were also

characterized in the Healthy Heart Cell Atlas project. Pericytes and smooth muscle cells were

jointly annotated as mural cells, and mast cells showed a transcriptional distinct signature

from myeloid cells. For some cell types we identified new states, leading to a subdivision

of previously annotated cell states, which is highlighted with ”.”. One example is vFB1,

which is now separated into vFB1.0 (canonical ventricular FBs), vFB1.1 and vFB1.2, with

a distinct marker gene sets introduced in this chapter. Identification of new cell states is

due to the near doubling of nuclei (n=881,081) that are studied in this study compared with

the previously described 487,106 nuclei plus cells. Furthermore, processing of new samples

(control and disease) using the sensitivity-improved 10x V3 3’ chemistry revealed smaller

transcriptional differences. Results of the presented work have been partially published in

Reichart et al. (2022).
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Figure 20: Quality of the generated snRNAseq data. A) 4 cardiac regions were sam-

pled and nuclei were isolated. LV Apex was only available as apical cores received upon VAD

implantation. The other cardiac regions were sampled from explanted hearts. The obtained

880.081 nuclei, post quality filtering, identified nine cardiac cell types. B) Marker genes

per cardiac cell type. C) Barcode rank plot for the first 100.000 droplets. A two-plateau

(”shoulder-and-knee”) shape is optimal, in which the first plateau represents droplets con-

taining a nucleus. The lower plateau represents the level of technical noise, ambient RNA, in

the dataset. On the right, all droplets containing nuclei as identified by Cellrangers Empty-

Drops are shown (turquoise), while empty droplets (red) are not included in any downstream

analysis. D) Quality metrics for the nine cardiac cell types. n genes: Identified genes per

nucleus. n counts: Identified UMIs per nucleus. percent mito: Percentage of unique reads

mapping to the mitochondrial genome. percent ribo: Percentage of unique reads mapping

to ribosomal (RPS and RPL) genes. solo score: Softmax-score representing the likelihood of

nuclei being doublets. This figure was part of the publication Reichart et al. (2022).

6.3.5 Compositional analysis of cardiac cell types in the failing human heart

Before computing compositional changes of cardiac cell types during heart failure, the ro-

bustness of cell type abundance measurements was evaluated by comparing the captured

composition of independently sequenced tissue pieces from the same patients’ cardiac region.

This is of importance as fibrosis is not evenly distributed across the myocardium. Instead,

areas with high or low fibrosis content or different amounts of immune cell infiltrates are ob-

served. The impact of patchy fibrosis and a potential sampling bias on cell type abundance

measurements is unknown. 50 mg-sized tissue pieces from the same cardiac region were inde-

pendently processed, sequenced and cell-types were annotated (Figure 21A). A high Pearson

correlation of cell types abundances was observed in replicates (r=0.74-0.99), suggesting that

50 mg-sized tissue pieces show small bias by local effects (Figure 21B, C). Replicated samples

from the same patient were merged for downstream analysis.

To account for differences in compositional shifts across patient samples, cell-type and -state

proportions are tested for significance using prior center log ratio (CLR) transformed propor-

tions. Next, differences in composition between the left ventricular free wall, apical core and

intraventricular septum were computed. Cell type and state abundances were comparable

across the three regions and are therefore jointly reported as LV (Figure 21D).
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Figure 21: Regionality of cellular composition. A) Exemplary image of a processed

cardiac tissue piece. Scale bar: 1cm B) Composition of cardiac cell types per sample. Repli-

cates are separated by dashed lines. The analyzed nuclei number per sample are shown on

the right. C) Correlation of the proportion of each cell type (denoted in %) between the two

replicates within one sample. Dots are colored by cell type as indicated in B). Shape of dots

represents the replicates. For H40 (square), LV1 (Replicate1) was correlated against LV2 and

LVW (Replicate2). Both axes are logarithmic. D) A first iteration of subclustering was done

and differential abundance analysis was performed. At first, differences in abundance were

tested in apex vs. left ventricular free wall (top), followed by AP and FW jointly vs. septum

(bottom). Only a very low number of states were found to be significantly different, which

is why the three regions were jointly reported as LV. This figure was part of the publication

Reichart et al. (2022).
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Next effects of PVs on the cellular composition were tested (Figure 22A, B). Boxplots

with individual data points are provided in Figure S3. It should be mentioned that RV

samples were not available for all patients. Overall, similar trends in compositional changes

were observed across genotype subgroups. For example, in LV, CMs were depleted except for

the LMNA subgroup. Endothelial, myeloid, and lymphoid cells were more abundant except

for the PKP2 (ACM) group. The abundance of fibroblasts was slightly, but not significantly

increased. Mural cell abundance was not significantly altered. In RV, CMs were depleted

except for the TTN subgroup. EC abundance was significantly increased except for the

PKP2 and PVneg subgroups. The RBM20 and PVneg subgroup showed the highest increase

in ECs and myeloids compared to CMs in the LV (EC:CM 8, MY:CM 9.8 and 10.3, 14.6

respectively). Similarly in the LV, PKP2 shows the highest increase in the RV (EC:CM 11.4

and MY:CM 13.3).

6.3.6 Genotypes diversify cardiac fibroblast states

The increase of ECM was quantified by measuring levels of hydroxyproline using the Stege-

mann method (Figure 23A, B). Fibroblasts were determined to be the major cell type se-

creting collagens (Figure 23C). Fibroblast abundance however was not significantly increased

despite the histopathological increase in fibrosis.

Although overall fibroblast abundance was not increased, more collagens are secreted in

heart failure patients to various extents compared to healthy controls (Figure 23D). Col-

lagens furthermore showed genotype-specific upregulation, such as COL4A1 and COL4A2,

which were up-regulated in LMNA, TTN, and PKP2. In contrast, PVneg hearts upregu-

lated COL4A5 and COL24A1. Increased collagen secretion might be stimulated by various

profibrotic ligands, which are detected on fibroblasts (Figure 23E). Examples are TGFβ re-

ceptor (Schafer et al., 2017), weakly AGTR1 (Michel et al., 2016), PDGF receptor A (Gallini

et al., 2016), CTGF receptors LRP1, 6 and NTRK1 (Daniels et al., 2009). The expression

of profibrotic TGFβ2 was universally increased, supporting a mode of fibroblast auto stimu-

lation (Figure 23F). Myeloids and lymphoids additionally significantly upregulated TGFβ1.

LMNA, TTN, and PKP2 increased fibrogenic signaling receptor, and EGFR and PKP2 also

increased AGTR1 (Figure 23G), which enables EGFR transactivation (Itabashi et al., 2008;

Eckenstaler et al., 2021).
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Figure 22: Compositional analysis of control and failing heart samples in LV

and RV. A) Upper panel: Mean abundance of identified cardiac cell types in LV and RV

of healthy controls. Boxplots with individual data points are provided in Figure S3. Lower

panel: Proportional change of cell types in the genotype subgroups and control. The DCM

group aggregates all patients with DCM diagnosis. Color scale indicates increase in disease

(red) or control (blue). log2-fold changes were computed based on percentages. P values

indicated significantly altered proportional changes (FDR ≤ 0.05) based on CLR-transformed

proportions. B) Cell type abundance ratios in the aggregated DCM group and genotype

subgroups in LV (left) and RV (right). P values indicated significantly altered proportional

changes (FDR ≤ 0.05) based on CLR-transformed proportions. This figure was part of the

publication Reichart et al. (2022). Cell type abundances were provided in T3 and T4 of the

online supplement.
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Figure 23: Collagen accumulation was observed in heart failure patients. Collagen

content of cardiac tissue samples measured using the hydroxyproline assay on A) LV-free wall

and B) RV samples. p values of significant hydroxyproline enrichment in genotype subgroups

compared to controls are shown above. C) Dotplot shows collagen expression across all

cardiac cell types. Collagen expression was enriched in fibroblasts, and to lower extend also

observed in mural cells and adipocytes. D) Gene set score enrichment for collagen expression

in fibroblasts. E) Dotplot shows expression of pro-fibrotic receptors across cardiac cell types.

color, mean expression. Expression was scaled from 0 (minimal expression across all states)

to 1 (maximum expression across all states). F) Dotplot shows differential gene expression

of TGFβ1-3 across genotypes in LV FBs compared to controls. G) Dotplot shows EGFR

and AGTR1 expression across genotypes in LV FBs compared to controls. Size of dot shows

fold-change (logFC) and size significance (-log10(FDR)). Significant results are highlighted

with framing. Results of differential gene expression were calculated using edgeR. This figure

was part of the publication Reichart et al. (2022).

Four previously described ventricular FB states were reidentified during sub-clustering

(Figure 24A, B): vFB1.0, vFB2, vFB3 and vFB4. Additionally, two new states, vFB1.1, and

vFB1.2, showed distinct transcriptional signatures. This annotation is based on transcrip-

tional similarities, not on assumptions on cellular lineages (Figure 24C, Table T5). vFB1.1

was characterized by increased expression of APOD, APOE, and APOO and has been de-

scribed in other organs such as the lung as lipogenic fibroblasts (Travaglini et al., 2020).

vFB1.2 showed increased expression of multiple cytoskeletal genes such as DAAM1, NAV2,

GPC6, suggesting a migratory fibroblast state. GPC6 was furthermore previously reported

to be important during chondrocyte differentiation (Melleby et al., 2016). Both states have

been validated using single-molecule fluorescent in situ hybridization (Figure 24D, E).
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Figure 24: Fibroblast states identified in the healthy human and heart failure

patient combined manifold. A) UMAP embedding delineated 6 fibroblast states. B)

Dotplot shows selected marker genes of FB states. Dot size represents fraction of express-

ing cells within a cluster; color, mean expression. Expression was scaled from 0 (minimal

expression across all states) to 1 (maximum expression across all states). C) Comparison

of annotations per nucleus annotated in the Heart Cell Atlas and the current project. The

heatmap shows the fraction of healthy control nuclei in the heart failure dataset (y-axis) and

their FB state annotation in the Healthy Human Heart Cell Atlas (x-axis). Single-molecule

fluorescent in situ hybridization targeting D) APOD (vFB1.1) and E) DAAM1 (vFB1.2).

DCN is used as a FB marker (turqouise), nuclei are DAPI-stained (blue), cell boundaries are

delineated using wheat-germ agglutinate (green). Scale bars, 10um. This figure was part of

the publication Reichart et al. (2022).

Compositional analysis for fibroblast states was performed (Figure 25 and 26A). FB state

abundance, in contrast to FB abundance, was altered. For example, vFB2 was significantly

increased in LVs of TTN and PVneg hearts. Other DCM hearts (LMNA and RBM20) showed

only modest increase, with PKP2 showing no increase in LV, but a modest increase in RV.

Canonical vFB1.0 fraction was decreased across all DCM genotypes in LV. The ratio of
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vFB2:vFB1.0 however showed significant dysregulation for LV of TTN, RBM20 and PVneg

hearts. The fraction of vFB3 in contrast was modestly decreased in heart failure, with the

highest dysregulated vFB2:vFB3 ratio in TTN hearts (LV and RV) only.
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Figure 25: Compositional analysis of fibroblast states. A) Upper panel: Mean pro-

portion of FB states in LV and RV of healthy controls. Boxplots with individual data points

are provided in Figure 26A. Lower panel: Proportional change of FB states in the geno-

type subgroups and control. The DCM group aggregates all patients with DCM diagnosis.

Color scale indicates increase in disease (red) or control (blue). log2-fold changes were com-

puted based on percentages. P values indicated significantly altered proportional changes

(FDR ≤ 0.05) based on CLR-transformed proportions. B) Cell type abundance ratios in the

aggregated DCM group and genotype subgroups in LV (left) and RV (right). P values in-

dicated significantly altered proportional changes (FDR ≤ 0.05) based on CLR-transformed

proportions. This figure was part of the publication Reichart et al. (2022).

Differential gene expression analysis (DEA) elucidated a high number of differentially reg-

ulated genes, especially in canonical vFB1.0, activated vFB2, and ECM-remodelling vFB4 in

LV (Figure 26B, C). TTN and PVneg subgroups showed the highest number of uniquely dif-

ferential expressed genes in LV (Figure 27A, Table T6). Many genes are shared dysregulated

in heart failure (Figure 27B, Table T6), existing in parallel to a genotype-specific signature

in LV and RV. In LV, DCM subgroups showed an intersecting disease signature, which was

absent in RV.
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Figure 26: Compositional and differential gene expression analysis of fibroblast

states. A) Fibroblast state composition in the aggregated DCM group and genotype sub-

groups in LV (left) and RV (right). P values indicated significantly altered proportional

changes (FDR ≤ 0.05) based on CLR-transformed proportions. B) Number of differential

expressed genes based on the edgeR analysis per genotype subgroup (x-axis) and per cell

state (y-axis). Only significantly upregulated genes with log2FC ≥ 0.5 and FDR ≤ 0.05 are

shown. C) Only significantly downregulated genes with log2FC ≤ −0.5 and FDR ≤ 0.05

are shown. This figure was part of the publication Reichart et al. (2022).
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Figure 27: Intersection of upregulated genes across genotype subgroups. A)

Barplot showing the fraction of uniquely upregulated genes per genotype subgroup with

log2FC ≥ 0.5 and FDR ≤ 0.05 across all fibroblast states in LV (left) and RV (right). The

absolute number is shown in the bars. B) UpSet plot for all upregulated genes (Figure 26B)

depicting the intersection of detected upregulated genes across genotype subgroups. Only

unique genes are shown for A) and B), upregulated genes across multiple states are counted

as one. This figure was part of the publication Reichart et al. (2022).

Additionally, to study individual dysregulated genes, the enrichment of published gene

sets was computed. Below, two examples based on TGFβ and OSM signaling are reported.

A list of upregulated genes (log2FC ≥ 0.7, FDR ≤ 0.05) from TGFβ cardiac fibroblasts

was obtained from a bulk RNA-seq dataset, from which upregulated genes were subsetted

and an enrichment score was calculated (Schafer et al., 2017). The score per nucleus was

then averaged across all nuclei coming from one patient (Methods). TGFβ-stimulated genes
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were enriched in all DCM LVs in vFB2, with the highest enrichment in RBM20 LV (Figure

28A). Surprisingly, PKP2 showed no increase in TGFβ-stimulation despite increased colla-

gen in the LV. IL11 is a lowly expressed cytokine, showing the highest detection levels in

RBM20 mutated patients compared to the other patient groups, which was significant using

a hypergeometric test (Figure 28B). IL11 was previously shown to be the most upregulated

gene upon TGFβ-signalling in vitro fibroblasts and leading to strong profibrotic response,

confirmed in this dataset (Schafer et al., 2017) (Figure 28C). This might indicate that IL11

inhibiting-based strategies, which are currently being developed by Boehringer Ingelheim

might be most effective in RBM20 mutated patients.

In contrast, OSM-stimulated vFB3 showed decreased expression of OSM signaling genes with

the strongest depletion in TTN (Figure 28D). The abundance of CCL2, a cytokine responsi-

ble for monocyte and dendritic cell recruitment as shown in other tissues (Yang et al., 2020),

was significantly downregulated (Figure 28E, F). Myeloid cells were determined to be the

primary source of OSM, which is further discussed in the next section.
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Figure 28: Selected up-and down-regulated genes in vFB2 and vFB3 A) Gene set

enrichment of TGFβ-activated genes in vFB2 LV (left) and RV (right). Scores per nucleus

were computed per patient. B) Mean expression of IL11 across all vFB2 per patient. *,

p− value ≤ 0.05, hypergeometric test. C) Expression of IL11 across all vFB states. IL11 is

enriched in vFB2. D) Gene set enrichment of OSM-pathway genes across vFB3 LV. Scores

per nucleus were computed per patient. E) Single-molecule fluorescent in situ hybridization

targeting CCL2. DCN is used as a FB marker (turquoise), nuclei are DAPI-stained (blue),

and cell boundaries are delineated using wheat-germ agglutinate (green). Scale bars, 10um.

F) log-fold change (color) and FDR (dot size) of CCL2 in vFB3 LV as computed by edgeR.

The gene shows strong downregulation across all genotypes. This figure was part of the

publication Reichart et al. (2022).
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6.3.7 Myeloid states of the failing human heart

As part of the immune population of the human heart, we identified a cluster of myeloid

cells, which have been identified by the markers F13A1, C1QA, CD68. Myeloid cells ex-

panded during heart failure across all genotypes in LV (Figure 22A). In RV, the increase

of myeloids was not significant across genotype subgroups, but was most pronounced in the

PKP2 subgroup. The highest increase in relationship to cardiomyocytes in LV was observed

in RBM20 and PVneg subgroups, while in RV, PKP2 showed the highest reciprocal relation-

ship (Figure 22B). This increase in myeloid abundance per sample and improved sensitivity

in sequencing chemistry (10x V3) elevated marker gene identification, revising the previous

myeloid annotation used in the Heart Cell Atlas project.

In total, 14 subclusters were identified, with currently three unclassified states (Figure 29A,

Table T7). Myeloid cells were further divided into macrophages, monocytes and classical

dendritic cells (cDC). A cluster of proliferating myeloids was identified, with enrichment of

cells in G2M and S-phase (Figure 29B).

Non-classical CD16+ monocytes by FCGR3A (CD16), ITGAX (CD11c), and RIPOR2 was

the primary monocyte subtype. This cluster was negative for CD14 and showed lower ex-

pression of macrophage markers, such as F13A1 or NAV2. VCAN+ monocytes showed an

intermediate profile of non-classical monocytes and macrophages, for example higher ex-

pression of F13A1 compared to CD16+ monocytes, which is why we assume that VCAN+

monocytes represent a transitional state from tissue-infiltrating monocytes to macrophages.

This state showed increased expression of VCAN, LYZ, SORL1, TRERF1, and PLCB1 and

weak RIPOR2 expression in contrast to other macrophages. In contrast to monocytes TR-

ERF1, CIITA, and CSF3R were detected.

Three populations of LYVE1 positive populations were identified, with further distinct

marker gene expression (Table T8). LYVE1 high and LYVE1 low populations have previ-

ously been functionally characterized by Geetika Bajpai starting in 2018 (Bajpai et al., 2018,

2019) and could be subdivided in this study (Figure 29C). In their study, LYVE1 was anti-

correlated with CCR2, a marker prominent in recruited macrophage populations. A third

tissue resident LYVE1 population, termed LYVE1hi MHCII intermediate showed similarities

with the other two LYVE1 populations, such as the high expression of NAV2, SCN9A and

DAAM2, but was distinguishable by WASHC2A, EMP1, SLCO3A1. EMP1 was detected in

an early microarray experiment of LYVE1+ macrophages with an anti-inflammatory signa-
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ture (Pinto et al., 2012).

Dendritic cells were FLT3 positive, a marker also present in PBMC data, such as presented in

the online single-cell reference database Azimuth (Hao et al., 2021). Two dendritic cell pop-

ulations were identified (Table T9). cDC1 were identified by XCR1, BTLA, IRF8, BATF3,

and CADM1. cDC2 in contrast showed enriched expression for SIRPA, CLEC10A, ITGAM,

SIRPA and ZEB2 (Brown et al., 2019). I was not able to furthermore split cDC2A and

cDC2B based on previously reported markers. cDCs showed high expression of HLA genes,

CIITA and CD74 (Figure 29C, D), indicating the important role in antigen presentation of

cDCs (Murphy and Weaver, 2018).

Two NAMPT, ACSL1 and CEMIP2 enriched populations of recruited macrophages have

been identified with further subdivision. Although not explicity annotated, MP OSM were

functionally characterized (Abe et al., 2019). MP NFkB showed enrichment of NfKB genes

such as NFKB1, NFKBIA, and CCL3 (MIP − 1α), a chemokine binding to CCR1, CCR3

and CCR5 and functionally described to be involved in wound healing and recruitment of

lymphocytes and macrophages (Bhavsar et al., 2015).

The top five marker genes for all myeloid populations are provided in Figure 29F.

TREM2+ macrophages, which were characterized in multiple tissues (Jaitin et al. (2019)

termed them LAMs) and species (Rizzo et al., 2020), were described to arise from circulating

monocytes, respond to extracellular lipids and are associated with loss of metabolic home-

ostasis. TREM2 detection however was lower in snRNAseq data compared to scRNAseq.

FOLR2+ macrophages were identified by their FOLR2, C1QA, C1QB, C1QC, and FTL ex-

pression, a population characterised as anti-inflammatory and often found in tumors (Puig-

Kröger et al., 2009). One macrophage population showed elevated expression of interferon-

stimulated genes. As a similar interferon-stimulated gene (ISG) profile was found in mice,

this population was named accordingly (Dick et al., 2019). Their transcriptional signature

overlaps with previously reported tissue-resident CCR2+ macrophages (Bajpai et al., 2019).
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Figure 29: Myeloid states identified in failing human hearts. A) uMAP embedding

delineated 14 states, including three unclassified states. B) Cell-cycle classification across

myeloid states. Highest scores are assigned to a cluster, which was subsequently annotated

as proliferating myeloids. G2M- and S-scores were enriched in this state. C) Dotplot shows

selected marker genes for tissue-resident LYVE1 states. D) Dotplot shows MHCI and II gene

expression for all myeloid states. E) Dotplot shows selected marker gene expression for cDC1

and cDC2. F) Dotplot shows selected marker gene expression for all myeloid states. Dot

size represents fraction of expressing cells within a cluster; color, mean expression. For D)

and F), expression was scaled from 0 (minimal expression across all states) to 1 (maximum

expression across all states). This figure was part of the publication Reichart et al. (2022).

The most striking proportional shift was observed for proliferating myeloid cells, which

were nearly not detectable across all genotype subgroups (Figure 30, 31). TREM2 macrophages

were increased in LMNA and PVneg LV, and cDC2 were significantly enriched in RBM20.

MP ISG was increased in PKP2 LVs. The myeloid and lymphoid population showed the

highest number of transcriptionally distinct states compared to all other cell types (Reichart

et al., 2022).
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Figure 30: Proportions of myeloid states. Myeloid state composition in the genotype

subgroups in LV (left) and RV (right). P values indicated significantly altered proportional

changes (FDR ≤ 0.05b). This figure was part of the publication Reichart et al. (2022).
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Figure 31: Compositional analysis of myeloid states. A), B) Upper panel: Mean

proportion of myeloid states in LV and RV of healthy controls. Boxplots with individual

data points are provided in Figure 30. Lower panel: Proportional change of myeloid states

in the genotype subgroups and control. The DCM group aggregates all patients with DCM

diagnosis. The color scale indicates an increase in disease (red) or control (blue). log2-

fold changes were computed based on percentages. P values indicated significantly altered

proportional changes (FDR ≤ 0.05) based on CLR-transformed proportions. C), D) Cell

type abundance ratios in the aggregated DCM group and genotype subgroups in LV (left)

and RV (right). P values indicated significantly altered proportional changes (FDR ≤ 0.05)

based on CLR-transformed proportions. This figure was part of the publication Reichart

et al. (2022).

One focus during the analysis of the myeloid population was MP OSM, the myeloid popu-

lation stimulating vFB3, which showed a significant dysregulation in Titinopathies. MP OSM
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was slightly lower abundant in TTN compared to other DCM subgroups, with one outlier

patient having more than 30%. Oncostatin M secretion of this population was downregulated

in LMNA and TTN, suggesting a disturbed macrophage-fibroblast interaction especially pro-

nounced in TTN.

Another studied aspect within the myeloid population was antigen presentation. cDC2 was

significantly more abundant in RBM20 cases compared to other DCM subgroups, antigen

presentation was assessed by calculating MHCII gene enrichment across the major HLA-

presenting myeloid states (Figure 29D). MHC II was significantly enriched in RBM20 LV

in contrast to laminopathies (Table T10). Although PVnegs also showed enriched MHCII

gene expression, two patients were within the third quartile of the control group’s MHCII

expression distribution (Figure 32).

Figure 32: MHC II gene expression in myeloids. Mean enrichment score of antigen

presenting MHC II genes in LVs across antigen presenting myeloid states (cDC1, cDC2, MO

CD16, MO VCAN, MP FOLR2 and MP LYVE1 lo-MHC II hi) per patient. This figure was

part of the publication Reichart et al. (2022).
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6.3.8 Recognition of genotype-specific expression signatures using machine learn-

ing

We furthermore investigated whether transcriptional signatures are strong enough to con-

struct an unbiased high-accuracy mathematical model assigning correct genotypes to each

patient, independent of the previous identification of differentially expressed genes. Machine

learnings models allow the identification of discriminating signatures and quantify similarities

between predicted genotype subgroups (classes).

I determined multiple prerequisites for good model performance, which are independent of

the finally selected model architecture. At first, different cardiac cell types and states need

to be modeled differently due to different cellular responses, in line with differences in DEGs.

Secondly, cardiac regions need to be modeled differently. Previously described histological

features which discriminate LV and RV are reflected in the transcriptional signature. Pooling

LV and RV decreased model performance. Thirdly, the training needs to follow a per-patient

cross-validation training policy. A training policy that assumes that all nuclei are indepen-

dent observations and randomly splits the dataset to training and test data risks overfitting

to patient-specific transcriptional signatures. This tendency to overfitting was observed for

some classification pipelines, such as scanVI. The constructed latent space was independent

of the pathogenic variant, but rather overfit to a patient signature, observed after genotype

label shuffling per patient and repeating model training (Figure S4). The model should also

preferably work on all expressed genes per cell type and not a small subset of pre-selected

genes.

At first, machine-learning models which allow the identification of linear relationships be-

tween features (=genes) were selected, such as logistic regression (Figure 33). A coefficient

is computed for each gene, representing the genes importance for the classification.

The control group was classified from the genotype subgroups with high accuracy. The

AUC to differentiate genotype subgroups is between 0.62 and 0.82 (PKP2). From the ROC

curves it becomes apparent, that high true positive genotype classifications per nucleus can

only be achieved by high false positive rates, complicating the interpretation of feature impor-

tance. Model complexity was gradually increased to improve prediction, with graph-attention

models showing the best performance. The application of graph attention models on single-

cell data were firstly described in 2020 by David van Dijks lab (Ravindra et al., 2020), with

which high accuracy of 92% for a multiple sclerosis dataset with two classes was reported.

Together with collaborators, a graph attention model was developed with the above-described
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Figure 33: Multiclass genotype subgroup classification using logistic regression.

ROC curves showing a function of true and false prediction per nucleus per genotype subgroup

(color). The AUC per genotype is shown in brackets in the legend. ROC: Receiver operating

characteristic, AUC: Area under the curve.

prerequisites and suitable for multiclass classification.

Cell type-specific neighborhood graphs showed more connectivities within genotypes than

across different subgroups, suggesting that nuclei from patients harboring a pathogenic vari-

ant within the same gene have a lower euclidean distance between each other compared to

nuclei from patients with a PV in a different gene. As for LVAD-IP patients no RV samples

were available, and only LV cell types were considered to calculate the aggregated probability

(Figure 34 A-C). Due to the large number of nuclei needed for model training, only highly

abundant cell types were considered. All cell types were tested for their predictive poten-

tial, however, lower abundant populations (e.g. adipocytes, neuronal and lymphoid cells in

RV) returned errors and no valuation metric could be computed. Overall, the GAT model

shows good performance (accuracy 0.87 and F1 macro 0.91), independently confirming that

genotype subgroups carry unique transcriptional signatures.
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Figure 34: Probability of true genotype probability per cell type per patient

returned by GAT. A) Top: Relative number of nuclei which have been assigned with the

correct genotype subgroup label per patient. Only LV of the shown cell types was considered.

Bottom: Cell type probabilities were then aggregated to calculate a genotype probability per

patient. B) Relative number of nuclei which have been assigned with the correct genotype

subgroup label per patient’s RV. C) Relative number of nuclei that have been assigned with

the correct genotype subgroup label per patients LV of lower abundant cell types. This figure

was part of the publication Reichart et al. (2022).

6.4 Compatibility of established dataset with future projects

6.4.1 10x 3’ v3 to v3.1 differences

10x Genomics announced protocol changes for their 3’ Reagent kit in November 2019, lead-

ing to the release of the v3.1 chemistry. To allow comparisons with newly collected genotype

subgroups, compatibility with the 10x V3 and V3.1 chemistry were compared. Batch effects

overlaying disease effects from a newly added genotype subgroup potentially lead to the iden-

tification of false positive findings in the differential gene expression analysis. To quantify

these batch effects, tissue samples from the same region of already included patients were

reprocessed using the new v3.1 chemistry. Libraries have been downsampled to the same
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sequencing depth. No significant changes in the number of detected UMIs and genes were

observed and no differentially detected genes were identified, suggesting that no batch effects

are included when integrating new samples into this dataset (Figure 35). This further sup-

ports, that the proposed dataset will be a valuable source for additional future studies related

to dilated and arrhyhthmogenic cardiomyopathies.

Figure 35: Differences in Gene and UMI detection of the V3 and V3.1 chemistry.

No significant changes have been observed. Per patient variability exceeds differences of the

10x chemistry.
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7 Discussion

In my doctoral research project, I worked on understanding the cellular composition in the

healthy adult human heart and how the architecture of cardiac cell types changes during heart

failure, dilated and arrhythmogenic cardiomyopathy. To address this question, my project

was divided in three subprojects. At first, a protocol for single-nucleus RNA sequencing was

established and optimized in the lab to sequence all cell types in the human heart: from very

small, like endothelial cells, to large rod-shaped cardiomyocytes.

In the next phase, in collaboration with the Healthy Heart Cell Atlas Consortium as part

of the Human Cell Atlas (HCA), I annotated fibroblast subtypes and characterized regional

similarities (for example between left ventricular free wall and left ventricular apex) and het-

erogeneity, such as atrial vs. ventricular differences, within the 6 studied cardiac regions.

Knowledge of cell type and state annotation plus the sequenced healthy human heart samples

were then used to annotate cell types and states in the failing human heart. Here I studied how

the cell type and state compositional changes in heart failure, characterized newly identified

cell states and focus on transcriptional differences in the fibroblast and myeloid compartment

based on a revised myeloid annotation. This large-scale analysis revealed shared and distinct

mechanisms between genotype-stratified patient subgroups, supporting the observation that

heart failure is not a common final pathway. This atlas provides novel insights into improving

personalized treatment strategies for genetic cardiomyopathies.

7.1 Protocol optimization for isolation of intact nuclei

Large amounts of debris are found by microscopy in the tissue homogenate after Dounce

homogenization (Figure 8), impacting library quality. The nuclei isolation protocol however

needs to be mild enough to prevent nuclei blebbing, a process describing leaky nuclear mem-

brane. Three purification methods were compared: Purification by FACS sorting, filtration,

and gradient centrifugation. Methods were compared for applicability for cardiac tissue,

throughput and nuclei quality. FACS sorting, although being the method with the lowest

throughput, is the most flexible method, as it allows purification of nuclei from small tissue

pieces (e.g. apical cores), and showed the highest quality of recovered nuclei, which was eval-

uated using barcode-rank plots (Figure 7)). FACS gating strategies were optimized to have

an unbiased capturing of nuclei from cardiomyocyte and non-myocytes. This was observed

for cardiomyocytes, possibly correlating with features of polyploidy. Although multinucle-
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ation nor polyploidy determine the state of cardiomyocytes (Yekelchyk et al., 2019) and the

results of the differential gene expression analysis remain unchanged, biased sampling alters

the results of compositional analysis. Another advantage of FACS sorting is the possibility

of enriching and depleting antibody-labeled cell types.

Protocol applicability was furthermore evaluated for failing human hearts. It was previously

shown that that some pathogenic variants affect nuclear integrity, such as laminopathies (Par-

adisi et al., 2005). Levels of ambient RNA were compared between genotype subgroups to

evaluate increased levels of ambient RNA (Figure 36).

Figure 36: Ambient RNA per genotype subgroup. Median ambient RNA levels were

calculated per sample per genotype subgroup. No significant difference between genotype

subgroups was identified.

No significantly increased levels of ambient RNA were observed, suggesting that this pro-

tocol does not introduce a batch effect linked to the patient’s pathogenic variant. cDNA

recovery did also not show a significant correlation with storage time, supporting the appli-

cability of the technique to biobanked tissue.

7.2 The fibroblast population of the healthy adult human heart revealed

by single-cell sequencing

The second phase of the project consisted of the fibroblast cell state annotation of tissue sam-

ples from healthy human hearts, which were collected by the Heart Cell Atlas Consortium
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at two different locations (UK and North America). This comprehensive map of snRNAseq

data and non-myocyte scRNAseq data serves as a basis for further disease studies. snRNAseq

showed better capturing of fibroblasts compared to the applied scRNAseq protocol. Although

scRNAseq shows higher recovery of UMIs per gene, due to higher RNA content in the cytosol,

both protocols are suitable to call the same cell states in the fibroblast compartment (Figure

14). The size of this atlas of nearly half a million data points is twice as big as the second

largest heart cell atlas published so far (Tucker et al., 2020), with more homogenous sample

quality (see Figure S2A, B and D of this paper). Given the number of recovered fibroblasts in

the Heart Cell Atlas, interrogation of rare cell states is feasible with higher statistical power.

The generated fibroblast map is deposited here: www.heartcellatlas.org.

Canonical fibroblasts in the atria and ventricles were identified (FB1, 2), one subtype being

stimulated by Oncostatin M (FB3). snRNAseq data show that OSM is presumably secreted

by a specific recruited macrophage population, which was subsequently termed MP OSM+.

Two fibroblast populations were involved in connective tissue formation: ECM-producing,

TGFβ stimulated FB4, and ECM-organizing FB5, defined by the increased expression of

proteins involved in ECM turnover and organisation of collagen fibers. This showed that

different signalling pathways act on transcriptionally distinct fibroblast states, which jointly

form connective tissue. FB3 in contrast showed lowest expression of ECM proteins and

was instead defined by increased secretion of cytokines, such as CCL2, suggesting that this

state was rather involved in maintaining tissue homeostasis by communicating with other cell

types (Daseke II et al., 2020). Oncostatin-stimulated FB3 was most abundant in the atria,

especially the right atrium, while TGFβ activated FB4 was more abundant in the ventricles

(especially LV). Two states FB6 and 7 represented profiles of chimeric states with endothelial

cells and cardiomyocytes. No overlap of CM and fibroblast marker genes in the same cell

was identified by RNA in situ hybridization, indicating that those states represent multiplets.

This showed that despite rigorous QC filtering and doublet probability calculation cells pass

the filtering criteria. This was especially true for large-scale single-cell atlas projects, for

which a low number of nuclei passing QC filters per sample can accumulate and form in

the combined dataset own clusters. Separate clustering of atrial and ventricular FBs reca-

pitulated the populations described above, such as an OSM-stimulated population in each

chamber (aFB4 and vFB3) (Figure 15A-D), and distinct chamber-specific extracellular ma-

trix (ECM) producing and organizing FBs were identified (aFB2 versus vFB2) (aFB1 versus

vFB4) (Figure 15E). For example, collagen genes such as COL15A1, COL6A6, and COL4A4
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were higher expressed in the atria, while COL8A1, COL6A3, and COL1A1 showed elevated

expression in the ventricles (Figure 15E). COL15A1 was shown facilitate the adherence of

basement membranes to the connective tissue stroma (Bretaud et al., 2020). A study by

Skribic et al. have localized COL8A1 around fibroblast and the cardiac endothelium (Skrbic

et al., 2015). They furthermore described inhibitory effect of COL8A1 on RhoA signalling,

which is involved in FB migration. Mutations in COL6A3 are associated with muscular dys-

trophy, resulting in instability of the extracellular matrix (Marakhonov et al., 2018). The

function of COL6A6 and COL4A4 in the heart is unknown. I assume that differences in ECM

composition are adaptations to differences in pressure and mechanical stress in the atria and

ventricles. Similarly, ECM modulators showed chamber-specific expression patterns. Further

studies on the protein level are needed to define changes in the extracellular matrix, as ECM

turnover is additionally regulated by matrix metalloproteases (MMPs) and tissue inhibitor

of metalloproteinases (TIMPs) (Vanhoutte and Heymans, 2010).

The fibroblast atlas was used to study cell state-specific expression of uncharacterized genes

and to study regional differences in extracellular matrix production. LINC01013, an unchar-

acterized lncRNA encoding a small microprotein, was highest expressed in TGFβ stimulated

FB4 and co-expressed with other profibrotic markers such as TGFβR1, FAP, POSTN, or

COL1A1. This was supported by in vitro stimulation of fibroblasts with TGFβ, done at the

Barton lab (Quaife et al., 2022). The co-expression of LINC01013 with other TGFβ activated

genes supported the functional role of this translated lncRNA in defining the transcriptional

identity of FB4. This study furthermore supported that the function of unknown genes can be

studied with scRNAseq and snRNAseq data by computing coexpression or computing enrich-

ment of gene expression modules (Aibar et al., 2017; Kamimoto et al., 2020). In collaboration

with the Mayer lab, the regional expression of Versican (VCAN) and ADAMTS5 was studied.

Previous lab work has shown that ADAMTS5 controls VCAN turnover (Barallobre-Barreiro

et al., 2021). In addition to the regulation on the protein level, VCAN RNA was more abun-

dant in the LA and ADAMTS5 was higher abundant in the LV. Furthermore VCAN and

ADAMTS5 were both enriched in fibroblasts, with VCAN being additionally expressed in

one myeloid population.

Between 2020 and 2022, multiple groups have analysed their self-generated human ventric-

ular scRNAseq and snRNAseq data and characterized the fibroblast compartment (Tucker

et al., 2020; Kuppe et al., 2022; Koenig et al., 2022). The described fibroblast states in this

study were also described in at least one of these studies. The best annotation overlap was
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with Koenig et al. where all states were independently re-identified. Tucker and Kuppe et

al. only reported 4 fibroblast states each. All studies reported the canonical ventricular FB,

a TGFβ-stimulated and an ECM remodeling population.

7.3 From the Heart Cell Atlas to studying heart failure

Annotations from the healthy heart atlas were transferred to failing heart snRNAseq data to

study transcriptional and compositional changes in dilated and arrhythmogenic cardiomyopa-

thy. Here snRNAseq of LV and RV samples of in total 61 failing human hearts (46 patients

within the main genotype subgroups) was applied, yielding more than 880,000 high-quality

nuclei. In this dataset, major heart failure-causing mutations are analyzed and transcription-

ally compared to each other (Haas et al., 2015). snRNAseq allows understanding differences

in compositional shifts and understanding transcriptional changes of rarer populations, for

example immune cells or cell states, which are drowning in bulk RNAseq data. Additionally,

clinical information on all patient subgroups was statistically evaluated for genotype-specific

differences.

Differences in altered left and right ventricular geometry were observed. RBM20 patients

showed the highest increase in LVIDs and LVIDd, LMNA patients showed the lowest average

increase, with PKP2 patients showing no increase. Instead, PKP2 patients showed increased

RVEDD, implying a strong right-ventricular phenotype. This reflects the aggressiveness of

a pathogenic variant in RBM20, which is further underlined by the younger age of RBM20

patients. RBM20 patients were mostly between 20 and 30 years in contrast to the other

genotype subgroups, where most patients were on average 40 to 50 years old. It is known

that heart failure is a significant risk factor for kidney function, induced by increased blood

pressure building up in the kidney and reduced oxygen supply. Due to the aggressive progres-

sion and early need for transplantation, RBM20 patients have less damage of kidney function

(eGFR) compared to the other genotype subgroups. A recent study by Hey et al. identified

similar clinical characteristics of RBM20-mutated patients in comparisons to Laminopathies

(Hey et al., 2020). In their analysis, they report a mean age of 35 years at diagnosis for

RBM20 patients, as for LMNA patients it was above 40. Furthermore, RBM20 patients had

more dilated LVs compared to LMNA patients.

Upon cell type annotation of snRNAseq data, compositional analysis was performed per cell

type and significances were computed. Here we applied the center log transformation and

then calculated the significance to have a robust metric to account for the sum constraint of
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100 for relative proportions. Our method performed similarly to the bayesian model included

in scCoda (Buettner et al., 2021), or propeller, a linear model-based approach with arcsin

square root transformation of proportions (Phipson et al., 2022). CMs overall significantly

decreased in heart failure in LV and RV, except for LMNA LV and TTN RV. Overall com-

positional changes were less pronounced in LMNA than in the TTN group. This might be

influenced by the mutation, which not only affects cardiomyocytes, but all cell types in the

heart, leading not only to a decline of myocytes (Coste Pradas et al., 2020). In contrast,

endothelial and immune cells significantly increased in all DCM subgroups, with highest rel-

ative increase to CMs in PVneg and RBM20. The effects in DCM in LV were mirrored for

PKP2 patients in RV, reflected by altered RV geometry in ACM (Thiene et al., 2007). The

increase of endothelial cells suggests formation of new vessels or microvasculature to support

the stressed tissue with oxygen and nutrients, while the increased abundance of immune cells

reflects the inflammatory reaction. Fibroblasts were slightly, but not significantly increased

in heart failure despite the histopathological finding of fibrosis, confirmed by measuring hy-

droxyproline levels. This motivated further subcluserting of the fibroblast compartment.

The increase in nuclei number of samples processed with the more sensitive 10x 3’ V3 chem-

istry furthermore increased statistical power to delineate additional cell states. vFB1.1 with

increased expression of genes involved in lipid metabolism such as APOD, APOE, APOO

were delineated. vFB1.2 showed increased expression of genes associated with cytoskeletal

function, suggesting a migratory state. Both populations could not be separated from the

canonical vFB1.0 state in the Healthy Heart Atlas project. During sub-clustering, TGFβ

activated vFB2 were increased, with highly significant increase in TTN and PVneg hearts.

After cell state ratio analysis, canonical vFB1.0 were reduced, which explains the increased

proportion of vFB2. Based on marker genes for cell cycling, no significant proliferating popu-

lation was identified. This indicates that the secretory phenotype of fibroblasts dominated a

proliferative phenotype. The increase of vFB2, with approximately stable vFB4 abundance,

showed that fibrosis might result from imbalanced TGFβ-driven ECM production and or-

ganization. PKP2 hearts showed no proportional increase in vFB2, despite elevated levels

of collagen. This observation was either due to the altered half-life of collagens, or other

cell types increase their extracellular matrix production. Suspected cell states were mural

cells, especially SMC2 or PC3 (Reichart et al., 2022). In contrast to the increase of vFB2,

OSM-stimultaed vFB3 decreased. The reciprocal relationship was especially pronounced in

the TTN subgroup, indicating disturbance in the macrophage:fibroblast interaction axis.
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The comparison of differentially expressed genes in LV and RV identified a common heart

failure signature, a DCM-phenotype and genotype specific signature in LV. In RV, no DCM-

specific signature was identified, potentially reflected by the mirrored DCM LV-phenotype in

PKP2 RV. Differentially expressed genes were calculated by first creating a pseudobulk per

cell state per region per patient. So far, t-tests or Wilcoxon rank-sum tests, which estimate

the distribution of gene expression per group (e.g. cell type, sample, genotype subgroup) are

broadly used and implemented in Seurat and Scanpy for differential gene expression analysis.

By this, each patient was given a weight within the distribution depending on the recovered

nuclei number per sample. Pseudobulking UMIs and then applying edgeR accounts for dif-

ferences in nuclei recovery, as each patient was given the same weight in the model. edgeR

accounted for differences in library size, which was here reflected by differences in UMI counts

per nucleus and overall nuclei recovery per patient. Described fold changes in this publication

were hence on the patient level and not based on the distribution of UMI detection across all

nuclei from a genotype subgroup. edgeR applied to scRNAseq data was shown to reduce the

number of false positive discoveries (Squair et al., 2021).

The myeloid compartment was subclustered to study changes in the macrophage:fibroblast

interaction axis, indicated by the decrease of vFB3 in the TTN subgroup. Similarly to the

other cell states, annotation of the myeloid compartment benefited from the increased num-

ber of nuclei. Myeloids coarsely split into monocytes, macrophages and dendritic cells, which

could be further subdivided to in total 14 cell states, and 3 unclassified states. Macrophages,

monocytes, and dendritic cells increased in abundance during heart failure. The increase in

myeloid cells might arise from the recruitment of circulating monocytes, or proliferation of

tissue-resident macrophages at earlier stages of disease progression. At end stage, prolifer-

ation of myeloids was significantly downregulated in all genotypes. Furthermore, monocyte

recruitment via CCR2/CCL2 axis, which was driven by vFB3, with significant dysregula-

tion in TTN, was not downregulated in RBM20 or PVneg subgroups. Pro-inflammatory

TREM2+ macrophages were significantly more abundant in LMNA and PVneg hearts com-

pared to other genotype subgroups. Interferon-stimulated (ISG) macrophages were more

abundant in PKP2 LV compared to other genotype subgroups, which might to a preserved

left ventricular function during heart failure. Despite observed abundance changes in the

myeloid compartment, further studies are needed to define the role of the myeloid compart-

ment during disease progression. It is broadly accepted, that myeloid responses and cytokine

peaks differ during disease progression, suggesting additionally differences in the myeloid
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composition over disease progression (Liao et al., 2018; Dewald et al., 2005). Despite the

increase in macrophages, nearly no macrophage proliferation was observed and recruitment

of macrophages via the CCL2 axis was downregulated. Studying earlier disease time points,

or acute diseases using endomyocardial biopsies will provide insights into early macrophage

responses.

To confirm the results that heart failure is not a common mechanism, machine learning al-

gorithms were applied to classify the most probable mutated gene per patient based on the

transcriptional signature signature in the snRNAseq dataset. Interpretable linear machine

learning methods such as logistic regression showed low performance in discriminating dif-

ferent genotype subgroups in a multiclass classification setting. The algorithm was trained

on all expressed genes per cell type. Regularized linear models such as Lasso or Ridge re-

gression showed no significantly better performance. After comparing additional non-linear

algorithms, graph attention networks showed the best performance with high accuracy pre-

diction. This suggested that snRNAseq contains genotype-specific transcriptional signatures,

which are recognized by the GAT model. Some patients were classified with lower accuracy

by the GAT model. These patients were genotypically distinct from the other patients in

the genotype subgroup. For example, patient H10 of the PKP2 group additionally had a

mutation in MYBPC3. RBM20 was the subgroup with the highest number of patients not

being predicted with more than 75% certainty. RBM20 patients mostly had mutations in the

RS domain, either at amino acid position 635 or 638 (Figure 37). Two patients, H22 and H33

had additional mutations in MYBPC3 and TTN respectively, whereas H20s mutation was

located in the E-rich domain, showing a functionally distinct phenotype from an RS domain

mutated patient (Gaertner et al., 2020). Patient H15 was with an age between 50-59 years

older than the average of the RBM20 group. These results suggested that subgroups within

genotype subgroups exist, showing the importance to expand this heart failure dataset in the

future.

Interpretation of graph networks however remained challenging due to the inclusion of

topological features of the snRNAseq data-based kNN graph. Furthermore, the model used

node features and the adjacency matrix as inputs. Multiple approaches were proposed to find

local interpretations of decisions done by graph attention networks, such as GNNExplainer

or GraphLime (Ying et al., 2019; Huang et al., 2022). The applicability of these two methods

on our framework however needs to be evaluated.
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Figure 37: Location of mutations of patients in the RBM20 subgroup. The protein

track from Uniprot was plotted on top, with location of the RS domain highlighted. Each

arrow on top of the track corresponds to the mutation of one patient. One patient, H33, had

a double mutation in RBM20 (turquoise). The stacked barplot below shows the probabilities

per genotype per patient, as shown in Figure 34. On the right, the patient age (years) and

mutations in other genes are shown.
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8 Outlook

snRNAseq is a powerful technology to study changes in cell type composition and tran-

scription. However, there are multiple technical improvements to be considered for future

studies. For example, with the current snRNAseq protocols, a counted number of nuclei is

loaded on the 10x Chromium controller. The space however which was previously occupied

by those cells was unknown. Furthermore, spatial information of individual cell types is lost

during tissue dissociation. This readout might be of interest when characterising disease

with histological clear pattern, such as borderline myocarditis, perivascular fibrosis, fibro-

fatty plagues, cardiomyocyte hypertrophy or vessel morphology. TTN genoytpes for example

showed a strong dysregulation between the fibroblast:macrophage interaction axis, suggesting

genotype-specific changes in specific cellular neighbourhoods. RNAscope allowed imaging of

spatial neighbourhoods, but restricts analysis to four probes, limiting interpretability when

comparing multiple states. In this study, each cell state was stained with two markers: a pan-

cell marker, for example DCN for fibroblasts, and a cell state-specific marker. The emergence

of sequencing and imaging based spatial techniques, such as Spatial Transcriptomics, Slide-

seq, or Merscope might reveal new insights on how cellular neighbourhoods change in situ and

help to identify relevant cell-cell interactions. One challenge for imaging-based techniques is

the segmentation of cell types, which was adressed in this project by incorporating WGA

in the RNAscope v2 workflow. Due to differences in cell size and localization, segmentation

algorithms need to be specifically benchmarked on accuracy. For example, large CMs were

easy segmentable due to their large diameter, which was often more than 30µm. Cell types

located in the interstitial space such as fibroblasts however appeared to be very compressed

with little cytosole colocalizing to the nucleus.

Ambient RNA noise is a challenge in droplet-based snRNAseq technologies. Ambient

RNA furthermore complicates the identification of nuclei with low transcriptional complex-

ity, such as neutrophils (Hay et al., 2018). Computational tools for removing ambient RNA

were developed, such as SoupX (Young and Behjati, 2020). The disadvantage of this method

is the a priori definition of background genes and estimating the amount of ambient RNA

per droplet based on this subset. This assumption is violated in the heart, where the genes

with highest average noise are cardiomyocyte derived genes, removing biological relevant

transcriptional signals from those. As shown in figures 20 and 22, cardiomyocytes are the

most abundant cell type with expression of a high number of genes and transcripts per gene.
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A promising method was published in the last years, Cellbender V2, which also introduced

improved barcode-calling algorithms (Fleming et al., 2019). Alternative algorithms to Emp-

tydrops identifying cell-containing droplets with low UMI counts include also EmptyNN (Yan

et al., 2021). Applying those algorithms prior to clustering will improve robustness of marker

gene identification. The application of a background-removal will furthermore provide fur-

ther power on the identification of co-expressed genes and improves cross-tissue comparisons

between cell types and states.

This study focused on transcriptional changes in heart failure. Single-cell multiomics tech-

nologies will build a more refined understanding on disease mechanisms and cellular plasticity.

Measuring transcription and DNA accessibility in the same nucleus allows identification of

key transcription factors driving the fate of a cell type or state (Kuppe et al., 2022). First test

runs with the 10x multiome approach with human cardiac tissue showed decreased number

of UMI recovery, maybe due to a previous permeabilization step needed for the transposase.

Furthermore, Hoechst intercalates with DNA, increasing noise of snATACseq data. Further

benchmarking experiments are needed to improve the robustness of this protocoll for human

cardiac tissue.

Besides technical improvements, the collection of further samples is needed to understand

cardiomyopathy subtypes. Especially sex, age and ethnicity driven effects could not further

be studied here due to sample availability. Studying protective effects or risk factors associ-

ated with those variables might further improve disease prevention. Besides protective effects,

the Heart and Diabetes Center in Bad Oeynhausen developed a VAD explantation protocol,

leading to successful weaning of the VAD (Gyoten et al., 2021). The reason why weaning

is only for a subset of patients possible is incompletely understood. All patients included in

this study showed no improvement of cardiac function after VAD implantation. A genotype-

stratified analysis of successful weaned patients versus patients who were transplanted might

reveal potential protective mechanisms and help understanding cardiac remodelling.

In this study only 4 DCM genotype subgroups and 1 ACM subgroup was analysed, although

pathogenic variants in more than 40 genes are currently known to be associated with DCM

and ACM (Haas et al., 2015). Incorporating further genotype subgroups might help to identify

similar genotype subgroups, for example mutations of proteins located in the same subcellular

localization. In particular, it would be interesting to understand wether mutations in proteins

of thick or thin filaments cause a similar molecular phenotype. This is why all data collected

in this study, even those of rare genotypes, were annotated for cell types and states and were
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made publically available for further downstream analysis. Processed and annotated data

are deposited on CZIs cellxgene (https://cellxgene.cziscience.com/collections/ e75342a8-0f3b-

4ec5-8ee1-245a23e0f7cb) and raw count matrices are available on Zenodo (https://zenodo.org/

record/6962685# .YuyuihxBzKE).
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9 Supplementary Figures

Figure S1: Pilot study using free-walls of 3 wildtype and 3 Phospholamban

(PLN)-mutant mice. (A) 2-dimensional tSNE embedding of in total 12.000 nuclei. Each

nucleus was colored according condition (top) and sample (bottom). (B) Distribution of sam-

ple size required to reach significance for one gene. Analysis was repeated for all genes. A

large number of genes can be determined as differentially expressed with a low cohort size (n

10). Larger cohort sizes will yield deeper insights into the molecular mechanisms underlying

DCM.

126



Figure S2: FACS purification of nuclei from human heart tissue homogenate. The

P1 gate was used to remove very small particles representing cell debris. P4 was used to sort

out NucBlue stained nuclei.

127



Figure S3: Relative abundance of cardiac cell-types in control and failing heart

samples in LV and RV.
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Figure S4: Latent space learned by scanVI. A) Without label shuffling and B) with

label shuffling. For label shuffling, genotypes of patients were randomly assigned.
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