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Abstract

In this work, the calculation of the leading-colour two-loop QCD corrections for top-quark pair
production with an additional jet at a lepton collider is presented. The matrix element is de-
composed into vector and axial-vector currents and the currents are further decomposed into
Dirac spinor structures and form factors. The form factors are extracted with projectors. The
Feynman integrals are reduced to a quasi-finite basis in 6 − 2ϵ dimensions using IBP identities
and dimension-shift transformations.
The majority of master integrals belong to a double-box integral family. The master integrals
are computed by numerically solving systems of differential equations in the kinematic invari-
ants. Asymptotic expansions of the master integrals in the top-quark mass variable are used to
calculate initial conditions for the numerical differential equation solutions. The leading terms
of the expansion are obtained with the expansion by regions and the higher orders are calculated
by solving a system of equations obtained from applying the differential equation onto an ansatz
of the expansion.
The renormalized form factors and the leading-colour two-loop amplitude are evaluated numer-
ically to high precision at a benchmark phase space point. The results are cross-checked with
electroweak Ward identities and by numerically comparing the IR singularities with the expected
singularity structure.
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Zusammenfassung

In dieser Arbeit wird die Berechnung der farbführenden Zweischleifen-QCD-Korrekturen für
die Top-Quark-Paarproduktion mit einem zusätzlichen Jet an einem Lepton-Collider präsen-
tiert. Das Matrixelement wird in Vektor- und Axial-Vektorströme zerlegt und die Ströme wer-
den weiter in Dirac-Spinorstrukturen und Formfaktoren zerlegt. Die Formfaktoren werden mit
Projektoren extrahiert. Die auftretenden Feynmanintegrale werden mittels IBP-Identitäten und
Dimensionsverschiebungstransformationen durch eine Basis quasi-finiter Masterintegrale in 6−2ϵ
Dimensionen ausgedrückt.
Die Mehrheit der Feynmanintegrale gehört zu einer Doppelbox-Integralfamilie. Die Berech-
nung der Masterintegrale erfolgt durch numerisches Lösen von Differentialgleichungen in kine-
matischen Invarianten. Asymptotische Reihenentwicklungen der Masterintegrale in der Top-
Quarkmasse werden verwendet, um die Anfangsbedingungen für die numerischen Lösungen der
Differentialgleichungen zu bestimmen. Die führenden Terme dieser Entwicklung werden mit der
Expansion-by-Regions-Methode berechnet. Höhere Reihenkoeffizienten werden durch die An-
wendung einer Differentialgleichung auf einen Ansatz für die Reihenentwicklung bestimmt.
Die renormierten Formfaktoren und die farbführende Zweischleifenamplitude werden an einem
Referenzphasenraumpunkt zu hoher Präzision numerisch ausgewertet. Die Resultate werden
mit elektroschwachen Ward-Identitäten und durch numerische Vergleiche der IR-Singularitäten
mit der erwarteten Singularitätsstruktur überprüft.
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1. Introduction

In the previous years, the field of high-energy physics saw tremendous progress both on the
experimental and theoretical side, which was especially driven by the experiments at the Large
Hadron Collider (LHC). This progress, however, was built on a foundation stemming from a
long line of particle physics experiments which over the course of many decades discovered the
building blocks of the Standard Model of Elementary Particle Physics (SM). This includes for
instance the observation of the W and Z bosons at the UA1 and UA2 experiments at the Spp̄S
accelerator in 1983 [1–4] as well as the discovery of the top quark at the Tevatron in 1995 [5,6].
The Higgs boson was finally discovered by ATLAS and CMS in 2012 [7,8] as the last remaining
particle of the SM. This discovery, in a manner of speech, completed the SM and was undoubt-
edly one of the most important events in particle physics in the last decades.
Moreover, almost all current experimental observations at the LHC and other high energy physics
experiments are in very good agreement with theoretical SM predictions. It is particularly note-
worthy that the theoretical foundations of the SM, in particular the Glashow-Weinberg-Salam
theory [9–11] of the electroweak interaction as well as the symmetry breaking mechanism which
explains the generation of gauge boson masses in the SM [12–15], were formulated in the 1960s
and still describe current experiments to astonishing precision.
However, it is well known on a very fundamental level that the SM is incomplete since there
are several observations which the SM cannot explain. For example, the SM does not include
gravity, offers no explanation for the nature of dark matter and dark energy, cannot explain the
origins of the Baryon asymmetry, and provides no theoretical description of neutrino masses.
Furthermore, there are issues such as the Hierarchy problem, the Strong CP problem, and the
origin of the SM parameter values, which could arguably indicate that the SM is part of a more
fundamental theory.
A multitude of theories and models that could explain these observations have been proposed
over the years. However, no physics beyond the Standard Model (BSM) has been observed so far
at the LHC and other experiments, despite being extensively studied and searched for with great
effort. At most, the experiments observed as of now unexplained tensions with SM predictions.
For example, the experimental measurement and the SM prediction of the anomalous magnetic
moment of the muon exhibit a tension with a 4.2σ significance [16,17]. Measurements of rare B
hadron decays, in particular at the BaBar, Belle, and LHCb experiments, also exhibit tensions
with the SM predictions [18–32]. This might point to a violation of lepton flavour universality.
Recently published measurements of the W boson mass at the CDF II experiment at the Teva-
tron collider [33] also exhibit a significant tension with the SM prediction.

This raises the question: How to proceed from here? It goes without saying that no consensus
on the answer has formed yet. However, it is very likely that further experimental input will
play a major role in answering this question.
This raises the related question: What experiments will succeed the LHC? Currently, there are
several proposed future experiments implementing different experimental approaches. Proposed
lepton collider experiments include, for example, CLIC [34], the CPEC [35,36], the FCC-ee [37],
and the ILC [38]. Hadron colliders, such as the FCC-hh [39] and the SPPC [35,36] experiments,
also have been proposed. Hadron colliders generally allow to reach higher collision energies com-
pared to lepton colliders, which would allow to observe potential new physics at these energy
scales by direct production of BSM particles. Lepton colliders, on the other hand, typically allow
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1. Introduction

for more precise measurements due to cleaner initial states and smaller backgrounds compared
to hadron colliders, which makes it possible to search for BSM physics by looking for very small
discrepancies from the SM prediction. Lepton colliders hence effectively allow to indirectly
probe higher energy scales than their collision energy since heavy BSM particles would most
likely manifest themselves in corrections to lower-energy SM processes. This also means that
lepton collider experiments in particular require high-precision predictions for SM processes.
The central piece of theoretical modelling is the perturbative calculation of the hard scattering
process. Currently, next-to-leading order (NLO) precision in QCD is the standard at the LHC
while next-to-next-to-leading order (NNLO) QCD corrections, NLO electroweak corrections, or
even higher-order corrections are available for many important processes. Yet, there is still a
great demand for further higher-order corrections for many processes [40]. The LHC is expected
to record an integrated luminosity of 350 fb−1 by the end of Run 3 and the subsequent high-
luminosity LHC phase could yield an integrated luminosity of up to 4000 fb−1 [41]. This will
correspondingly reduce statistical uncertainties. Systematic effects, which are not affected by
increased luminosity, might as a result become the dominant uncertainty contribution. Going
beyond NLO QCD precision will consequently become mandatory in the future to ensure that
the theoretical predictions match the decreased experimental uncertainties.
Let us now come back to the topic of lepton collider experiments. The major purposes of the
proposed lepton colliders are precision measurements of Higgs boson properties, tests of elec-
troweak symmetry breaking in the SM, searches for BSM physics, and precision studies of the
top quark. The top quark is the heaviest known elementary particle with a mass close to the
electroweak symmetry breaking scale and the largest Yukawa coupling of all particles. It plays
hence a special role in the SM as well as in many BSM scenarios. Because of its unique prop-
erties, it is often hypothesized that new physics might be observed first in processes involving
top quarks. Hence, it is a promising approach to search for new physics which might manifest
itself in top-quark observables through slight deviations from SM predictions. In the SM, top
quarks are predominantly produced in top-antitop-quark pairs. The proposed lepton colliders
would be able to determine the top-quark mass with unprecedented accuracy by scanning the
production threshold of the top-antitop-quark pair production process and by measuring the
process at higher energies in the continuum. The measurement in the continuum allows not
only to determine the top-quark mass in a complementary way to the threshold measurement
but also to precisely test the electroweak interaction vertices and is therefore especially well
suited for searches of new physics modifying these couplings [42,43].
Top-quark pair production at lepton colliders has consequently received a lot of attention since
future lepton colliders were proposed, e. g. ref. [44, 45].

In this work, I am studying the top-quark pair production with an additional jet at the ILC
with a collision energy of 500 GeV. This process is an important part of the inclusive top-quark
pair production process and is hence sensitive to the top-quark mass. Additionally, it can be
used to search for anomalous gluon couplings [46] and modified vector boson couplings to the
top quark [47,48]. Furthermore, the ratio of this cross section with respect to the inclusive top-
quark pair production cross section can be used to determine the coupling constant of the strong
interaction αs. Moreover, this measurement can serve as a test of flavour universality of the
strong interaction by comparing with the coupling constant for light quark flavours, which can
be determined, for example, by measuring the three-jet production process [49]. Both three-jet
production and the here studied process are very well suited to extract the coupling constant of
the strong interaction as their cross sections are already at LO proportional to αs.
Three-jet production at lepton colliders, which has proven to be a key process for high-precision
studies of QCD and jet physics at LEP, also highlights the importance of higher-order correc-
tions. The NNLO QCD corrections [50–53], especially in combination with event-shape observ-
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ables [54–61], significantly improved the αs measurement with this process and changed the αs

prediction by 10% compared to the extraction using only NLO accuracy [62].
NLO QCD accuracy will not be sufficient to match the experimental precision of future lepton
colliders since expected experimental uncertainties for cross-section measurements are typically
below 1%. Limiting factors for ILC measurements of the top-quark pair production cross section
are expected to be theory uncertainties and experimental systematic uncertainties rather than
statistical uncertainties [44].
Consider, for example, the top-quark pair production process at the ILC. The NNLO QCD
corrections, which are known for both the inclusive cross section and differential distributions
of this process [63–66], yield estimated theory uncertainties of roughly 1%. Theoretical pre-
dictions at N3LO accuracy for the inclusive cross section are available by means of conformal
transformations and Padé approximations [67, 68], reducing the estimated theory uncertainties
to 0.3% [44]. Additionally, one-loop electroweak corrections are known and are comparable in
size [69]. Near the threshold, the N3LO QCD corrections for top-quark pair production are
available [70]. Cross-section measurements at the ILC with a collision energy of

√
s = 500 GeV

have in comparison expected statistical uncertainties of approximately 0.5% [45].
In contrast, top-quark pair production in association with a jet is known to NLO QCD [49,71–75]
so far and the cross section is subject to an estimated uncertainty of a few percent due to missing
higher-order corrections [49]. The NNLO QCD corrections would further reduce the uncertain-
ties to approximately 1 − 2%, as estimated in sec. 2.3. The order of magnitude of the statistical
uncertainties of the corresponding ILC measurements can be estimated by comparison to the
inclusive top-quark pair production process. The number of events for the e+e− → tt̄ process is,
very roughly, 10 times larger than the number of events for the process e+e− → tt̄j according to
ref. [49]. This puts the expected statistical uncertainty for the cross-section measurement of the
e+e− → tt̄j process also in the 1% to 2% range, which is comparable to the estimated theory
uncertainties at NNLO QCD.
Hence, I am investigating in this work two-loop contributions to top-quark pair production with
an additional jet at the ILC in order to improve the theoretical predictions for this important
process. This work is confined to the leading-colour two-loop QCD amplitude. The leading-
colour terms are expected to give the most significant numerical contribution to the NNLO
QCD corrections. A major building block of this work is the calculation of the relevant Feyn-
man integrals of the leading-colour amplitude, which are almost entirely part of a massive planar
double-box integral family.

Top-quark pair production in association with a jet is not only interesting from a phenomeno-
logical point of view but also offers great opportunities for exploring and extending two-loop
calculation technologies. The ‘simple’ initial state, which is not modified by the QCD correc-
tions, reduces the 2 → 3 process effectively to an 1 → 3 process. However, the combination of
4 involved kinematic scales with relatively complicated Feynman integral topologies makes this
calculation challenging, which is reflected by the fact that analytic results for the loop integrals
are currently not known. This process is in this sense at the current frontier of multi-loop cal-
culations.

When striving for high precision in phenomenological calculations, the task of computing one-
loop, two-loop, or even higher loop Feynman integrals, generally referred to as multi-loop Feyn-
man integrals, naturally arises. Although many different techniques for multi-loop calculations
already exist, there is no general way or algorithm that works for all cases in practice. Common
limiting factors are the number of involved kinematic scales and complicated especially non-
planar topologies.
Sector decomposition [76], for example, can be used to numerically evaluate general Feynman
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1. Introduction

integrals. Moreover, this technique has been implemented in several publicly available programs
such as Fiesta [77–80], SecDec, and pySecDec [76, 81–85] and it has been very successfully
applied to a large number of processes. This technique is discussed in detail, for example, in
ref. [86]. However, the application of sector decomposition can become computationally very
challenging due to several factors. Sector decomposition can give rise to a large number of
sectors and consequently a large number of numerical integrations. Precision demands might
require a large number of sampling points for the numerical integrations. Furthermore, integrals
must be numerically evaluated for each phase space point individually.
Another very successfully applied approach is based on Mellin-Barnes representations of Feyn-
man integrals. The Mellin-Barnes representation is obtained by introducing auxiliary integra-
tions, which allows to perform the integration over the loop-momenta in a universal manner.
The remaining Mellin-Barnes integrals can be computed either numerically or analytically by
determining the residues and then evaluating the resulting nested sums [87–92].
Many phenomenological calculations require the evaluation of a large number of linearly depen-
dent Feynman integrals. These integrals are often first expressed as linear combinations of basis
integrals, the so-called master integrals. This reduction is obtained by constructing integration-
by-parts (IBP) identities and Lorentz identities [93, 94] involving integrals of the same integral
family with different propagator exponents. The resulting system of equations is then solved for
the master integrals. This idea is applied systematically in the Laporta algorithm [95], which is
implemented in several publicly available programs [96–105].
The major advantage of this approach is that only the master integrals need to be calculated
instead of a typically much larger number of Feynman integrals occurring in intermediate steps.
Especially tensor reduction techniques, which express tensor Feynman integrals with scalar Feyn-
man integrals, are notorious for increasing the number of occurring integrals.
Moreover, master integrals obey systems of coupled differential equations [106–110], which can
be used for calculating Feynman integrals. This approach received in the past a lot of attention
and was applied very successfully for a large number of integrals. In some cases, a so-called
canonical master integral basis [111] can be obtained [112–114], which greatly simplifies the
differential equations and allows to evaluate the integrals directly as iterated integrals corre-
sponding to generalized polylogarithms [115,116]. General reviews on differential equations can
be found in ref. [117,118].
However, it is not always possible to obtain a canonical form for differential equations and not
all integrals can be expressed by means of multiple polylogarithms (MPLs). Moreover, it is
currently not known to which function class general two-loop or multi-loop Feynman integrals
belong. Promising candidates for such function spaces are elliptic generalizations of polyloga-
rithms such as elliptic polylogarithms [119–124]. A famous and intensively studied example of a
Feynman diagram requiring elliptic integrals is the massive two-loop sunrise diagram [125–140].
In addition, elliptic integrals appear in many phenomenological multi-loop calculations, e. g. in
top-quark and Higgs boson production at hadron colliders [141–149].

In this work, the differential equations are solved numerically, which allows to evaluate Feynman
integrals directly without determining and implementing the necessary mathematical functions
and without requiring the differential equation system to assume a special form. This approach
was investigated in ref. [128, 150–155] and has already been used in several non-trivial appli-
cations [151, 152, 156, 157]. However, solving differential equations numerically requires initial
conditions, which are in this work determined by expanding the master integrals asymptotically
in the small-mass limit.

Asymptotic expansions are power-logarithmic expansions and are extensively discussed, for ex-
ample, in ref. [158,159]. There are several commonly applied approaches to calculate asymptotic
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expansions, including in particular an expansion using Mellin-Barnes (MB) representations, the
expansion by subgraphs, and the expansion by regions.
The expansion in the Mellin-Barnes representation is, for example, described in ref. [159]. The
remaining coefficients can be evaluated numerically, which is, for example, implemented in the
Mathematica package MB.m [87], or they can be evaluated analytically by deriving expressions
containing nested sums [90–92,160,161]. Another numerical approach described in ref. [162] and
implemented in Fiesta [79] and HepLib [163] combines Mellin-Barnes techniques and sector
decomposition.
Asymptotic expansions can also be calculated with the expansion by subgraphs [158, 159, 164–
168], where the asymptotic expansion is obtained by summing over certain subgraphs of a graph.
This method can be applied to limits typically associated with Euclidean space, which includes,
for example, the large-mass limit and the off-shell large-momentum limit.

In this work, the expansion by regions is applied. This method can be used for more gen-
eral kinematical limits than the expansion by subgraphs, i. e. limits that can be formulated in
Minkowski space. Although the expansion by regions is well motivated [169] and proven to work
for certain Euclidean limits, there is no general formal proof that this method always yields the
correct results. The expansion by regions is hence often referred to as ‘experimental mathemat-
ics’ [170] in the literature but also has been successfully applied numerous times. The expansion
by subgraphs, in contrast, is generally proven to give the correct result [158,167].
The non-trivial task of determining all relevant regions is implemented in the Mathematica
package asy.m [171] and in the further improved versions asy2.m [172] and asy2.1.m. These
programs, in a nutshell, determine the regions by virtue of homogeneity conditions which are
reformulated as the geometric problem of finding a convex hull of a set of points for which
Qhull [173] is used. Both Fiesta and pySecDec also implement expansion by regions based
on the same geometric approach combined with sector decomposition [79, 85]. An alternative
approach to determine the regions is presented in ref. [174,175].

This work is structured as follows. In chapter 2, the notation and definitions used in this work
are summarized, which includes in particular the kinematics in sec. 2.1, the decomposition of
the amplitude into currents in sec. 2.2, and a summary of Feynman-integral-related definitions
in sec. 2.4. The renormalization scale dependence of the NNLO QCD cross section is estimated
in sec. 2.3. Chapter 3 gives an extensive review of the projection procedure. The calculation
of the master integrals of the leading-colour two-loop amplitude is presented in chapter 4. The
asymptotic expansions of the master integrals are first calculated in sec. 4.2 and are then used as
initial conditions for numerical solutions of systems of differential equations in sec. 4.3. In chapter
5, an overview of the calculation of the amplitude is given and numerical results for the leading-
colour two-loop amplitude as well as cross-checks of the results are presented. Conclusions are
drawn in chapter 6.
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2. Notation and definitions

2.1. Kinematics

γ, Z

e−

e+

t

t

g γ, Z

e−

e+

t

t

g

Figure 2.1.: Leading-order Feynman diagrams for e+e− → ttj.

The top-quark pair production process with an additional jet at an electron-positron collider
with centre-of-mass energy

√
s is depicted at leading order in fig. 2.1. At the parton level, the

leading-order kinematics is given by

e+(pa) + e−(pb) → γ∗/Z∗(p4) → t(p1) + t̄(p2) + g(p3), (2.1)

where the electron and positron are considered massless particles and the massive top quarks
are on-shell. Hence, the conditions

p2
a = p2

b = 0, p2
4 = (pa + pb)2 = s, p2

1 = p2
2 = m2

t , p2
3 = 0 (2.2)

are imposed on the external momenta. Momentum conservation yields

pa + pb = p4 = p1 + p2 + p3. (2.3)

The dimensionless and independent variables

m = m2
t

s
, x = (p1 + p3)2 −m2

t

s
= 2p1 · p3

s
, z = (p2 + p3)2 −m2

t

s
= 2p2 · p3

s
(2.4)

are used together with the variable s throughout this work. The variable

y = (p1 + p2)2 − 2m2
t

s
= 2p1 · p2

s
= 1 − 2m− x− z (2.5)

is not independent due to momentum conservation. The mass dimension only enters through
the variable s, which is often set to one. This effectively reduces the number of independent
variables from four to three. The dependence on s is restored afterwards by dimensional analy-
sis. In this work, the short-hand notation {xi} = {s, x, z,m} for the set of all four variables is
used.

Furthermore, many calculations in this work are performed numerically using the reference
values

s = (500 GeV)2, x = 1
5 , z = 1

20 , m = 289
2500 . (2.6)
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2. Notation and definitions

For calculations requiring external momenta, the corresponding benchmark phase space point

pa = (250, 0, 0, 250) GeV,
pb = (250, 0, 0,−250) GeV,

p1 =
(︂
237.5, 7.5

√
489, 0, 0

)︂
GeV,

p2 =
(︃

200,−6940/(3
√

489), 250
√︂

11/489/3, 0
)︃

GeV,

p3 =
(︃

62.5,−8125/(6
√

489),−250
√︂

11/489/3, 0
)︃

GeV (2.7)

is used. This phase space point is determined in app. A.1 by applying the parameterization of a
three-particle phase space given in ref. [176] to the kinematic constraints of the process at hand.
The physical phase space region is given by a positive Gram determinant, i. e.

∆3(p1, p2, p3) = −s3

4
(︂
m(x+ z)2 − xz(1 − x− z)

)︂
≥ 0. (2.8)

2.2. Amplitudes and currents
The amplitude M is split into the electron-positron initial state as well as vector and axial-
vector currents according to the coupling structure of the intermediately produced photon and
Z boson. The subamplitude Mγ containing the virtual photon only involves vector currents.
The subamplitude MZ only involves diagrams with a virtual Z boson and contains both vector
and axial-vector currents. The complete amplitude is given by

M = Mγ + MZ

= 4παe(−igs)tg
tt

(︄
Qe

s
· ϵµ4

(︄
Qt · Vt,µ +

∑︂
q

Qq · Vq,µ

)︄

+ 1
sin2 θw cos2 θw

· 1
s−m2

Z

· [ge
V · ϵµ4 − ge

A · ϵ̃µ4 ] ×

×
[︄
gt

V · Vt,µ − gt
A ·At,µ +

∑︂
q

gq
V · Vq,µ −

∑︂
q

gq
A ·Aq,µ

]︄)︄
. (2.9)

The electron-positron initial state is not modified by the QCD corrections that are studied in
this work. The initial state is hence substituted by ϵµ4 and ϵ̃µ4 , i. e.

ϵµ4 = v(pa)γµu(pb), ϵ̃µ4 = v(pa)γµγ5u(pb), (2.10)

which are effectively treated as polarization vectors of an off-shell photon or Z boson. The initial
state is restored when implementing the amplitudes.
The flavour-dependent coupling of the quarks to the virtual photon or Z boson gives naturally
rise to the following distinct currents:

• V µ
t includes all terms proportional to the vector coupling of the top quark to the γ or Z

boson,
• Aµ

t includes all terms proportional to the axial-vector coupling of the top quark to the Z
boson,

• V µ
q and Aµ

q are the corresponding vector and axial-vector currents where the massless
quarks q ∈ {d, u, s, c, b} couple to the γ or Z boson respectively.

The currents V µ
q and Aµ

q only consist of diagrams where the photon or Z boson couples to closed
fermion loops of massless quarks. The currents V µ

t and Aµ
t in contrast contain diagrams where
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2.2. Amplitudes and currents

the photon or Z boson couples to the external top-quark line as well as to closed top-quark loops.

The vector and axial-vector couplings gf
V and gf

A of the Z boson to the fermions f ∈ {e, t, q} are
given by [177]

gf
V = 1

2
(︂
T 3

f − 2Qf sin2 θw

)︂
, gf

A = 1
2T

3
f . (2.11)

The relevant couplings for the process at hand are

Qe = −1, Qu,c,t = 2
3 , Qd,s,b = −1

3 ,

ge
V = −1

4 + sin2 θw, gu,c,t
V = 1

4 − 2
3 sin2 θw, gd,s,b

V = −1
4 + 1

3 sin2 θw,

ge
A = −1

4 , gu,c,t
A = 1

4 , gd,s,b
A = −1

4 . (2.12)

The colour structure of the amplitude is rather simple as the entire amplitude is proportional
to one single colour factor given by |c⟩ = tg

tt
, i. e. a generator of the SU(Nc) in the fundamental

representation where the colour indices of the external particles are denoted with t, t, and g.
This also holds for all loop corrections.

The unrenormalized amplitude is expanded perturbatively as

Mbare
(︂
α0

s, {x0
i }, ϵ

)︂
= M(0)

bare

(︂
{x0

i }, ϵ
)︂

+ M(1)
bare

(︂
{x0

i }, ϵ
)︂ (︄α0

s

2π

)︄

+ M(2)
bare

(︂
{x0

i }, ϵ
)︂ (︄α0

s

2π

)︄2

+ O
(︂
α3

s

)︂
, (2.13)

where the index 0 indicates ‘bare’ quantities. Note that the unrenormalized top-quark mass
enters in {x0

i }. The unrenormalized amplitude contains UV and IR singularities, which are
regularized dimensionally by setting the space-time dimension to d = 4 − 2ϵ. The conventional
dimensional regularization (CDR) scheme, where all external particles have d-dimensional de-
grees of freedom, is adopted.
The UV divergences are cancelled by multiplicative renormalization, which is discussed in detail
in sec. 5.2. The renormalized gluon wave function Aa

µ and top-quark wave function ψt, which
are defined by

Aa
0 µ = Z1/2

g Aa
µ, ψt

0 = Z
1/2
t ψt, (2.14)

appear as global factors in the renormalized amplitude

Mren (αs, {xi}, ϵ) = Z−1
t Z

− 1
2

g Mbare
(︂
α0

s, {x0
i }, ϵ

)︂
. (2.15)

The renormalized quantities are denoted without any index. The mass renormalization, defined
by m0

t = Zmtmt, enters through the variable m. The renormalized coupling constant of the
strong interaction in an MS scheme with nl active flavours is defined by

α0
s =

(︄
µ2eγE

4π

)︄ϵ

Z(nl)
αs

α(nl)
s (µ). (2.16)

The prefactor fixes the mass dimension of the dimensionally regularized amplitude and fol-
lows similar conventions in the literature, e. g. ref. [178]. The number of quark flavours is
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2. Notation and definitions

denoted with nf , the number of heavy quark flavours is nh, and the number of light quark
flavours is nl. Throughout this work, the renormalization scale µ is set to the top-quark mass,
i. e. µ2 = m2

t = m · s. The renormalization scale dependence can be restored with the renormal-
ization group equation (RGE) [179,180].
A corresponding perturbative expansion is also introduced for the vector and axial-vector cur-
rents and the leading-order, one-loop, and two-loop coefficients are similarly denoted with V

(0)
t ,

V
(1)

t , V (2)
t and A

(0)
t , A(1)

t , A(2)
t respectively.

The amplitude is further expanded in the number of colours Nc. The leading-order amplitude
is proportional to N0

c . The one-loop amplitude contains terms proportional to N−1
c , N0

c , Nc and
the two-loop amplitude consists of terms proportional to N−2

c , . . . , N2
c .

In this work, only the leading-colour terms of the two-loop amplitude, i. e. terms of order N2
c ,

are calculated. The leading-colour terms are expected to be the numerically most significant
part of the two-loop amplitude due to the colour prefactor. This simplifies the calculation since
only 74 Feynman diagrams contribute to the leading-colour two-loop vector current as opposed
to 414 Feynman diagrams if all colour coefficients are included. The leading-colour two-loop
amplitude only involves planar Feynman diagrams, which are expected to be easier to calculate
than non-planar Feynman diagrams.

2.3. Estimated renormalization scale dependence at NNLO QCD

The uncertainties of theory predictions are estimated by varying the renormalization scale µ
around a central scale µ0 by a factor of 2. Although the NNLO QCD cross section is not fully
known yet, it is possible to compute the renormalization scale dependence with the RGE. The
renormalization scale dependence for the process at hand assumes the form

σ = αs(µ)
[︄

σ
(0)
0 +

(︃
αs(µ)

4π

)︃(︄
σ

(1)
0 + σ

(1)
1 ln

(︄
µ2

µ2
0

)︄)︄

+
(︃
αs(µ)

4π

)︃2(︄
σ

(2)
0 + σ

(2)
1 ln

(︄
µ2

µ2
0

)︄
+ σ

(2)
2 ln2

(︄
µ2

µ2
0

)︄)︄]︄
+ O

(︂
α4

s

)︂
. (2.17)

The cross section to all orders in αs must be independent of µ, i. e.

µ2 dσ
dµ2 = 0. (2.18)

Calculating the left-hand side of eq. (2.18) by applying

µ2 dαs

dµ2 = −αs

(︃
β0 + αs

4πβ1 + O
(︂
α2

s

)︂)︃
(2.19)

and expanding in αs gives a system of equations, which yields the identities

σ
(1)
1 = β0σ

(0)
0 , σ

(2)
1 = β1σ

(0)
0 + 2β0σ

(1)
0 , σ

(2)
2 = β2

0σ
(0)
0 . (2.20)
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Figure 2.2.: Estimated renormalization scale dependence of the LO (blue), NLO (green), and
NNLO (red) QCD cross sections. The corresponding scale variation between 0.5mt

and 2mt is highlighted with horizontal bands.

The required coefficients of the QCD beta function [181,182] are

β0 = 11
3 CA − 4

3TFnf ,

β1 = 34
3 C

2
A − 20

3 CATFnf − 4CFTFnf (2.21)

with CF = N2
c −1

2Nc
, CA = Nc, TF = 1

2 , and nf = 6.
The full renormalization scale dependence can be restored by calculating σ

(0)
0 , σ(1)

0 , and σ
(2)
0 .

The theory uncertainty for the NNLO QCD cross section is estimated by making the following
assumptions: the coefficient σ(1)

0 is chosen such that the NLO QCD corrections are positive and
amount to approximately 10% of the LO cross section and σ(2)

0 is assumed to have a comparable
size to σ(1)

0 . The results of this estimate are shown in fig. 2.2.
The leading-order cross section is, strictly speaking, independent of µ. The one-loop running of
the coupling constant αs is used for a rudimentary uncertainty estimate, yielding uncertainties
of approximately 10%. This gives the blue curve in fig. 2.2. The scale variation is reduced
to approximately 4% by the NLO QCD corrections, as indicated with the dashed green line
in fig. 2.2. The NNLO QCD cross section, which is shown in red, has an even smaller scale
dependence corresponding to an uncertainty of approximately 1% to 2%.

2.4. Feynman integrals

2.4.1. Introduction

The notations and definitions regarding Feynman integrals that are used in this work are sum-
marized in the following. When performing loop calculations, one typically encounters tensor
Feynman integrals of the form(︄

L∏︂
i=1

∫︂ ddki

iπd/2

)︄
kµ1

1 kµ2
1 . . . kν1

2 k
ν2
2 . . .

t∏︂
j=1

1
P

nj

j

(2.22)
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2. Notation and definitions

in intermediate expressions. For this general L-loop Feynman integral, the integration is per-
formed over the L loop momenta ki, which in the case of tensor Feynman integrals can also
appear in tensor structures in the numerator. The tensor structure in eq. (2.22) is indicated by
(kµ1

1 . . . kν1
2 . . . ). The propagators are given by Pj = l2j −m2

j +iε, where lj is a linear combination
of loop momenta ki and external momenta pi and the mass of the virtual loop particle is mj .
The exponents of the propagators, which are denoted by ni in this formula, are integers. The
number of propagators with positive exponents is t. Feynman integrals are in general divergent
in d = 4 space-time dimensions. The singularities manifest themselves in dimensional regular-
ization, where the dimension is typically set to d = 4 − 2ϵ, as poles in ϵ.
Evaluating tensor Feynman integrals directly is possible. For example, see ref. [183–185] for
references of appropriate methods and their applications. This approach typically requires the
numerical evaluation of a comparatively small number of integrals, but the numerical evaluation
has to be performed for each phase space point separately.

Very often it is beneficial to express the tensor integrals with scalar Feynman integrals with
positive propagator exponents ni, which is known as tensor reduction. Although the tensor
integrals are typically replaced by a larger number of scalar integrals in intermediate expressions,
the resulting scalar integrals are usually easier to handle and can be reduced to master integrals
using IBP relations.
After performing a tensor reduction, only scalar Feynman integrals of the form

I(d)
(︂
{si}, {m2

i }
)︂

=
(︄

L∏︂
i=1

∫︂ ddki

iπd/2

)︄
N∏︂

j=1

1
P

nj

j

, (2.23)

which are functions of the kinematic invariants {si} and the internal masses {m2
i }, remain in

the amplitude.
In intermediary steps, scalar Feynman integrals of this form with negative exponents can also
occur. Negative exponents can arise in Feynman integrals when scalar products involving exter-
nal and loop momenta in the numerator of tensor integrals are replaced with linear combinations
of inverse propagators and kinematic invariants. The number of independent scalar products
involving loop momenta for a given L-loop Feynman integral with E external momenta is

N = LE + L(L+ 1)
2 . (2.24)

Typically, the number of independent propagators t in a given Feynman integral will be smaller
than N and hence N−t auxiliary propagators need to be introduced in order to uniquely express
all possible scalar products with inverse propagators. When working with Feynman integrals,
so-called integral families, which are essentially sets of N independent propagators and auxiliary
propagators, are often defined. Integrals of a given integral family can be identified by listing
their exponents and can be denoted with I

(d)
n1,n2,...,nN .

For example, the process at hand involves 3 independent external momenta and hence one-loop
integral families consist of 4 propagators and two-loop integral families consist of 9 propagators.
The most complicated Feynman integrals which occur in the one-loop calculation in sec. 5.1.2
are box integrals, i. e. Feynman integrals with 4 propagators and 4 external legs, for which no
auxiliary propagators are required. The leading-colour two-loop master integrals which are cal-
culated in chapter 4 involve double-box integral topologies with 7 propagators and two auxiliary
propagators.

Furthermore, the number of propagators with positive exponents t, the sum of all positive
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2.4. Feynman integrals

exponents r, and the sum of all negative exponents s are given by

t =
N∑︂

j=1
Θ
(︃
nj − 1

2

)︃
, r =

N∑︂
j=1

njΘ
(︃
nj − 1

2

)︃
, s = −

N∑︂
j=1

njΘ
(︃1

2 − nj

)︃
, (2.25)

where Θ(x) refers to the Heaviside step function. This notation follows common definitions in
the literature [102,104,105,186]. In addition, the sector S of a Feynman integral is defined by

S =
n∑︂

j=1
2j−1Θ

(︃
nj − 1

2

)︃
, (2.26)

which effectively assigns a number to a set of propagators. Any sector S′ corresponding to a
subset of the propagators of sector S is referred to as a subsector of S.

2.4.2. Tensor integral reduction

At the one-loop level, the Passarino-Veltman method [187], one of the first tensor reduction
schemes ever developed, is still often used for the reduction of tensor Feynman integrals. More-
over, extensions and modifications of this method as well as entirely different approaches were
developed in particular to include tensor integrals with more than four external legs and to
avoid numerical instabilities that are often associated with vanishing Gram determinants in
denominators. Furthermore, there are several software packages available that can numeri-
cally evaluate one-loop tensor integrals or automatically perform the reduction to scalar inte-
grals. See for extensive discussions and references to the tensor reduction methods, for example,
ref. [183,185,188]. However, the Passarino-Veltman method cannot be applied beyond the one-
loop level.
A tensor reduction method that can also be applied to multi-loop Feynman integrals was de-
veloped by Tarasov [189]. A very short overview of this method is given in app. A.2. In this
method, tensor integrals are reduced to scalar integrals in equal or increased space-time dimen-
sions and with increased propagator exponents. Dimension-shift transformations can be used
to transform the scalar integrals to the desired dimensionality and IBP relations can be used to
reduce the integrals with increased propagator exponents to master integrals.
As explained in app. A.2, each loop momentum in the numerator gives rise to operators increas-
ing the sum of propagator exponents r by 1 at one-loop level and by 2 at two-loop level. For
example, the tensor integrals with a maximal tensor rank of 5 appearing in the leading-colour
two-loop amplitude would be reduced to scalar integrals in d, d+ 2, . . . , d+ 10 dimensions with
r being increased by up to 10.

The tensor reduction in this work was not performed with the Tarasov method but with pro-
jectors and subsequent IBP reduction. In this approach, form factors of tensor structures are
extracted with projectors, as explained in sec. 3. After the projection, only scalar products
involving external and loop momenta remain in the tensor structure. The scalar products are
then subsequently replaced with linear combinations of inverse propagators and kinematic invari-
ants. The inverse propagators decrease propagator exponents or give rise to negative propagator
exponents. The resulting integrals are then reduced to master integrals.

2.4.3. Parametric representations

In many circumstances, it is beneficial to work with Feynman integrals in parametric represen-
tations, where additional parametric integrations are introduced allowing to perform the loop
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2. Notation and definitions

integrations in a universal manner. Momenta, i. e. Lorentz vectors, are in the resulting ex-
pressions replaced by invariants, i. e. Lorentz scalars. Commonly used representations are the
Feynman parameter representation, Schwinger parameter representation, Lee-Pomeransky rep-
resentation [190], Baikov representation [191], and the Mellin-Barnes representation [192–194].
The Schwinger parameter representation is obtained, assuming only positive propagator expo-
nents, by applying the transformation

1
Pni

i

= (−1)ni

Γ(ni)

∞∫︂
0

dxi x
ni−1
i exp (xiPi) (2.27)

to all propagators in eq. (2.23). The Feynman integral can then be transformed to a (d × L)-
dimensional Gaussian integral in the loop momenta by virtue of loop-momentum shifts. This
results in the Schwinger parameter representation

I(d) =
N∏︂

i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠U−d/2e−F/U . (2.28)

The first and second Symanzik polynomials U({xi}) and F({xi}, {si}, {m2
i }) are homogeneous

of degree L and L+ 1 in the Schwinger parameters respectively. They can also be constructed
from the topology of the graphs associated with the Feynman diagrams, as described in detail
in ref. [86], for example.

Another representation is obtained by introducing Feynman parameters for the propagators, i. e.

1
Pn1

1 . . . P nN
N

= Γ(n)
N∏︂

i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠ δ(︄1 −
N∑︂

l=1
xl

)︄(︄
N∑︂
i

xiPi

)︄−n

, (2.29)

where the sum of all exponents is n = ∑︁
i ni. Integrating the loop momenta gives the Feynman

parameter representation

I(d) = Γ
(︃
n− Ld

2

)︃ N∏︂
i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠ δ(︄1 −
N∑︂

l=1
xl

)︄
Un−(L+1)d/2

Fn−Ld/2 . (2.30)

2.4.4. Dimension-shift transformations

It can be convenient to perform calculations in different space-time dimensions. In this work, for
example, master integrals in d = 6 − 2ϵ dimensions are used. Hence, dimension-shift operators
D+ and D− which change the space-time dimensionality of the Feynman integrals by 2, i. e.

D+I
(d) = I(d+2), D−I

(d) = I(d−2), (2.31)

are introduced. When working with Feynman integrals in Schwinger representation, the dimension-
shift operators are given by

D+ = U−1, D− = U (2.32)

on the level of the integrand since the space-time dimension in eq. (2.28) only enters in the
exponent of U .
Furthermore, the operator i+ which increases the power of the ith propagator by one is intro-
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duced. In the Schwinger representation, this operator is at the integrand level given by

i+ = −xi

ni
. (2.33)

The dimension-shift operator D− can be expressed in terms of i+ operators since U is composed
of Schwinger parameters. Hence, one obtains

D− = U =
∑︂

i1,...,iL

ui1,...,iLx
i1
1 . . . x

iL
L =

∑︂
i1,...,iL

ũi1,...,iL(1+)i1 . . . (L+)iL , (2.34)

where ui1,...,iL are the integer coefficients of U and where the coefficients ũi1,...,iL absorb the
dependence on the exponents ni when replacing xi with eq. (2.33). Using this relation when
applying both D+ and D− to a d-dimensional master integral I(d)

i gives

I
(d)
i = D−D+I

(d)
i = D−I

(d+2)
i =

∑︂
i1,...,iL

ũi1,...,iL(1+)i1 . . . (L+)iLI
(d+2)
i , (2.35)

where the master integral in d dimensions is expressed as a linear combination of (d + 2)-
dimensional integrals with increased propagator powers. Subsequently applying IBP relations
to reduce the integrals on the right-hand side to (d + 2)-dimensional master integrals gives a
linear relation between the master integrals in d and d+ 2 dimensions, i. e.

I⃗
(d) = D · I⃗(d+2)

, (2.36)

where D is a matrix.

2.4.5. IBP reductions and quasi-finite master integrals
Typically, a large number of related scalar Feynman integrals occurs in multi-loop calculations.
Especially tensor reductions often give rise to a comparatively large number of scalar integrals.
These related Feynman integrals can be expressed through a smaller set of integrals, i. e. the
master integrals, by virtue of so-called integration-by-parts (IBP) identities [93, 94]. The exis-
tence of IBP identities is a direct consequence of the fact that dimensionally regulated integrals
over total derivatives vanish. This yields equations of the form(︄

L∏︂
i=1

∫︂ ddki

iπd/2

)︄
∂

∂kµ
i

⎡⎣vµ
N∏︂

j=1

1
P

nj

j

⎤⎦ = 0, (2.37)

where vµ is a loop or external momentum. This equation gives relations among integrals with
different propagator exponents. An over-constrained system of equations can be constructed by
calculating sufficiently many IBP relations. This system can be solved for the master integrals.
Additional albeit redundant relations can be constructed from Lorentz-invariance [110,195].
A systematic construction and solution of systems of IBP equations is formulated in the Laporta
algorithm [95], which is implemented, for example, in AIR [96], FIRE [97–100], Kira [104, 105],
LiteRed [103], and Reduze [101,102].

Applying IBP relations also allows to deliberately choose master integrals to simplify calcula-
tions. For example, it can make sense to choose integrals which are well suited for the evaluation
techniques at hand.
In this work, a quasi-finite basis as described in ref. [196] is used. Quasi-finite Feynman integrals
do not contain any subdivergences, which means that the corresponding Feynman parameter
integration is free of divergences. Quasi-finite integrals might at most possess trivial poles in ϵ
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arising from gamma function prefactors. This implies in particular that all UV and IR diver-
gences of the amplitude manifest themselves explicitly in the IBP reduction and in dimension-
shift transformations.
Quasi-finite bases were developed in particular to be applied together with analytical evaluation
techniques for Feynman integrals as, for example, implemented in HyperInt [197]. HyperInt
can express suitable convergent integrals as MPLs, which makes a resolution of singularities be-
forehand necessary. When using quasi-finite integrals as integral basis, no additional singularity
resolution is necessary.
Using quasi-finite integrals can also be beneficial for direct numerical evaluation. When evaluat-
ing Feynman integrals with sector decomposition algorithms [76,198], subdivergences are treated
by dividing the integration domain, applying suitable transformations in each sector, and then
integrating the resulting convergent integrals numerically. Dividing the integration domain can
give rise to spurious transcendental functions [196, 199], and numerically reconstructing these
spurious functions can have adverse effects on the performance of the numerical integration.
However, these spurious transcendental functions can be avoided by using quasi-finite integrals
and hence an improvement of numerical convergence of the respective integrals is plausible. Ac-
cording to ref. [196], it is possible to numerically evaluate quasi-finite integrals in the Euclidean
region without further preparation except for a possible treatment of logarithmic endpoint sin-
gularities.
A quasi-finite basis can be obtained from a generic integral basis by applying regulating dimension-
shift transformations and increasing propagator powers.

The two-loop master integrals relevant for this work are most likely not entirely expressible with
MPLs, which prevents a direct calculation with HyperInt. The application of a quasi-finite basis
is nevertheless still advantageous when calculating asymptotic expansions with the expansion
by regions with the help of HyperInt as explained in sec. 4.2.2.

2.4.6. Differential equations

IBP reductions can also be used to derive differential equations for master integrals. In the
following, the shorthand notation ∂a = ∂

∂a is used for derivatives. The derivative of a master
integral Ii with respect to some invariant a can be expressed as sum of Feynman integrals of the
same integral family, denoted here by Ĩj , which can be subsequently reduced to master integrals,
i. e.

∂aIi =
∑︂

j

c̃a
ij Ĩj =

∑︂
j

Aa
ijIj . (2.38)

This yields differential equations of the general form

∂aI⃗ = Aa · I⃗ , (2.39)

where I⃗ is a vector of master integrals and Aa is a matrix. For the process at hand, the master
integrals obey a system of four differential equations, which are

∂xI⃗ = Ax · I⃗ , ∂z I⃗ = Az · I⃗ , ∂mI⃗ = Am · I⃗ , ∂sI⃗ = As · I⃗ . (2.40)

The entries of the matrices are rational functions in x, z, m, s, and ϵ. The derivatives with
respect to invariants can be calculated in the momentum representation or in a parametric
representation, as explained in app. A.3. In the momentum representation, the derivatives
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assume the form

∂a =
∑︂
i,j

ca
ijp

µ
i ∂pµ

j
+
∑︂

i

ca
i ∂mi , (2.41)

where pi and mi are the external momenta and masses of the involved particles. Differentiation
in the parametric representation is straightforward since the invariants appear directly in F .
Differentiating the Schwinger representation can, however, give rise to Feynman integrals in
shifted dimensions, which can be subsequently transformed back to d dimensions with dimension-
shift operators.
The equality of mixed partial derivatives of I⃗ gives rise to the integrability condition(︄

∂Axk

∂xj
−
∂Axj

∂xk

)︄
−
[︂
Axj , Axk

]︂
= 0, (2.42)

where xj , xk ∈ {x, z,m, s}. This condition can be used as a consistency check of the obtained
differential equation system. When the differential equation system is denoted by

dI⃗ = A · I⃗ , (2.43)

where A is the one-form

A =
∑︂
xi

Axidxi, (2.44)

the integrability condition assumes the form

dA−A ∧A = 0. (2.45)

The integral basis can be transformed by applying

J⃗ = T (ϵ, {xi}) · I⃗ , (2.46)

which transforms the differential equation as

∂mJ⃗ =
(︂
TAmT

−1 − T∂mT
−1
)︂
J⃗ . (2.47)

Transformations are typically applied to simplify the differential equation systems. For example,
in the so-called canonical or ϵ form [111] the one-form in eq. (2.44) assumes the form

A(ϵ, {xi}) = ϵdÃ({xi}) = ϵ
∑︂

i

Ãid ln(Li({xi})), (2.48)

where the so-called letters Li are rational functions and Ãi are matrices. The master integrals
can be straightforwardly evaluated as iterated integrals when the differential equation assumes
this form.
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3.1. Introduction
The vector currents defined in eq. (2.9) assume in the two-loop calculation the general form

V µ
t = ϵ∗3 ν

∑︂
i

Fiu(p1)Γµνα1...αt1 β1...βt2
i v(p2) · I(d)

i; α1,...,αt1 ;β1,...,βt2
. (3.1)

The two-loop tensor Feynman integrals I(d)
i; α1,...,αt1 ;β1,...,βt2

are contracted with Lorentz structures
Γµνα1...αt1 β1...βt2

i , which are composed of Dirac matrices, external momenta, and polarization
vectors. All remaining terms in eq. (3.1) are absorbed into the scalar coefficients Fi. The
leading-colour two-loop amplitude contains tensor Feynman integrals with a maximal tensor
rank of 5. This gives rise to a relatively large number of Lorentz structures and tensor integrals.
The current in eq. (3.1) is not well suited for direct numerical evaluation. For instance, the
spinor structures

u(p1)Γµνα1...αt1 β1...βt2
i v(p2) (3.2)

are not linearly independent and there are also relations among the Feynman integrals. This
gives rise to highly non-trivial cancellations, which could spoil the numerical stability.
The goal of this chapter is to simplify eq. (3.1) by expressing the currents as linear combinations
of spinor structure Si, S̃i and form factors Ci, C̃i, i. e.

V µ
t =

∑︂
i

Ci · Sµ
i =

∑︂
i

Ci · ϵ∗3 ν u(p1)Γµν
i v(p2),

Aµ
t =

∑︂
i

C̃i · S̃µ
i =

∑︂
i

C̃i · ϵ∗3 ν u(p1)Γ̃µν
i v(p2). (3.3)

The spinor structures Si are rather short and compact functions that only depend on the mo-
menta and helicities of the external particles. For the process at hand, they assume the general
form

Si = ϵ4 µϵ
∗
3 νu(p1)Γµν

i v(p2). (3.4)

The Lorentz tensor Γµν
i is composed of Dirac matrices, the metric tensor, and external mo-

menta. The spinor structures S̃i of the axial-vector current contain one γ5 matrix due to the
axial-vector coupling. The scalar coefficients Ci or C̃i are independent of the helicities of the
external particles and absorb all the remaining complexity of the calculation, in particular they
contain the Feynman integrals.

This form-factor decomposition can be obtained by first performing a tensor reduction and then
simplifying the spinor structures by systematically making use of the Clifford algebra. In this
work, however, the form factors Ci are extracted directly with projectors. This approach has the
advantage of projecting the amplitude onto a minimal set of linearly independent spinor struc-
tures {Si}, which prevents spurious cancellations among linearly dependent terms. The tensor
reduction is also straightforward in this procedure. The tensor Feynman integrals are after the
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3. Projection procedure

projection contained in the form factors Ci and consequently only involve scalar products of loop
momenta and external momenta in the numerator. These scalar products can then be replaced
with inverse propagators, which gives rise to scalar Feynman integrals with negative exponents.
The resulting scalar Feynman integrals are then reduced to master integrals using IBP relations.
Projectors have been applied successfully in the past to calculate numerous processes [51, 200–
204] and are still the subject of further studies and improvements [205–207].

In the following, the projection procedure is outlined in sec. 3.2 and illustrated with a simple
example in sec. 3.3. Afterwards, a set of independent spinor structures for the process γ∗ → ttg
is constructed by making a generic ansatz for all possible structures in sec. 3.4. Electroweak
Ward identities for the projection coefficients are derived in sec. 3.5.

3.2. Construction of the projectors
Let {Si} be a set of N independent spinor structures for an arbitrary process. This set {Si} is
constructed from the helicity states and momenta of the external particles while being compatible
with Lorentz, gauge, and other symmetries. The coefficient Cj of the spinor structure Sj is
obtained by applying the projection operator Pj to the amplitude, i. e.

Pj ◦
(︄∑︂

i

Ci · Si

)︄
=
∑︂
pol

Pj

(︄∑︂
i

Ci · Si

)︄
= Cj . (3.5)

This definition of the projector Pj includes the term Pj , for which the ansatz

Pj =
∑︂

k

AjkS
+
k (3.6)

is made. The application of the projector is denoted with ◦. The entries of the matrix A
are rational functions of the kinematic invariants, i. e. masses and scalar products of external
momenta, and the space-time dimension d. The projectors are applied by summing over all
polarizations of the external particles. For this process, this means summing over the helicities
of the two top quarks, the gluon and the Z boson or photon. When performing this sum,
the polarization vectors and quark spinors are replaced with polarization sums chosen to be
consistent with gauge symmetries and the regularization scheme. In the standard projection
approach, which is applied in this work, all external particles and hence also all resulting Lorentz
and Dirac structures are regarded as d-dimensional objects. This corresponds to adopting CDR
as regularization scheme. When performing the polarization sum, the quark spinors are hence
replaced with ∑︂

pol
u(p1)u(p1) = /p1 +mt,

∑︂
pol

v(p2)v(p2) = /p2 −mt, (3.7)

and the d-dimensional trace in Dirac space is taken. For the external gluon, the polarization
sum

∑︂
pol

ϵµ3 · ϵ∗ ν
3 = −gµν + pµ

3n
ν + pν

3n
µ

p3 · n
= −gµν + pµ

3Q
ν + pν

3Q
µ

p3 ·Q
− Q2

(p3 ·Q)2 p
µ
3p

ν
3 (3.8)

is used and the massive reference vector Q = p4 = p1 + p2 + p3 is chosen. This polarization sum
only includes the physical polarizations of the gluon, i. e. the two physical transverse polarization
states of the on-shell gluon. External QCD ghost fields hence do not have to be included in the
calculation. This polarization sum follows from the polarization sum associated with the axial
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3.2. Construction of the projectors

gauge, which is also given in eq. (3.8). Choosing the massless reference vector nµ = Qµ −pµ
3

Q2

2Q·p3
with an arbitrary massive vector Q leads to the polarization sum given on the right-hand side
of eq. (3.8), which is typically associated with the so-called temporal gauge.
For the polarization sum of the initial-state vector,∑︂

pol
ϵµ4 · ϵ∗ ν

4 = −gµν (3.9)

is used. This corresponds to setting ξZ = 1 in the Rξ gauge, which is also often colloquially
referred to as ’t Hooft-Feynman gauge. Since the initial-state polarization vector ϵ4 corresponds
to an off-shell photon or Z boson, the transverse as well as the longitudinal polarization states
need to be included. This polarization sum actually also includes the unphysical time-like
polarization, which is kept as a superfluous degree of freedom for the sake of simplicity. However,
this increases the number of spinor structures appearing in the calculation slightly and gives rise
to relations among the projection coefficients when imposing electroweak Ward identities as done
in sec. 3.5.
The matrix A in the ansatz of eq. (3.6) is determined by applying Pj to Si, which by definition
gives a Kronecker delta, i. e.

Pj ◦ Si =
∑︂
pol

PjSi =
∑︂

k

Ajk

(︂
S+

k ◦ Si

)︂
= δji. (3.10)

The coefficient matrix A of the projectors is consequently the inverse of the matrix
(︁
S+ ◦ S

)︁
,

i. e.

A = (S+ ◦ S)−1. (3.11)

The matrix (S+ ◦ S) must be invertible if the spinor structures of a given set {Si} are indepen-
dent. The rank of the matrix can hence be used to check for linear independence of the spinor
structures.
The computer algebra system Fermat [208] was used to calculate the rank and the inverse of(︁
S+ ◦ S

)︁
. For the process at hand, the vector and vector-axial currents only require the inversion

of two 18 × 18 matrices, which did not pose any problems. But for other processes, this inver-
sion could be problematic since the number of independent spinor structures can grow rapidly
with the number of external particles. This could effectively render this method infeasible for
high-multiplicity processes. This is worsened by the fact that in CDR more independent spinor
structures tend to emerge than in 4 dimensions. The spurious structures, in the literature also
sometimes referred to as irrelevant structures, are not independent in 4 dimensions and hence
can be expressed with the remaining independent structures in 4 dimensions. While for up to
four-parton amplitudes typically only O(10) independent structures occur, already five-parton
amplitudes can possess more than a hundred structures when using CDR.
For example, the four-gluon amplitude possesses 10 independent structures in d dimensions ac-
cording to ref. [207] of which 8 are independent in 4 dimensions. For this process, only 8 of the
24 = 16 helicity configurations are independent since processes with up to four legs exhibit triv-
ial behaviour under parity transformations [207]. The five-gluon amplitude, however, already
possesses 142 independent spinor structures in d dimensions according to ref. [205] of which
only 32 are independent in 4 dimensions. To mitigate this effect, techniques applying ‘phys-
ical’ projectors were proposed in ref. [205–207] with which the number of independent spinor
structures is reduced to the number of independent helicity configurations of external particles.
Essentially, the ‘physical’ projectors impose 4-dimensional external states, i. e. only take physical
polarizations of external particles into account, while only virtual particles are d-dimensional.
This corresponds to adopting the ’t Hooft-Veltman regularization scheme [209].
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p1

p2

µ

(a) Leading-order process

p1

p2

µ k
k −

p
2

k
+
p 1

(b) One-loop correction

Figure 3.1.: Introductory example: off-shell photon decaying into two massless quarks.

In this work, the standard projector approach is chosen and the CDR scheme is adopted since
the number of independent spinor structures is still manageable with the tools at hand.

3.3. Introductory example: γ∗ → qq̄

The previously defined projectors are illustrated in this section with a simple introductory
example: an off-shell photon decaying into two massless quarks, i. e.

γ∗(p1 + p2) → q(p1) + q̄(p2), (3.12)

which is at leading order depicted in fig. 3.1a. The kinematics of this process are given by

p2
1 = p2

2 = 0, (p1 + p2)2 = 2p1 · p2 = s. (3.13)

At leading order, the amplitude is proportional to the vector current

V (0) = ϵµ ū(p1)γµv(p2). (3.14)

All possible spinor structures for this process obey the form ϵµū(p1)Γµv(p2), where Γµ denotes
all possible products of Dirac matrices and momenta with one uncontracted Lorentz index µ.
The three possible structures are

S1 = ϵµ ū(p1)γµv(p2), S2 = ϵµ p
µ
1 ū(p1)v(p2), S3 = ϵµ p

µ
2 ū(p1)v(p2), (3.15)

where S1 is proportional to the leading-order amplitude. Note that the spinor structures do not
contain /p1 and /p2 due to the Dirac equation. The corresponding hermitian conjugates

S+
1 = ϵ∗µ v̄(p2)γµu(p1), S+

2 = ϵ∗µ p
µ
1 v̄(p2)u(p1), S+

3 = ϵ∗µ p
µ
2 v̄(p2)u(p1) (3.16)

are used to calculate the matrix (S+ ◦ S). The projection operation ◦ is applied by summing
over all polarizations and replacing the polarization sums by∑︂

pol
u(p1)u(p1) = /p1,

∑︂
pol

v(p2)v(p2) = /p2,
∑︂
pol

ϵµϵ
∗
ν = −gµν , (3.17)

followed by taking the trace in d dimensions. The non-zero components of (S+ ◦ S) are

S+
1 ◦ S1 =

∑︂
pol

S+
1 S1 =

∑︂
pol

ϵ∗µϵν v̄(p2)γµu(p1)ū(p1)γνv(p2)

= −gµνTr
(︂
/p2γ

µ
/p1γ

ν
)︂

= 2(d− 2)s (3.18)
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and

S+
3 ◦ S2 = S+

2 ◦ S3 =
∑︂
pol

S+
2 S3 =

∑︂
pol

ϵ∗µϵν v̄(p2)pµ
1u(p1)ū(p1)pν

3v(p2)

= −(p1 · p2)Tr
(︂
/p2/p1

)︂
= −s2, (3.19)

while all remaining coefficients vanish, e. g.

S+
1 ◦ S2 =

∑︂
pol

S+
1 S2 =

∑︂
pol

ϵ∗µϵν v̄(p2)γµu(p1)ū(p1)pν
1v(p2) = Tr

(︂
/p2/p1/p1

)︂
= 0. (3.20)

Hence, the matrix is

(S+ ◦ S) =

⎛⎜⎝ (−4 + 2d)s 0 0
0 0 −s2

0 −s2 0

⎞⎟⎠ (3.21)

and its inverse is

A = (S+ ◦ S)−1 =

⎛⎜⎝
1

(−4+2d)s 0 0
0 0 −1

s2

0 −1
s2 0

⎞⎟⎠ . (3.22)

The spinor structures in eq. (3.15) are indeed independent since the matrix (S+ ◦S) is invertible.
The number of independent structures is equal or smaller than the number of independent
helicity configurations. This process has in total 2 · 2 · 2 = 8 helicity configuration. This number
is reduced by a factor of 2 since the final-state quarks are massless. Invariance under parity
transformation reduces the number of independent helicity configurations by another factor of
2.
Why does this calculation yield three independent spinor structures when there are only two
independent helicity amplitudes for this process? The answer lies in the choice of the polarization
sum of the photon in eq. (3.17) which, just as the polarization sum of the initial-state vector
in eq. (3.9), is simply given by the metric corresponding to the choice of ’t Hooft-Feynman
gauge. While this slightly simplifies the calculations, the unphysical polarizations give rise to
one superfluous spinor structure. Imposing a Ward identity for the photon on the vector current,
i. e.

0 = (p1 + p2)µV
µ = C1ū(p1)(/p1 + /p2)v(p2) + (C2 + C3)s2 ū(p1)v(p2)

= (C2 + C3)s2 ū(p1)v(p2), (3.23)

results in the relation C2 = −C3, which reduces the number of independent structures to 2.
One option is to perform the projection as described above and check whether C2 = −C3 holds
for the resulting coefficients. Another possibility is to modify the projection procedure. For
example, when applying the polarization sum

∑︂
pol

ϵµϵ
∗
ν = −gµν + (p1 + p2)µ(p1 + p2)ν

s
, (3.24)
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which corresponds to the polarization sum of a massive vector boson and cancels unphysical
polarizations, the resulting matrix

(S+ ◦ S) =

⎛⎜⎝ (−4 + 2d)s 0 0
0 s2

2 − s2

2
0 − s2

2
s2

2

⎞⎟⎠ (3.25)

is of rank 2. This implies that only two structures are independent. A new set of spinor
structures is, for example,

S′
1 = ϵµ ū(p1)γµv(p2), S′

2 = ϵµ (pµ
1 − pµ

2 )ū(p1)v(p2). (3.26)

This set already incorporates the Ward identity on the level of individual spinor structures, i. e.

S′
i −−−−−−→

ϵ→p1+p2
0, (3.27)

and yields the matrix

(S′+ ◦ S′) =
(︄

(−4 + 2d)s 0
0 2s2

)︄
. (3.28)

The projectors for the three spinor structures in eq. (3.15) with polarization sums defined as in
eq. (3.17) are

P1 =
∑︂

i

A1iS
+
i = 1

(2d− 4)sϵ
∗
µ v̄(p2)γµu(p1),

P2 =
∑︂

i

A2iS
+
i = − 1

s2 (p1 · ϵ∗) v̄(p2)u(p1),

P3 =
∑︂

i

A3iS
+
i = − 1

s2 (p2 · ϵ∗) v̄(p2)u(p1). (3.29)

Equivalent results are obtained when using the two structures in eq. (3.26) with the polarization
sum in eq. (3.24), which yields the projectors

P ′
1 = P1 =

∑︂
i

A′
1iS

′+
i = 1

(2d− 4)sϵ
∗
µ v̄(p2)γµu(p1),

P ′
2 = 1

2 (P3 − P2) =
∑︂

i

A′
2iS

′+
i = 1

2s2 (p1 − p2) · ϵ∗ v̄(p2)u(p1). (3.30)

Applying the projectors to the leading-order current in eq. (3.14) yields, as expected, the coef-
ficients

C1 = C ′
1 = 1, C2 = C3 = C ′

2 = 0. (3.31)

At the one-loop level, only the diagram depicted in fig. 3.1b contributes to the vector current

V (1) = ϵµ

∫︂ ddk

iπd/2
ū(p1)γν(/k + /p1)γµ(/k − /p2)γνv(p2)

k2(k + p1)2(k − p2)2 . (3.32)
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Applying the projectors given in eq. (3.29) yields the coefficients

C1 = 1
s

∫︂ ddk

iπd/2
(d− 4)sk2 − 2(s− 2(p1 · k))(2(p2 · k) + s)

k2(k + p1)2(k − p2)2 , C2 = C3 = 0. (3.33)

In this one-loop example, the C2 and C3 coefficients also vanish. However, this is not the case
when quark masses are introduced.

The tensor structures in the numerator of eq. (3.33) have been replaced by scalar products
involving the loop momentum. The coefficient C1 can be further simplified by replacing the
scalar products k2, p1 · k, and p2 · k with inverse propagators, i. e.

p1 · k = 1
2
[︂
(k + p1)2 − k2

]︂
, p2 · k = 1

2
[︂
k2 − (k − p2)2

]︂
. (3.34)

The inverse propagators are cancelled with propagators in the denominator or give rise to neg-
ative propagator powers, as

C1 =
∫︂ ddk

iπd/2

(︄
d− 8

(k + p1)2 (k − p2)2 − 2s
k2 (k + p1)2 (k − p2)2 − 2k2

(k + p1)2 (k − p2)2s

+ 2
k2 (k + p1)2 + 2

k2 (k − p2)2 − 2
k2s

+ 2
(k + p1)2s

+ 2
(k − p2)2s

)︃
=2
(︃
d− 8

2 I0,1,1 − sI1,1,1 + I1,1,0 + I1,0,1 − 1
s

(I−1,1,1 + I1,0,0 − I0,1,0 − I0,0,1)
)︃

=16 − 7d+ d2

2(d− 4) I0,1,1. (3.35)

In this formula, the integrals are denoted by

Iν1,ν2,ν3 =
∫︂ ddk

iπd/2
1

[k2]ν1 [(k + p1)2]ν2 [(k − p2)2]ν3
. (3.36)

Furthermore, an IBP reduction obtained with Kira was applied in the last step and scaleless
integrals were replaced with zero. The only contributing integral is I0,1,1 for this current. Note
that also the triangle integral I1,1,1 can be reduced to I0,1,1 for this specific kinematic.

In this work, the projectors are applied as demonstrated in this example. However, calculations
are not explicitly shown in the following due to their complexity. For example, A = (S+ ◦ S)−1

is for the process at hand an 18 × 18 matrix with more complicated entries than the matrix in
eq. (3.22).

3.4. Construction of the spinor structures
In this section, a set of linearly independent spinor structures {Si} is constructed for the process
γ∗ → tt̄g. For this purpose, a general ansatz for all relevant spinor structures is made, then
a QCD Ward identity for the external gluon is imposed, and the linear independence of the
resulting set is checked by calculating the rank of the matrix

(︁
S+ ◦ S

)︁
.

According to ref. [210] the number of independent Standard Matrix Elements, which are equiv-
alent to the spinor structures, cannot be larger than the number of independent helicity con-
figurations of the external particles. For the process under investigation, there are 3 · 23 = 24
possible polarizations of external particles, of which 12 are independent due to trivial behaviour
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under parity transformations since this process only involves 4 external particles [207]. However,
the initial-state vector ϵ4 carries 4 instead of 3 polarizations, i. e. the unphysical time-like polar-
ization is additionally included, because of the choice of the corresponding polarization sum.
This results in 4 · 23/2 = 16 spinor structures when applying the projection in d = 4 dimensions.
Additionally, an electroweak Ward identity yields 4 relations among the projection coefficients
reducing the number of independent spinor structures to 12, as expected.

The spinor structures for currents V µ and Aµ as defined in eq. (3.3) can be written as

Si = ϵ4 µϵ
∗
3 νS

µν
i = ϵ4 µϵ

∗
3 νu(p1)Γµν

i v(p2), S̃i = ϵ4 µϵ
∗
3 ν S̃

µν
i = ϵ4 µϵ

∗
3 νu(p1)Γ̃µν

i v(p2). (3.37)

This ansatz includes a general tensor structure with two indices in Dirac space Γµν
i , which for

this process is given by

Γµν
i =

(︂
c1 + c2 · /p3

)︂
· Lµν

1 +
(︂
c3 · γν + c4 · γν

/p3

)︂
· Lµ

2

+
(︂
c5 · γµ + c6 · γµ

/p3

)︂
· Lν

3 +
(︂
c7 · γµγν + c8 · γµγν

/p3

)︂
. (3.38)

By virtue of the Dirac equation, no /p1 and /p2 occur in the ansatz. The Lorentz tensors Lµν
1 , Lµ

2
and Lν

3 can only contain the momenta p1, p2, and p3 and the metric tensor gµν . Furthermore,
the condition ϵ3 · p3 = 0 forbids all terms containing pν

3 in Lµν
1 and Lν

3 . The Lorentz tensors are
hence

Lµν
1 = c′

1g
µν + c′

2p
µ
1p

ν
1 + c′

3p
µ
1p

ν
2 + c′

4p
µ
2p

ν
1 + c′

5p
µ
2p

ν
2 + c′

6p
µ
3p

ν
1 + c′

7p
µ
3p

ν
2 ,

Lµ
2 = c′

8p
µ
1 + c′

9p
µ
2 + c′

10p
µ
3 ,

Lν
3 = c′

11p
ν
1 + c′

12p
ν
2 . (3.39)

Inserting the Lorentz tensors into the ansatz in eq. (3.38) gives 26 structures for the vector
current. After relabelling the coefficients, the vector current becomes

ϵµ4 ϵ
∗ ν
3 Vµν = C1 · (p1 · ϵ∗3) (p1 · ϵ4) u(p1)v(p2) + C2 · (p1 · ϵ∗3) (p2 · ϵ4) u(p1)v(p2)

+ C3 · (p1 · ϵ∗3) (p3 · ϵ4) u(p1)v(p2) + C4 · (p1 · ϵ4) (p2 · ϵ∗3) u(p1)v(p2)
+ C5 · (p2 · ϵ∗3) (p2 · ϵ4) u(p1)v(p2) + C6 · (p2 · ϵ∗3) (p3 · ϵ4) u(p1)v(p2)
+ C7 · (ϵ∗3 · ϵ4) u(p1)v(p2) + C8 · (p1 · ϵ∗3) (p1 · ϵ4) u(p1) /p3 v(p2)
+ C9 · (p1 · ϵ∗3) (p2 · ϵ4) u(p1) /p3 v(p2) + C10 · (p1 · ϵ∗3) (p3 · ϵ4) u(p1) /p3 v(p2)
+ C11 · (p1 · ϵ4) (p2 · ϵ∗3) u(p1) /p3 v(p2) + C12 · (p2 · ϵ∗3) (p2 · ϵ4) u(p1) /p3 v(p2)
+ C13 · (p2 · ϵ∗3) (p3 · ϵ4) u(p1) /p3 v(p2) + C14 · (ϵ∗3 · ϵ4) u(p1) /p3 v(p2)
+ C15 · (p1 · ϵ4) u(p1) /ϵ∗

3/p3 v(p2) + C16 · (p2 · ϵ4) u(p1) /ϵ∗
3/p3 v(p2)

+ C17 · (p3 · ϵ4) u(p1) /ϵ∗
3/p3 v(p2) + C18 · u(p1) /ϵ4/ϵ

∗
3 v(p2)

+ C19 · (p1 · ϵ4) u(p1) /ϵ∗
3 v(p2) + C20 · (p2 · ϵ4) u(p1) /ϵ∗

3 v(p2)
+ C21 · (p3 · ϵ4) u(p1) /ϵ∗

3 v(p2) + C22 · u(p1) /ϵ4/ϵ
∗
3/p3 v(p2)

+ C23 · (p1 · ϵ∗3) u(p1) /ϵ4/p3 v(p2) + C24 · (p2 · ϵ∗3) u(p1) /ϵ4/p3 v(p2)
+ C25 · (p1 · ϵ∗3) u(p1) /ϵ4 v(p2) + C26 · (p2 · ϵ∗3) u(p1) /ϵ4 v(p2). (3.40)

Imposing the QCD Ward identity for the external gluon on the vector current, i. e.

ϵµ4 ϵ
∗ ν
3 Vµν −−−−→

ϵ3→p3
ϵµ4p

ν
3Vµν = 0, (3.41)

36



3.4. Construction of the spinor structures

yields

0 = u(p1)/p3v(p2)(p1 · ϵ4) 1
2s(2C19 + zC11 + xC8) + u(p1)/p3v(p2)(p2 · ϵ4) 1

2s(2C20 + zC12 + xC9)

+ u(p1)/p3v(p2)(p3 · ϵ4) 1
2s(2C21 + 2C14 + zC13 + xC10) + u(p1)v(p2)(p1 · ϵ4)mt

4s (2zC4 + xC1)

+ u(p1)v(p2)(p2 · ϵ4)mt

2s (zC5 + xC2) + u(p1)v(p2)(p3 · ϵ4)mt

2s (2C7 + zC6 + xC3)

+ u(p1)/ϵ4/p3v(p2)mt

2s (2C18 + zC24 + xC23) + u(p1)/ϵ4v(p2)1
2(zC26 + xC25). (3.42)

The 8 spinor structures on the right-hand side are linearly independent, which was checked by
calculating the rank of the corresponding

(︁
S+ ◦ S

)︁
matrix, and their coefficients must hence

vanish. The resulting 8 equations reduce the number of spinor structures to 18.
Relabelling and adjusting the spinor structures yields

S1 = 2
s2u(p1)

(︃
/p3(p1 · ϵ∗3) − sx

2 /ϵ
∗
3

)︃
v(p2)(p1 · ϵ4),

S2 = 2
s2u(p1)

(︃
/p3(p1 · ϵ∗3) − sx

2 /ϵ
∗
3

)︃
v(p2)(p2 · ϵ4),

S3 = 2
s2u(p1)

(︃
/p3(p2 · ϵ∗3) − sz

2 /ϵ
∗
3

)︃
v(p2)(p1 · ϵ4),

S4 = 2
s2u(p1)

(︃
/p3(p2 · ϵ∗3) − sz

2 /ϵ
∗
3

)︃
v(p2)(p2 · ϵ4),

S5 = 1
s
u(p1)

(︂
/p3(ϵ∗3 · ϵ4) − /ϵ∗

3(p3 · ϵ4)
)︂
v(p2),

S6 = mt

s2 u(p1)/ϵ∗
3/p3v(p2)(p1 · ϵ4),

S7 = mt

s2 u(p1)/ϵ∗
3/p3v(p2)(p2 · ϵ4),

S8 = 2mt

s2 u(p1)
(︃
/ϵ4/p3(p1 · ϵ∗3) − sx

2 /ϵ4/ϵ
∗
3

)︃
v(p2),

S9 = 2mt

s2 u(p1)
(︃
/ϵ4/p3(p2 · ϵ∗3) − sz

2 /ϵ4/ϵ
∗
3

)︃
v(p2),

S10 = 1
s
u(p1)/ϵ4/ϵ

∗
3/p3v(p2),

S11 = 1
s
u(p1)

(︁
/ϵ4(p1 · ϵ∗3)z − /ϵ4(p2 · ϵ∗3)x

)︁
v(p2),

S12 = mt

s2 u(p1)v(p2) ((p1 · ϵ∗3)z − (p2 · ϵ∗3)x) (p1 · ϵ4),

S13 = mt

s2 u(p1)/ϵ∗
3/p3v(p2)(p3 · ϵ4),

S14 = 1
s2u(p1)

(︃
/p3(p2 · ϵ∗3) − sz

2 /ϵ
∗
3

)︃
v(p2)(p3 · ϵ4),

S15 = 1
s2u(p1)

(︃
/p3(p1 · ϵ∗3) − sx

2 /ϵ
∗
3

)︃
v(p2)(p3 · ϵ4),

S16 = mt

s2 u(p1)v(p2)
(︃

(p1 · ϵ∗3)(p3 · ϵ4) − sx

2 (ϵ∗3 · ϵ4)
)︃
,

S17 = mt

s2 u(p1)v(p2)
(︃

(p2 · ϵ∗3)(p3 · ϵ4) − sz

2 (ϵ∗3 · ϵ4)
)︃
,

S18 = mt

s2 u(p1)v(p2) ((p1 · ϵ∗3)z − (p2 · ϵ∗3)x) (p2 · ϵ4). (3.43)

The spinor structures were rescaled to have mass dimension zero.
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3. Projection procedure

All 18 spinor structures are independent when performing the helicity sums in the projection in
d = 4 − 2ϵ dimensions while only 16 structures remain independent in d = 4 dimensions.

The spinor structures {S̃i} for the axial-vector current are obtained in the same way as the struc-
tures {Si} for the vector current. The axial-vector current structures are stated in app. A.4.
They are essentially the same structures as in eq. (3.43) with a γ5 matrix inserted at the most
left possible position. The projection procedure also remains the same except for the treatment
of γ5.
Dimensional regularization does not preserve chiral invariance. Consequently, it is not possible
to define a d-dimensional Clifford algebra with an anticommuting γ5 and a cyclic trace. This
issue, known as the γ5 problem, has received a lot of attention and different approaches for its
treatment have emerged as a result [209,211–217].
For instance, in the ’t Hooft-Veltman [209] or Breitenlohner-Maison scheme [211,212], the cyclic-
ity of the trace is preserved and the anticommutativity of γ5 is given up. This leads to a violation
of Ward identities, which are restored by introducing counterterms, as described in ref. [215].
In other schemes, e. g. the scheme described in ref. [213, 214], the anticommuting property is
imposed and cyclicity of the trace is sacrificed. The position of Dirac matrices in non-cyclic
traces originating from closed fermion loops is ambiguous, which is resolved with a reading
point prescription.
For the calculation at hand, the so-called naive dimensional regularization (NDR) scheme
[216, 218, 219] is adopted, in which an anticommuting γ5 and a cyclic trace are used. The
NDR scheme can be applied under certain conditions despite being algebraically inconsistent.
In particular, closed fermion lines with an even number of γ5 matrices can be calculated in
NDR [185]. This scheme can be applied in this work since closed fermion lines involving one γ5

do not contribute to the leading-colour amplitude. Only traces with two γ5 matrices occur when
applying the projectors derived from the spinor structures {S̃i} to the leading-colour axial-vector
current. The two γ5 are anticommuted to each other and resolved with (γ5)2 = 1. This is also
a trivial special case of the anticommuting scheme defined in ref. [213,214].

3.5. Electroweak Ward identities

In addition to the QCD Ward identity, there are also electroweak Ward identities. For the
subprocess involving the photon, the QED Ward identity is

pµ
4 Γγ

µ(p4) = 0, (3.44)

where Γγ
µ(p4) is the one-particle-irreducible vertex function of a photon with external momentum

p4. Consequently, the vector current V µ must vanish when ϵ4 is replaced with p4, i. e.

ϵ4 µV
µ −−−−→

ϵ4→p4
p4 µV

µ = 0. (3.45)

Replacing ϵ4 with p4 in the spinor structures given in eq. (3.43) results in a term containing the
6 spinor structures

u(p1)/p3/ϵ
∗
3v(p2), u(p1)/p3v(p2)(p1 · ϵ∗3), u(p1)/p3v(p2)(p2 · ϵ∗3),

u(p1)/ϵ∗
3v(p2), u(p1)v(p2)(p1 · ϵ∗3), u(p1)v(p2)(p2 · ϵ∗3), (3.46)
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3.5. Electroweak Ward identities

which are not independent. The four reduced structures

SW
1 = 1

s
u(p1)v(p2)(p1 · ϵ∗3), SW

2 = mt

s
u(p1)/ϵ∗

3v(p2),

SW
3 = mt

s2 u(p1)/p3v(p2)(p1 · ϵ∗3), SW
4 = 1

s
u(p1)/p3/ϵ

∗
3v(p2) (3.47)

are linearly independent. Hence, the four corresponding coefficients must vanish when applying
the associated projectors on p4 µV

µ = 0. This gives the four relations

0 = W1 =mt

2 (x+ z)(−4C8 + C12(z − 1) + C16(x− 1) + C17 − C18),

0 = W2 = − mt

4m(−2C1x(z − 1) − 2C2(x− 1)x− 2C3(z − 1)z − 2C4(x− 1)z + 2C5(x+ z)

+ 8C8mx+ 8C9mz + 4C10z + C14z(x+ z) + C15x(x+ z)),

0 = W3 =mt

2m(C1(2 − 2z) + C2(2 − 2x) + 2C3(z − 1) + 2C4(x− 1) + 8C8m− 8C9m− 4C10

+ 2C11(x+ z) + C14(−x− z) + C15(x+ z)),

0 = W4 = − mt

2 (C6(1 − z) + C7(1 − x) + 2C8x+ 2C9z + C13(x+ z)), (3.48)

where the right-hand side of the equation is denoted with Wi. Hence, the 4 equations reduce
the number of linearly independent structures to 14 in d dimensions and to 12 in 4 dimensions.
This agrees with the number of independent helicity configurations for this process.
In this work, the above outlined projection procedure is applied in d dimensions using all 18
structures, i. e. the electroweak Ward identity is not imposed at the level of spinor structures.
The four equations given in eq. (3.48) serve as a non-trivial cross-check of the projection coeffi-
cients.

A slightly more complicated Ward identity also holds for the axial-vector current although p4 µA
µ
t

does not vanish but rather is proportional to the corresponding Goldstone current AGoldstone
t .

The Goldstone current is defined similarly to the vector and axial-vector currents in eq. (2.9).
The amplitude of the process e+e− → φZ → tt̄g, i. e. the process where the Z boson is replaced
with Goldstone boson φZ , is defined as

MφZ = −παe(−igs)tg
tt

1
sin2 θw cos2 θw

· i
s−m2

Z

· me

mZ
· ū(pb)γ5u(pa) · mt

mZ
AGoldstone

t . (3.49)

Note that this subprocess, strictly speaking, does not contribute to the amplitude since the
electron and positron are considered massless. Nevertheless, AGoldstone

t is necessary to check the
Ward identity for the axial-vector current Aµ

t . The Ward identity is in general given by [220,221]

pµ
4 ΓZ

µ (p4) = mZΓφZ
µ (p4), (3.50)

where ΓZ
µ (p4) and ΓφZ

µ (p4) are the one-particle-irreducible vertex functions for the Z boson and
the Goldstone boson with external momentum p4. The Ward identity for the axial-vector current
then assumes the form

ϵ4 µA
µ
t −−−−→

ϵ4→p4
p4 µA

µ
t = −1

2A
Goldstone
t . (3.51)
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3. Projection procedure

The Goldstone current has the four independent spinor structures

SGoldstone
1 = 1

s
u(p1)γ5v(p2)(p1 · ϵ∗3), SGoldstone

2 = mt

s
u(p1)γ5/ϵ∗

3v(p2),

SGoldstone
3 = mt

s2 u(p1)γ5
/p3v(p2)(p1 · ϵ∗3), SGoldstone

4 = 1
s
u(p1)γ5

/p3/ϵ
∗
3v(p2), (3.52)

for which corresponding projectors are defined. Note that these structures correspond to the
reduced structures for the vector current in eq. (3.47) with an inserted γ5 matrix. Applying the
four projectors on the right-hand side of eq. (3.51) yields the four equations

CGoldstone
1 =(x+ z)(4C̃11 + C̃12(z − 1) + C̃16(x− 1) + C̃17 − C̃18 − 4C̃8) = W̃ 1,

CGoldstone
2 = 1

2m( 2C̃1x(1 − z) + 2C̃2(1 − x)x+ 2C̃3z(1 − z) + 2C̃4(1 − x)z

+ 2C̃5(x+ z) + 4C̃10z + C̃14(x+ z)z + C̃15x(x+ z)) = W̃ 2,

CGoldstone
3 = 1

m
( 2C̃1(z − 1) + 2C̃2(x− 1) + 2C̃3(1 − z) + 2C̃4(1 − x) + 4C̃10

− 2C̃11(x+ z) + C̃14(x+ z) − C̃15(x+ z)) = W̃ 3,

CGoldstone
4 =(C̃6(1 − z) + C̃7(1 − x) + 2C̃8x+ 2C̃9z − 4C̃10 + C̃13(x+ z)) = W̃ 4. (3.53)

The right-hand side of these equations, i. e. the linear combination of the projection coefficients,
is denoted by W̃ i.
Instead of obtaining relations for the coefficients from the Ward identities, it is also possible
to construct spinor structures that obey the Ward identities and then to remove the irrelevant
structures. In the case of the vector current, redundant coefficients can be removed by using the
relations from eq. (3.48) and substituting, for example, the coefficients C5, C11, C13, and C18.
This gives the 14 structures

S′
1 = S17 + S18, S′

2 = S16 − (1 − x)S18,

S′
3 = 1

2(2S15 − S11 − S5), S′
4 = S12 − (1 − z)S18,

S′
5 = 1

2(S11 + 2S14 − S5z), S′
6 = S7 − S13

1 − x

x+ z
,

S′
7 = S8 − 4S18 − 2S13x− 4m(S11 + S5x)

x+ z
, S′

8 = S6 − S13
1 − z

x+ z
,

S′
9 = S1 − (S11 + xS5)(1 − z)

x+ z
, S′

10 = S10 + 2S11 − zS5
x+ z

,

S′
11 = S2 − (S11 + xS5)(1 − x)

x+ z
, S′

12 = S3 + (S11 − zS5)(1 − z)
x+ z

,

S′
13 = S4 + (S11 − zS5)(1 − x)

x+ z
, S′

14 = S9 + 22m(S11 − S5z) − S13z

x+ z
. (3.54)

Each of these structures satisfies the Ward identity individually. Two superfluous structures can
be removed if the remaining tensor structures span the entire tensor space of the amplitude.
Applying the transformation defined in ref. [207] to the 14 structures in eq. (3.54), i. e.

S̄i = S′
i, i =1, . . . , 12,

S̄i = S′
i −

12∑︂
j=1

(P12×12
j ◦ S′

i) · S′
j , i =13, 14, (3.55)
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3.5. Electroweak Ward identities

removes the contributions of the first 12 structures from S13 and S14. The matrix

(S̄+ ◦ S̄) =
(︄

(S̄+ ◦ S̄)12×12 0
0 (S̄+ ◦ S̄)2×2

)︄
(3.56)

acquires a block structure as a result. In this formula, (S̄+ ◦ S̄)12×12 denotes the corresponding
matrix constructed from the first 12 structures and (S̄+◦S̄)2×2 denotes the corresponding matrix
constructed from the remaining two structures. Correspondingly, the projectors

P12×12
i =

12∑︂
j=1

(︂
(S̄+ ◦ S̄)12×12

)︂−1

ij
S̄j (3.57)

are constructed using only the first 12 independent spinor structures. Both block matrices can
be inverted individually in d dimensions. Furthermore, the matrix (S̄+ ◦ S̄)2×2 vanishes for
d = 4 dimensions since both (S̄+ ◦ S̄) and (S̄+ ◦ S̄)12×12 have rank 12 in 4 dimensions. The
contributions from S̄13 and S̄14 are hence in d dimensions of order ϵ. The projection involving
only the first 12 spinor structures in d dimensions gives consequently the full result up to terms
of order ϵ.
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4. Evaluation of the master integrals

4.1. Introduction

In the following chapter, the calculation of the leading-colour two-loop master integrals is pre-
sented. The master integrals are computed by numerically solving differential equations (DE).
The high-precision initial conditions that are needed for the numerical DE solution are calcu-
lated in sec. 4.2 by expanding the integrals asymptotically around small m values. Subsequently,
the physical m value is restored in sec. 4.3 by numerically solving the DE in m. The integrals
are calculated for phase space points on a grid in x and z by numerically solving the respective
DEs. Results for phase space points between grid points are obtained by interpolation. The
remainder of this introduction is dedicated to the master integrals.

The leading-colour two-loop amplitude requires the calculation of the 90 master integrals which
are collected in tab. B.1 in app. B.1. All 90 master integrals are (6 − 2ϵ)-dimensional and be-
long to one of the four integral families defined in tab. 4.1. Only the Feynman integrals of the
double-box integral family and the ‘crossed’ double-box integral family contain genuine two-loop
integrals. Furthermore, both double-box integral families are related by exchanging p1 and p2,
as already indicated by the name of the second family. Hence, it is sufficient to calculate only
the master integrals of one double-box family and reconstruct the ‘crossed’ master integrals by
evaluating the integrals at the corresponding phase space point.
The double-box topology is depicted in fig 4.1. In this figure, massive propagators are indicated
with bold lines and the momenta of all propagators are explicitly stated. The shown propagators
correspond to the propagators P1, . . . , P7 given in tab. 4.1. The two auxiliary propagators P8

Table 4.1.: Integral families for the leading-colour two-loop amplitude.

double-box integral family
P1 = k2

1 −m2
t P2 = k2

2 P3 = (k2 + p1)2 −m2
t

P4 = (k1 − p1 − p2 − p3)2 −m2
t P5 = (k1 + k2 − p2 − p3)2 P6 = (k1 − p2)2

P7 = (k2 − p3)2 P8 = (k2 − p2)2 −m2
t P9 = (k1 − p3)2 −m2

t

‘crossed’ double-box integral family
P1 = k2

1 −m2
t P2 = k2

2 P3 = (k2 + p2)2 −m2
t

P4 = (k1 − p1 − p2 − p3)2 −m2
t P5 = (k1 + k2 − p1 − p3)2 P6 = (k1 − p1)2

P7 = (k2 − p3)2 P8 = (k2 − p1)2 −m2
t P9 = (k1 − p3)2 −m2

t

auxiliary family 1
P1 = k1 P2 = k2

2 −m2
t P3 = (k1 + p2)2 −m2

t

P4 = (k1 − p1 − p3)2 −m2
t P5 = (k1 − k2 + p2)2 P6 = (k2 − p1 − p2 − p3)2 −m2

t

P7 = (k1 − p3)2 P8 = (k2 − p2)2 P9 = (k2 − p3)2

auxiliary family 2
P1 = k2

1 −m2
t P2 = k2 −m2

t P3 = (k1 + p3)2 −m2
t

P4 = (k1 − p1 − p2)2 −m2
t P5 = (k1 − k2 + p3)2 P6 = (k2 − p1 − p2 − p3)2 −m2

t

P7 = (k2 − p3)2 P8 = (k1 − p1)2 P9 = (k1 − k2 − p2)2
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p2

p1 + p2 + p3 p1

p3k1 − p2 k2 − p3

k1

k1 − p1
k2 + p1

k2−p2 − p3
k1 + k2

−p2 − p3

Figure 4.1.: Double-box topology with explicitly stated propagator momenta. Bold lines indi-
cate massive propagators.

and P9 are necessary for the IBP reduction and the tensor reduction. The 54 master integrals
of this integral family are depicted in fig. 4.2. Bold lines indicate again massive propagators and
each dot on a propagator line indicates an increase of the corresponding propagator exponent by
one. For example, one dot means that the corresponding propagator has the exponent ni = 2.
In addition, two auxiliary integral families are defined. The five associated master integrals are
only products of two one-loop integrals as can be seen in fig. 4.3. Some master integrals depicted
in fig. 4.2 and fig. 4.3 seem to appear more than once. The respective integrals have different
kinematics and are hence regarded as different integrals.
The double-box integrals of sector 127 are presumably not expressible with MPLs alone and
require elliptic generalizations of MPLs. Note that, for example, the sunrise Feynman integrals
with two massive propagators belonging to sector 21 can be expressed with logarithms and
dilogarithms [222].

The discussion in this chapter focuses on the calculation of the 54 master integrals of the double-
box integral family. These master integrals are, by explicit choice, independent of the auxiliary
propagators. Hence, the notation of Feynman integrals introduced in sec. 2.4.1 is, in this chapter,
shortened to

In1,n2,n3,n4,n5,n6,n7 = I
(6−2ϵ)
n1,n2,n3,n4,n5,n6,n7,0,0, (4.1)

i. e. only the first 7 propagator exponents are stated and the remaining two auxiliary propagator
exponents are suppressed. Moreover, the space-time dimension is also suppressed and always
assumed to be d = 6 − 2ϵ unless specifically stated otherwise. All integrals in this notation
belong to the double-box integral family and I⃗ denotes the vector of all 54 master integrals
of the double-box integral family. The integrals of the ‘crossed’ double-box integral family are
similarly denoted with Ic

n1,...,n7 and integrals of the two auxiliary integral families are denoted
with Ia1

n1,...,n9 and Ia2
n1,...,n9 .

The leading-colour master integrals in tab. B.1 are quasi-finite Feynman integrals, which were
determined with the help of Reduze2 [102]. The general motivation for quasi-finite bases is
explained in sec. 2.4.5. The master integrals in tab. B.1 are chosen to be in d = 6 − 2ϵ dimen-
sions and many integrals acquire rather high propagator exponents. Other choices of quasi-finite
integrals are of course possible. The integral basis could, for example, also contain integrals in
6 − 2ϵ and in 8 − 2ϵ dimensions. The integrals in tab. B.1 were explicitly chosen to avoid multi-
ple dimensionalities for simpler bookkeeping. Moreover, all master integrals in tab. B.1 are finite.
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4.1. Introduction

Figure 4.2.: The 54 master integrals of the double-box integral family. Bold lines indicate
massive propagators and each dot on a propagator line indicates an increase of
the corresponding exponent by one.

Figure 4.3.: The five master integrals of the two auxiliary integral families.
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p4 p4

Figure 4.4.: The two-loop sunrise integrals with two massive propagators of sector 21. The
incoming momentum is p4 = p1 + p2 + p3.

Consider the two integrals of sector 21 as a simple example of a quasi-finite basis. This sector
corresponds to a two-loop sunrise topology with one massless and two massive propagators as
depicted in fig. 4.4. Both integrals only depend on the variables s and m.
The master integrals for this sector also have to include the two-loop tadpole integral for the
IBP reduction and the dimension-shift transformation. A possible choice of master integrals is

I
(4−2ϵ)
1,0,1,0,0,0,0, I

(4−2ϵ)
1,0,1,0,1,0,0, I

(4−2ϵ)
1,0,1,0,2,0,0, (4.2)

which, however, have ϵ−2 poles in d = 4 − 2ϵ dimensions. Alternatively, the (6 − 2ϵ)-dimensional
quasi-finite integrals

I
(6−2ϵ)
4,0,4,0,0,0,0, I

(6−2ϵ)
3,0,3,0,1,0,0, I

(6−2ϵ)
3,0,3,0,2,0,0 (4.3)

can be chosen as master integrals. When expressing the original (4 − 2ϵ)-dimensional master
integrals with the quasi-finite master integrals, ϵ−2 poles appear in the IBP reduction and ϵ−1

poles appear when transforming the (4 −2ϵ)-dimensional basis to the (6 −2ϵ)-dimensional basis.
Expressing the integrals in eq. (4.2) with the quasi-finite integrals yields

I
(4−2ϵ)
1,0,1,0,0,0,0 = I

(6−2ϵ)
4,0,4,0,0,0,0

(︄
36m4

ϵ2
+ 72m4

ϵ
+ 108m4 + O(ϵ)

)︄
,

I
(4−2ϵ)
1,0,1,0,1,0,0 = I

(6−2ϵ)
4,0,4,0,0,0,0

(︄
36m3

ϵ2
+ 108m3 − 9m2

ϵ
+ 252m3 − 9m2

2 − 9m+ O(ϵ)
)︄

+ I
(6−2ϵ)
3,0,3,0,1,0,0

(︃
−2m+ 1

2m − 3 + O(ϵ)
)︃

+ I
(6−2ϵ)
3,0,3,0,2,0,0

(︃
−8m− 1

2m + 4 + O(ϵ)
)︃
,

I
(4−2ϵ)
1,0,1,0,2,0,0 = I

(6−2ϵ)
4,0,4,0,0,0,0

(︄
−18m2

ϵ2
+ 18m2 − 18m

ϵ
− 54m2 + 90m− 36 + O(ϵ)

)︄

+ I
(6−2ϵ)
3,0,3,0,1,0,0

(︃
−1
ϵ

4m− 1
m

+ 2
m2 − 10

m
+ 14 + O(ϵ)

)︃
+ I

(6−2ϵ)
3,0,3,0,2,0,0

(︄
−1
ϵ

8m2 − 6m+ 1
m

− 2
m2 + 16m+ 14

m
− 28 + O(ϵ)

)︄
. (4.4)

The poles occur as explicit prefactors of the quasi-finite integrals. Additionally, it can be seen
in eq. (4.4) that the ϵ2 poles, i. e. the strongest poles, only appear in prefactors of the two-
loop tadpole integral I(6−2ϵ)

4,0,4,0,0,0,0. Stronger poles are also for many other master integrals of
the double-box topology shifted into the prefactors of ‘simpler’ integrals, i. e. integrals from
subtopologies with fewer propagators. In this example, the tadpole integral I(6−2ϵ)

4,0,4,0,0,0,0 has to
be calculated up order ϵ2 while I(6−2ϵ)

3,0,3,0,1,0,0 and I(6−2ϵ)
3,0,3,0,2,0,0 only need to be computed up to order

ϵ to obtain the (4 − 2ϵ)-dimensional basis up to order ϵ0.
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4.2. Asymptotic expansion

The dimension-shift transformations for the double-box and the auxiliary integral families are
constructed as described in sec. 2.4.4. The reverse transformation, i. e.

I⃗
(d+2) = D−1 · I⃗(d)

, (4.5)

can be obtained by inverting the corresponding 54 × 54 matrix D for the double-box topol-
ogy and a 13 × 13 matrix for the auxiliary integral families using the computer algebra system
Fermat [208].

4.2. Asymptotic expansion

4.2.1. Introduction

Since the initial conditions for the numerical DE solver are only required at one phase space
point, which additionally can be chosen more or less freely, it is often useful to choose a conve-
nient kinematical limit and exploit the associated simplifications.
For example, for the process at hand it would be very advantageous if it were possible to use the
corresponding massless integrals, i. e. the integrals at m = 0, as initial conditions and then solve
the DE system numerically in m to obtain the integrals at m = 289/2500. This would simplify
the calculation of the initial conditions tremendously as the master integrals of the correspond-
ing massless process are known and are expressible with MPLs [223]. MPLs have been studied
extensively in the past and many techniques and tools for computing and evaluating MPLs are
available, e. g. see the reviews in ref. [86, 224]. They are hence from a practical point of view
much simpler to handle than elliptic integrals. Unfortunately, this choice of initial conditions
is not possible due to singularities in the differential equations at m = 0. The massless and
massive integrals also have different pole structures in ϵ.
The small-mass limit, i. e. the limit in which m2

t is much smaller than all other involved scales,
is chosen instead. One major motivation for this choice is the assumption that the relatively
simple function space of the corresponding massless integrals might also be sufficient when ap-
proximating the master integrals in the small-mass limit. This assumption turned out to be true.

Asymptotically expanding in the small-mass limit yields the general form

I(x, z,m) =
emax∑︂

e=emin

∞∑︂
i=imin

e+6∑︂
j=0

Ce,i,j(x, z)ϵemi lnj(m) (4.6)

for all Feynman integrals. The s dependence is suppressed in this formula and also in the fol-
lowing discussion. Note that the sum over e starts at emin = −4 for the transformed quasi-finite
integrals. The maximal expansion order emax is chosen differently for each master integral due
to the numerical solution of the DE, as explained in sec. 4.3.2. Also the expansion typically
starts at imin = 0 although there are exceptions to this.
But how does this simplify the task of calculating the Feynman integrals? The original integrals
depend on three independent variables: x, z, and m. After expanding in powers and logarithms
of m, the coefficients Ce,i,j only depend on x and z and are simpler to calculate than the original
integrals. But this simplification does not come for free as the number of quantities to calculate
increases too, i. e. sufficiently many coefficients of the expansion need to be calculated for an
adequate approximation of the integral. Moreover, when using the expansion by regions, the
contributions of several regions have to be calculated for every Feynman integral. For example,
the contributions of 7 regions have to be calculated for the double-box integrals of sector 127.
Very precise values of the integrals are required since the asymptotic expansions of the master
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4. Evaluation of the master integrals

integrals will serve as initial conditions for the following numerical DE solution. The asymptotic
expansions were hence calculated to high orders in m.

In the next section, the expansion by regions is applied to calculate the leading terms of the
asymptotic expansion. In sec. 4.2.3, higher orders of the asymptotic expansion are computed by
applying the differential equation onto the ansatz given in eq. (4.6) and then solving a system
of equations. Results of the asymptotic expansion are presented in sec. 4.2.4.

4.2.2. Calculating the leading terms with the expansion by regions

The leading terms of the asymptotic expansion, i. e. in almost all cases terms of order m0, are
calculated with the expansion by regions employing the programs asy2.m [171,172] to determine
the regions and Mathematica as well as HyperInt [197] to perform the remaining integrations.
The expansion by regions is applied in a similar fashion as in ref. [225].

The formulation applied here uses Feynman integrals in Schwinger representation. The Schwinger
parameters are in the following denoted with xi. When expanding the integral in the small-mass
limit, i. e. m ≪ 1, the variable m is rescaled with a parameter χ, i. e.

m → χm. (4.7)

The parameter χ, which formally controls the small-mass limit, is a technical parameter used
in the expansion while m retains its actual but still small value. The regions, which encompass
the various soft, collinear and other limits of the integral, are determined with asy2.m. Each
region r is in this formulation represented by a vector r = (r1, r2, . . . , rn). The contribution of
region r is obtained by applying the scaling

m → χm, xi → χrixi (4.8)

to the integrand in Schwinger parameterization and subsequently expanding in χ. The set of all
regions for a specific integral is denoted with R. Let the contribution of region r be denoted by
I(r). The asymptotic expansion IAE of an integral is given by the sum over the contributions of
all regions of that integral, i. e.

IAE =
∑︂
r∈R

I(r). (4.9)

When applying the scaling in eq. (4.8), the U and F polynomials obtain a χ dependence given
by

U (r) = U (r)
0 χkmin + U (r)

1 χkmin+1 + O(χkmin+2),

F (r) = F (r)
0 χlmin + F (r)

1 χlmin+1 + O(χlmin+2), (4.10)

where the minimal orders in χ are kmin and lmin respectively. The expansion in m is obtained
by expanding the integrand in χ around zero, i. e.

I(r) =

⎛⎝ n∏︂
i=1

∞∫︂
0

dxi x
ni−1
i

Γ(ni)

⎞⎠ (︂
U (r)

0

)︂−d/2
exp

(︄
−F (r)

0

U (r)
0

)︄
×

×
(︄

1 − χ

(︄
F (r)

1

U (r)
0

+ F (r)
0 U (r)

1

U (r) 2
0

− dU (r)
1

2U (r)
0

)︄
+ O(χ2)

)︄⃓⃓⃓⃓
⃓
χ=1

. (4.11)
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4.2. Asymptotic expansion

Afterwards, the expansion in m is obtained by setting the technical parameter χ to one. The
parameters xi are integrated over the whole integration domain.
It is sufficient to calculate the leading terms I(r)

0 , i. e. the order χ0 coefficient in eq. (4.11), for
all 54 master integrals and the order m coefficients for three master integrals explicitly with the
expansion by regions. The remaining higher-order coefficients are determined from the leading-
order coefficients in sec. 4.2.3. The required contributions of the regions were calculated using
Mathematica and HyperInt [197].

In the following paragraphs, the sunrise integral I3,0,3,0,1,0,0 of sector 21 serves as an example to
explain the asymptotic expansion with the expansion by regions.
The integrals of the massive sunrise subtopology of sector 21, shown in fig. 4.4, have the Symanzik
polynomials

U = x1x2 + x1x3 + x2x3,

F = −x1x2x3 +m(x1 + x2)(x1x2 + x1x3 + x2x3). (4.12)

This sector possesses the four regions

h = (0, 0, 0), a = (0,−1, 0), b = (0, 0, 1), c = (0, 1, 1) (4.13)

in the limit m → χm. The region h = (0, 0, 0) is called the hard region and the corresponding
scaling is

m → χm, x1 → x1, x2 → x2, x3 → x3. (4.14)

The scaling for region a is, for example, given by

m → χm, x1 → x1, x2 → χ−1x2, x3 → x3 (4.15)

and the contributions for region b are obtained from

m → χm, x1 → x1, x2 → x2, x3 → χx3. (4.16)

Region c = (0, 1, 1) is used in the following as an example to explain the steps necessary to
compute the contributions of the regions. Applying the corresponding scaling

m → χm, x1 → x1, x2 → χx2, x3 → χx3 (4.17)

to the Symanzik polynomials in eq. (4.12) yields

U (c) = χx1(x2 + x3) + χ2x2x3,

F (c) = χ2
(︂
x1(−x2x3 +mx1(x2 + x3)) + χmx1x2(x2 + 2x3) + χ2mx2

2x3
)︂
. (4.18)

The leading terms U (c)
0 = x1(x2 + x3) and F (c)

0 = x1(−x2x3 +mx1(x2 + x3)) involve less terms
than the original U and F polynomials. The leading-order contribution of this region is obtained
by inserting U (c)

0 and F (c)
0 into the first term of eq. (4.11), which gives

I
(c)
0 = −e2γEϵ

∞∫︂
0

dx1

∞∫︂
0

dx2

∞∫︂
0

dx3
1
4x

2
1x

2
2(x1(x2 + x3))−d/2 exp

(︃
−mx1 + x2x3

x2 + x3

)︃
. (4.19)

In this expression and in the following examples, the factor e2γEϵ corresponding to the definition
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4. Evaluation of the master integrals

in eq. (2.16) is included to obtain more compact results. In the next step, x1 can be integrated
out directly since it factorizes in the U (c)

0 polynomial, which yields

I
(c)
0 = −e2γEϵ Γ

(︃
3 − d

2

)︃
m

d
2 −3

∞∫︂
0

dx2

∞∫︂
0

dx3
1
4x

2
2(x2 + x3)− d

2 exp
(︃

x2x3
x2 + x3

)︃
. (4.20)

Similar relations were used in ref. [225]. The result depends on x2 + x3 and hence the variable
transformation

x2 → λx2, x3 → λx3, x2 + x3 → λ,
∞∫︂

0

dx2

∞∫︂
0

dx3 →
∞∫︂

0

dλλ
∞∫︂

0

dx2

∞∫︂
0

dx3 δ(1 − x2 − x3) (4.21)

is applied. This yields the integral

I
(c)
0 = − e2γEϵ (ms)

d−6
2 Γ

(︃
3 − d

2

)︃ ∞∫︂
0

dλ
∞∫︂

0

dx2

∞∫︂
0

dx3 δ(1 − x2 − x3)1
4x

2
2λ

3− d
2 esλx2x3 . (4.22)

The dependence on the variable s is restored in this expression to explain the following calcula-
tion. The integration over the variable λ in eq. (4.22) does not converge for s > 0. Assuming
s < 0 while keeping ms > 0 and performing the remaining integrations in λ, x2, and x3 yields

I
(c)
0 = − e2γEϵ (ms)

d−6
2 Γ

(︃
3 − d

2

)︃
Γ
(︃

4 − d

2

)︃ ∞∫︂
0

dx2

∞∫︂
0

dx3 δ(1 − x2 − x3)1
4x

2
2(−sx2x3)

d−8
2

= − e2γEϵ
(−s) d

2 −4(ms) d
2 −3Γ

(︂
3 − d

2

)︂
Γ
(︂
4 − d

2

)︂
Γ
(︂

d
2 − 3

)︂
Γ
(︂

d
2 − 1

)︂
4Γ(d− 4) . (4.23)

This expression is evaluated for s > 0 using analytic continuation. The imaginary part of the
occurring logarithms follows from the Feynman prescription, which is restored by introducing an
infinitesimal imaginary part for the variable s, i. e. s → s+iε. Expanding the result in d = 6−2ϵ
dimensions yields for s = 1

I
(c)
0 = − 1

4ϵ2 − 1 + iπ − ln(m)
4ϵ

− 1
8
(︂
4 − π(π − 2i) − 2(1 + iπ) ln(m) + ln2(m)

)︂
+ O (ϵ) . (4.24)

The spurious ϵ poles which appear in this result must cancel when the contributions of all regions
are added since the original integral is finite. This example highlights several steps for the
calculation of the contributions of the regions. If the F (r)

0 polynomial contains more Schwinger
parameters than the U (r)

0 polynomial or if Schwinger parameters factorize, as in this example x1
does, it is possible to integrate out Schwinger parameters directly as done in eq. (4.20).
Furthermore, after this first simplification, the variable transformation

xi → λxi,
N∑︂

i=1
xi → λ,

N∏︂
i=1

∞∫︂
0

dxi →
∞∫︂

0

dλλN−1

⎛⎝ N∏︂
i=1

∞∫︂
0

dxi

⎞⎠ δ

(︄
1 −

N∑︂
i=1

xi

)︄
. (4.25)
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4.2. Asymptotic expansion

is applied. This is the general form of the transformation given in eq. (4.21). Subsequently the λ
dependence is integrated out. Note that this effectively transforms the integrals from Schwinger
to Feynman parameterization.

It is possible to perform the integration of the two remaining variables x2 and x3 in eq. (4.24)
directly with Mathematica. For many integrals, this step is more involved. The remaining
parameter integrations are hence in most cases performed with HyperInt.
Consider, for example, the hard region h = (0, 0, 0). Applying the scaling given in eq. (4.14)
gives the Symanzik polynomials

U (h) = x2x3 + x1(x2 + x3),
F (h) = −x1x2x3 + χm(x1 + x2)(x2x3 + x1(x2 + x3)). (4.26)

Inserting those polynomials into eq. (4.11) gives the leading contribution of the hard region, i. e.

I
(h)
0 = −e2γEϵ

∞∫︂
0

dx1

∞∫︂
0

dx2

∞∫︂
0

dx3
1
4x

2
1x

2
2(x1(x2 + x3) + x2x3)− d

2 ×

× exp
(︃

x1x2x3
x1(x2 + x3) + x2x3

)︃
. (4.27)

In contrast to region c, no Schwinger parameter factorizes in U (h) = U and hence no parameter
can be integrated out directly. Consequently, the integral is transformed to Feynman parameters
using the transformation given in eq. (4.25), which yields

I
(h)
0 = −e2γEϵ Γ(7 − d)

4

∞∫︂
0

dx1

∞∫︂
0

dx2

∞∫︂
0

dx3 δ(1 − x1 − x2 − x3)x2
1x

2
2(x1(x2 + x3) + x2x3)− d

2 ×

×
(︃

− x1x2x3
x1(x2 + x3) + x2x3

)︃d−7
. (4.28)

This integral still contains subdivergences that give rise to ϵ poles similarly to the contribution
of region c in eq. (4.24). This prevents a direct evaluation with HyperInt. HyperInt includes
the function findDivergences to check integrands for subdivergences. The singularities are
resolved with partial integrations as described in ref. [226]. HyperInt provides the function
dimregPartial for this task. For instance, the integral in eq. (4.28) can be made finite by
applying

dimregPartial(integrand,{1/x1}, -eps),
dimregPartial(integrand,{x1,x3}, -eps)

to the integrand, which yields

I
(h)
0 = − e2γEϵ 3Γ(2ϵ+ 1)(ϵ− 1)(3ϵ− 2)

4ϵ2 × (4.29)

×
∞∫︂

0

dx1

∞∫︂
0

dx2

∞∫︂
0

dx3 δ(1 − x1 − x2 − x3)x1x2(x1(x2 + x3) + x2x3)3ϵ−4(−x1x2x3)1−2ϵ.
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4. Evaluation of the master integrals

The integrand can now be expanded in ϵ since the subdivergences are resolved, yielding

I
(h)
0 = − e2γEϵ

∞∫︂
0

dx1

∞∫︂
0

dx2

∞∫︂
0

dx3 δ(1 − x1 − x2 − x3) x2
1x

2
2x3

(x1(x2 + x3) + x2x3)4

(︃
(4.30)

− 3
2ϵ2 + 3

4ϵ(4 ln(−x1x2x3) − 6 ln(x1(x2 + x3) + x2x3) + 5)
)︃

+ O
(︂
ϵ0
)︂
.

The Wu-Cheng theorem [159, 227] allows to change the argument of the δ function to the sum
of any subset of the variables xi while the remaining Feynman parameters are integrated from
0 to ∞. This can be used to integrate out the x1 dependence in eq. (4.30) by substituting

δ(1 − x1 − x2 − x3) → δ(1 − x1) (4.31)

and then setting x1 = 1.
Performing the remaining integrations in x2 and x3 with HyperInt yields the result

I
(h)
0 = 1

4ϵ2 + 1 + iπ

2ϵ + 1
24
(︂
36 + 24iπ − 13π2

)︂
+ O (ϵ) . (4.32)

The contributions of the remaining regions can be calculated in the same way. The corresponding
contributions are

I
(a)
0 = − 1

4ϵ2 − 1 + iπ − ln(m)
4ϵ − 1

8
(︂
4 − π(π − 2i) − 2(1 + iπ) ln(m) + ln2(m)

)︂
+ O (ϵ) ,

I
(b)
0 =1

4Γ
(︃

3 − d

2

)︃2
md−6 = 1

4ϵ2 − ln(m)
2ϵ + 1

2 ln2(m) + π2

24 + O (ϵ) . (4.33)

The sum over all contributions from all four regions yields the leading term of the asymptotic
expansion, which for this integral is

IAE,0 = I
(h)
0 + I

(a)
0 + I

(b)
0 + I

(c)
0 = 1

4
(︂
2 + 2iπ − π2 + 2(1 + iπ) ln(m) + ln2(m)

)︂
+ O (ϵ) . (4.34)

The spurious poles cancel in the final result as expected.
In summary, the expansion by regions is performed in this work by applying the following steps
for each integral:

• determine the regions with asy2.m,
• for each region:

– apply the χ scalings to the U and F polynomials,
– expand the integrand in χ up to the required expansion order,
– integrate over Schwinger parameters:

∗ integrate out factorizing Schwinger parameters,
∗ transform from Schwinger to Feynman parameterization with eq. (4.25),
∗ resolve spurious singularities by applying partial integrations,
∗ expand in ϵ,
∗ integrate over all remaining Feynman parameters using HyperInt,

• sum over contributions from all regions.
The resolution of the singularities and the final Feynman parameter integration with HyperInt
remain as non-trivial problems.

Several comments on this calculation:
• As already mentioned, the contributions from the relevant regions will in general contain

spurious ϵ poles, i. e. poles of higher ϵ order than the original integral. These spurious
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4.2. Asymptotic expansion

poles cancel after summation over all regions and the expansion has the pole structure of
the original integral. This provides a non-trivial test of this calculation.

• It is possible that dimensional regularization is not sufficient to regulate all spurious sin-
gularities when applying the expansion by regions. This problem is typically solved by
introducing ‘analytic regulators’ [158,225,228,229], where the integer exponents of propa-
gators are replaced by a complex number. In other words, a propagator P with exponent
n is analytically regulated by adding to the exponent the regulator η as

1
Pn

→ 1
Pn+η

. (4.35)

The regulator must be introduced consistently in the contributions of all regions of an
integral. After expanding in the analytic regulator η, the spurious singularities manifest
themselves as poles in η. These poles cancel when summing over all regions. Then the
limit η → 0 can be taken.
The calculations presented in this work did not require analytic regulators and hence were
performed without.

• The leading-order contribution of the hard region h = (0, 0, . . . , 0) in the small-mass limit
is given by the corresponding massless integral.

• Higher orders of the asymptotic expansion can be calculated by expanding the integrand
in eq. (4.11) to higher orders in χ. Each new order will be in general more difficult to
calculate due to the proliferation of terms in the integrand.

• The sum of the contributions of all regions gives the asymptotic expansion. However,
not every region necessarily contributes to the leading order of the asymptotic expansion.
I. e. the lowest-order term of the expansion in eq. (4.11) can contribute to higher order
terms in the m expansion.

The above described procedure was used to calculate the leading-order expansions of all 54
master integrals of the double-box topology as well as the 5 remaining integrals of two auxiliary
integral families. The details of these calculations are not shown here since they are very lengthy
and essentially only repeat the demonstrated steps. Analytic results are also too large to be
shown here. Numerical results and a summary of technical details are given in app. B.2.

The systematic determination of higher-order expansions in sec. 4.2.3 requires in addition to
the leading-order coefficients also coefficients of order m of the master integrals I2,2,1,1,1,0,0,
I1,1,2,1,1,1,0, and I2,0,1,1,2,0,1, corresponding to the 12th, 31st, and 44th master integrals in tab. 4.1.
This choice is not unique and it is also possible to use the coefficients of order m of the 26th,
42nd, and 47th master integrals instead.
Almost all contributions to the higher-order coefficients were also calculated as described above
except for the hard region of master integral I1,1,2,1,1,1,0. In this case, the contributions of the
hard region were expressed by massless integrals, which were then reduced to the correspond-
ing massless master integrals. The higher-order contributions are obtained by expanding the
integrand in eq. (4.11) to higher orders in χ. This gives rise to terms containing U−1

0 , which is
interpreted as D+ operator, and other terms composed of xi parameters, which are interpreted
as i+ operators. Applying the operators yields massless integrals with increased exponents and
increased space-time dimension, which are then reduced to master integrals of the massless
topology.
The hard region of master integral I1,1,2,1,1,1,0 in 6 − 2ϵ dimensions can be reduced to the 7
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massless quasi-finite master integrals

Ĩ
(8−2ϵ)
0,0,3,0,2,2,0, Ĩ

(8−2ϵ)
0,2,0,2,2,1,0, Ĩ

(8−2ϵ)
1,2,0,1,2,1,0, Ĩ

(8−2ϵ)
2,2,0,1,2,0,0,

Ĩ
(8−2ϵ)
2,2,1,0,1,1,0, Ĩ

(8−2ϵ)
3,0,3,0,1,0,0, Ĩ

(8−2ϵ)
3,2,0,0,2,0,0 (4.36)

in 8−2ϵ dimensions. Here, Ĩ denotes integrals of the corresponding massless double-box integral
family. These massless integrals are then calculated again with HyperInt.

A major question about the above described procedure remains: how to efficiently resolve the
spurious singularities which arise in the expansion by regions? As already mentioned, HyperInt
cannot perform integrations involving divergences. The singularities are resolved for each inte-
gral individually by applying the function dimregPartial ‘by hand’. For this step, it is crucial
to use a quasi-finite basis. When expanding quasi-finite integrals, only spurious poles need
to be resolved. In contrast, asymptotically expanding divergent Feynman integrals with the
expansion by regions yields integrals which contain the spurious singularities on top of the sin-
gularity structure of the Feynman integral. Manually resolving a large number of divergences
with dimregPartial can easily become practically infeasible and might require the additional
introduction of analytic regulators.
Moreover, this procedure requires manual work involving trial and error for each region and each
order in m and hence was only applied for the leading coefficients.
Another less severe issue is the determination of an order in which the Feynman parameter
integrations can be performed. For this work, this was also done for each integral individually
by trial and error. Additionally, some integrations need considerable computational resources.
Calculating higher-order expansions in m in this way would require even more resources due to
the proliferation of terms in the integrand in eq. (4.11).
In the future, it would be interesting to study systematic simplifications of the integrands to op-
timize the integrations. Another interesting question is whether the resolution of subdivergences
can be automated for computations with HyperInt. Such algorithms could greatly simplify the
calculation of Feynman integrals containing subdivergences. These questions are left for future
work.

4.2.3. Calculation of higher-order terms

The higher orders of the asymptotic expansions are calculated by applying a differential equation
to an ansatz of the asymptotic expansions, which yields a system of linear algebraic equations in
the expansion coefficients. This system of equations is then solved and higher-order coefficients
are expressed through lower-order coefficients. This approach was pioneered in ref. [109] and
has been applied in many calculations [151,155,156,225,230–232].
The higher-order coefficients are consequently expressed through the coefficients of order m0

and m that were calculated in the previous section. The asymptotic expansions can be obtained
to very high orders in this way without the need to evaluate integrals.

For all master integrals, an ansatz for asymptotic expansions of the form of eq. (4.6) is made.
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4.2. Asymptotic expansion

Inserting the ansatz into the differential equation ∂mI⃗ = Am · I⃗ yields

∂mI⃗ = ∂m

⎛⎝ emax∑︂
e=emin

∞∑︂
i=imin

e+6∑︂
j=0

C⃗e,i,jϵ
emi lnj(m)

⎞⎠
=

emax∑︂
e=emin

∞∑︂
i=imin

e+6∑︂
j=0

C⃗e,i,jϵ
e
(︂
imi−1 lnj(m) + j mi−1 lnj−1(m)

)︂
!= AmI⃗ =

emax∑︂
e=emin

∞∑︂
i=imin

e+6∑︂
j=0

Am · C⃗e,i,jϵ
emi lnj(m). (4.37)

Note that the matrix Am also has a non-trivial m and ϵ dependence. Expanding both sides in
ϵ, m, and ln(m) and comparing the coefficients gives a system of linear equations. In eq. (4.37),
it can be seen that the equations mix coefficients of order mn, mn−1, and even higher orders
in m due to the m dependence of Am. Hence, higher-order coefficients can be expressed with
lower-order coefficients when solving the system of equations. Assuming that sufficiently many
lower-order coefficients, which serve as boundary conditions, are known and assuming a suitable
system of equations, it is possible to calculate coefficients theoretically up to any order in m.
In practice, the maximal expansion order is limited due to the available computational resources
as intermediate expression sizes grow with expansion order. The expansions of all 54 master
integrals were calculated at least up to order m13.
The equations obtained from eq. (4.37) and also the expansion coefficients C⃗e,i,j depend on x
and z. The system of equations is solved for the benchmark phase space point to avoid very
large analytical expressions.
Systems of equations are solved for individual sectors and orders in ϵ one after another to keep
the number of equations small and easily manageable. The systems of equations for individual
sectors are solved consecutively since the solution of any given sector depends on the solutions
of its subsectors. However, in each step all integrals of a given sector have to be included since
they are in general coupled through the differential equation. Similarly, each order in ϵ is solved
individually starting at the lowest ϵ order.

4.2.4. Results of the asymptotic expansion

All 54 master integrals of the double-box topology have been expanded at least up to order m13.
The results of the asymptotic expansion are given in terms of logarithms, polylogarithms, and
multiple polylogarithms. This also holds for all higher-order coefficients which were determined
from the lower-order coefficients in sec. 4.2.3.
The coefficients are numerically evaluated with Mathematica. The MPLs are processed with
the Mathematica package PolyLogTools [233], which uses HPL [234, 235] and GiNaC [236] for
the numerical evaluation of the MPLs.
The results are in general too lengthy to be presented here. Numerical results are given in
app. B.2.
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Figure 4.5.: The real part (left) and imaginary part (right) of the asymptotic expansion of
I3,0,3,0,1,0,0 at order ϵ0. The upper panel shows the results of expansions up to
different orders in m and their estimated uncertainties. Values obtained with
Fiesta and pySecDec are included for comparison. The blue band is the estimated
uncertainty of the order m1 expansion. The middle panel shows the estimated
uncertainties of the asymptotic expansions. The lower panel shows the relative
difference of the order m15 expansion and the Fiesta and pySecDec values.

For example, the first terms of the asymptotic expansion of the sunrise integral I3,0,3,0,1,0,0 are

I3,0,3,0,1,0,0 = 1
4
(︂
2 + 2iπ − π2 + 2(1 + iπ) ln(m) + ln2(m)

)︂
+ 1

2m
(︂
2 + π2 − 2iπ ln(m) − ln2(m)

)︂
+ 1

2m
2(1 − 3iπ − 3 ln(m))

− 1
3m

3(2 + 5iπ + 5 ln(m)) − 1
12m

4 (24 + 35iπ + 35 ln(m))

− 1
10m

5(53 + 63iπ + 63 ln(m)) + O
(︂
m6
)︂

+ O (ϵ) . (4.38)

This expansion is depicted in fig. 4.5 for m values from 0.01 up to the physical mass value
m = 289/2500 for different expansion orders. The uncertainties of the asymptotic expansion,
which are shown in the middle panel of fig. 4.5, are estimated with the last contributing order in
m. The uncertainty bands decrease with increasing expansion order and higher-order expansions
lie inside the uncertainty bands of lower-order expansions. This indicates that the expansion
converges well for the entire depicted range of m. The asymptotic expansion gives at least 8
significant decimal digits over the entire plotted range of m and is even more precise for smaller
m values.
Moreover, fig. 4.5 also includes a comparison with numerical values obtained with Fiesta and
pySecDec. The lower panel shows the relative difference of the Fiesta and pySecDec results
with respect to the expansion. All results agree very well at the permille level with each other
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4.2. Asymptotic expansion

over the entire m range.
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Figure 4.6.: The real part (left) and imaginary part (right) of the asymptotic expansion of
the double-box integral I1,1,1,1,1,1,1 at order ϵ0. The upper panel shows the results
of expansions up to different orders in m and their estimated uncertainties. The
middle panel shows the estimated uncertainties of the asymptotic expansions. The
lower panel shows the pull when comparing lower-order expansions with the order
m15 expansion.

Studying the results for the asymptotic expansion of I3,0,3,0,1,0,0 raises the question: is the
asymptotic expansion sufficient to obtain all master integrals at m = 289/2500? After all, for
the master integral I3,0,3,0,1,0,0 this seems to be the case.
To answer this question, consider, for example, the double-box integral I1,1,1,1,1,1,1. The asymp-
totic expansion of the order ϵ0 coefficient of the double-box integral is shown in fig. 4.6. Expan-
sions of different orders up to order m15 are again compared for m values from 0.01 to 289/2500.
The uncertainty of the expansion is again estimated with the last contributing order in m.
The upper panel shows the numerical values of the expansion and its uncertainty bands. The
middle panel shows the estimated uncertainties. The lower panel shows the pull of the lower-
order expansions and the highest-order expansion. The pull is the difference divided by the
combined uncertainty.
The expansion at order m0 is just a constant while higher-order expansions have a non-trivial m
dependence. The uncertainty bands overlap and the values of different expansion orders agree
well with each other within the estimated uncertainty. The middle panel shows that the uncer-
tainties decrease with higher orders up to a value of m ≈ 0.07. However, for larger m values
the uncertainties increase with expansion order and the asymptotic expansion diverges from the
true value. The order m15 expansion does not give any meaningful results at the physical mass.
In conclusion, it is not possible to use the asymptotic expansion to calculate this integral for the
physical m value. Instead, numerical solutions of the differential equation in m are used. It can
be seen that at m = 0.01 the uncertainty roughly decreases by an order of magnitude with every
order in m. The number of significant decimal digits of the evaluated asymptotic expansions at
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4. Evaluation of the master integrals

m = 0.01 and m = 0.001 are given in tab. B.3 in app. B.2. The integrals for the larger mass
are known for at least 8 decimal digits. The initial conditions are chosen at m = 0.001, which
guarantees an accuracy of at least 22 decimal digits for all integrals while much higher precision
is achieved for many integrals. Also note that lower-order coefficients in ϵ typically also acquire
a higher precision. This very high precision is required for the following numerical DE solution.

4.3. Numerical solutions of the differential equations

4.3.1. Introduction

The master integrals obey differential equations in the kinematic variables x, z, m, and s of the
form

∂xI⃗ = Ax · I⃗ , ∂z I⃗ = Az · I⃗ , ∂mI⃗ = Am · I⃗ , ∂sI⃗ = As · I⃗ , (4.39)

where Ax, Az, Am, and As are matrices and I⃗ is the vector of all master integrals. The matrices
will in general couple the integrals and have entries that are rational functions in x, z, m, and
ϵ. The differential equations in eq. (4.39) are special cases of ordinary differential equations
(ODE). For example, a general ODE in m is given by

∂mI⃗ = f⃗
(︂
I⃗ ,m

)︂
, (4.40)

where the derivative of I⃗ with respect to m is explicitly given by the function f⃗ , which depends
on I⃗ and m. Numerical solutions to this kind of DE are a very well studied subject.

In the following, the DE in m is first solved numerically to obtain the integrals at m = 289/2500.
The variables x and z are kept fixed in this step. Afterwards, the DEs in x and z are solved
numerically to obtain the master integrals for different phase space points. In this way, the
initial conditions only need to be evaluated for one single phase space point. In other words,
the DE systems for the master integrals are solved iteratively as

(x0, z0,m0) Am−−→ (x0, z0,m) Ax−−→ (x, z0,m) Az−−→ (x, z,m), (4.41)

where (x0, z0,m0) = (0.2, 0.05, 0.001) is the phase space point of the initial conditions.

The following discussion focuses on the calculation of the double-box integral family. The 5
remaining integrals of the two auxiliary integral families are solved essentially in the same way.
The DE system for the master integrals of the auxiliary integral families also has to include
some master integrals of the double-box and ‘crossed’ double-box topology. The corresponding
DE system is hence constructed for the master integrals

I⃗
a = (Ia1

1,4,1,1,0,0,1,0,0, I
a1
0,3,2,1,0,1,1,0,0, I

a1
1,3,1,1,0,1,1,0,0, I

a2
0,3,3,1,0,1,0,0,0, I

a2
0,3,2,1,0,1,0,1,0,

I4,0,4,0,0,0,0, I3,0,4,1,0,0,0, I0,0,4,3,0,1,0, I2,0,4,1,0,1,0, I3,0,3,1,0,0,1,

Ic
0,0,4,3,0,1,0, I

c
2,0,4,1,0,1,0, I

c
3,0,3,1,0,0,1). (4.42)

These integrals were only solved in m and no grid results were calculated.

As an introductory example, consider again the double-box integral I1,1,1,1,1,1,1. Numerically
solving the DE in m for values between 0.01 and m = 289/2500 yields the results plotted in
fig. 4.7. The asymptotic expansions at m = 0.01 are used as initial conditions for this example.
This figure also includes a comparison of the ODE results with the asymptotic expansion and
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4.3. Numerical solutions of the differential equations

values obtained completely independently with pySecDec and Fiesta as a cross-check.
It can be seen that the asymptotic expansion and the numerical ODE solution agree very well
up to roughly m ≈ 0.06. The asymptotic expansion does not converge for larger m values and
cannot be used to obtain meaningful results. The ODE system, however, can be solved numer-
ically for higher masses. The results at the physical value m = 289/2500 have an estimated
relative uncertainty of less than 10−7. Additionally, the ODE results agree very well with the
numerical pySecDec and Fiesta results over the entire range of m.

The details of this calculation are explained in the following. In sec. 4.3.2, the ODE system is
prepared for the evaluation. In sec. 4.3.3, the technical details of the ODE solver are summarized
and the deformation of the integration contour into the complex plane to avoid singularities is
explained. Furthermore, uncertainties of the numerical results are estimated in sec. 4.3.4 and
results for the integrals for a grid in x and z are presented in sec. 4.3.5. Finally, cross-checks of
the results are provided in sec. 4.3.6.

4.3.2. Preparation and implementation of the ODE system

The ODE systems were implemented in a C++ program using the numerical ODE solver col-
lection Odeint [237], which is part of the Boost Library [238], for the numerical calculations.
This library provides several commonly used algorithms to numerically solve ODE systems. The
calculations are performed with the quadruple-precision floating-point data type float128 pro-
vided by the Boost Library. This 128-bit data type provides between 33 and 36 significant
decimal digits, which is sufficient for this work. The Boost Library provides further data types
with even higher numerical precision, including arbitrary-precision data types, which might be
necessary for future calculations. All complex numbers are represented with a complex-valued
data type derived from float128. Suitable parts of the calculation were performed in parallel
using OpenMP.
In this work, the Bulirsch-Stoer algorithm [239,240] was used to solve the DEs. This algorithm
was, for example, also used in ref. [155] to calculate Feynman integrals. Other calculations
applied Runge-Kutta algorithms [153, 241, 242] and multistep methods [151] for this task. The
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Figure 4.7.: Results of the numerical ODE solutions and the asymptotic expansion for the
ϵ0 coefficient of the real part (left) and imaginary part (right) of the double-box
integral I1,1,1,1,1,1,1. The lower panel compares the asymptotic expansion and
Fiesta and pySecDec results with the numerical ODE solution.
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Figure 4.8.: The two master integrals I3,2,1,0,1,0,0 and I3,1,2,0,1,0,0 of sector 23.

Bulirsch-Stoer algorithm was chosen in this work because it generally provides stable solutions
and good performance for high-precision calculations. A comprehensive discussion of different
numerical algorithms for solving general ODE systems, i. e. for computations not confined to
the evaluation of Feynman integrals, can be found in ref. [243,244].

The ODE system needs to be prepared for numerical evaluation. In order to accommodate
the ϵ dependence, a larger DE system of the expanded integrals and the expanded matrix is
constructed. The ODE systems for the leading-colour two-loop master integrals given in tab. B.1
have at most ϵ−4 poles, i. e.

Am = ϵ−4A(−4)
m + ϵ−3A(−3)

m + · · · +A(0)
m + . . . . (4.43)

For example, the DE for the double-box integral I1,1,1,1,1,1,1 depends on the tadpole as1

∂mI1,1,1,1,1,1,1 = O(ϵ−4) · I4,0,4,0,0,0,0 + . . . . (4.44)

Since the master integrals are finite, i. e.

I⃗ = I⃗
(0) + ϵI⃗

(1) + ϵ2I⃗
(2) + . . . , (4.45)

the ODE system assumes the form

∂m

⎛⎜⎜⎜⎜⎜⎜⎝
I⃗

(0)

I⃗
(1)

I⃗
(2)

...

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
A(0) A(−1) A(−2) A(−3) A(−4) 0 0
A(1) A(0) A(−1) A(−2) A(−3) A(−4) 0
A(2) A(1) A(0) A(−1) A(−2) A(−3) A(−4)

...

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
I⃗

(0)

I⃗
(1)

I⃗
(2)

...

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.46)

The poles in ϵ occurring in Am but also in Ax and Az prevent a naive numerical implementation
since the solution of I⃗(n) depends on certain entries of I⃗(n+1), I⃗(n+2), etc. Hence, a basis
transformation that rescales the master integrals with ϵ prefactors is applied.
For example, consider sector 23, which contains the master integrals I3,2,1,0,1,0,0 and I3,1,2,0,1,0,0
plotted in fig. 4.8. The corresponding ODE system involves the first 8 master integrals2, i. e.

I⃗ = (I4,0,4,0,0,0,0, I3,0,4,1,0,0,0, I3,2,0,0,2,0,0, I4,2,0,0,2,0,0,

I3,0,3,0,1,0,0, I3,0,3,0,2,0,0, I3,2,1,0,1,0,0, I3,1,2,0,1,0,0)
= (I1, I2, I3, I4, I5, I6, I7, I8). (4.47)

1The complete expression of the ϵ−4 coefficient is suppressed for this specific example since it is too lengthy.
2Master integral I3,0,4,1,0,0,0 actually decouples from sector 23 but is included for simplicity.
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4.3. Numerical solutions of the differential equations

The corresponding DE contains poles and is at order ϵ−2 given by

Am = 1
ϵ2

1
(4m− (1 − z)2)(−1 + 2m+ z)×

×

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0

18m2(2z+1)
m+z 0 m(2z+1)

m+z
3zm(2z+1)

m+z 0 0 0 0
−36m2 0 −2m −6mz 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠+ O
(︂
ϵ−1
)︂
. (4.48)

Consequently, the order ϵ0 coefficients of I7 and I8 depend on the order ϵ2 coefficients of I1, I3,
and I4. The transformation

T = diag(ϵ−2, 1, ϵ−2, ϵ−2, 1, 1, 1, 1), (4.49)

rescales these integrals with a factor ϵ−2, which then cancels the poles in Am.

A transformation for the complete ODE system is constructed in a similar way. The transfor-
mation T has the form

T = diag (ϵa1 , ϵa2 , ϵa3 , . . . ) (4.50)

and the transformed matrix A′
m is

A′
m = TAmT

−1

= diag (ϵa1 , ϵa2 , ϵa3 , . . . ) ·Am · diag
(︁
ϵ−a1 , ϵ−a2 , ϵ−a3 , . . .

)︁
,[︁

A′
m

]︁
ij = [Am]ij ϵ

ai−aj . (4.51)

The exponent aj is then chosen to be the order of the strongest ϵ pole in the jth column of Am

in order to cancel the poles. For the DE system of the double-box integral family, the required
exponents are

a⃗ = ( − 4,−2,−4,−4,−2,−2,−2,−2,−4,−2,−2, 0, 0, 0,−2,−2,−4,−4, −2,−2,
− 2,−2,−2,−2,−1,−1,−1, 0, 0, 0, 0, 0,−1,−2,−2,−2, −2,−2,−2,−2,
0,−1,−1,−1,−1,−1, 0, 0, 0,−1,−1, 0, 0, 0). (4.52)

Technically, this transformation moves the higher-order integral coefficients of I⃗(n+1), I⃗(n+2),
. . . which are needed to calculate lower-order coefficients of I⃗(n) into the same lower orders.
This effectively shifts the poles from the matrix Am to the integrals I⃗. After the transformation,
the DE has the form

∂m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I⃗
(−4)

I⃗
(−3)

I⃗
(−2)

I⃗
(−1)

I⃗
(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
A(0)

A(1) A(0)

A(2) A(1) A(0)

A(3) A(2) A(1) A(0)

A(4) A(3) A(2) A(1) A(0)

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I⃗
(−4)

I⃗
(−3)

I⃗
(−2)

I⃗
(−1)

I⃗
(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.53)

In the following paragraphs, I⃗ denotes the transformed basis unless specifically stated otherwise.
Note that I⃗ still remains a quasi-finite basis since the poles in eq. (4.53) do not originate from
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subdivergences.
The ϵ expansions of the 54 master integrals of the double-box integral family are calculated up
to the maximal orders

e⃗max = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) (4.54)

since the corresponding coefficients contribute to the order ϵ0 coefficient of the amplitude.
The DE systems for the other master integrals I⃗a defined in eq. (4.42) do not contain any poles
and hence are not transformed. Furthermore, all integrals of I⃗a are calculated up to order ϵ1.

4.3.3. Singularities and contour deformation

The DEs contain singularities in the kinematic variables which manifest in the matrices Am, Ax,
and Az as poles in x, z, and m. All singularities in the kinematic variables for the double-box
master integrals are summarized in tab. B.5 in app. B.3. For instance, the master integrals of
sector 21 and subsector 5,

I⃗ = (I4,0,4,0,0,0,0, I3,0,3,0,1,0,0, I3,0,3,0,2,0,0), (4.55)

obey the DE3

Am =

⎛⎜⎜⎝
− 2

m − 2ϵ
m 0 0

9 − 18(m−1)ϵ
m

2m−1
2m2 + (−6m2+7m−2)ϵ

2m3
1−4m
2m2 + (12m2−11m+2)ϵ

2m3

− 9
4m−1 + 18(m−1)ϵ

m(4m−1)
1−2m

2m2(4m−1) + (10m2−7m+2)ϵ

2m3(4m−1)
−4m2+4m−1
2m2(4m−1) + (−8m3−16m2+11m−2)ϵ

2m3(4m−1)

⎞⎟⎟⎠
+ O

(︂
ϵ2
)︂
. (4.56)

In this example, the two singularities at m = 0 and m = 1/4 correspond to the massless limit
and the production threshold at s = 4m2

t . In this work, the Feynman integrals are evaluated for
0 < m < 1/4, i. e. above the production threshold. When calculating the three master integrals
of sector 21 above threshold, there is no need for a contour deformation when the initial con-
ditions are also chosen above threshold. However, when calculating the master integrals below
threshold while keeping the initial conditions above threshold, a contour deformation in the
complex plane is necessary to circumvent the singularity at m = 1/4.
Another example is given by the DE of sector 23 in eq. (4.48), which contains the three singu-
larities

m = −z, m = 1
2(1 − z), m = 1

4(1 − z)2. (4.57)

These singularities can, in contrast to the previous example, lie above and below threshold,
depending on the phase space point.

Most singularities given in tab. B.5 are located on the real axis when the remaining variables are
real valued. For example, the singularity at m = 1

2(1−z) is located at m = 0.3 when numerically
solving the DE for z = 0.4. Moreover, this singularity will always occur for real values of m in
this work since the ODE systems are always solved for fixed and real-valued x and z.
The only way in which one of the singularities in tab. B.5 can obtain a complex value in this
scenario is by being a complex solution to a quadratic equation. For example, the equation

3The transformation given in eq. (4.50) was not applied to this DE.
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Figure 4.9.: Depiction of an example contour for the m integration. The singularities on the
real axis are avoided by using an elliptic contour through the complex plane with
a negative imaginary part. The depicted singularity is purely illustrative and does
not correspond to an actual singularity of the DE.

m2 + x−mx = 0 has the solutions

m = x

2 ± 1
2
√︁
x2 − 4x, (4.58)

which have non-vanishing imaginary parts for 0 < x < 4.

The numerical integration is done along complex contours for x, z, and m to circumvent singu-
larities on the real axis. Similarly to ref. [151], the elliptical contour

m = (m1 −m0)
(︃1

2 (1 − cos(tπ)) + ib sin(tπ)
)︃

+m0 (4.59)

is used. The start value of the contour is m0, the end value is m1, and the position on the
contour is parameterized by t ∈ [0, 1]. The deformation into the complex plane is controlled
by the parameter b. This contour is illustrated in fig. 4.9. While this parameterization gives
a single, smooth contour, other calculations, e. g. in ref. [153, 241], use contours consisting of
multiple parts.
The sign of the deformation parameter b follows from the Feynman prescription, where prop-
agators are assigned infinitesimal imaginary parts and which is implemented by imposing in-
finitesimal imaginary parts

p2
i → p2

i + iε, sij = (pi + pj)2 → sij + iε, mi → mi − iε (4.60)

to momenta and masses. The variables x, z, and m also acquire infinitesimal imaginary parts

x → x+ iε, z → z + iε, m → m− iε (4.61)

as a result. The Feynman prescription separates integration contour and poles on the real axis
as indicated for the m variable by the dashed line in fig. 4.9. This contour can be deformed
into the negative complex plane if the area between the two contours is free of singularities with
non-vanishing residues. This follows directly from the Cauchy integral theorem. Hence, the
deformation parameter b must be negative for m and positive for x and z.
For the choice of the magnitude of b, it is important to know the position of all singularities
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(a) Singularities of Am for x = 0.2 and z = 0.05.
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(b) Singularities of Ax for m = 289/2500 and
z = 0.05.
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(c) Singularities of Az for m = 289/2500 and
0 < x ≤ 1. The variable x is, in contrast to
fig. 4.10a and fig. 4.10b, varied between 0 and
1, which gives rise to a large number of phase
space points with singularities.

Figure 4.10.: Positions of singularities of the different DE systems for the calculation of the
grid in x and z.

in the complex plane. The singularities for the m integration with x = 0.2 and z = 0.05 are
depicted in fig. 4.10a. It would be possible to set b = 0 since the DE in m has no poles on the real
axis between the chosen start and end points. There are two singularities with non-vanishing
imaginary parts since the singularity described by m2 + x−mx = 0 has the complex solutions
given in eq. (4.58). The singularities lie for x = 0.2 and z = 0.05 at m ≈ 0.1 ± 0.435i. The
deformation parameter must be chosen small enough, i. e. |b| < 3.8, to prevent the deformed
contour from crossing the singularity. In this work, b = −0.01 was used for the m integration.
The situation is slightly more complicated for the numerical ODE solutions in x and z since
integrals are evaluated for many different values of x and z and the positions of the singularities
depend in general on both values. Fig. 4.10b and fig. 4.10c show the relevant singularities of the
DE systems in x and z for the calculation of the grid. The singularities of Ax for m = 289/2500
and z = 0.05 lie on the real axis as shown in fig. 4.10b. In contrast, the singularities of Az in
fig. 4.10c are depicted for m = 289/2500 and 0 < x ≤ 1 since the z integration will be performed
for many different x values. The singularity described by m(x+ z)2 −xz(1 −x− z) = 0, i. e. the
boundary of the physical phase space, has complex solutions for 0.32 < x < 1.68 when setting
m = 289/2500. A deformation parameter with |b| < 0.043 will avoid all singularities for the
depicted setup. For the calculation of the grid, b = 0.01 was used for both the x and z integration.
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4.3. Numerical solutions of the differential equations

Figure 4.11.: Physical phase space regions for different masses. The phase space points of the
initial conditions are x = 0.2, z = 0.05 and x = z = 0.15.

The physical phase space region is plotted for different masses in fig. 4.11. The benchmark phase
space point at x = 0.2 and z = 0.05 is for m = 289/2500 inside the physical phase space but
close to its boundary, which is also a singularity. This is coincidental and it is not expected to
have any adverse effect on the numerical calculations. All calculations were as a cross-check also
performed with alternative initial conditions at x = z = 0.15, which are chosen far away from
any singularity.

Figure 4.12.: Singularities of the differential equations in m, x and z for m = 289/2500.

The singularities for m = 289/2500 are shown in fig. 4.12. Singular points also occur inside of
the physical phase space. The adoption of complex contours as described above is hence also
beneficial even when confining the calculations to the physical region. One alternative approach
to the adoption of complex contours could be the usage of multiple initial conditions to avoid
crossing any singularities depicted in fig. 4.12.
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Figure 4.13.: Absolute uncertainty of the double-box integral I1,1,1,1,1,1,1 for initial conditions
(IC) with different accuracies. The dashed horizontal lines indicate the maximal
absolute uncertainty of all initial-condition integrals. The lower panel shows the
uncertainty increase with each integration step of the full-accuracy result.

4.3.4. Estimation of uncertainties of the numerical ODE solutions
There are two main sources of uncertainties, namely the uncertainties of the numerical ODE
solver and the uncertainties of the initial conditions.
The numerical uncertainty of the ODE solver is a technical parameter and can be chosen more
or less freely. A reduction of the numerical error will in general result in a larger runtime of
the calculation. This uncertainty contribution is in the following referred to as numerical un-
certainty.
The second contribution originates from the uncertainties of the initial conditions which induce
uncertainties of the results of the numerical ODE solution. This contribution is comparable to
a systematic uncertainty in an experiment since it is the minimal achievable uncertainty.
This uncertainty contribution is estimated by varying the initial conditions I⃗IC by their uncer-
tainties σ⃗IC. In other words, the ODE system is solved with the three initial conditions I⃗IC
and I⃗IC ± σ⃗IC, corresponding to an uncertainty band with an ‘upper’ and ‘lower’ value around
a ‘central’ value4. Note that the phase space point of the initial conditions is not varied but
only the values of the master integrals. The maximal difference of the three results is used as
an estimate for the systematic uncertainties.

The uncertainties of the double-box integral I1,1,1,1,1,1,1 shown in fig. 4.13 serve as an example
to qualitatively study the uncertainties when numerically solving the ODE in m. The results for
initial conditions with the full available precision, shown in red, are compared with the results
obtained from initial conditions with simulated uncertainties corresponding to 10, 15, and 20

4The labels ‘upper’, ‘lower’, and ‘central’ are used here figuratively. The uncertainty bands will in general not
be literal bands for the ODE solutions.
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4.3. Numerical solutions of the differential equations

decimal digits precision, shown in blue and green. Initial conditions with different accuracies
are simulated with

σIC, j = IIC, j · 10−#digits · rand(0, 1)1 + i√
2
. (4.62)

The simulated uncertainty for each integral IIC, j includes a random number rand(0, 1) between
0 and 1 since otherwise the initial conditions for the ‘lower’, ‘central’, and ‘upper’ uncertainty
band would differ effectively by a single constant relative factor for all integrals I⃗IC. Due to
the linearity of the ODE, this would result in the same factor appearing in the three ODE solu-
tions, which would most likely underestimate the actual uncertainties. Additionally, the factor
(1+ i)/

√
2 is included to vary the real and imaginary parts simultaneously. The numerical error

of the ODE solver was set to a value much lower than the initial condition uncertainty and hence
fig. 4.13 only shows systematic uncertainties.
The uncertainties of the double-box integral increase by roughly 10 orders of magnitude for each
initial-condition setting in fig. 4.13. Around 7 decimal digits are lost in the very first step and
in the remaining integration, another 3 digits are lost. The lower subplot shows the increase of
the absolute uncertainty with each integration step. The growth rate increases with increasing
m as the different solutions diverge.
The apparent ‘jump’ of the uncertainties in the first step originates from the master integrals
being coupled by the ODE. The uncertainties of the double-box integral receive contributions
from the absolute uncertainties of subsector integrals weighted with the entries of Am. Assuming
Am entries of O(1), this increase is expected to be roughly the maximal absolute uncertainty
of the subsector integrals. The maximal absolute uncertainty of all initial-condition values is
indicated with the dashed horizontal lines. These dashed lines and the increase of uncertainties
in the first step have the same order of magnitude.
Both the results using the simulated and the actual initial-condition uncertainties exhibit qual-
itative similarities in fig. 4.13, especially the loss of precision when solving the ODE system. In
conclusion, more precise end results can be obtained by correspondingly increasing the precision
of the initial conditions.

In the previous example, initial conditions at m = 0.001 are used since the asymptotic expan-
sions yield at least 22 significant decimal digits at this m value. This is much more precise than
the initial conditions at m = 0.01, which only guarantee roughly 8 significant digits.
To motivate both the choice of the error settings of the ODE solver and the choice of initial
conditions at m = 0.001, consider the kite-like integral I2,2,1,0,1,1,0, for example. This integral
belongs to sector 55 and is plotted in fig. 4.14. The integrals of sector 55 lose in certain phase
space regions much more accuracy than other integrals. The real part of this integral is shown
in fig. 4.15 for x = 0.4 and 0 < z < 1. Using initial conditions at m = 0.01, which gives the solid
green curve, yields problematic behaviour around singular points, especially at z ≈ 0.14. The
uncertainty band for the ODE results using initial conditions at m = 0.01 is indicated in green
in the upper panel. Close to z ≈ 0.14, the uncertainties are of the same order of magnitude

p3
p1p2

p1 + p2 + p3

p3
p1p2

p1 + p2 + p3

p3
p1p2

p1 + p2 + p3

p3
p1p2

p1 + p2 + p3

Figure 4.14.: The four kite-like master integrals of sector 55.

67



4. Evaluation of the master integrals

as the actual ODE results. However, the integral calculated with initial conditions chosen at
m = 0.001, depicted as blue dashed-dotted line, does not show this problematic behaviour.
Note that this loss of accuracy does not originate from the numerical uncertainty of the ODE
solver. The relative numerical uncertainty for the green curve is 10−12 in the entire plot. Further
reducing the numerical uncertainty of the ODE solver yields the same behaviour for the green
curve.
The reason for this behaviour is instead that the results of the numerical integrations become
very sensitive to the initial conditions when operating close to the problematic singular points.
This results in a large loss of accuracy when solving the DEs in these phase space regions.
The loss of accuracy is illustrated in the lower panel, where the uncertainties for different nu-
merical integration settings are compared. Results of the ODE solution with initial conditions
at m = 0.01 are shown in green. The dotted and dashed blue lines and the dashed-dotted red
line show the results for initial conditions at m = 0.001 with different numerical uncertainties
for the m, x, and z integrations. The initial conditions of the z integration are indicated with a
grey vertical line. When decreasing the numerical uncertainties of the m and x integration, the
initial conditions for the z integration become correspondingly more precise. These more precise
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Figure 4.15.: Comparison of numerical results for the kite-like Feynman integral I2,2,1,0,1,1,0 for
x = 0.4 with different initial conditions and different numerical-precision settings
for the ODE solver. The stated uncertainties are the numerical uncertainties of
the ODE solver for the m, x, and z integration. Results with initial conditions
at m = 0.01 are shown as solid green line and results for the initial conditions
at m = 0.001 are shown in blue and red as dashed and dotted lines. Both lines
in the upper panel lie on top of each other, but the blue dashed-dotted line is
moved slightly down for better visibility. The lower panel shows the relative
uncertainties from the uncertainty band estimate. The red curve in the lower
panel indicates the uncertainties when using initial conditions at m = 0.001 with
numerical uncertainties of 10−24, 10−21, and 10−18 for the m, x, and z integration
respectively.
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initial conditions then yield more precise results of the z integration. The results at z ≈ 0.14
lose for all plotted settings roughly 8 significant digits when comparing with the initial conditions.

The most precise results in fig. 4.15 are given by the dashed-dotted red curve in the lower panel,
which uses as numerical uncertainties for the ODE solver 10−24 for the m integration, 10−21 for
the x integration, and 10−18 for the z integration. Those settings are also used in the following
for the grid. The reason for different choices of numerical accuracy is the propagation of uncer-
tainties and a trade-off between precision and computing time. Numerical uncertainties are for
many integrals the dominating uncertainty when solving in m since the initial conditions have
comparatively small uncertainties. Reducing the numerical uncertainties for this step yields
negligible additional computational costs since the m integration is only performed once while
many more x and z integrations are performed. The numerical uncertainties can be decreased
in the following steps since the intermediate results become less precise with each step in general.

The differences of the uncertainty bands can be much smaller than the numerical precision
of the ODE solver when solving in m. The numerical uncertainties are consequently added
in quadrature to the uncertainty bands before using the results as initial conditions for the x
integration since it is possible that all three uncertainty bands have the same highly correlated
numerical error. However, the numerical uncertainties of the intermediate x integration are not
added before performing the z integration since this would lead to a strong overestimation of
uncertainties for many phase space regions. But the numerical uncertainties of the z integration
are included in the final uncertainty estimate.
Explicitly adding the numerical uncertainties will in general overestimate the uncertainties for
many integrals since all master integrals are solved simultaneously. The step size and the
uncertainty for each integration step are adjusted by the ODE solver with respect to the entry
with the largest uncertainty. Integrals with a better numerical convergence surpass therefore
the nominal numerical uncertainty.

4.3.5. Calculation of a grid in x and z

All master integrals were computed for a grid in the variables x and z by numerically solving
the DEs in x and z for values between 0.01 and 1.00 with a step size of 0.01 while setting
m = 289/2500. The chosen phase space region deliberately exceeds the physical phase space
and hence contains many singularities of the ODE systems shown in fig. 4.10. This serves as
a test of the contour deformation. This setup also allows in particular to evaluate the master
integrals for phase space regions which are relevant for calculations of other physical processes.
Integrals are not calculated for phase space points which lie on or very close to singularities.
Phase space cuts around the singularities depicted in fig. 4.12 are applied.

The maximal estimated uncertainties are depicted in fig. 4.16 for the entire calculated phase
space. This plot shows for each phase space point the maximal relative uncertainty of all
coefficients of the ϵ expansion of all master integrals. All relative uncertainties are estimated
to be below 10−9 for all calculated phase space points. For the majority of phase space points,
the integrals have a much lower estimated relative uncertainty. In particular for the physical
phase space region, which is indicated with a red line in fig. 4.16, at least double precision is
achieved for all integrals. The phase space regions for which no master integrals are calculated
due to their proximity to singularities show up as white lines in fig. 4.16. The results have lower
precision around certain singular points. In particular, the two parallel bands around singular
points described by 1 = x+ z and 4m+ x+ z = 1 stand out in this regard.
The master integrals were calculated for 9402 phase space points on the grid. This took in
total approximately 267 hours on a computer with 24 physical Intel Xeon cores with 3GHz.
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Figure 4.16.: Maximal relative uncertainties for all master integrals and for all calculated or-
ders in ϵ. The red line marks the physical region of the phase space.

x

0.0 0.2 0.4 0.6 0.8 1.0

z

0.0
0.2

0.4
0.6

0.8
1.0 Re

(I 2
, 2

, 1
, 0

, 1
, 1

, 0
), 

0  
co

ef
f.

400
300
200
100
0

100

300

200

100

0

100

x

0.0 0.2 0.4 0.6 0.8 1.0

z

0.0
0.2

0.4
0.6

0.8
1.0 Im

(I 2
, 2

, 1
, 0

, 1
, 1

, 0
), 

0  
co

ef
f.

800

600

400

200

800

600

400

200

Figure 4.17.: The real (left) and imaginary (right) part of the kite-like Feynman integral
I2,2,1,0,1,1,0 at order ϵ0.

This means that the calculation of all 54 master integrals for one phase space point required on
average 102s with this setup. The first step, i. e. the integration in m to restore the physical
mass, took approximately 5 minutes.
Interpolation techniques are used to obtain the integrals in phase space regions where it is not
possible to calculate the master integrals using numerical ODE solvers. In this work, the Clough-
Tocher scheme [245,246] implemented in the scipy library is used for the interpolation, similarly
to ref. [247]. Interpolation makes the master integrals available in the whole physical phase space,
which is especially beneficial for phase space integrations using Monte Carlo techniques. This
approach also allows to perform the master integral computation for the whole phase space,
i. e. a very time consuming part of the cross-section calculation, in advance and to save the
results for later use.
Examples of the interpolated grid results are shown in fig. 4.17 for the kite-like integral I2,2,1,0,1,1,0
and in fig. 4.18 for the double-box integral I1,1,1,1,1,1,1.
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Figure 4.18.: The real (left) and imaginary (right) part of the double-box Feynman integral
I1,1,1,1,1,1,1 at order ϵ0.

4.3.6. Cross-checks of the results

Internal consistency checks

The consistency of the numerical ODE solutions is checked by performing integrations in x and
z along a closed contour spanned by four points (x, z) in the order

(0.2, 0.05) → (0.6, 0.05) → (0.6, 0.7) → (0.2, 0.7) → (0.2, 0.05). (4.63)

The numerical precision for the x and z integrations is set to 10−21 for this check. The uncer-
tainties of the end point values are obtained by adding the uncertainty band estimates and the
numerical uncertainty of the ODE solver in quadrature. The initial values and the end values
agree within the estimated uncertainties. For example, the double-box integral I1,1,1,1,1,1,1 is
given by

Istart
1,1,1,1,1,1,1 = 6.225484058438724375247(2) + O(ϵ),
Iend

1,1,1,1,1,1,1 = 6.22548405843872437(1) + O(ϵ). (4.64)

In this expression, all significant digits are stated and the digit in brackets behind the last
significant digit indicates the corresponding uncertainty. The end value still has 18 decimal
digits of precision although the uncertainty increased by a factor of O(104).
The remaining integrals exhibit a comparable level of agreement as shown in the systematic
comparison of the ϵ0 coefficients for all master integrals in fig. 4.19. The relative difference,
which is plotted in the upper panel, is below 10−18 for all integrals. The absolute value of the
complex-valued difference is plotted for simplicity. All end results have relative uncertainties
of less than 10−16. The pull, i. e. the difference divided by the combined uncertainty of both
results, is plotted in the lower panel and is smaller than 2. The pull is for many integrals very
small since the nominal numerical ODE solver uncertainty of 10−21 is explicitly added to the
uncertainty estimates of the end results. This overestimates the actual numerical uncertainty
for many integrals since all 54 master integrals are solved simultaneously.
The reliability of all grid results and their uncertainties was checked in a similar fashion by
changing the integration order of x and z and comparing both results. The pull of both results
is plotted in fig. 4.20. This plot shows the largest pull value of all coefficients of the ϵ expansion
of all master integrals and hence indicates the worst disagreement. Both results agree well in
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Figure 4.19.: Comparison of the start and end point values after performing the numerical
integration in eq. (4.63) for all 54 integrals of the double-box topology. The
master integrals are numbered according to their order in tab. B.1 and this
number is used as identifier on the x-axis. The upper panel shows the relative
difference of start and end values and the lower panel shows the pull.

most phase space regions with the pull being below one for the vast majority of phase space
points. The uncertainties of both results also have the same order of magnitude. However, the
differences are in certain phase space regions larger than the uncertainties. This is most notable
close to certain singularities and indicates unreliable uncertainty estimates in these particular
regions.

The systematic uncertainties are until this point estimated by calculating an ‘uncertainty band’,
i. e. three values for each integral where the initial conditions are varied according to their es-
timated uncertainties. This estimate, however, depends strongly on the assumption that the
uncertainty estimates of the initial conditions are reliable. This approach does not capture
effects arising from integrals being coupled by the DE, which might result in uncertainties of
different integrals cancelling or enhancing in non-trivial ways. Additionally, the three numerical
integrations might have correlated numerical uncertainties since the integrations are performed
simultaneously with very similar initial conditions. Hence, the numerical uncertainty is added
to the uncertainty band estimate after the m and z integration to capture this effect.
The limited numerical resolution and rounding effects of the quadruple-precision data type can
also affect the uncertainty estimates. This was observed for certain integrals whose initial con-
ditions have very small uncertainty estimates. For this reason, the so-called machine epsilon of
the quadruple-precision data type is added as a ‘rounding error’ contribution to initial condi-
tion uncertainties. This adds approximately 2 · 10−34 to the relative uncertainties of the initial
conditions.

A second grid is calculated using the asymptotic expansions at the phase space point x = z =
0.15 and m = 0.001 as initial conditions. The difference between the two results calculated
with initial conditions at different phase space points provides a second uncertainty estimate.
The relative difference of the two results is depicted in fig. 4.21 for the entire calculated phase
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Figure 4.20.: Largest pull of two grid results computed with integration orders x, z and z, x
respectively for each phase space point.
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Figure 4.21.: Uncertainty estimate by comparing the results of two different initial conditions.
The asymptotic expansions at m = 0.001 with x = 0.2, z = 0.05 and with
x = z = 0.15 were used as initial conditions.
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Figure 4.22.: Comparison of the estimated uncertainties obtained from initial conditions at
two phase space points and from the uncertainty band estimate. The ratio of
both estimates is plotted.
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space. This plot shows for each phase space point the maximal relative difference when taking
all calculated coefficients of the ϵ expansion of all 54 master integrals into account. The abso-
lute value of the complex-valued difference is plotted for the sake of simplicity. This uncertainty
estimate reproduces qualitatively the uncertainty band estimate in fig. 4.16 as similar patterns
with lower accuracy close to singular points occur. All integrals agree for at least 10 digits with
many phase space regions being even more accurate.
The ratio of the two uncertainty estimates, i. e. the difference of the results using initial con-
ditions at two phase space points divided by the combined uncertainty band estimates of both
results, is plotted in fig. 4.22. The ratio is calculated for each coefficient of the ϵ expansion for all
master integrals and the maximal value for each phase space point is plotted in fig. 4.22a. This
ratio is in almost all phase space regions of O(1) or smaller, which indicates that the uncertainty
band estimate is reliable in those phase space regions. However, the ratio being very small indi-
cates that the uncertainty band overestimates the uncertainties. This is a natural consequence
of the conservative estimates. It is also possible that varying the phase space point of the initial
conditions underestimates the uncertainties since, for example, the same asymptotic expansions
are used as initial conditions.
The maximal ratio plotted in fig. 4.22a will naturally overestimate the disagreement. The mean
ratio, plotted in fig. 4.22b, is smaller than 10 for all phase space points. The binned ratios for
all phase space points in fig. 4.22c also show that the ratio is almost always O(1) or smaller.
In conclusion, the uncertainty band estimate seems to produce reliable uncertainty estimates
for most phase space regions. All consistency checks work in particular very well for integrals in
the physical phase space region. But close to singular points, the uncertainty estimates might
underestimate the uncertainties for certain coefficients of certain integrals by more than two
orders of magnitude. Furthermore, it is worth mentioning that this is an estimate and not an
uncertainty interval calculated from first principles.

Another cross-check can be constructed for special phase space points at which the master
integral basis becomes degenerate. When setting all three variables to the same value, i. e. x =
z = m, then only 47 master integrals are independent. In particular, the integral I1,2,1,0,2,1,0
belonging to sector 55 can be expressed through reduced master integrals, which yields

IIBP relation
1,2,1,0,2,1,0 =

(︃18m(6m− 1)s
3m− 1 + 90m(4m− 1)s

3m− 1 ϵ+ O
(︂
ϵ2
)︂)︃

I4,0,4,0,0,0,0

+
(︃6m− 1

3m− 1 + 16m− 1
3m− 1 ϵ+ O

(︂
ϵ2
)︂)︃

I3,2,0,0,2,0,0

+
(︃3m(1 − 6m)s

3m− 1 + 6m(7m− 2)s
3m− 1 ϵ+ O

(︂
ϵ2
)︂)︃

I4,2,0,0,2,0,0

−
(︄

4m2 − 8m+ 1
(3m− 2)m2 + 8m3 + 4m2 − 11m+ 2

(3m− 1)m2 ϵ+ O
(︂
ϵ2
)︂)︄

I3,0,3,0,1,0,0

+
(︄

(1 − 4m)2s

(3m− 1)m2 + (1 − 4m)2(m+ 2)s
(3m− 1)m3 ϵ+ O

(︂
ϵ2
)︂)︄

I3,0,3,0,2,0,0

+
(︂
4 + 4ϵ+ O

(︂
ϵ2
)︂)︂
I3,2,1,0,1,0,0

+
(︄

2m2 + 8m− 2
(3m− 1)m (1 + ϵ) + O

(︂
ϵ2
)︂)︄

I3,1,2,0,1,0,0

+ 2I2,2,1,0,1,1,0 + 2I2,1,2,0,1,1,0 + 5m− 1
m

I2,1,1,0,2,1,0. (4.65)
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Inserting the ODE results for x = z = m = 289/2500 into the right-hand side of eq. (4.65) yields

IIBP relation
1,2,1,0,2,1,0 = (0(1 · 10−23) + 0(1 · 10−23)i) · ϵ−4 (4.66)

+ (0(1 · 10−22) + 0(1 · 10−23)i) · ϵ−3

+ (10.452842606973141554070(3) − 21.32903507509364086723619(2)i) · ϵ−2

+ (216.26070825991665818840(9) − 158.4615203262954674859756(1)i) · ϵ−1

+ (1648.58245345727317030(2) − 408.474436586925056729267(2)i) + O(ϵ).

Numerical zeros are in this expression denoted with a zero followed by the rounded uncertainty
in brackets. This value agrees numerically for 21 digits with the direct ODE result of I1,2,1,0,2,1,0.
Note that this surpasses the nominal relative numerical accuracy of 10−18, which is not included
in eq. (4.66) to prevent an overestimation of the uncertainty. The remaining 6 equations for this
special phase space point as well as numerical values for the required master integrals are given
in app. C.3.
All 7 equations are fulfilled within the estimated uncertainties. The left- and right-hand sides
of the 7 equations agree for at least 15 decimal digits. This indicates reliable numerical results
and reliably estimated uncertainties.

Eq. (4.65) can also be used to check the interpolation results. Inserting the interpolated master
integrals at x = z = m = 289/2500 into the right-hand side of eq. (4.65) yields

IIBP relation
1,2,1,0,2,1,0 = (0.00001 − 0.0002i)ϵ−4 + (0.001 − 0.002i)ϵ−3 (4.67)

+ (10.47 − 21.34i)ϵ−2 + (216.4 − 158.5i)ϵ−1 + (1649 − 408.4i) +O (ϵ) ,

while the direct interpolation of this integral gives

Idirect
1,2,1,0,2,1,0 = (1 · 10−23 − 4 · 10−23i)ϵ−4 + (−5 · 10−23 + 3 · 10−22i)ϵ−3 (4.68)

+ (10.45283 − 21.33i)ϵ−2 + (216.269 − 158.48i)ϵ−1 + (1648.7 − 408.6i) +O (ϵ) .

In eq. (4.67) and eq. (4.68), bold numerals indicate the digits which differ from the directly
calculated ODE solution given in eq. (4.66). The results are rounded at this digit. The value
from the IBP relation in eq. (4.67) agrees for roughly 3 digits with the actual result and the
direct interpolation in eq. (4.68) agrees for 3 to 4 digits with the actual result.
The relative differences of the left- and right-hand sides of the 6 expressions in eq. (C.1) are

1.5 · 10−6, 2.5 · 10−6, 4.5 · 10−8, 1.8 · 10−7, 3.2 · 10−7, 1.3 · 10−4 (4.69)

when using the interpolated master integrals. These values are the maximal relative differences
of all coefficients of the ϵ expansion. The corresponding relative differences of the interpolated
results for the integrals on the left-hand side of eq. (C.1) and the direct ODE solutions are

1.2 · 10−4, 2.1 · 10−4, 7.6 · 10−6, 2.3 · 10−5, 3.7 · 10−5, 1.5 · 10−5. (4.70)

This means that the interpolated results are actually less precise than most IBP relations indi-
cate. This might be caused by integrals having very similar interpolation errors.

Two other limits to exploit for a similar cross-check are the singularities at 1 − x − z = 0 and
1 − x− z − 4m = 0, where the number of master integrals is reduced to 53. It is again possible
to express I1,2,1,0,2,1,0 through the remaining master integrals. However, the integrals have to
be obtained by interpolation since these phase space points lie on a singularity. Inserting the
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4.3. Numerical solutions of the differential equations

interpolation results for m = 289/2500 and x = z = 0.5 into the corresponding IBP relation for
1 − x− z = 0 gives

IIBP relation
1,2,1,0,2,1,0 = (−0.00002 + 0.00002i)ϵ−4 + (−0.0002 + 0.00002i)ϵ−3 (4.71)

+ (6.0711 − 6.9266i)ϵ−2 + (81.335 − 21.649i)ϵ−1 + (422.564 + 71.545i) +O (ϵ) ,

while the direct interpolation gives

Idirect
1,2,1,0,2,1,0 = (−2 · 10−19 + 1 · 10−18i)ϵ−4 + (−1 · 10−17−2 · 10−17i)ϵ−3 (4.72)

+ (6.0716 − 6.9264i)ϵ−2 + (81.337 − 21.648i)ϵ−1 + (422.568 + 71.546i) +O (ϵ) .

Bold numerals indicate in this expression the digit where the IBP result and the directly in-
terpolated result differ. The level of agreement is comparable to the interpolation results in
eq. (4.67) and eq. (4.68).
The IBP relation at 1 − x− z − 4m = 0 for m = 289/2500, x = 0.5, and z = 0.0376 yields

IIBP relation
1,2,1,0,2,1,0 = (0.003 + 0.00005i)ϵ−4 + (0.04 + 0.03i)ϵ−3 (4.73)

+ (9.2 − 22.1i)ϵ−2 + (207 − 189i)ϵ−1 + (1724 − 717i) +O (ϵ) ,

while the direct interpolation gives

Idirect
1,2,1,0,2,1,0 = (−7 · 10−23 − 7 · 10−22i)ϵ−4 + (1 · 10−20 + 1 · 10−20i)ϵ−3 (4.74)

+ (9.1 − 22.5i)ϵ−2 + (208 − 192i)ϵ−1 + (1738 − 727i) +O (ϵ) .

In this case, the agreement is worse with differences already occurring in the second digit of
some coefficients.
These results show that the interpolation is less precise than anticipated. It is possible that
the two relations for 1 − x − z = 0 and 1 − x − z − 4m = 0 overestimate the disagreement
due to cancellations in the analytic expressions. However, the comparison of the direct ODE
solutions and the interpolation results for x = z = m = 289/2500 shows a comparable level of
disagreement. This indicates that the interpolation only yields roughly 3 to 4 decimal digits.
On the other hand, this comparison also serves as a sanity check as the internal cross-checks
were able to detect the discrepancies. It is possible that the discrepancies would not have
been detected with a numerical comparison with, for example, pySecDec or Fiesta if numerical
results would have been calculated to only permille accuracy.
The uncertainties associated with the interpolation require further thorough investigation. The
current results are most likely not suitable for use in a phase space integration. Calculating a
denser grid for the physical phase space could improve the interpolation results. Alternatively,
it might be beneficial to not interpolate the master integrals at all but to calculate a grid of
form factors and then to interpolate on the level of form factors.

Comparison with pySecDec and Fiesta

The strongest check is the comparison with completely independently calculated results. For
this purpose, the results calculated previously are compared with numerical values obtained
with pySecDec [76, 81–84,248–252] and Fiesta [77–80].
Comparisons with pySecDec and Fiesta results were already shown in fig. 4.5 for the sunrise
integral I3,0,3,0,1,0,0 and in fig. 4.7 for the double-box integral I1,1,1,1,1,1,1. In both examples,
pySecDec and Fiesta results exhibit very good agreement with the asymptotic expansions and
the numerical ODE solutions.
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4. Evaluation of the master integrals

For a further, comparison 10 randomly selected values of (x, z),

(0.7, 0.59), (0.69, 0.87), (0.8, 0.79), (0.08, 0.52), (0.8, 0.1),
(0.98, 0.25), (0.52, 0.73), (0.81, 0.87), (0.84, 0.88), (0.26, 0.18), (4.75)

were chosen while keeping m = 289/2500 constant. The maximal number of integrand evalua-
tions was set to 2.1 ·109. The results of the comparison are plotted in fig. 4.23. The results agree
within the numerical uncertainties for all integrals with maximal relative differences, which are
shown in the upper panel, and maximal relative uncertainties, which are shown in the middle
panel, typically ranging from 10−4 to 10−2. The pull is plotted for all coefficients of the ϵ ex-
pansion up to the order ϵ0 in the lower panels. Only the uncertainties of the pySecDec and
Fiesta results are relevant for the pull since the numerical ODE solutions have in comparison
negligible uncertainties. A histogram of the pull results is shown on the right side. The pull is
for all integrals smaller than 2, which means that the pySecDec and Fiesta results agree with
the ODE results within the numerical uncertainties. The pull is very small for many integrals,
which indicates that the corresponding uncertainties provided by pySecDec and Fiesta might
be overestimated.

Higher accuracy would be desirable for the pySecDec and Fiesta results but would also increase
the computational cost. Even the numerical computations for the 10 phase space points in
eq. (4.75) were comparatively expensive. For example, calculating the three double-box integrals
I1,1,1,1,1,1,1, I1,1,1,1,1,2,1, and I1,1,1,1,2,1,1 with Fiesta took 2 to 5 days for each integral and phase
space point5. Calculating the double-box integrals I1,1,1,1,1,2,1 and I1,1,1,1,2,1,1 with pySecDec
also required several days for each phase space point. Increasing the precision and number of
phase space points, e. g. to perform a Monte Carlo phase space integration, with this setup would
require very large computational resources.
The calculations in sec. 4.3.5 in comparison, i. e. solving ODE systems numerically for a grid of
phase space points, required on average less than 2 minutes to compute all 54 master integrals
for one phase space point. The results on the grid also have relative uncertainties of less than
10−9.

5The calculation was performed on a computer with 24 physical Intel Xeon cores with 3GHz but Fiesta and
pySecDec did not use all available resources during the entire computation time.
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Figure 4.23.: Numerical comparison with values obtained from Fiesta and pySecDec for all
54 Integrals for 10 different phase space points. The upper panel shows the
maximal relative difference of the ODE results and the sector decomposition
results. The middle panel shows the maximal relative uncertainty of the Fiesta
and pySecDec results. The lower panel shows the pull for the real part (red) and
imaginary part (blue) of all coefficients in ϵ up to order ϵ0 for all 10 phase space
points. A histogram of the pull is shown in the lower-right panel.
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5. Amplitude evaluation and numerical results

5.1. Overview of the calculation

5.1.1. General work-flow

This chapter presents the calculation of the leading-order, one-loop, and leading-colour two-loop
amplitudes. The following summary focuses mainly on the calculation of the vector current Vt

since the evaluation of the axial-vector currents is almost identical.

The Feynman diagrams are generated with qgraf [253] and the resulting terms are translated
into FORM [250–252] expressions. The colour factors are calculated by replacing the structure
constants of the SU(Nc), which occur in the gluon vertices, with

fa1a2a3 = −2i [ta1 , ta2 ] ta3 , (5.1)

where ta denotes the generators of the SU(Nc) in the fundamental representation. The Fierz
identity

taijt
a
kl = 1

2

(︃
δilδkj − 1

Nc
δijδkl

)︃
(5.2)

is subsequently applied and the remaining sums are resolved. Then, the leading-colour term of
the two-loop amplitude is extracted and the amplitudes are decomposed into vector and axial-
vector currents. The coefficients of the form-factor decomposition, as defined in eq. (3.3), are
extracted with projectors as described in sec. 3. All steps described so far, including the projec-
tion procedure, are implemented in FORM.
The tensor reduction is performed by replacing scalar products involving loop momenta with
inverse propagators and subsequently reducing the scalar Feynman integrals to master inte-
grals with Kira [104,105,186]. The master integrals are at this point still (4 − 2ϵ)-dimensional.
Hence, dimension-shift transformations, as explained in sec. 2.4, are applied to express the
(4 − 2ϵ)-dimensional integrals in the amplitude through the (6 − 2ϵ)-dimensional integrals of the
quasi-finite basis.
The evaluation of the form factors is performed numerically in Mathematica by inserting the
numerically evaluated IBP reductions, dimension-shift transformations, and master integrals
and expanding in ϵ. This evaluation was performed for the benchmark phase space point. The
evaluation of the amplitude for other phase space points is in principle possible but would benefit
from an automatization of the last steps, which are currently implemented several Mathematica
scripts.
The amplitudes are obtained by inserting the form factors and spinor structures back into
eq. (3.3). At this point, the initial state is restored by substituting ϵ4 and ϵ̃4 with the expression
given in eq. (2.10). The spinor structures are evaluated by virtue of the spinor helicity formalism
as described in ref. [254,255].
The renormalization of the one-loop and two-loop amplitudes is discussed in sec. 5.2.
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Table 5.1.: One-loop integral families.

integral family P1 P2 P3 P4

box A k2 (k + p1)2 −m2
t (k − p2)2 −m2

t (k + p1 + p3)2 −m2
t

box B k2 (k − p1)2 −m2
t (k + p2)2 −m2

t (k + p2 + p3)2 −m2
t

box C k2 (k + p3)2 (k + p2 + p3)2 −m2
t (k − p1)2 −m2

t

5.1.2. Leading-order and one-loop amplitudes

This section provides a summary of the leading-order and one-loop calculations. The one-loop
calculation in particular shares many steps with the two-loop calculation and hence serves as
an illustration of the previously summarized calculation steps. The squared one-loop amplitude
also contributes to the NNLO cross section. Furthermore, the one-loop currents are also required
to cross-check the two-loop IR singularities in sec. 5.3.2. Additionally, one-loop diagrams with
counterterm insertions appear in the renormalization of the two-loop amplitude, as explained in
sec. 5.2.

The leading-order vector current, to which only the two tree-level diagrams plotted in fig. 2.1
contribute, is given by

V (0) = ū(p1)/ϵ∗
3
/p1 + /p3 +mt

(p1 + p3)2 −m2
t
/ϵ4v(p2) + ū(p1)/ϵ4

−/p2 − /p3 +mt

(p2 + p3)2 −m2
t
/ϵ∗

3v(p2). (5.3)

When applying the projectors to the vector current, only the three coefficients

C5 = 2
x
, C10 = −x+ z

xz
, C11 = − 2

xz
(5.4)

yield non-zero values while the remaining coefficients vanish. The projection coefficients of the
axial-vector current are the same apart from an additional minus sign in all coefficients, i. e.

C̃5 = − 2
x
, C̃10 = x+ z

xz
, C̃11 = 2

xz
. (5.5)

At the one-loop level, 11 Feynman diagrams contribute to the vector current. Three one-loop
diagrams are exemplarily depicted in fig. 5.1. The three depicted diagrams also correspond to
the box A, box B, and box C integral families as defined in tab. 5.1. The vector current does
not receive any contributions from one-loop diagrams with a closed fermion line, as depicted in
fig. 5.2. Contributions from Feynman diagrams involving closed fermion loops connected to one
photon and two gluons cancel as a direct result of Furry’s theorem. The remaining one-loop
diagrams involving a closed fermion line have vanishing colour factors. Consequently, also the

(a) box A (b) box B (c) box C

Figure 5.1.: Examples of one-loop Feynman diagrams corresponding to the one-loop integral
families defined in tab. 5.1.
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Figure 5.2.: Examples of one-loop Feynman diagrams with a closed fermion line.

vector current Vq vanishes at the one-loop level.

The integral families box A and box B are related by exchanging p1 ↔ p2. Once the projection
is applied, the tensor structure of the integrals is resolved and only scalar products involving
the loop momentum k remain. The scalar products are then replaced with inverse propagators
as demonstrated in sec. 3.3. For example, for the box A integral family, the scalar products are
replaced with

k2 = P1, k · p1 = 1
2 (P2 − P1) , k · p2 = 1

2 (P1 − P3) , k · p3 = 1
2 (P4 − P2 − sx) . (5.6)

The resulting integrals are reduced with Kira to the one-loop master integrals

Ibox A
0,0,3,1, Ibox A

0,4,0,0, Ibox A
0,3,1,0, Ibox A

0,2,1,1, Ibox A
2,0,0,2, Ibox A

2,0,1,1, Ibox A
1,2,0,1, Ibox A

1,1,1,1,

Ibox B
2,0,0,2, Ibox B

1,0,2,1, Ibox B
2,1,0,1, Ibox B

1,1,1,1, Ibox C
1,1,1,1. (5.7)

The (4 − 2ϵ)-dimensional integral basis in eq. (5.7) is expressed through the corresponding
(6−2ϵ)-dimensional integrals by a dimension-shift transformation. This yields quasi-finite master
integrals. These one-loop master integrals were chosen in order to apply the same techniques as
in the two-loop case.
In the next step, the master integrals are calculated. Numerical values for one-loop Feynman
integrals up to order ϵ0 can be calculated with Collier [256], LoopTools [257], OneLOop [258],
and QCDLoop [259, 260], which partly rely on ff [261]. For this work, the one-loop master
integrals were calculated using the same techniques as for the two-loop master integrals since
the one-loop integrals are required up to order ϵ2. The calculation of the leading-colour two-
loop master integrals is presented in detail in chapter 4 and hence is not repeated here for the
one-loop integrals. Numerical reference values for the one-loop master integrals are given in
tab. C.1.
The unrenormalized form factors are evaluated by inserting the IBP reductions, dimension-shift
transformations, and master integrals and expanding in ϵ. The renormalization is described in
sec. 5.2. The renormalized one-loop form factors expanded up to ϵ2 at the benchmark point
x = 0.2, z = 0.05 and m = 289/2500 are given in tab. C.3 in app. C.2.

5.2. Renormalization
The one-loop and two-loop currents still contain UV divergences which are cancelled by renor-
malization. The gluon field Aa

µ, the ghost fields χa
1,2, the massive top-quark field ψt, the massless

quark fields ψq, the coupling constant of the strong interaction gs, and the top-quark mass mt

are renormalized multiplicatively by defining

Aa
0 µ = Z1/2

g Aa
µ, χa

0 1,2 = Z̃
1/2
g χa

1,2, ψt
0 = Z

1/2
t ψt, ψq

0 = Z1/2
q ψq,

gs 0 = Zgsgs, mt 0 = Zmmt. (5.8)
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Figure 5.3.: One-loop counterterm diagrams.

In this formula, the unrenormalized quantities, which are also called ‘bare’ quantities, are indi-
cated with index 0. The ghost field renormalization does not contribute in this calculation.
The renormalized quantities are rendered finite as the Zi factors absorb the divergences. The
top-quark wave function, the top-quark mass, and the gluon wave function are renormalized in
the on-shell scheme. The coupling constant of the strong interaction is renormalized in the MS
scheme with nl = 5 active quark flavours. The required renormalization constants are given in
ref. [152,262].
The renormalization constants taken from ref. [152] are defined with nf = nh + nl = 6 active
quark flavours. The scheme with nl active flavours can be obtained by applying the decoupling
relation

α
(nf )
s = ζαsα

(nl)
s , (5.9)

where the decoupling constant is [152]

ζαs = 1 +
(︄
α

(nl)
s

2π

)︄
TFnh

(︄
2
3 ln

(︄
µ2

m2
t

)︄
+ 1

3ϵ ln
(︄
µ2

m2
t

)︄2

+ π2

18 ϵ+ 1
9ϵ

2 ln
(︄
µ2

m2
t

)︄3

+ π2

18 ϵ
2 ln

(︄
µ2

m2
t

)︄
− 2

9ϵ
2ζ3

)︄
+ O

(︃(︂
α(nl)

s

)︂2
)︃
. (5.10)

Both schemes yield the same results for the calculation at hand since the substitution in eq. (5.9)
does not contribute to the one-loop amplitude and the leading-colour two-loop amplitude. The
dependence of the coupling constant of the strong interaction on the number of active quark
flavours is suppressed in the following.
The expansion of the renormalization constants in the coupling constant of the strong interaction
is

Zi = 1 + δi = 1 +
(︃
αs

2π

)︃
δ

(1)
i +

(︃
αs

2π

)︃2
δ

(2)
i + O

(︂
α3

s

)︂
. (5.11)

The δ(1)
i terms have to be expanded up to order ϵ2 and the δ(2)

i terms contribute up to order ϵ0
to the two-loop renormalization. Applying the definitions of eq. (5.8) and expanding in αs gives
rise to the self-energy counterterm Feynman rules

µ, a ν, b

p
=i(Zg − 1)δab(pµpν − p2gµν)

=i
(︄(︃

αs

2π

)︃
δ(1)

g +
(︃
αs

2π

)︃2
δ(2)

g

)︄
δab(pµpν − p2gµν) + O(α3

s) (5.12)
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and

i j

p
=i
[︂
(Zt − 1)/p− (ZtZm − 1)mt

]︂
δij

=i
(︃ (︃

αs

2π

)︃ [︂
δ

(1)
t /p−

(︂
δ

(1)
t + δ(1)

m

)︂
mt

]︂
+
(︃
αs

2π

)︃2 [︂
δ

(2)
t /p−

(︂
δ

(2)
t + δ(2)

m + δ
(1)
t δ(1)

m

)︂
mt

]︂)︄
δij + O(α3

s). (5.13)

Similarly, the counterterm Feynman rules for the interaction vertices are

µ

i

j

= (Zt − 1) iQtγ
µδij

=
(︄(︃

αs

2π

)︃
δ

(1)
t +

(︃
αs

2π

)︃2
δ

(2)
t

)︄
iQtγ

µδij + O(α3
s), (5.14)

p1

p2

p 
µ, a1

ν, a2

ρ, a 

=(ZgsZ
3/2
g − 1)gsf

a1a2a3 (gµν(pρ
1 − pρ

2) + gνρ(pµ
2 − pµ

3 ) + gρµ(pν
3 − pν

1))

=
(︃
αs

2π

)︃(︃
δ(1)

gs
+ 3

2δ
(1)
g

)︃
gsf

a1a2a3 (gµν(pρ
1 − pρ

2) + gνρ(pµ
2 − pµ

3 )

+gρµ(pν
3 − pν

1)) + O(α2
s), (5.15)

i

j

a, µ =(ZgsZ
1/2
g Zt − 1)igsγ

µtaij

=
(︄ (︃

αs

2π

)︃(︃
δ

(1)
t + 1

2δ
(1)
g + δ(1)

gs

)︃

+
(︃
αs

2π

)︃2 (︃
δ

(2)
t + 1

2δ
(2)
g + δ(2)

gs
− 1

8
(︂
δ(1)

gs

)︂2
+ 1

2δ
(1)
gs
δ(1)

g

+1
2δ

(1)
g δ

(1)
t + δ(1)

gs
δ

(1)
t

)︃)︄
igsγ

µtaij + O(α3
s). (5.16)

For the one-loop renormalization, only tree-level Feynman diagrams with counterterm insertions
as shown in fig. 5.3 contribute. Hence, the renormalized one-loop amplitude is given by

M(1)
ren = M(1)

bare + M(0)
1 ct, (5.17)

where M(1)
bare is the unrenormalized one-loop amplitude and M(0)

1 ct is the corresponding coun-
terterm amplitude. The upper index in brackets denotes the number of loops of each term,
corresponding to the notation introduced in eq. (2.13).
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5. Amplitude evaluation and numerical results

(a) One-loop diagram with in-
serted counterterm vertex

(b) Tree diagram with two in-
serted counterterm vertices

(c) Tree diagram with one in-
serted counterterm vertex

Figure 5.4.: Examples of counterterm Feynman diagrams. Counterterm vertices with a double
circle, as in fig. c, indicate that the counterterm coefficient of order α2

s contributes,
while in fig. a, b only the order αs coefficients contribute.

Applying the counterterm Feynman rules at the two-loop level gives rise to the three types of
counterterm Feynman diagrams that are exemplarily illustrated in fig. 5.4. Correspondingly, the
renormalized two-loop amplitude is given by

M(2)
ren = M(2)

bare + M(1)
1 ct + M(0)

2 ct + M(0)
1 ct, (5.18)

where the unrenormalized or ‘bare’ two-loop amplitude is M(2)
bare. The remaining three terms

are:
• The term M(1)

1 ct, exemplarily illustrated in fig. 5.4a, contains all one-loop diagrams with
one counterterm vertex. In this term, the counterterm vertices given in eq. (5.13-5.16)
contribute at order αs and both the one-loop integrals as well as the renormalization
constants contribute up to order ϵ2.

• The term M(0)
2 ct contains all tree-level Feynman diagrams with two counterterm vertices,

each contributing at order αs. This term is illustrated in fig. 5.4b.
• The term M(0)

1 ct contains all tree-level Feynman diagrams with one counterterm insertion,
which are exemplarily depicted in fig. 5.4c. The counterterm symbol with two circles
indicates that the counterterm coefficient of order α2

s contributes.

5.3. Cross-checks

5.3.1. Electroweak Ward identities

The electroweak Ward identities derived in sec. 3.5 serve as a strong cross-check for the one-loop
and leading-colour two-loop projection coefficients. Inserting the one-loop projection coefficients
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given in tab. C.3 into the four equations given in eq. (3.48) yields

W1 = Nc

(︂
0(0)ϵ−2 + 0(0)ϵ−1 + 0(1 · 10−12)ϵ0 + 0(4 · 10−11)ϵ1 + 0(2 · 10−9)ϵ2

)︂
+N−1

c

(︂
0(0)ϵ−2 + 0(0)ϵ−1 + 0(1 · 10−12)ϵ0 + 0(1 · 10−10)ϵ1 + 0(7 · 10−9)ϵ2

)︂
,

W2 = Nc

(︂
0(2 · 10−12)ϵ−2 + 0(2 · 10−11)ϵ−1 + 0(6 · 10−11)ϵ0 + 0(2 · 10−10)ϵ1 + 0(5 · 10−10)ϵ2

)︂
+N−1

c

(︂
0(0)ϵ−2 + 0(4 · 10−10)ϵ−1 + 0(2 · 10−9)ϵ0 + 0(4 · 10−9)ϵ1 + 0(1 · 10−8)ϵ2

)︂
,

W3 = Nc

(︂
0(2 · 10−12)ϵ−2 + 0(2 · 10−11)ϵ−1 + 0(8 · 10−11)ϵ0 + 0(2 · 10−10)ϵ1 + 0(8 · 10−10)ϵ2

)︂
+N−1

c

(︂
0(0)ϵ−2 + 0(3 · 10−9)ϵ−1 + 0(2 · 10−8)ϵ0 + 0(5 · 10−8)ϵ1 + 0(1 · 10−7)ϵ2

)︂
,

W4 = Nc

(︂
0(0)ϵ−2 + 0(0)ϵ−1 + 0(1 · 10−13)ϵ0 + 0(2 · 10−12)ϵ1 + 0(1 · 10−10)ϵ2

)︂
+N−1

c

(︂
0(0)ϵ−2 + 0(0)ϵ−1 + 0(3 · 10−13)ϵ0 + 0(3 · 10−12)ϵ1 + 0(1 · 10−10)ϵ2

)︂
. (5.19)

Numerical zeros are here denoted with a zero followed by the rounded uncertainty in brackets.
The results in eq. (5.19) are numerically compatible with zero and at least 11 decimal digits
cancel in the calculation.
Correspondingly, inserting the leading-colour two-loop coefficients of the vector current given in
tab. C.6 into the Ward identities in eq. (3.48) yields

W1 = 0(2 · 10−18)ϵ−4 + 0(5 · 10−16)ϵ−3 + 0(1 · 10−14)ϵ−2

+ 0(8 · 10−12)ϵ−1 + 0(3 · 10−10)ϵ0,
W2 = 0(1 · 10−19)ϵ−4 + 0(2 · 10−16)ϵ−3 + 0(2 · 10−15)ϵ−2

+ 0(6 · 10−13)ϵ−1 + 0(2 · 10−11)ϵ0,
W3 = 0(9 · 10−19)ϵ−4 + 0(5 · 10−16)ϵ−3 + 0(8 · 10−15)ϵ−2

+ 0(5 · 10−12)ϵ−1 + 0(2 · 10−10)ϵ0,
W4 = 0(9 · 10−20)ϵ−4 + 0(2 · 10−16)ϵ−3 + 0(2 · 10−15)ϵ−2

+ 0(1 · 10−13)ϵ−1 + 0(6 · 10−11)ϵ0. (5.20)

The results in eq. (5.20) are numerically compatible with zero and at least 15 decimal digits
cancel in the calculation.
The leading-colour two-loop axial-vector current projection coefficients are given in tab. C.7. The
Ward identities for the axial-vector current in eq. (3.53) require the corresponding coefficients
of the Goldstone current AGoldstone

t . The projection coefficients of the Goldstone current were
calculated separately and the results are given in tab. C.8 in the appendix. The differences of
the left- and right-hand sides of eq. (3.53) are

CGoldstone
1 − W̃ 1 = 0(3 · 10−20)ϵ−4 + 0(6 · 10−17)ϵ−3 + 0(3 · 10−16)ϵ−2

+ 0(1 · 10−13)ϵ−1 + 0(6 · 10−12)ϵ0,
CGoldstone

2 − W̃ 2 = 0(6 · 10−20)ϵ−4 + 0(5 · 10−17)ϵ−3 + 0(2 · 10−17)ϵ−2

+ 0(3 · 10−13)ϵ−1 + 0(1 · 10−11)ϵ0,
CGoldstone

3 − W̃ 3 = 0(9 · 10−19)ϵ−4 + 0(1 · 10−15)ϵ−3 + 0(2 · 10−14)ϵ−2

+ 0(4 · 10−12)ϵ−1 + 0(2 · 10−10)ϵ0,
CGoldstone

4 − W̃ 4 = 0(4 · 10−21)ϵ−4 + 0(3 · 10−16)ϵ−3 + 0(2 · 10−16)ϵ−2

+ 0(1 · 10−15)ϵ−1 + 0(3 · 10−12)ϵ0, (5.21)
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5. Amplitude evaluation and numerical results

where W̃ i denotes the right-hand sides of the expressions in eq. (3.53). The results in eq. (5.21)
are also numerically compatible with zero and also at least 15 decimal digits cancel in the
calculation.
In conclusion, the numerical results obey the Ward identities.

5.3.2. Analytic structure of the singularity

The general analytic structure of the IR singularities of renormalized QCD amplitudes is under-
stood at the two-loop level [263–270]. In the following, the poles of the leading-colour two-loop
amplitude are calculated for the process at hand and used to cross-check the previously obtained
amplitude.
The following paragraphs summarize the notation and general formulas for a generic QCD
process involving n external QCD partons, for which momenta and masses are denoted with
{p} = {p1, p2, . . . , pn} and {m} = {m1,m2, . . . ,mn} with m2

i = p2
i .

The colour-space formalism used in ref. [271, 272], in which the n-parton amplitude |Mn⟩ is
an n-dimensional vector in colour space, is adopted. An orthonormal basis in the colour space
{|c1, . . . , cn⟩} is introduced with the n colour indices ci being ci = 1, . . . , Nc for quarks and
antiquarks and with ci = 1, . . . , N2

c − 1 for gluons. The amplitude is then written as

Mc1,...,cn
n = ⟨c1, . . . , cn|Mn⟩ . (5.22)

The colour generator Ti associated with the ith particle is applied on vectors in colour space as

⟨c1, . . . , ci, . . . , cn|Ta
i |b1, . . . , bi, . . . , bn⟩ = δc1b1 . . . T

a
cibi

. . . δcnbn . (5.23)

The colour generators are (T a)cb = tacb for external quarks and (T a)cb = −tabc for external
antiquarks, where tacb are the generators of the SU(Nc) in the fundamental representation. For
external gluons, the generators are (T a)bc = −ifabc, where fabc is the structure constant of the
SU(Nc). Furthermore, the shorthand notation Ti · Tj = ∑︁N2

c −1
a=1 Ta

i · Ta
j is applied. The colour

algebra is

Ti · Tj = Tj · Ti if i ≠ j, T2
i = Ci (5.24)

with Cq = Cq̄ = CF = N2
c −1

2Nc
and Cg = CA = Nc.

The IR singularities of the renormalized QCD amplitude |Mren⟩ can be cancelled through IR
renormalization, i. e.

|Mfin⟩ = Z−1 (ϵ, {p}, {m}, µ) |Mren⟩ , (5.25)

where the renormalization factor Z obeys the differential equation

Z−1 (ϵ, {p}, {m}, µ) d
d lnµZ (ϵ, {p}, {m}, µ) = −Γ ({p}, {m}, µ) . (5.26)

Hence, the singularity structure of QCD amplitudes is governed by the anomalous-dimension
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matrix Γ ({p}, {m}, µ), which is for two-loop amplitudes involving massive quarks given by [267]

Γ ({p}, {m}, µ) =
∑︂
(i,j)

Ti · Tj

2 γcusp(αs) ln
(︄
µ2

−sij

)︄
+
∑︂

i

γi(αs)

−
∑︂
(I,J)

TI · TJ

2 γcusp(βIJ , αs) +
∑︂

I

γI(αs)

+
∑︂
(I,j)

TI · Tjγcusp(αs) ln
(︄
mIµ

−sIj

)︄

+
∑︂

(I,J,K)
ifabcTa

I Tb
JTc

KF1 (βIJ , βJK , βKI)

+
∑︂
(I,J)

∑︂
k

ifabcTa
I Tb

JTc
kf2

(︃
βIJ , ln

(︃−σJkvJ · pk

−σIkvI · pk

)︃)︃
. (5.27)

In this formula, lower case indices, e. g. i, j, k, denote massless particles while upper case indices,
e. g. I, J,K, denote massive particles. Sums denoted by (i, j, . . . ) are performed over tuples of
distinct parton indices, i. e. the configuration i = j is excluded. This means, for example, that
the summation over (I, J) excludes the cases (I, J) = (t, t) and (I, J) = (t̄, t̄) but includes both
the configurations (I, J) = (t, t̄) and (I, J) = (t̄, t) [270]. Scalar products of massless as well as
massive particles are denoted with

sij = 2σij pi · pj + iε, (5.28)

where the sign factor σij is σij = +1 if the respective momenta pi, pj are both incoming or both
outgoing and σij = −1 if one momentum is incoming and the other momentum is outgoing.
Furthermore, the velocity vI = pI/mI , the recoil variable wIJ = −σIJ vI · vj − iε, and the cusp
angle

cosh βIJ = − sIJ

2mImJ
= wIJ (5.29)

are defined for massive particles. The functions F1 and f2 were computed in ref. [268] and the
required anomalous dimensions can be found in ref. [152].

The colour vector for the process at hand is relatively simple as the only appearing colour
structure is |c⟩ = taij . Note that the colour indices i, j, and a are used for the external particles
in the following for simplicity. The resulting anomalous-dimension matrix hence only has one
entry. In general, i. e. for processes with multiple independent colour structures, this is not the
case. For example, the top-quark pair production channel qq̄ → tt̄ has two independent colour
structures while the gg → tt̄ process has three, which give rise to 2 × 2 and 3 × 3 anomalous-
dimension matrices correspondingly [268].
For the process at hand, the application of the colour correlators yields

Tt · Tg |c⟩ = tbikt
c
kj

(︂
−if bac

)︂
= −Nc

2 |c⟩ ,

Tt · Tg |c⟩ = tcik(−tbkj)
(︂
−if bac

)︂
= −Nc

2 |c⟩ ,

Tt · Tt̄ |c⟩ = tbikt
a
kl

(︂
−tblj

)︂
= 1

2Nc
|c⟩ ,

if bceTb
tTc

t̄T
e
g |c⟩ = if bcetbikt

f
kl

(︂
−tclj

)︂
(−if eaf ) = 0. (5.30)
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The three-particle correlators vanish for this process. Additionally, the correlator Tt · Tt̄ only
contributes to sub-leading-colour terms.
Hence, the anomalous-dimension matrix for this process is

Γ ({xi}, µ, αs) =2γt(αs) + γg(αs) − 1
2Nc

γcusp(βtt̄, αs)

− Nc

2 γcusp(αs)
(︃

ln
(︃
mtµ

−2sx

)︃
+ ln

(︃
mtµ

−2sz

)︃)︃
(5.31)

with

βtt̄ = cosh−1
(︃2m+ x+ z − 1

2m

)︃
. (5.32)

According to ref. [268], the general Z factor at two-loop order is

Z =1 +
(︃
αs

4π

)︃
Z(1) +

(︃
αs

4π

)︃2
Z(2) + O(α3

s) (5.33)

=1 +
(︃
αs

4π

)︃(︃ Γ′
0

4ϵ2 + Γ0
2ϵ

)︃
+
(︃
αs

4π

)︃2
(︄

(Γ′
0)2

32ϵ4 + Γ′
0

8ϵ3
(︃

Γ0 − 3β0
2

)︃
+ Γ0

8ϵ2 (Γ0 − 2β0) + Γ′
1

16ϵ2 + Γ1
4ϵ

− 2TF

3

nh∑︂
I=1

[︄
Γ′

0

(︄
1

2ϵ2 ln
(︄
µ2

m2
I

)︄
+ 1

4ϵ

[︄
ln2
(︄
µ2

m2
I

)︄
+ π2

6

]︄)︄

+ Γ0
ϵ

ln
(︄
µ2

m2
I

)︄]︄)︄
+ O(α3

s). (5.34)

The expansion coefficients Γn are defined by

Γ =
∑︂
n≥0

Γn

(︃
αs

4π

)︃n+1
(5.35)

and a similar expansion holds for Γ′ which is defined as

Γ′ ({xi}, µ, αs) = ∂

∂ ln(µ)Γ ({xi}, µ, αs) =
∑︂
n≥0

Γ′
n

(︃
αs

4π

)︃n+1
. (5.36)

Inserting Γ from eq. (5.31) into eq. (5.34) yields

Z(1) =Nc

(︃
− 1
ϵ2

− 1
ϵ

(︃17
6 + ln

(︃
−m

x

)︃
+ ln

(︃
−m

z

)︃)︃)︃
+ 5

3ϵ

+N−1
c

1
ϵ

(︄
1 − 1 − 2m− x− z

1 − x− z

√︄
1 − x− z

1 − 4m− x− z
sech−1

(︃ 2m
2m+ x+ z − 1

)︃)︄
(5.37)
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and

Z(2)
LC =N2

c

(︄
1

2ϵ4 + 1
ϵ3

(︃67
12 + ln

(︃
−m

x

)︃
+ ln

(︃
−m

z

)︃)︃
(5.38)

+ 1
72ϵ2

(︄
2
(︂
3π2 − 67

)︂
+ 22

(︃
6 ln

(︃
−m

x

)︃
+ 6 ln

(︃
−m

z

)︃
+ 17

)︃

+
(︃

6 ln
(︃

−m

x

)︃
+ 6 ln

(︃
−m

z

)︃
+ 17

)︃2
)︄

+ 1
ϵ

(︄
−108ζ3 + 69π2 − 1972

216 + 1
18
(︂
3π2 − 67

)︂(︃
ln
(︃

−m

x

)︃
+ ln

(︃
−m

z

)︃)︃)︄)︄
.

For the latter coefficient, only the leading-colour term is stated. The IR singularities of the
one-loop and two-loop amplitudes are given by

|M(1),sing
n ⟩ =Z(1) |M(0)

n ⟩ ,

|M(2),sing
n ⟩ =

[︃
Z(2) −

(︂
Z(1)

)︂2
]︃

|M(0)
n ⟩ +

(︂
Z(1) |M(1)

n ⟩
)︂

poles
. (5.39)

The IR singularities obtained from these equations agree numerically with the poles of the
one-loop vector current, the leading-colour one-loop axial-vector current, and the leading-colour
two-loop vector and axial-vector currents within their numerical uncertainties. This was checked
for the projection coefficients given in tab. C.3, tab. C.5, tab. C.6, and tab. C.7.
The ϵ−2 and ϵ−1 poles of the one-loop currents agree for at least 12 digits with the analytical
results. The maximal relative difference of the numerical and analytical results for the poles of
the leading-colour two-loop vector current coefficients is

0(4 · 10−22)ϵ−4 + 0(3 · 10−18)ϵ−3 + 0(2 · 10−12)ϵ−2 + 0(2 · 10−12)ϵ−1. (5.40)

The corresponding maximal relative difference for the poles of the axial-vector current is

0(5 · 10−22)ϵ−4 + 0(3 · 10−18)ϵ−3 + 0(1 · 10−14)ϵ−2 + 0(4 · 10−14)ϵ−1. (5.41)

Note that also the two-loop singularity structure given in eq. (5.39) acquires a non-vanishing
numerical uncertainty originating from the one-loop uncertainties. The relative uncertainties
stated in eq. (5.40) and eq. (5.41) include these uncertainties as well as the uncertainties of the
leading-colour two-loop currents.
Also note that only the coefficients which contribute at leading-order have non-vanishing ϵ−4

and ϵ−3 coefficients in tab. C.6 and tab. C.7. All remaining ϵ−4 and ϵ−3 coefficients agree nu-
merically with zero and have uncertainties below 10−15.

5.4. Numerical results

In this section, numerical results for the leading-colour one-loop and two-loop amplitudes are
presented for the benchmark phase space point defined in eq. (2.7). Furthermore, the Z boson
mass mZ = 91.1876 and the electroweak mixing angle sin2 θw = 0.2229 are used.
In the here applied notation, all significant digits of non-zero results are stated. The digit in
brackets behind the result indicates the uncertainty of the last stated digit. The same notation
is used in app. B and app. C.
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The interference term of the leading-order subamplitude M(0)
γ and one-loop subamplitude M(1)

γ

summed over all helicities is∑︁
pol

2Re
(︂
M(0)

γ · M(1)
γ

)︂
∑︁
pol

⃓⃓⃓
M(0)

γ

⃓⃓⃓2 =Nc

(︂
+ 2.00000000000(1)ϵ−2 + 6.24652974767(1)ϵ−1

− 1648.1798847751(1)ϵ0 − 11068.796935404(1)ϵ1

− 26588.482406286(8)ϵ2
)︂

+N0
c

(︂
− 3.3333333333333333333(1)ϵ−1

+ 0.54831135561607547882(1)ϵ1

− 0.26712375625768761898(1)ϵ2
)︂

+N−1
c

(︂
+ 1.234022321(1)ϵ−1 + 73.679059347(1)ϵ0

− 1175.75638908(1)ϵ1 − 5119.33855720(6)ϵ2
)︂
. (5.42)

Note that the N0
c term originates solely from the renormalization and hence has technically no

uncertainty. The stated uncertainty in the 20th digit is only the rounding error.

In the context of this work, the squared leading-colour one-loop amplitude is of particular
interest since it also contributes to the leading-colour NNLO corrections. The corresponding
leading-colour contribution is

∑︁
pol

⃓⃓⃓
M(1)

⃓⃓⃓2
∑︁
pol

⃓⃓
M(0)

⃓⃓2 = N2
c

(︂
+ 1.000000000000(1)ϵ−4 + 6.24652974767(1)ϵ−3 − 1602.51827251(1)ϵ−2

− 8235.4565195(1)ϵ−1 + 12466447.351047(1)ϵ0
)︂
. (5.43)

The corresponding contribution involving only the photon yields

∑︁
pol

⃓⃓⃓
M(1)

γ

⃓⃓⃓2
∑︁
pol

⃓⃓⃓
M(0)

γ

⃓⃓⃓2 = N2
c

(︂
+ 1.000000000000(1)ϵ−4 + 6.24652974767(1)ϵ−3 − 1598.94668370(1)ϵ−2

− 8201.3884772(1)ϵ−1 + 12468170.294056(1)ϵ0
)︂

(5.44)

and the contribution involving only the Z boson yields

∑︁
pol

⃓⃓⃓
M(1)

Z

⃓⃓⃓2
∑︁
pol

⃓⃓⃓
M(0)

Z

⃓⃓⃓2 = N2
c

(︂
+ 1.000000000000(1)ϵ−4 + 6.24652974767(1)ϵ−3 − 1317.36751511(1)ϵ−2

− 5515.5107062(1)ϵ−1 + 12604004.760224(1)ϵ0
)︂
. (5.45)
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5.4. Numerical results

The leading-colour two-loop amplitude at the benchmark phase space point is∑︁
pol

2Re
(︂
M(0) · M(2) LC

)︂
∑︁
pol

⃓⃓
M(0)

⃓⃓2 =N2
c

(︂
− 1.000000000000000000(4)ϵ−4 − 11.7465297476674096(4)ϵ−3

+ 1672.1004246743386908(7)ϵ−2 + 24248.83906708939(4)ϵ−1

− 3648989.230879838(2)ϵ0
)︂
. (5.46)

The subprocess involving only the photon yields∑︁
pol

2Re
(︂
M(0)

γ · M(2) LC
γ

)︂
∑︁
pol

⃓⃓⃓
M(0)

γ

⃓⃓⃓2 =N2
c

(︂
− 1.000000000000000000(4)ϵ−4 − 11.7465297476674096(4)ϵ−3

+ 1668.5288358586071638(7)ϵ−2 + 24245.97035161149(4)ϵ−1

− 3679648.614339240(2)ϵ0
)︂

(5.47)

and the subprocess involving only the Z boson yields∑︁
pol

2Re
(︂
M(0)

Z · M(2) LC
Z

)︂
∑︁
pol

⃓⃓⃓
M(0)

Z

⃓⃓⃓2 =N2
c

(︂
− 1.00000000000000000(1)ϵ−4 − 11.746529747667410(1)ϵ−3

+ 1386.949667274629371(1)ϵ−2 + 24019.80475393273(9)ϵ−1

− 6096792.398016293(4)ϵ0
)︂
. (5.48)
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6. Conclusion

In this work, the calculation of the leading-colour two-loop QCD amplitude for top-quark pair
production in association with a jet at a lepton collider was presented and numerical results for
one benchmark phase space point with a centre-of-mass energy of

√
s = 500 GeV corresponding

to a proposed ILC setup were provided. This is the first time that any two-loop results for this
process have been presented. The two-loop amplitude is an essential building block of the full
NNLO QCD corrections, which will be crucial for future lepton collider experiments. Improving
theoretical predictions for top-quark pair production in association with a jet contributes to
more accurate top-quark mass and coupling measurements at lepton colliders.

This five-parton reaction is effectively a 1-to-3 process due to its purely electroweak initial state
producing a virtual photon or Z boson. The two-loop QCD process can be treated as an off-shell
photon or Z boson decaying into a top-quark pair and a gluon. The vector and axial-vector cou-
pling structure of the photon and Z boson to quarks leads to a straightforward decomposition of
the amplitude into vector and axial-vector currents. The currents depend on four independent
kinematic variables, which are effectively reduced to three independent variables by setting the
centre-of-mass energy s to one.
The currents were decomposed into spinor structures and scalar form factors. The spinor struc-
tures depend on the helicities of the external particles and are relatively compact expressions
composed of Dirac spinors, Dirac matrices, polarization vectors, masses, and external momenta.
The form factors are scalar quantities, independent of the external helicities, and absorb all
complicated parts of the remaining calculation, in particular the Feynman integrals.
The form factors were extracted with projectors. The projection procedure was implemented in
d dimensions in this work, corresponding to the adoption of conventional dimensional regulariza-
tion. The spinor structures were determined by making a general ansatz for the process at hand
on which the QCD Ward identity for the gluon was imposed. This yielded for the vector and
axial-vector current 18 independent spinor structures in each case. Electroweak Ward identities
for the off-shell photon and Z boson give rise to relations between the form factors which were
later used to check the results.
The tensor Feynman integrals in the extracted form factors only contain scalar products in-
volving loop momenta in the numerator. These scalar products were subsequently replaced with
linear combinations of inverse propagators, giving rise to scalar Feynman integrals with negative
propagator exponents. The Feynman integrals were then reduced to master integrals using the
program Kira.

The calculation of the 90 master integrals of the leading-colour two-loop amplitude constituted
the largest part of this work. Accounting for crossed kinematics, it was sufficient to calculate the
54 master integrals of one two-loop integral family and 5 remaining integrals that are products of
one-loop integrals. The most complicated Feynman integrals appearing in this calculation were
double-box integrals involving internal masses. Quasi-finite Feynman integrals, i. e. Feynman
integrals free of subdivergences, in 6 − 2ϵ dimensions were chosen as integral basis.
In this work, a seminumerical evaluation method was applied, where the Feynman integrals were
calculated by numerically solving differential equations in the kinematic variables. However, one
drawback of this technique is that the Feynman integrals are not calculated ‘from scratch’ but
require initial conditions.
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6. Conclusion

Consequently, asymptotic expansions, i. e. power-logarithmic expansions, in m = m2
t /s were cal-

culated at least up to the 13th order for all master integrals. The leading expansion coefficients
were calculated with the expansion by regions. The higher order expansions were obtained by
applying the differential equation in m onto an ansatz for the asymptotic expansions and solving
the resulting system of equations. This expansion provided high-precision initial conditions in
the small-mass limit at m = 0.001.
The contributions of the expansion by regions were calculated in large parts with HyperInt.
Spurious singularities, which prevented a direct evaluation with HyperInt, were resolved by
applying partial integrations. This step was in fact a bottleneck of this calculation since it was
done individually ‘by hand’ for each integral. This was also one major motivation for adopting
a quasi-finite basis in this work.

The Feynman integrals for the mass value mt = 170 GeV were obtained by numerically solv-
ing the differential equation in m while using the asymptotic expansions as initial conditions.
Furthermore, the Feynman integrals were calculated for a grid in the two kinematical variables
x and z ranging from 0.01 to 1.00 with a step size of 0.01 by subsequently solving the respec-
tive differential equations. Results for in-between phase space points were obtained by using a
Clough-Tocher interpolation scheme.
Solving differential equations numerically is a very well studied technique in physics, mathemat-
ics, and computer science and hence a comprehensive infrastructure is readily available: very
efficient numerical methods to solve ordinary differential equations which are already imple-
mented in easy-to-apply libraries. In this work, the Bulirsch-Stoer algorithm implemented in
the Boost Library was used. Singularities of the differential equations were circumvented by
contour deformation into the complex plane, which made a detailed study of singularities neces-
sary. For each integration step, a single elliptic contour with a small deformation parameter was
used to avoid all singularities. The uncertainties of the solutions of the differential equations
were studied extensively. An uncertainty band approach was applied, where the initial conditions
were varied according to their uncertainties. Furthermore, initial conditions at a second phase
space point were used for a second uncertainty estimate. Both uncertainty estimates agree well
for most phase space points although the uncertainty band might underestimate uncertainties
close to certain singularities. The master integrals in the physical phase space were obtained
for at least 15 decimal digits, but in phase space regions close to certain singularities a loss of
precision was observed. The obtained precision is sufficient for all practical purposes.
Internal cross-checks were also performed using IBP relations for special phase space points.
This revealed for the interpolated results only accuracy at the permille level. The interpolated
master integrals might hence not be sufficiently accurate for a Monte Carlo phase space integra-
tion. Possible solutions might be the calculation of a denser grid or interpolation on the level of
amplitudes instead.
Furthermore, a comparison with numerical results obtained with Fiesta and pySecDec showed
agreement within their numerical uncertainties.
The renormalized leading-colour two-loop amplitude was numerically evaluated at a benchmark
phase space point with an accuracy of at least 15 decimal digits. The results were numerically
cross-checked with electroweak Ward identities and by comparing the singularities with the ex-
pected two-loop IR singularities obtained from general factorization formulas. Both cross-checks
agree within the numerical uncertainties.

The leading-colour two-loop amplitude is, of course, only a small part of the full NNLO QCD
corrections. Sub-leading-colour contributions, i. e. contributions of order Nc, N0

c , N−1
c , and N−2

c ,
might contribute substantially to the full amplitude. The calculation of the full two-loop ampli-
tude for this process is naturally very involved and might require a refinement of the presented
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techniques or possibly completely different approaches.
Furthermore, the two-loop amplitude is only one building block of the NNLO corrections which
also include the one-loop real corrections, i. e. one-loop diagrams with one additional soft or
collinear parton, and the double-real corrections, i. e. contributions with two additional partons
which simultaneously become soft or collinear. The combination of all three parts is a non-trivial
task in itself.
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A. Additional calculations

A.1. Determination of the benchmark phase space point

Most calculations in this work are performed in terms of the variables x, z, m, and s as defined
in eq. (2.4). This includes the calculation of the master integrals and the evaluation of projector
coefficients. Moreover, the calculations are often performed for the benchmark point x = 0.2,
z = 0.05, m = 289/2500, and s = (500 GeV)2. In this section, the external momenta p1, p2, and
p3 are expressed in terms of the variables x, z, m, and s by adjusting a parameterization for a
three-particle phase space taken from ref. [176] to the process at hand. The obtained momenta
are then used as a benchmark phase space point for the numerical evaluation of the one-loop
and leading-colour two-loop amplitudes.
First, general formulas from ref. [176] are reproduced. The final-state momenta of a general
1-to-3 process are in the following denoted by p1, p2, and p3 and the initial-state momentum is
p = p1 +p2 +p3. The finial-state particles can have arbitrary masses, i. e. p2

i = m2
i . This process

possesses the invariant variables

s12 = s1 = (p1 + p2)2, s23 = s2 = (p2 + p3)2, s31 = s3 = (p3 + p1)2. (A.1)

Momentum conservation yields

s = p2 = s1 + s2 + s3 −m2
1 −m2

2 −m2
3. (A.2)

The energies of the final-state particles are

E1 = s+m2
1 − s2

2
√
s

, E2 = s+m2
2 − s3

2
√
s

, E3 = s+m2
3 − s1

2
√
s

(A.3)

and the absolute values of the spatial components are

|p⃗1| = λ
1
2 (s,m2

1, s2)
2

√
s

, |p⃗2| = λ
1
2 (s,m2

2, s3)
2

√
s

, |p⃗3| = λ
1
2 (s,m2

3, s1)
2

√
s

(A.4)

with

λ(x, y, z) = (x− y − z)2 − 4yz. (A.5)

The angles between two particles are given by

cos θ12 = (s+m2
1 − s2)(s+m2

2 − s3) + 2s(m2
1 +m2

2 − s2)
λ

1
2 (s,m2

1, s2)λ 1
2 (s,m2

2, s3)
,

cos θ23 = (s+m2
2 − s3)(s+m2

3 − s1) + 2s(m2
2 +m2

3 − s3)
λ

1
2 (s,m2

2, s3)λ 1
2 (s,m2

3, s1)
,

cos θ31 = (s+m2
3 − s1)(s+m2

1 − s2) + 2s(m2
3 +m2

1 − s1)
λ

1
2 (s,m2

3, s1)λ 1
2 (s,m2

1, s2)
. (A.6)
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A. Additional calculations

The last two angles were obtained from the first formula with the permutation

p1 → p2, p2 → p3, p3 → p1, s1 → s2, s2 → s3, s3 → s1. (A.7)

Now, these formulas are applied to the process Z → ttg using the kinematic definitions from
sec. 2.1. For this process, the energies are

E1 = 1
2

√
s(1 − z), E2 = 1

2
√
s(1 − x), E3 = 1

2
√
s(x+ z) (A.8)

and the absolute spatial momenta are

|p⃗1| = 1
2

√︂
s((1 − z)2 − 4m), |p⃗2| = 1

2

√︂
s((1 − x)2 − 4m), |p⃗3| = 1

2

√︂
s(x+ z)2 (A.9)

and the angles are

cos θ12 = 4m+ x+ z + xz − 1√︁
(1 − x)2 − 4m

√︁
(1 − z)2 − 4m

,

cos θ23 = − z + x(x+ z − 1)
(x+ z)

√︁
(1 − x)2 − 4m)

,

cos θ31 = − x+ z(x+ z − 1)
(x+ z)

√︁
(1 − z)2 − 4m)

. (A.10)

These relations define all three momenta relative to each other with the spatial orientation of
the whole system remaining undefined.
The orientation is fixed by imposing that the spatial vector p⃗1 is parallel to the x direction,
which yields

p1 =
√
s

(︃1
2(1 − z), 1

2

√︂
(1 − z)2 − 4m, 0, 0

)︃
. (A.11)

Furthermore, restricting p⃗2 to the xy-plane yields

p2 = (E2, |p⃗2| cos θ12, |p⃗2| sin θ12, 0)

=
√
s

(︄
1
2(1 − x), 4m+ x+ z + xz − 1

2
√︁

(1 − z)2 − 4m
,

√︄
xz(x+ z − 1) +m(x+ z)2

4m− (1 − z)2 , 0
)︄
. (A.12)

This already determines p3, which can be calculated by computing the scalar products

p1⃗ · p3⃗ = |p⃗1||p⃗3| cos θ13 = |p⃗1|px
3 ,

p2⃗ · p3⃗ = |p⃗2||p⃗3| cos θ23 = |p⃗2|(px
3 cos θ12 − py

3 sin θ13)
= |p⃗2|(|p⃗3| cos θ12 cos θ13 − py

3 sin θ13). (A.13)

The results is

p3 =
(︃
E3, |p⃗3| cos θ13,

|p⃗3| cos θ23 − |p⃗3| cos θ12 cos θ13
sin θ13

, 0
)︃

=
√
s

(︄
1
2(x+ z),− x+ z(x+ z − 1)

2
√︁

(1 − z)2 − 4m
,−
√︄
xz(x+ z − 1) +m(x+ z)2

4m− (1 − z)2 , 0
)︄
. (A.14)

The spatial components of all three particles lie in the xy-plane because the momenta are
defined in the centre-of-momentum frame. Other orientations can be obtained by applying
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A.2. Brief overview of the Tarasov method

spatial rotations.

A.2. Brief overview of the Tarasov method
In this section, a tensor reduction method which was introduced in ref. [189] by Tarasov is very
briefly discussed. This method is hence referred to as Tarasov method in this work. This review
contributes to the general discussion on tensor reduction procedures given in sec. 2.4.2 even
though this method was not used in this work. The following discussion follows the notations
of ref. [273]. In this method, tensor integrals are expressed in terms of scalar integrals with
increased propagator exponents in shifted space-time dimensions.

The Tarasov method makes use of the Schwinger parameter representation. This parameteri-
zation is obtained by applying the Schwinger transformation in eq. (2.27) to each propagator
Pj . This yields for a generic scalar L-loop Feynman integral in d dimensions composed of N
propagators(︄

L∏︂
i=1

∫︂ ddki

iπd/2

)︄
N∏︂

j=1

1
P

nj

j

=
(︄

L∏︂
i=1

∫︂ ddki

iπd/2

)︄ ⎛⎝ N∏︂
i=1

(−1)ni

Γ(ni)

∞∫︂
0

dxi x
ni−1
i

⎞⎠ exp

⎛⎝ N∑︂
j=1

xjPj

⎞⎠ . (A.15)

In the next step, the loop momenta ki are integrated out in a universal way. Consider, for
example, a generic one-loop four point function with the propagators

P1 =k2 −m2
1, P2 =(k + p1)2 −m2

2,

P3 =(k + p1 + p2)2 −m2
3, P4 =(k + p1 + p2 + p3)2 −m2

4. (A.16)

The argument of the exponential function in eq. (A.15) is then expressed as a quadratic poly-
nomial, i. e.

n∑︂
j=1

xjPj =a · k2 + 2b · k + c = a ·
(︃
k2 + 2b · k

a
+ c

a

)︃

=a ·
(︄(︃

k + b

a

)︃2
− b2

a2 + c

a

)︄
= U · q2 − F

U
, (A.17)

where the loop momentum k is shifted and replaced with q. For the one-loop four point function,
the coefficients are

a =x1 + x2 + x3 + x4,

b =p3x4 + p2(x3 + x4) + p1(x2 + x3 + x4),
c = −m2

1x1 −m2
2x2 + p2

1x2 −m2
3x3 + p2

1x3 + 2p1p2x3 + p2
2x3

+ (−m2
4 + (p1 + p2 + p3)2)x4 (A.18)

and the Symanzik polynomials are

U = a = x1 + x2 + x3 + x4, F = b2 − ca. (A.19)

Integration over q yields the Schwinger representation, i. e.

N∏︂
i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠U−d/2e−F/U . (A.20)
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The calculation of tensor integrals also follows the outlined steps but differs in the integration
of the loop momenta. At one-loop, a generic tensor integral is given by

∫︂ ddk

iπd/2 (kµ1kµ2 . . . kµt)
N∏︂

j=1

1
P

nj

j

=

⎛⎝ N∏︂
i=1

(−1)ni

Γ(ni)

∞∫︂
0

dxi x
ni−1
i

⎞⎠ Jd[kµ1kµ2 . . . kµt ], (A.21)

where the integrand of the Schwinger parameter integration including the tensor structure is

Jd[kµ1kµ2 . . . kµt ] = (kµ1kµ2 . . . kµt) exp

⎛⎝ N∑︂
j=1

xjPj

⎞⎠ . (A.22)

Applying the same loop-momentum shift as for the scalar integrals, i. e. k → q − b
a , yields for

the integrand

Jd[. . . ] =
(︃(︃

qµ1 − bµ1

a

)︃(︃
qµ2 − bµ2

a

)︃
. . .

(︃
qµt − bµt

a

)︃)︃
exp

(︃
Uq2 − F

U

)︃
=
(︃(︃

qµ1 − bµ1

a

)︃(︃
qµ2 − bµ2

a

)︃
. . .

(︃
qµt − bµt

a

)︃)︃
exp

(︂
Uq2

)︂
· exp

(︃
−F

U

)︃
. (A.23)

The term exp (−F/U) is the same as for scalar integrals and is independent of the shifted
loop momentum q. The tensor structure gives rise to factors containing bµi , which are a linear
combination of external momenta and Schwinger parameters. The remaining tensor integrals
are resolved by applying relations such as∫︂ ddq

iπd/2 q
µ exp(Uq2) =0,∫︂ ddq

iπd/2 q
µqν exp(Uq2) = − 1

2U
gµν 1

Ud/2 ,∫︂ ddq

iπd/2 q
µqνqρqσ exp(Uq2) = 1

4U2 (gµνgρσ + gµρgνσ + gµσgνρ) 1
Ud/2 . (A.24)

Only the metric tensor can appear in the results of these integrals since the integrand is inde-
pendent of q and the external momenta. For example, for the tensor integrals of rank 1 and 2,
the integrands are effectively replaced with

Jd[kµ] =Jd[qµ] − bµ

U
Jd[1] = −bµJd+2[1],

Jd[kµkν ] =Jd[qµqν ] + bµbν

a2 Jd[1] =
(︃

− 1
2U

gµν + bµbν

U2

)︃
Jd[1]

= − 1
2g

µνJd+2[1] + bµbνJd+4[1]. (A.25)

The dimension-shift operator D+ = U−1 is applied at this step. Furthermore, the factors bµi

contain Schwinger parameters which act as i+ operators.
As a result, this tensor reduction yields Feynman integrals in increased space-time dimensions
and with increased exponents of the propagators.
For example, the tensor integral of rank 1 for the generic box integral defined in eq. (A.16) yields

I
(d)
1,1,1,1[kµ] = pµ

1

(︂
I

(d+2)
1,2,1,1 + I

(d+2)
1,1,2,1 + I

(d+2)
1,1,1,2

)︂
+ pµ

2

(︂
I

(d+2)
1,1,2,1 + I

(d+2)
1,1,1,2

)︂
+ pµ

3I
(d+2)
1,1,1,2, (A.26)

where [kµ] indicates the tensor structure similarly to eq. (A.22).
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A.3. Calculating derivatives of Feynman integrals

The tensor reduction for two-loop integrals can be done in a similar fashion. After introducing
Schwinger parameters, the argument of the exponential function is

N∑︂
j=1

xjPj =a · k2
1 + b · k2

2 + 2c · k1k2 + 2d · k1 + 2e · k2 + f, (A.27)

where the coefficients a, b, etc. are linear combinations of the Schwinger parameters xi, external
momenta, and kinematical variables. The substitution, also taken from ref. [273],

kµ
1 → qµ

1 − c

a
qµ

2 +Xµ, kµ
2 → qµ

2 + Y µ (A.28)

is applied to the loop momenta. The two auxiliary vectors are

Xµ = bdµ − ceµ

U
, Y µ = adµ − cdµ

U
(A.29)

and the Symanzik polynomials for this two-loop integral are

U = c2 − ab, F = −bd2 + 2cde− ae2 + abf − c2f. (A.30)

Applying this substitution to the argument of the exponential function yields

N∑︂
j=1

xjPj =aq2
1 − U

a
q2

2 − F
U
. (A.31)

The q1 and q2 integrations factorize as a result. Integrating over q1 and q2 yields for scalar
integrals again the Schwinger representation in eq. (A.20).
Tensor integrals are calculated in the same manner as in the one-loop case by substituting
k1 and k2 with eq. (A.28) and then applying the same relations as in eq. (A.24). Two-loop
tensor integrals with tensor rank t are expressed with scalar integrals with maximal space-time
dimensionality d+ 2t since each tensor momentum gives rise to one D+ operator when applying
the substitution in eq. (A.28). The sum of all positive propagator exponents r is increased by
2t since Xµ and Y µ in eq. (A.29) are polynomials of order 2 in the Schwinger parameters.

A.3. Calculating derivatives of Feynman integrals

A.3.1. Derivatives in the parametric representation

The derivatives with respect to the invariants x, z, m, and s of the master integrals have to
be calculated in order to determine the differential equations. In one possible approach, the
derivatives are calculated using parametric representations of Feynman integrals, such as the
Schwinger or Feynman parameterization. Differentiation with respect to invariants is straight
forward in this case since the loop momenta are integrated out and the remaining integrand
depends explicitly on scalar invariants.

Consider a generic scalar Feynman integral in Schwinger representation as defined in eq. (2.28).
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The invariants only enter in F and hence differentiation with respect to some invariant si yields

∂

∂si

N∏︂
i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠U−d/2e−F/U

=
N∏︂

i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠ (︃
−∂F
∂si

)︃
U−(d+2)/2e−F/U . (A.32)

On the right-hand side of this equation, Feynman integrals in dimension d+ 2 occur. The term
∂F/∂si is a polynomial in the Schwinger parameters of order L + 1. The xi factors can be
identified as i+ operators, which increase propagator exponents, as defined in eq. (2.33). The
integrals on the right-hand side are typically reduced to master integrals with IBP relations and
the space-time dimension is reduced by applying a dimension-shift transformation.
For example, consider the sunrise topology given by sector 21. The corresponding Symanzik
polynomials are

U = x1x2 + x1x3 + x2x3,

F = −x1x2x3 +m(x1 + x2)(x1x2 + x1x3 + x2x3) = −x1x2x3 +m(x1 + x2)U . (A.33)

Differentiating the Schwinger representation with respect to m gives

∂

∂m
I

(d)
n1,0,n2,0,n3,0,0 = ∂

∂m

3∏︂
i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠ U−d/2e−F/U

=
∫︂ 3∏︂

i=1

⎛⎝ ∞∫︂
0

dxi
(−1)ni xni−1

i

Γ(ni)

⎞⎠ (x1 + x2) U−d/2e−F/U

= − n1I
(d)
n1+1,0,n2,0,n3,0,0 − n2I

(d)
n1,0,n2+1,0,n3,0,0. (A.34)

The U−1 term cancels in this example since the derivative of F is proportional to U . Hence,
the integrals on the right-hand side are d-dimensional. Reducing the integrals on the right-hand
side with Kira to master integrals yields, for example,

∂

∂m
I

(6−2ϵ)
3,0,3,0,1,0,0 = + 9m

d(m− 1) − 7m+ 6I
(6−2ϵ)
4,0,4,0,0,0,0

+
(︁
3d2 − 37d+ 112

)︁
(2m− 1)

4ms(d(m− 1) − 7m+ 6) I
(6−2ϵ)
3,0,3,0,1,0,0

− (d− 4)(4m− 1)
4m(d(m− 1) − 7m+ 6)I

(6−2ϵ)
3,0,3,0,2,0,0. (A.35)

A.3.2. Derivatives in the momentum representation

Another approach to calculate the derivatives of Feynman integrals uses the momentum repre-
sentation. In this case, derivatives assume, for example, the form

∂

∂m
=
∑︂
i,j

ci,jp
µ
i

∂

∂pµ
j

+ cm2
t

∂

∂m2
t

. (A.36)

This approach is, for example, discussed in ref. [118].
In the following, the derivatives in momentum representation with respect to the invariants x,
z, m, and z are derived for the process at hand. The calculation is divided into two steps for the
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A.3. Calculating derivatives of Feynman integrals

sake of clarity. In the first step, the derivatives with respect to the invariants sij = (pi + pj)2

and m2
t are calculated. In the second step, these derivatives are expressed with derivatives with

respect to x, z, m, and s.

In the first step, the chain rule yields equations of the form

pµ
l

∂

∂pµ
k

=
∑︂
sij

pµ
l

∂sij

∂pµ
k

∂

∂sij
, m2

t

∂

∂m2
t

=
∑︂
sij

m2
t

∂sij

∂m2
t

∂

∂sij
+m2

t

∂

∂m2
t

, (A.37)

where the sums are performed over the invariants sij = {s, s11, s22, s33, s13, s23,m
2
t } and the

external momenta are pi ∈ {p1, p2, p3}. Note that s12 is not an independent variable and hence
is not included. Eq. (A.37) gives rise to a system of equations of rank 7. Removing linearly
dependent equations yields the system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1∂p1

p1∂p2

p1∂p3

p2∂p1

p2∂p2

p3∂p1

m2
t∂m2

t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ⏟̄⏟̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ⏞̄

∂p⃗

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
∂s

∂p1
p1

∂s11
∂p1

p1
∂s22
∂p1

p1
∂s33
∂p1

p1
∂s13
∂p1

p1
∂s23
∂p1

p1
∂m2

t
∂p1

p1
∂s

∂p2
p1

∂s11
∂p2

p1
∂s22
∂p2

p1
∂s33
∂p2

p1
∂s13
∂p2

p1
∂s23
∂p2

p1
∂m2

t
∂p2

p1
∂s

∂p3
p1

∂s11
∂p3

p1
∂s22
∂p3

p1
∂s33
∂p3

p1
∂s13
∂p3

p1
∂s23
∂p3

p1
∂m2

t
∂p3

p2
∂s

∂p1
p2

∂s11
∂p1

p2
∂s22
∂p1

p2
∂s33
∂p1

p2
∂s13
∂p1

p2
∂s23
∂p1

p2
∂m2

t
∂p1

p2
∂s

∂p2
p2

∂s11
∂p2

p2
∂s22
∂p2

p2
∂s33
∂p2

p2
∂s13
∂p2

p2
∂s23
∂p2

p2
∂m2

t
∂p2

p3
∂s

∂p1
p3

∂s11
∂p1

p3
∂s22
∂p1

p3
∂s33
∂p1

p3
∂s13
∂p1

p3
∂s23
∂p1

p3
∂m2

t
∂p1

m2
t

∂s
∂m2

t
m2

t
∂s11
∂m2

t
m2

t
∂s22
∂m2

t
m2

t
∂s33
∂m2

t
m2

t
∂s13
∂m2

t
m2

t
∂s23
∂m2

t
m2

t
∂m2

t

∂m2
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=D̂

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂s

∂s11

∂s22

∂s33

∂s13

∂s23

∂m2
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

∂s⃗

.

(A.38)

Inverting the matrix D̂ yields

∂s⃗ = D̂
−1
∂p⃗, (A.39)

i. e. derivatives with respect to the invariants expressed through derivatives with respect to ex-
ternal momenta.

In the next step, these results are used to obtain derivatives with respect to x, z, m, and s.
Applying the chain rule yields

∂f

∂x
=
∑︂
sij

∂f

∂sij

∂sij

∂x
= ∂s13

∂x

∂f

∂s13
= ∂(x+m)s

∂x

∂f

∂s13
= s

∂f

∂s13
,

∂f

∂z
=
∑︂
sij

∂f

∂sij

∂sij

∂z
= ∂s23

∂z

∂f

∂s23
= s

∂f

∂s23
,

∂f

∂m
=
∑︂
sij

∂f

∂sij

∂sij

∂m
= ∂s11

∂m

∂f

∂s11
+ ∂s22

∂m

∂f

∂s22
+ ∂s13

∂m

∂f

∂s13
+ ∂s23

∂m

∂f

∂s23
+ ∂m2

t

∂m

∂f

∂m2
t

=s
(︃
∂f

∂s11
+ ∂f

∂s22
+ ∂f

∂s13
+ ∂f

∂s23
+ ∂f

∂m2
t

)︃
,

∂f

∂s
=
∑︂
sij

∂f

∂sij

∂sij

∂s
= m

∂f

∂s11
+m

∂f

∂s22
+ (x+m) ∂f

∂s13
+ (z +m) ∂f

∂s23
+m

∂f

∂m2
t

, (A.40)

where f is a generic function. Inserting the results of the first step, given in eq. (A.39), yields
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for the derivative with respect to x

∂x = 1
2 (m(x+ z)2 + xy(x+ z − 1))

[︂
p1(2m(x+ z) + y(2x+ z − 1))

+ p2(x(2m+ z − 1) + 2mz)

+ p3(2m(x+ z − 2) + (z − 1)(x+ z − 1))
]︂
∂p1 , (A.41)

for the derivative with respect to z

∂z = 1
2 (2m2(x+ z)3 +mz (3x3 + x2(7z − 3) + xz(5z − 4) + (z − 1)z2) + xz2(x+ z − 1)2)×

×
[︂

+ p1xz(2m(x+ z − 2) + (x− 1)(x+ z − 1))

+ p2x
2(2m(x+ z − 2) + (x− 1)(x+ z − 1))

+ p3
(︂
x(2m+ z − 1) + 2mz + x2

)︂
(2m(x+ z − 2) + (x− 1)(x+ z − 1))

]︂
∂p1

+ 2m(p1 + p2) + p2(x+ z − 1)
2m(x+ z) + z(x+ z − 1) ∂p2 , (A.42)

for the derivative with respect to m

∂m = 1
2(2m(x+ z) + z(x+ z − 1)) (m(x+ z)2 + xz(x+ z − 1))×

×
[︂
p1z

(︂
x2(2m+ z + 1) + xz(4m+ 3z − 2) + z2(2m+ z − 1) − x3

)︂
+ p2x

(︂
−x2(2m+ z + 1) + xz(−4m− 3z + 2) − z2(2m+ z − 1) + x3

)︂
+ p3

(︂
−x2 + x+ (z − 1)z

)︂2 ]︂
· ∂p1

+ p2x− p1z

2m(x+ z) + z(x+ z − 1) · ∂p2

+ s∂m2
t
, (A.43)

and for the derivative with respect to s

∂s = 1
2s(z(−1 + x+ z) + 2m(x+ z))

[︂(︂
p1(2m(2x+ z) + z(x+ z − 1))

+ p2x(−1 + 2m+ x+ z)

+ p3(x+ z − 1)(4m+ x+ z − 1)
)︂
∂p1

+ 2
(︂
p1mz + p2(z(−1 + x+ z) +m(x+ 2z))

)︂
∂p2

]︂
+m∂m2

t
. (A.44)

When calculating the derivatives in the momentum representation, scalar products involving loop
momenta occur in intermediate expressions. These scalar products are then replaced with inverse
propagators. The here derived expressions do not give rise to integrals in shifted dimensions in
contrast to the differentiation in the Schwinger representation.
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A.4. Axial-vector current spinor structures

S̃1 = 2
s2u(p1)γ5

(︃
/p3(p1 · ϵ∗3) − sx

2 /ϵ
∗
3

)︃
v(p2)(p1 · ϵ4),

S̃2 = 2
s2u(p1)γ5

(︃
/p3(p1 · ϵ∗3) − sx

2 /ϵ
∗
3

)︃
v(p2)(p2 · ϵ4),

S̃3 = 2
s2u(p1)γ5

(︃
/p3(p2 · ϵ∗3) − sz

2 /ϵ
∗
3

)︃
v(p2)(p1 · ϵ4),

S̃4 = 2
s2u(p1)γ5

(︃
/p3(p2 · ϵ∗3) − sz

2 /ϵ
∗
3

)︃
v(p2)(p2 · ϵ4),

S̃5 = 1
s
u(p1)γ5

(︂
/p3(ϵ∗3 · ϵ4) − /ϵ∗

3(p3 · ϵ4)
)︂
v(p2),

S̃6 = mt

s2 u(p1)γ5/ϵ∗
3/p3v(p2)(p1 · ϵ4),

S̃7 = mt

s2 u(p1)γ5/ϵ∗
3/p3v(p2)(p2 · ϵ4),

S̃8 = 2mt

s2 u(p1)γ5
(︃
/ϵ4/p3(p1 · ϵ∗3) − sx

2 /ϵ4/ϵ
∗
3

)︃
v(p2),

S̃9 = 2mt

s2 u(p1)γ5
(︃
/ϵ4/p3(p2 · ϵ∗3) − sz

2 /ϵ4/ϵ
∗
3

)︃
v(p2),

S̃10 = 1
s
u(p1)γ5/ϵ4/ϵ

∗
3/p3v(p2),

S̃11 = 1
s
u(p1)γ5 (︁/ϵ4(p1 · ϵ∗3)z − /ϵ4(p2 · ϵ∗3)x

)︁
v(p2),

S̃12 = mt

s2 u(p1)γ5v(p2) ((p1 · ϵ∗3)z − (p2 · ϵ∗3)x) (p1 · ϵ4),

S̃13 = mt

s2 u(p1)γ5/ϵ∗
3/p3v(p2)(p3 · ϵ4),

S̃14 = 1
s2u(p1)γ5

(︃
/p3(p2 · ϵ∗3) − sz

2 /ϵ
∗
3

)︃
v(p2)(p3 · ϵ4),

S̃15 = 1
s2u(p1)γ5

(︃
/p3(p1 · ϵ∗3) − sx

2 /ϵ
∗
3

)︃
v(p2)(p3 · ϵ4),

S̃16 = mt

s2 u(p1)γ5v(p2)
(︃

(p1 · ϵ∗3)(p3 · ϵ4) − sx

2 (ϵ∗3 · ϵ4)
)︃
,

S̃17 = mt

s2 u(p1)γ5v(p2)
(︃

(p2 · ϵ∗3)(p3 · ϵ4) − sz

2 (ϵ∗3 · ϵ4)
)︃
,

S̃18 = mt

s2 u(p1)γ5v(p2) ((p1 · ϵ∗3)z − (p2 · ϵ∗3)x) (p2 · ϵ4). (A.45)

A.5. Restoring the renormalization scale dependence of the finite
remainder

The renormalization scale dependence of the finite remainder

|Mfin(αs, {xi}, µ)⟩ = Z−1 |Mren(αs, {xi}, µ)⟩ , (A.46)
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can be determined as described in ref. [274] by calculating the derivative

µ2 d
dµ2

[︃
ZUV

Z Zgsgs

(︃
|M(0)

0 ({x0
i })⟩ +

(︃
N ϵZαsαs(µ)

4π

)︃
|M(1)

0 ({x0
i })⟩

+
(︃
N ϵZαsαs(µ)

4π

)︃2
|M(2)

0 ({x0
i })⟩ + O

(︂
α3

s

)︂)︄]︄
(A.47)

=µ2 d
dµ2

[︄
gs

(︄
|M(0)

fin ({xi}, µ)⟩ +
(︃
αs

4π

)︃
|M(1)

fin ({xi}, µ)⟩ +
(︃
αs

4π

)︃2
|M(2)

fin ({xi}, µ)⟩
)︄

+ O
(︂
α3

s

)︂]︄

using

µ2 dαs

dµ2 = −αs

(︃
ϵ+ β0 + αs

4πβ1

)︃
+ O

(︂
α3

s

)︂
, µ2 dZαs

dµ2 = Zαs

(︃
β0 + αs

4πβ1

)︃
+ O

(︂
α3

s

)︂
,

µ2 d
dµ2

1
Z = 1

2
Γ
Z , (A.48)

and the factor N ϵ =
(︂

µ2eγE

4π

)︂ϵ
. The derivative of the factor ZUV, which absorbs the remaining

UV renormalization, vanishes due to the choice of the on-shell renormalization scheme for the
wave functions and top-quark mass. The anomalous-dimension matrix is decomposed as

Γ = αs

4π

(︄
K1 +D1 ln

(︄
µ2

µ2
0

)︄)︄
+
(︃
αs

4π

)︃2
(︄
K2 +D2 ln

(︄
µ2

µ2
0

)︄)︄
+ O

(︂
α3

s

)︂
. (A.49)

Expanding in αs yields differential equations, which are at order ϵ0

µ2 d
dµ2 |M(0)

fin ({xi}, µ)⟩ = 0,

µ2 d
dµ2 |M(1)

fin ({xi}, µ)⟩ = 1
2

(︄
K1 +D1 ln

(︄
µ2

µ2
0

)︄)︄
|M(0)

fin ({xi}, µ)⟩ ,

µ2 d
dµ2 |M(2)

fin ({xi}, µ)⟩ = 1
2

(︄
K2 |M(0)

fin ({xi}, µ)⟩ + (2β0 +K1) |M(1)
fin ({xi}, µ)⟩

+
(︂
D2 |M(0)

fin ({xi}, µ)⟩ +D1 |M(1)
fin ({xi}, µ)⟩

)︂
ln
(︄
µ2

µ2
0

)︄)︄
. (A.50)

Hence, the renormalization scale dependence of the leading-order term is

|M(0)
fin ({xi}, µ)⟩ = |M(0)

fin ({xi}, µ0)⟩ . (A.51)

The renormalization scale dependence of the finite remainder of the one-loop amplitude is given
by

|M(1)
fin ({xi}, µ)⟩ = |M(1)

fin ({xi}, µ0)⟩

+ 1
4 ln

(︄
µ2

µ2
0

)︄(︄
2(β0 +K1) +D1 ln

(︄
µ2

µ2
0

)︄)︄
|M(0)

fin ({xi}, µ0)⟩ . (A.52)

108



A.5. Restoring the renormalization scale dependence of the finite remainder

The corresponding leading-colour term is

|M(1),LC
fin ({xi}, µ)⟩ = |M(1),LC

fin ({xi}, µ0)⟩ −Nc

(︄
ln
(︄
µ2

µ2
0

)︄(︃
ln
(︃

−m

x

)︃
+ ln

(︃
−m

z

)︃
+ 1

)︃

− 1
2 ln2

(︄
µ2

µ2
0

)︄)︄
|M(0)

fin ({xi}, µ0)⟩ . (A.53)

The renormalization scale dependence of the finite remainder of the two-loop amplitude is given
by

|M(2)
fin ({xi}, µ)⟩ = |M(2)

fin ({xi}, µ0)⟩ + 1
4 ln

(︄
µ2

µ2
0

)︄(︄
6β0 + 2K1 +D1 ln

(︄
µ2

µ2
0

)︄)︄
|M(1)

fin ({xi}, µ0)⟩

+
(︄

1
2(β1 +K2) ln

(︄
µ2

µ2
0

)︄
+ 1

8((β0 +K1)(3β0 +K1) + 2D2) ln2
(︄
µ2

µ2
0

)︄

+ 1
24D1(5β0 + 3K1) ln3

(︄
µ2

µ2
0

)︄
+ 1

32D
2
1 ln4

(︄
µ2

µ2
0

)︄)︄
|M(0)

fin ({xi}, µ0)⟩ .

(A.54)

The corresponding leading-colour term is then

|M(2),LC
fin ({xi}, µ)⟩ = |M(2),LC

fin ({xi}, µ0)⟩

−Nc

(︄
ln
(︄
µ2

µ2
0

)︄(︃
ln
(︃

−m

x

)︃
+ ln

(︃
−m

z

)︃
− 8

3

)︃
+ 1

2 ln2
(︄
µ2

µ2
0

)︄)︄
|M(1),LC

fin ({xi}, µ0)⟩

+N2
c

(︄
ln
(︄
µ2

µ2
0

)︄(︄
3π2 − 67

9

(︃
ln
(︃

−m

x

)︃
+ ln

(︃
−m

z

)︃)︃
− ζ3 + 69π2 − 1972
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)︄

+ 1
72 ln2

(︄
µ2

µ2
0

)︄(︄(︃
6 ln

(︃
−m

x

)︃
+ 6 ln

(︃
−m

z

)︃
+ 17

)︃2
+ 12π2 − 268

)︄

+ 1
12 ln3

(︄
µ2

µ2
0

)︄(︃
6 ln

(︃
−m

x

)︃
+ 6 ln

(︃
−m

z

)︃
+ 17

)︃

+1
8 ln4

(︄
µ2

µ2
0

)︄)︄
|M(0)

fin ({xi}, µ0)⟩ . (A.55)
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B. Master integral calculation

B.1. Leading-colour two-loop master integrals

Table B.1.: Leading-colour two-loop master integrals. All integrals are (6 − 2ϵ)-dimensional.

double-box integral family

I4,0,4,0,0,0,0 I3,0,4,1,0,0,0 I3,2,0,0,2,0,0 I4,2,0,0,2,0,0 I3,0,3,0,1,0,0 I3,0,3,0,2,0,0
I3,2,1,0,1,0,0 I3,1,2,0,1,0,0 I0,2,0,3,2,0,0 I2,2,0,1,2,0,0 I1,2,0,2,2,0,0 I2,2,1,1,1,0,0
I2,1,2,1,1,0,0 I1,2,1,2,1,0,0 I0,0,4,3,0,1,0 I2,0,4,1,0,1,0 I0,0,3,0,2,2,0 I0,0,4,0,2,2,0
I2,0,3,0,1,1,0 I2,0,2,0,2,1,0 I2,2,1,0,1,1,0 I2,1,2,0,1,1,0 I2,1,1,0,2,1,0 I1,2,1,0,2,1,0
I0,2,0,2,2,1,0 I1,2,0,1,2,1,0 I2,2,0,1,2,1,0 I0,2,1,2,1,1,0 I0,2,1,1,2,1,0 I1,2,1,1,1,1,0
I1,1,2,1,1,1,0 I2,2,1,1,1,1,0 I3,0,3,1,0,0,1 I3,0,2,0,1,0,1 I3,0,1,0,2,0,1 I3,0,1,0,1,0,2
I3,1,1,0,1,0,1 I2,1,1,0,2,0,1 I2,0,0,1,2,0,2 I1,0,0,2,2,0,2 I2,1,0,1,2,0,1 I3,1,0,1,2,0,1
I2,0,2,1,1,0,1 I2,0,1,1,2,0,1 I2,0,1,1,1,0,2 I1,0,2,2,1,0,1 I2,1,1,1,1,0,1 I1,1,1,2,1,0,1
I1,1,1,1,2,0,1 I0,0,3,3,0,1,1 I2,0,3,1,0,1,1 I1,1,1,1,1,1,1 I1,1,1,1,1,2,1 I1,1,1,1,2,1,1

‘crossed’ double-box integral family

Ic
2,2,1,1,1,0,0 Ic

2,1,2,1,1,0,0 Ic
1,2,1,2,1,0,0 Ic

0,0,4,3,0,1,0 Ic
2,0,4,1,0,1,0 Ic

0,2,0,2,2,1,0
Ic

1,2,0,1,2,1,0 Ic
2,2,0,1,2,1,0 Ic

0,2,1,2,1,1,0 Ic
0,2,1,1,2,1,0 Ic

1,2,1,1,1,1,0 Ic
1,1,2,1,1,1,0

Ic
2,2,1,1,1,1,0 Ic

3,0,3,1,0,0,1 Ic
3,0,2,0,1,0,1 Ic

3,0,1,0,2,0,1 Ic
3,0,1,0,1,0,2 Ic

3,1,1,0,1,0,1
Ic

2,1,1,0,2,0,1 Ic
2,0,2,1,1,0,1 Ic

2,0,1,1,2,0,1 Ic
2,0,1,1,1,0,2 Ic

1,0,2,2,1,0,1 Ic
2,1,1,1,1,0,1

Ic
1,1,1,2,1,0,1 Ic

1,1,1,1,2,0,1 Ic
0,0,3,3,0,1,1 Ic

2,0,3,1,0,1,1 Ic
1,1,1,1,1,1,1 Ic

1,1,1,1,1,2,1
Ic

1,1,1,1,2,1,1

auxiliary family 1

Ia1
1,4,1,1,0,0,1,0,0 Ia1

0,3,2,1,0,1,1,0,0 Ia1
1,3,1,1,0,1,1,0,0

auxiliary family 2

Ia2
0,3,3,1,0,1,0,0,0 Ia2

0,3,2,1,0,1,0,1,0
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B. Master integral calculation

B.2. Asymptotic expansions

Table B.2.: Summary of properties of the leading-colour two-loop master integrals of the
double-box integral family and the two auxiliary integral families. The summary
includes the sector, t, r, the minimal ϵ order emin, and the maximal calculated ϵ
order emax. Also stated is the maximal calculated order in m of the asymptotic
expansion imax

m and the number of significant digits of the asymptotic expansion
evaluated at m = 0.01 and m = 0.001. The full asymptotic expansions of the
integrals I4,0,4,0,0,0,0 and I0,2,0,3,2,0,0 only involve their leading-order terms in m.

sector integral t r emin emax imax
m digits@m = 0.01 digits@m = 0.001

5 I4,0,4,0,0,0,0 2 8 −4 0 −2 - -
13 I3,0,4,1,0,0,0 3 8 −2 0 16 24 41
19 I3,2,0,0,2,0,0 3 7 −4 0 16 9 25

I4,2,0,0,2,0,0 3 8 −4 0 16 10 26
21 I3,0,3,0,1,0,0 3 7 −2 0 13 20 34

I3,0,3,0,2,0,0 3 8 −2 0 13 18 32
23 I3,2,1,0,1,0,0 4 7 −2 0 13 8 22

I3,1,2,0,1,0,0 4 7 −2 0 13 10 23
26 I0,2,0,3,2,0,0 3 7 −4 0 −1 - -
27 I2,2,0,1,2,0,0 4 7 −2 1 16 11 26

I1,2,0,2,2,0,0 4 7 −2 1 16 13 29
31 I2,2,1,1,1,0,0 5 7 0 1 14 11 25

I2,1,2,1,1,0,0 5 7 0 1 14 13 27
I1,2,1,2,1,0,0 5 7 0 1 14 13 27

44 I0,0,4,3,0,1,0 3 8 −2 1 16 20 37
45 I2,0,4,1,0,1,0 4 8 −2 0 16 24 41
52 I0,0,3,0,2,2,0 3 7 −4 0 16 19 35

I0,0,4,0,2,2,0 3 8 −4 0 16 20 37
53 I2,0,3,0,1,1,0 4 7 −2 0 13 18 31

I2,0,2,0,2,1,0 4 7 −2 0 13 17 30
55 I2,2,1,0,1,1,0 5 7 −2 0 13 10 23

I2,1,2,0,1,1,0 5 7 −2 0 13 11 25
I2,1,1,0,2,1,0 5 7 −2 0 13 10 23
I1,2,1,0,2,1,0 5 7 −2 0 13 10 22

58 I0,2,0,2,2,1,0 4 7 −1 2 16 20 36
59 I1,2,0,1,2,1,0 5 7 −1 1 16 12 28

I2,2,0,1,2,1,0 5 8 −1 1 16 12 28
62 I0,2,1,2,1,1,0 5 7 0 1 16 20 36

I0,2,1,1,2,1,0 5 7 0 1 16 21 37
63 I1,2,1,1,1,1,0 6 7 0 0 15 13 28

I1,1,2,1,1,1,0 6 7 0 0 15 15 30
I2,2,1,1,1,1,0 6 8 0 0 15 13 28

77 I3,0,3,1,0,0,1 4 8 −1 0 16 19 35
85 I3,0,2,0,1,0,1 4 7 −2 0 13 16 29

I3,0,1,0,2,0,1 4 7 −2 0 13 18 31
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B.2. Asymptotic expansions

sector integral t r emin emax imax
m digits@m = 0.01 digits@m = 0.001

I3,0,1,0,1,0,2 4 7 −2 0 13 16 29
87 I3,1,1,0,1,0,1 5 7 −2 0 14 10 24

I2,1,1,0,2,0,1 5 7 −2 0 14 10 24
89 I2,0,0,1,2,0,2 4 7 −2 1 16 22 38

I1,0,0,2,2,0,2 4 7 −2 1 16 20 36
91 I2,1,0,1,2,0,1 5 7 0 1 16 12 28

I3,1,0,1,2,0,1 5 8 −1 1 16 12 28
93 I2,0,2,1,1,0,1 5 7 −1 0 14 17 31

I2,0,1,1,2,0,1 5 7 −1 0 13 17 30
I2,0,1,1,1,0,2 5 7 −1 0 14 17 31
I1,0,2,2,1,0,1 5 7 −1 0 13 15 28

95 I2,1,1,1,1,0,1 6 7 0 1 14 12 26
I1,1,1,2,1,0,1 6 7 0 1 14 14 28
I1,1,1,1,2,0,1 6 7 0 1 14 12 26

108 I0,0,3,3,0,1,1 4 8 −1 1 16 17 33
109 I2,0,3,1,0,1,1 5 8 −1 0 16 19 35
127 I1,1,1,1,1,1,1 7 7 0 0 14 13 27

I1,1,1,1,1,2,1 7 8 0 0 14 15 29
I1,1,1,1,2,1,1 7 8 0 0 13 12 25

79 Ia1
1,4,1,1,0,0,1,0,0 5 8 0 1 16 13 30

110 Ia1
0,3,2,1,0,1,1,0,0 5 8 0 1 16 11 27

111 Ia1
1,3,1,1,0,1,1,0,0 6 8 0 1 16 12 28

46 Ia2
0,3,3,1,0,1,0,0,0 4 8 0 1 16 22 38

174 Ia2
0,3,2,1,0,1,0,1,0 5 8 0 1 13 20 36

Table B.3.: Numerical results for the master integrals of the double-box integral family and
the two auxiliary integral families at the point x = 0.2, z = 0.05, m = 0.001, and
s = 1.

integral value

I4,0,4,0,0,0,0 ( 27777.77777777777777777777777777777777778(1)
+0(0)i)ϵ−4

+( 351696.6452267002328581923485539272328756(1)
+0(0)i)ϵ−3

+( 2.272122157714884348237105803849215(1) · 106

+0(0)i)ϵ−2

+( 9.952591100561197732574897558108397(1) · 106

+0(0)i)ϵ−1

+( 3.31750342600857902728080645942450(1) · 107

+0(0)i)

I3,0,4,1,0,0,0 (−492.1471782713692940781803112636291844483(1)
+261.799913500203550768041658531649660062(1)i)ϵ−2

+(−5201.345414609268131324271628793283547649(1)
+1768.54427626386563337424526180223637733(1)i)ϵ−1

+(−27583.82330370033055663062422142746590421(1)
+5935.07940024600017096632473594413526322(1)i)
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B. Master integral calculation

integral value

I3,2,0,0,2,0,0 ( 27.7972222743958675376658091879(2)
−30.1960078199710999467766568943(2)i)ϵ−4

+( 391.724801150063559908514472143(2)
−149.3136071599598927645105252984(4)i)ϵ−3

+( 2207.27156208018374808983962562(1)
+115.409671544639681935198797983(4)i)ϵ−2

+( 7223.61292174935114717335114534(2)
+3444.11087265373144611732713463(3)i)ϵ−1

+( 15138.443170916059414781802477167(8)
+16226.62890556738677379216738494(7)i)

I4,2,0,0,2,0,0 (−3518.648148495972450251105394586(1)
+201.306718799807332978511045962(1)i)ϵ−4

+(−38141.42941608860602881348699977(1)
−9875.1387674565300290761929799467(6)i)ϵ−3

+(−192024.38943595392190011116347499(2)
−116336.97455672136058813504166616(3)i)ϵ−2

+(−593184.25931962260632465778776322(7)
−634796.91030089586664017773559163(9)i)ϵ−1

+(−1.2144593839823254798466369(4) · 106

−2.26226437225227021523850681(3) · 106i)

I3,0,3,0,1,0,0 ( 6.49007914201374243337005954471802798074(1)
−9.258183656225205164855057696558411357258(2)i)ϵ−2

+( 71.06533930083802312240961747079802830572(3)
−41.5899135814734797976571896166944777261(1)i)ϵ−1

+( 301.1816591616686384565861677391444437963(2)
−89.6492865222768617996461385960395376938(2)i)

I3,0,3,0,2,0,0 ( 5.9951498363364590071670206765167894653(5)
−9.2735829273283564241871830647898148387(3)i)ϵ−2

+( 76.176417954298629434538333168097805554(7)
−48.0253516413715291746523753731454463910(3)i)ϵ−1

+( 352.04003593334545904655522214942045628(4)
−83.24566206205916235859744291500788337(4)i)

I3,2,1,0,1,0,0 ( 29.5219971895806602682712462(8)
−45.830196778215286662429499(1)i)ϵ−2

+( 462.55627057479565432167934(1)
−417.90579266918457289585515(1)i)ϵ−1

+( 3288.9634377035298147852450(1)
−2107.54314621320608764875591(8)i)

I3,1,2,0,1,0,0 ( 11.462353218207000113278917295(2)
−16.648024055118956718751610820(3)i)ϵ−2

+( 143.84637009398424379318757688(4)
−101.49639245146199503707522342(3)i)ϵ−1

+( 756.8706658583507580014534856(3)
−324.8286189864459118518012894(2)i)

I0,2,0,3,2,0,0 (−500.0000000000000000000000000000000000000(1)
+0(0)i)ϵ−4

+(−8830.539614080604191447462273970690191761(1)
+0(0)i)ϵ−3

+(−85340.76504296739209845004617243136374998(1)
+0(0)i)ϵ−2

+(−599328.7360440269123202060290322796568177(1)
+0(0)i)ϵ−1

+(−3.446360763044423438123383039152207(1) · 106

+0(0)i)

I2,2,0,1,2,0,0 ( 3.237044189271630763449367731739(1)
−0.0642256754524799225317006383959(8)i)ϵ−2

+( 21.18811210387487437363446925855(1)
+19.567238956341826601387044186582(2)i)ϵ−1

+( 31.76087152110813364447353552532(5)
+127.10325911898495931038096717446(2)i)

+(−94.4748441549143946616759695(3)
+431.7716920912757767225225991(3)i)ϵ1
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B.2. Asymptotic expansions

integral value

I1,2,0,2,2,0,0 ( 6.053817430682806044247615400349841(3)
−2.787782733285729473634650915525825(2)i)ϵ−2

+( 71.26876462255855805321797679343159(3)
−8.886053420148723179601512359704559(5)i)ϵ−1

+( 452.3639054846672762612228684550924(1)
−13.85623253439926363847171482730160(5)i)

+( 2274.5492267433631373850538466401(8)
−9.287650079726786811800643037(1)i)ϵ1

I2,2,1,1,1,0,0 ( 7.653714368360222526781830501445(2)
−2.893609618780655620355003305268(2)i)

+( 73.939601423164616566328684(5)
+12.825003129665806188991275(4)i)ϵ1

I2,1,2,1,1,0,0 ( 4.264629814805857405150999032846475(5)
−2.017160256679987470589447964369463(6)i)

+( 33.17975519101001802629042193(2)
+8.07586512331554321976777377(1)i)ϵ1

I1,2,1,2,1,0,0 ( 11.543566907798982758958158957031838(5)
−9.820373209388924816976509004988606(6)i)

+( 144.21172124550668234062350975(2)
−62.47107819862774607013925186(1)i)ϵ1

I0,0,4,3,0,1,0 (−1771.126690984561717718709533108464717572(1)
+1296.00449394395899378012234980961811349(1)i)ϵ−2

+(−20717.89512089967975519982104063915736754(1)
+10844.6408306458577135101196652423956448(1)i)ϵ−1

+(−119739.3349314498339740540444185220180661(1)
+45184.7832169057850097341314049930093661(1)i)

+(−461738.517132741034558500314858975507720(4)
+123853.496421736915587945725861120693392(1)i)ϵ1

I2,0,4,1,0,1,0 (−848.7800071960334765340241806762636530859(1)
+391.391529696807297793625473782724283231(1)i)ϵ−2

+(−9737.831026511969515755374274936075571072(1)
+2822.76185918563552228425668949540802028(1)i)ϵ−1

+(−56873.59255831332601997575413490033667703(1)
+10145.3091912606671512935889476428709303(1)i)

I0,0,3,0,2,2,0 ( 10.62676014590737030631225719865078830543(1)
−7.77602696366375396268073409885770868097(1)i)ϵ−4

+( 111.1329185684439095853391014667207015161(1)
−5.9962084662154749967518299746134943053(1)i)ϵ−3

+( 436.3107141642636915283241152281182327017(1)
+201.474014221889365893592344646848985435(1)i)ϵ−2

+( 930.471018499460760315616518424563045529(1)
+1099.290747550425580182851691591005385881(1)i)ϵ−1

+( 983.724859630280758218436196051119176161(1)
+3161.295585052746126105345598344088483816(1)i)

I0,0,4,0,2,2,0 (−851.0446002431789505105204286644179805091(1)
+12.960044939439589937801223498096181135(1)i)ϵ−4

+(−7956.355771473240930908501511521083464948(1)
−2633.85548686865055565019654365393179435(1)i)ϵ−3

+(−34388.65126393856838055410408040912216949(1)
−24932.6024014035056967159360044481788570(1)i)ϵ−2

+(−90103.3083062731127776853650225572653876(1)
−116898.4962958999962353056054231206151182(1)i)ϵ−1

+(−149081.345428498420922595244977860002721(1)
−365828.0166691566404461517736296109952652(1)i)

I2,0,3,0,1,1,0 ( 10.402252539494370457318743704950989829(8)
−14.345229797245715625498652239939852715(8)i)ϵ−2

+( 125.1273081193061484281585437574391255(1)
−80.35902925039748859362470228514207405(7)i)ϵ−1

+( 625.1188543878396380380496132087098749(8)
−230.0669048824000616683729095797092182(3)i)
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integral value

I2,0,2,0,2,1,0 ( 5.12649165149262354153270015453577104(2)
−2.39786879828713692490396035700446035(2)i)ϵ−2

+( 43.1384382909484253787782201805652478(2)
+9.1341172236538057274008858311651787(1)i)ϵ−1

+( 135.718994336864940526291080488278390(2)
+108.6649426667132432945486271698197560(5)i)

I2,2,1,0,1,1,0 ( 57.6734388505725719455230823(1)
−77.1896655394704099189526669(1)i)ϵ−2

+( 973.971142941339456802493352(2)
−798.500698487214456333540921(1)i)ϵ−1

+( 7786.74308408804792237470238(2)
−4503.53630475190424554467555(1)i)

I2,1,2,0,1,1,0 ( 19.4062122064900530561990259341(3)
−26.2140392043579812629983115801(4)i)ϵ−2

+( 264.300162580220667577703060437(5)
−188.359258060110421268894876817(4)i)ϵ−1

+( 1590.44313249687489294233477328(4)
−714.10255783372903943787323640(2)i)

I2,1,1,0,2,1,0 ( 13.162534599117637003632795289(8)
−7.873123399619770344968884083(6)i)ϵ−2

+( 149.0655250969421242880608796(1)
−6.50921223327200026918254598(2)i)ϵ−1

+( 724.9459418143662970772723239(4)
+255.3771913443671642515902549(2)i)

I1,2,1,0,2,1,0 ( 48.2590164403780686449685451(1)
−18.6333983817561933462295789(1)i)ϵ−2

+( 719.187093654641546056020141(2)
−5.847914378317309199852258(2)i)ϵ−1

+( 5314.48966732850763701536112(2)
+1384.12333941950822759585419(1)i)

I0,2,0,2,2,1,0 ( 26.35978789327381431568763696928808449392(1)
−15.6298141969641454649882755387039944487(1)i)ϵ−1

+( 391.6624233232694123430221833662171114550(1)
−110.571863556868624565654732648083607456(1)i)

+( 3041.0904076263704880629487556512624166(1)
−415.579628953133529413147038419460340662(4)i)ϵ1

+( 17752.9342343181057430646055510799119212(3)
−1114.8919193137183166127109438063008483(1)i)ϵ2

I1,2,0,1,2,1,0 ( 7.68703603980620427081183077546397(5)
−0.06035627207628029354034089427181(4)i)ϵ−1

+( 70.0128064225360568378100525015565(7)
+47.3958979498079244861299799725087(1)i)

+( 250.340727450474131778908547051(8)
+431.608218030737487778856296084(3)i)ϵ1

I2,2,0,1,2,1,0 ( 211.176680230009271873109150590297(1)
−125.6320560422318000007809172816634(9)i)ϵ−1

+( 3481.65670949815433210492059762191(1)
−581.8378570274732124059852526844247(4)i)

+( 26618.03978805584175676539564497(6)
+3989.59700633486387676042343947(8)i)ϵ1

I0,2,1,2,1,1,0 ( 35.5123537865915438035939939368450271926(1)
−41.40640145790152669538293805301505606439(1)i)

+( 536.2866497588244933017599219627679228(2)
−373.39546128377042868166630197294524969(7)i)ϵ1

I0,2,1,1,2,1,0 ( 77.1931247647508488971887683668851742772(1)
−77.29633677481677507872642339165608017738(1)i)

+( 1417.26749613802551022809655401224437678(2)
−877.63904945360346748843624039013773012(1)i)ϵ1

I1,2,1,1,1,1,0 ( 14.3469946386848490584503197504650(1)
−5.9110561447297520043240139521545(1)i)

I1,1,2,1,1,1,0 ( 7.5661883763641641147905139525466162(3)
−4.0414148256198952334058354219457418(3)i)
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B.2. Asymptotic expansions

integral value

I2,2,1,1,1,1,0 ( 123.448368780499985905570157543746(2)
−145.894064022690534123097806910204(2)i)

I3,0,3,1,0,0,1 ( 19.1650010010752141880583898052118191905(1)
−39.65420769189096007125888448488170232143(1)i)ϵ−1

+( 271.3342103025257208719998705577617396042(1)
−240.772814068792435228767384008977327359(1)i)

I3,0,2,0,1,0,1 ( 5.6353434048468061993364604421164674(5)
−3.2254746747864649288415059417860592(6)i)ϵ−2

+( 45.285938657087681584574763690989328(4)
+7.731756063648849975009525988876820(1)i)ϵ−1

+( 125.51478782993090482519962255328947(1)
+100.8041720066283889328114925092024823(1)i)

I3,0,1,0,2,0,1 ( 6.197654728933413109156869152717302380(5)
−7.207269902172504244857669489444425615(6)i)ϵ−2

+( 70.84089619330629807688687599901961715(4)
−34.71365938080273424523357918825985499(1)i)ϵ−1

+( 344.7132861320938507016105769402412003(1)
−81.645622160988167323016851586366393777(5)i)

I3,0,1,0,1,0,2 ( 9.9178352106575937062768860835368286(4)
−11.6254187347803946922837185016602550(5)i)ϵ−2

+( 116.557096310307450011121548465599770(4)
−61.115963188642961813934299035043565(1)i)ϵ−1

+( 593.80198520407661933204663155027056(1)
−163.3243899369700810400245062875216427(3)i)

I3,1,1,0,1,0,1 ( 14.2682668588555252375964224621(5)
−11.5057579723304825251846486315(2)i)ϵ−2

+( 161.891316481480402152191164640(5)
−30.543791632101886500905586718(3)i)ϵ−1

+( 768.22815142127768834244428771(1)
+147.49153341719194492069938172(4)i)

I2,1,1,0,2,0,1 ( 7.875199237842743709382167813(1)
−0.5408893457125379975500203582(5)i)ϵ−2

+( 64.13777468906711059557734189(1)
+41.992004404581737404090895674(5)i)ϵ−1

+( 179.46712885091786979076841611(3)
+339.45937733104817059878528661(8)i)

I2,0,0,1,2,0,2 ( 5.092680043176200859204145084057581918516(1)
−2.34834917818084378676175284269634569939(1)i)ϵ−2

+( 56.32229647415513733751038536329259595919(1)
−5.96300003706608703397694847471146348576(1)i)ϵ−1

+( 332.6920332300623757000369276504465775143(1)
−5.5377313835037484480909187243077963993(1)i)

+( 1573.524521694381974200100881674959238213(1)
+3.372511034931439270303914450069641229(1)i)ϵ1

I1,0,0,2,2,0,2 ( 2.042800388456276164266038611986847480737(1)
−0.017590264991183329273020431739395270631(1)i)ϵ−2

+( 9.96880923572943088480602991800408033439(1)
+12.63913772468013760643302663486701239647(1)i)ϵ−1

+(−2.5791177598825203281095071710746280062(1)
+61.13138897649507357545520723718983833691(1)i)

+(−92.58392625111734846245585886597823220(1)
+143.94428231186044270079388967871192445(5)i)ϵ1

I2,1,0,1,2,0,1 ( 3.70803854994086519555654855998437(6)
−0.23844949107277436245487895342875(5)i)

+( 27.985277946643772720137497526(2)
+19.9941340602904860140697687938(3)i)ϵ1

I3,1,0,1,2,0,1 ( 43.8171936197303967437025546346140(5)
−111.5127641508116461668950250335634(4)i)ϵ−1

+( 927.509880612332186197023162009544(5)
−1152.6456520510807760786206852334734(3)i)

+( 7681.61675845847637346103143138(3)
−5743.20005369445283724949272225(4)i)ϵ1
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B. Master integral calculation

integral value

I2,0,2,1,1,0,1 ( 1.6170594195943819446812334495741223833(7)
−0.0221542772000165343848990431432593307(4)i)ϵ−1

+( 4.537924390020428807192468358690171794(2)
+9.96071993450880656056354378083004431(1)i)

I2,0,1,1,2,0,1 ( 1.25643183302747245263936253309624607(2)
−0.01657494384268934827939940373222405(2)i)ϵ−1

+( 4.5349170368901024562166202380730864(2)
+7.69786551137275614286741181477507234(7)i)

I2,0,1,1,1,0,2 ( 2.0429859690732942657839736885781459073(6)
−0.0268782019487011136089479295090443320(4)i)ϵ−1

+( 7.575046804965183098452601316843626470(2)
+12.50674932104938898797721308545330973(1)i)

I1,0,2,2,1,0,1 ( 2.164382378474676524964343541775953(1)
−0.103118010854412934537297789332147(2)i)ϵ−1

+( 8.81377386476325033579282798371617(2)
+12.430404725829744331685997892826827(7)i)

I2,1,1,1,1,0,1 ( 2.78217539093380451477585927413662(5)
−0.03339642699071255185162873958418(2)i)

+( 12.3587027512868085075987822(1)
+17.10906450151247642837528497(6)i)ϵ1

I1,1,1,2,1,0,1 ( 3.3493903737394035013485179932750195(2)
−0.12011147805770139355767260601692690(6)i)

+( 17.6102955683643041175505474658(4)
+19.5090544213655352113395654131(2)i)ϵ1

I1,1,1,1,2,0,1 ( 4.21917795363762170931992773799539(6)
−0.05987204805510559886802449906268(2)i)

+( 26.5554926740215583714166509(1)
+25.66213027164904137002608397(5)i)ϵ1

I0,0,3,3,0,1,1 ( 52.4614358590194934509268567703238115679(5)
−165.267946861926159519226788383233115907(1)i)ϵ−1

+( 965.812196176029490959530560379790149323(6)
−1223.685127700746419315565022072768624529(4)i)

+( 5752.1139566977682547660890676209809(7)
−4100.4982067318332858597702254572829(2)i)ϵ1

I2,0,3,1,0,1,1 ( 35.8578627890508185051064810479742347426(1)
−64.55616078841694526916325764443322438043(1)i)ϵ−1

+( 515.4467380808836486419399629782398523420(1)
−440.246860216652022986859715388427384203(1)i)

I1,1,1,1,1,1,1 ( 4.4010558557694406850689904297647(2)
−0.03361590896548148544159251786030(6)i)

I1,1,1,1,1,2,1 ( 167.8810238246235255376142819235725(2)
−74.4325041023953689599557085240962(1)i)

I1,1,1,1,2,1,1 ( 49.0745359649025571838433570199(3)
−1.1477549244480465116662588097(1)i)

Ia1
1,4,1,1,0,0,1,0,0 (−1281.1726733010340451353051292440(5)

+10.0593786793800489233901490453(4)i)
+(−13574.752262793192541368064058476(5)

−3873.055756423793274530907243784(3)i) ϵ1

Ia1
0,3,2,1,0,1,1,0,0 ( 9.457727324470883771803545223(4)

−5.27439824216496124734458002(1)i)
+( 84.57102951127698665263138182(6)

+10.30204662606587106979410418(5)i) ϵ1

Ia1
1,3,1,1,0,1,1,0,0 ( 22.6041109767130782637870655531(3)

−12.2530172357251915386069330221(6)i)
+( 230.075382169749333110876740616(4)

+12.364439324225702449322922427(3)i) ϵ1

Ia2
0,3,3,1,0,1,0,0,0 ( 6.25210741338324794026437693336204008512(1)

− 9.276774386458589110969224479081621018618(9)i)
+( 71.8128092898418535442607814317351630221(1)

− 43.2569260597965242322816569368409481615(1)i)ϵ1
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B.2. Asymptotic expansions

integral value

Ia2
0,3,2,1,0,1,0,1,0 ( 6.004519902583655613671638490013729901(2)

− 3.260771785658951040603924712299624944(2)i)
+( 49.19720796965677703133042185192592690(2)

+ 9.655647278279117240325316167548194315(8)i)ϵ1

Table B.4.: Numerical results for the one-loop master integrals at the point x = 0.2, z = 0.05,
m = 0.001, and s = 1.

integral value

Ibox A
0,0,3,1 ( 166.6666666666666666666666666666666666667(1)

+0(0)i)
+( 1055.089935680100698574577045661781698627(1)

+0(0)i)ϵ1

+( 3476.722156024335957208676004384072917279(1)
+0(0)i)ϵ2

+( 7848.245965819807294296740986038633476891(1)
+0(0)i)ϵ3

+( 13578.67994201526805798579809859454732982(1)
+0(0)i)ϵ4

Ibox A
0,4,0,0 (−2.952883069628215764469081867581775106690(1)

+ 1.57079948100122130460824995118989796037(1)i)
+(−12.51472923962625388656853055625030137609(1)

+ 0.66725731732770892694998768260150377979(1)i)ϵ1

+(−24.67982665730172692227922790859279729865(3)
− 1.3810226282630571831336857644604519546(1)i)ϵ2

Ibox A
0,3,1,0 (−3.7449498968840214509395616004594391735(1)

+ 2.09440258904684722800132037263438769830(6)i)
+(−16.5774161298052018556917661808597881954(9)

+ 1.4936027170170913691965430065265098833(3)i)ϵ1

+(−33.694302875213514561439101184025604018(4)
− 1.4991607796935573052686699897589671894(3)i)ϵ2

+(−54.46499089440128891909309241945987053(1)
− 2.3153666714282623923009710695527914591(4)i)ϵ3

Ibox A
0,2,1,1 (−3.44613919867358113092427736023662384199(3)

+ 1.89411316426940997297503812213521648555(2)i)
+(−15.0299204776744540256328727927002673388(3)

+ 1.16440125806048725983748519547572188146(8)i)ϵ1

+(−30.231374194023419578980908258585527291(1)
− 1.4746107987131867405509544958516626938(1)i)ϵ2

Ibox A
2,0,0,2 (−5.1062676014590737030631225720(4)

+0.0777602696366375396268073410(2)i)
+(−15.863252623653191535782223280(1)

−15.47140021446171713620546482718(2)i) ϵ1

+(−6.312750204351623122814088437(2)
−47.3848887924185317110157291925(3)i) ϵ2

+( 30.143199709469771878240924313(2)
−64.8646736887516999076183016422(1)i) ϵ3

Ibox A
2,0,1,1 (−11.110389619674190840997104608934(5)

+3.976019631015843177544613483919(3)i)
+(−75.02795194179513953753759669588(2)

+5.68718856774750817126367506439930(5)i) ϵ1

+(−287.62751618657492069895728542469(3)
+0.506011554649900688526858584806(4)i) ϵ2

Ibox A
1,2,0,1 (−19.750798436868064908569117354529(3)

+52.721233345572753156644633974461(2)i)
+(−169.72144941935671759040337160761(1)

+266.1501987394671118671944214599438(7)i )ϵ1

+(−611.09333895361684894976261170833(1)
+698.698887988529945271918481589966(2)i) ϵ2
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B. Master integral calculation

integral value

Ibox A
1,1,1,1 (−3.29341280000677824246287745062130(2)

+0.10849492255047109340158902897349(2)i)
+(−10.3004937740793241750983328501296(1)

−9.5334786846670136514592840849555(1)i) ϵ1

+(−6.8398834629654813102068584749275(5)
−28.7961690563716481338122143760938(3)i) ϵ2

Ibox B
2,0,0,2 (−21.11188889097583470151(8)

+1.20784031279884399787(7)i)
+(−97.2882468805152390173(4)

−57.44691537129055885531(9)i) ϵ1

+(−151.8448600686526640635(7)
−267.42872391079420755581(3)i) ϵ2

+(−24.5995471836486005228(7)
−574.3303227875950694272(1)i) ϵ3

Ibox B
1,0,2,1 (−10.4905403617881122851722(6)

+131.2619399340341442062066(5)i)
+(−220.389609956283148669844(3)

+776.0505410655329425303857(5)i) ϵ1

+(−1095.606061033664620488256(4)
+2314.1825843109280599012359(3)i) ϵ2

Ibox B
2,1,0,1 (−20.3708686115440641608733(3)

+7.1287147960760528693654(2)i)
+(−157.070329955792958565286(1)

+15.8167898124675369908974(3)i) ϵ1

+(−683.450322481514915039954(2)
+12.53865253992443146190289(6)i) ϵ2

Ibox B
1,1,1,1 (−4.7787934283744859498136871(5)

+0.3114516551610548344667942(4)i)
+(−18.343841254420443716364557(2)

−12.6711383547989776289276137(4)i) ϵ1

+(−24.123720460347704199557088(3)
−47.3340142852470091205085628(2)i) ϵ2

Ibox C
1,1,1,1 (−7.6870360398062042708118308(4)

+0.0603562720762802935403409(3)i)
+(−32.785427411900690904242024(2)

−23.6204223098798790437196114(4)i) ϵ1

+(−50.140698178495198200782471(3)
−100.3475339608545766368170733(2)i) ϵ2
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B.3. Singularities of the differential equations

B.3. Singularities of the differential equations

Table B.5.: Singularities of the differential equations of the double-box integral family.

Singularity DE Interpretation

m = 0 Ax, Az, Am massless limit
m = 1/4 Ax, Az, Am production threshold
m = 1/2 Ax, Az, Am

x = 0 Ax, Az, Am

z = 0 Ax, Az, Am

m+ x = 0 Ax, Am

m+ z = 0 Az, Am

x+ z = 0 Ax, Az

1 − x− z = 0 Ax, Az

2m+ x = 0 Ax, Az, Am

2m− (1 − x) = 0 Ax, Az, Am

2m− (1 − z) = 0 Ax, Az, Am

4m− (1 − x)2 = 0 Ax, Am

4m− (1 − z)2 = 0 Az, Am

m2 −mx+ x = 0 Ax, Az, Am

4m+ xz = 0 Ax, Az, Am

4m− (1 − x− z) = 0 Ax, Az, Am

4m(1 − 2x− 4m) + xz = 0 Ax, Az, Am

4m(1 − 2x− 4m) + xz(1 − x− 2m) = 0 Ax, Az, Am

m(x+ z)2 − xz = 0 Ax, Az, Am

m(x+ z)2 − xz(1 − x− z) = 0 Ax, Az, Am boundary of physical phase space

121





C. Numerical results

C.1. Numerical results for the master integrals at the benchmark
phase space point

Table C.1.: Numerical values for the one-loop master integrals at the benchmark point x = 0.2,
z = 0.05, m = 289/2500, and s = 1.

integral value

Ibox A
0,0,3,1 − 0.481051948718639672(3) + 1.647038009335536233(2)i

+ (−3.473955240960911533(7) + 1.223249228135763085(3)i)ϵ1

+ (−3.260387067683624358(2) − 1.708883153353645054(7)i)ϵ2

Ibox A
0,4,0,0 1.441753171856978085(2) + 0(2 · 10−18)i

+ (2.278551986508545410(3) + 0(3 · 10−18)i)ϵ1

+ (2.986310401218017396(4) + 0(4 · 10−18)i)ϵ2

+ (2.244858104782409163(3) + 0(3 · 10−18)i)ϵ3

+ (1.820389870967189175(3) + 0(3 · 10−18)i)ϵ4

Ibox A
0,3,1,0 − 0.411340773796563501(4) + 2.339556342086690189(3)i

+ (−4.98531426868027702(1) + 2.862038218079440258(3)i)ϵ1

+ (−6.993102746440117556(7) − 1.78761247424332808(1)i)ϵ2

+ (−3.730336829322852153(4) − 6.29381739669472563(1)i)ϵ3

Ibox A
0,2,1,1 − 0.443696748247589373(4) + 2.059395394550822008(2)i

+ (−4.365877968747799624(9) + 2.160747810820682499(3)i)ϵ1

+ (−5.362191709509864132(5) − 1.80754082201655012(1)i)ϵ2

Ibox A
2,0,0,2 − 3.80478902550886042(1) + 3.6461431698185693572(2)i

+ (−19.59465614794808260(3) − 0.88135789153436103(3)i)ϵ1

+ (−28.315504933053821093(2) − 26.96331339419949376(8)i)ϵ2

+ (−8.82580059827601412(7) − 57.04643204101818615(9)i)ϵ3

Ibox A
2,0,1,1 − 5.75190039815061123(1) + 4.703345789615881179(1)i

+ (−32.17353796831732699(5) + 6.65611830468976022(4)i)ϵ1

+ (−82.1850952726611045(1) − 2.6912788873706998(1)i)ϵ2

Ibox A
1,2,0,1 3.392347831320988319(1) + 2.597409872432067470(8)i

+ (6.158534757173375845(7) + 10.94791689305203590(2)i)ϵ1

+ (3.43687165733518715(3) + 22.49878453364155016(4)i)ϵ2

Ibox A
1,1,1,1 − 3.080896347916169957(9) + 3.1991723080595289652(2)i

+ (−15.91249858579344338(2) + 1.11356776154783343(2)i)ϵ1

+ (−26.40327292795157624(2) − 15.02016964920329350(6)i)ϵ2

Ibox B
2,0,0,2 − 2.50567920511377352(2) + 13.24302021178222138(2)i

+ (−46.3478529429305264(2) + 42.15972288526383763(2)i)ϵ1

+ (−162.667092800096266(6) + 21.7381571209837982(8)i)ϵ2

+ (−285.4951117238158(3) − 138.59245540041183(4)i)ϵ3

Ibox B
1,0,2,1 4.5678091967489664(1) + 1.35003930332489817(1)i

+ (13.773617313259506(6) + 8.4923908775111097(8)i)ϵ1

+ (23.4679151747593(3) + 26.38378174724278(4)i)ϵ2

Ibox B
2,1,0,1 − 11.36339347383403118(3) + 10.123354851135646533(2)i

+ (−78.3554102236169545(3) + 24.49512991117622366(7)i)ϵ1

+ (−249.93269335018518(1) + 12.149633498096507(2)i)ϵ2
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C. Numerical results

integral value

Ibox B
1,1,1,1 − 3.17962875108424836(8) + 4.425350373137667900(7)i

+ (−20.007820106247942(4) + 5.9843070353671266(5)i)ϵ1

+ (−43.2680826586445(2) − 9.54720330587401(3)i)ϵ2

Ibox C
1,1,1,1 − 8.66852344336730530(3) + 4.399885074763291166(6)i

+ (−46.798730333785023(2) − 6.8928888642525010(2)i)ϵ1

+ (−99.99489253629838(8) − 74.83931582092854(1)i)ϵ2

Table C.2.: Numerical values for the two-loop master integrals at the benchmark point x = 0.2,
z = 0.05, m = 289/2500, and s = 1.

integral value

I4,0,4,0,0,0,0 (2.078652208559656985801309(3) + 0(3 · 10−24)i)ϵ−4

+(6.570219107579427363460488(9) + 0(9 · 10−24)i)ϵ−3

+(13.80284414143316132976818(2) + 0(2 · 10−23)i)ϵ−2

+(20.08198957993065536075399(3) + 0(3 · 10−23)i)ϵ−1

+(24.39720734155296971341952(3) + 0(3 · 10−23)i)ϵ0

I3,0,4,1,0,0,0 (−0.693558172893079111731066(4) + 2.374622274128512447256156(2)i)ϵ−2

+(−6.10468786091123014010305(2) + 5.5164851826629028715574278(8)i)ϵ−1

+(−14.05283144963226478965663(3) + 5.24201599056334527131195(1)i)ϵ0

I3,2,0,0,2,0,0 (−3.783373874326606072976462(1) − 2.863974959295463100129455(9)i)ϵ−4

+(−15.52966934695094918992457(2) − 31.13913597085513608405862(7)i)ϵ−3

+(−4.7675566106874185862637(2) − 158.0573914585248234652427(2)i)ϵ−2

+(228.406167472504411249066(1) − 478.9702905199366323958504(4)i)ϵ−1

+(1148.391744220882199557748(3) − 871.5632391229058226583729(4)i)ϵ0

I4,2,0,0,2,0,0 (−3.61257094162885455385934(3) + 19.09316639530308733419637(2)i)ϵ−4

+(−128.2453664671136286949123(4) + 122.963284261122170634996756(7)i)ϵ−3

+(−896.073333079925456814237(1) + 123.130211548489142088425(1)i)ϵ−2

+(−2952.210587139624783047429(2) − 1613.825461958468240360006(6)i)ϵ−1

+(−4283.449748114193677961526(7) − 9219.77443829406314930894(2)i)ϵ0

I3,0,3,0,1,0,0 (−1.4099367413420776481287956(4) − 1.108080930636926778082162(4)i)ϵ−2

+(−0.920632768532596181973368(6) − 5.55679365294295782990032(2)i)ϵ−1

+(2.515253083956218707042(4) − 11.94384732458145778584(3)i)ϵ0

I3,0,3,0,2,0,0 (−2.868063126893464638364896(3) − 0.797047102399561924254405(5)i)ϵ−2

+(−7.98791744382488069445814(1) − 16.42852181647373564890305(4)i)ϵ−1

+(22.104585354635706656077(6) − 55.91465303475725121885(4)i)ϵ0

I3,2,1,0,1,0,0 (−5.368538718040736994867971(5) − 3.370378871861364203374619(3)i)ϵ−2

+(−26.24873969222245484439902(6) − 30.4247116661581688241519(4)i)ϵ−1

+(−79.1361002319131714443(1) − 142.2458130777469442483(7)i)ϵ0

I3,1,2,0,1,0,0 (−2.3939132912203584263337337(7) − 1.799394194387369730757061(5)i)ϵ−2

+(−5.12023565842171450613744(2) − 11.5164505573440084831992(1)i)ϵ−1

+(−3.86245922041100019949(4) − 35.2146129555726290517(3)i)ϵ0

I0,2,0,3,2,0,0 (−4.325259515570934256055363(6) + 0(6 · 10−24)i)ϵ−4

+(−35.29760949690594373816540(5) + 0(5 · 10−23)i)ϵ−3

+(−207.7165153810865819012483(3) + 0(3 · 10−22)i)ϵ−2

+(−1000.130815167729631064071(1) + 0(1 · 10−21)i)ϵ−1

+(−4425.171628498583896399563(6) + 0(6 · 10−21)i)ϵ0

I2,2,0,1,2,0,0 (2.943458085451554619452169(8) − 2.98848176406093818433949417(6)i)ϵ−2

+(33.18322577558473143322179(5) − 3.30103352691433971629770(4)i)ϵ−1

+(134.0680456378317831437544(1) + 59.5462466514309830447660(3)i)ϵ0

+(322.66779128911579053341159(8) + 379.063721094683710417211(1)i)ϵ1

I1,2,0,2,2,0,0 (2.122234984582881128855329(8) − 3.430862528022813236432156(2)i)ϵ−2

+(26.43982535047013380354646(5) − 12.41135648747758526745752(2)i)ϵ−1

+(116.9113240202218961179817(2) − 12.0918345874416712304719(1)i)ϵ0

+(367.4512625229782886361815(5) + 42.9773513945082020897528(6)i)ϵ1

I2,2,1,1,1,0,0 (1.6207766391930502360822(1) − 5.84904548090065984389143(1)i)ϵ0

+(30.508340935695989273277(6) − 27.3967554430545040491886(1)i)ϵ1
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C.1. Numerical results for the master integrals at the benchmark phase space point

integral value

I2,1,2,1,1,0,0 (0.1872160481915144306223(1) − 2.97179025574148867176968(2)i)ϵ0

+(10.702328881706250821686(8) − 9.6865745071424100472404(2)i)ϵ1

I1,2,1,2,1,0,0 (0.3026645537449615916677(1) − 5.37660463166395365358814(1)i)ϵ0

+(18.279064000268748191585(7) − 28.0442394703816426616759(5)i)ϵ1

I0,0,4,3,0,1,0 (1.490656759092448280316844(4) + 4.547438131600846589930800(9)i)ϵ−2

+(−1.92151279325605485702344(3) + 18.50254409200354170577641(2)i)ϵ−1

+(−17.58730555285321028128051(8) + 36.98235016056506212740318(3)i)ϵ0

+(−46.4172507468145607038543(1) + 44.403911052120363979146797(3)i)ϵ1

I2,0,4,1,0,1,0 (−2.425325904394164264127012(9) + 3.885977811961802154393640(2)i)ϵ−2

+(−16.58330324297619792700050(4) + 10.220211653532146305020179(9)i)ϵ−1

+(−44.19884480602518639889034(8) + 11.14991117502423953867350(5)i)ϵ0

I0,0,3,0,2,2,0 (−1.033919528106522127227763(3) − 3.154103088078347194776003(6)i)ϵ−4

+(7.83821025967097570505795(4) − 18.83763248827838569088623(2)i)ϵ−3

+(60.4476350286270257604011(1) − 40.75515457936101755152594(3)i)ϵ−2

+(197.6754188382385971078718(3) + 1.9965114519514722644638(3)i)ϵ−1

+(344.5999095203468537626899(2) + 238.3342690801926614271566(8)i)ϵ0

I0,0,4,0,2,2,0 (−5.48556664577402021471267(2) + 5.2568384801305786579600049(3)i)ϵ−4

+(−52.93207986271701477382194(8) + 1.27382396340663500644210(7)i)ϵ−3

+(−152.35490799567253287740589(3) − 128.7645333559813866782910(4)i)ϵ−2

+(−72.8445002137058557246168(7) − 537.4852216313562727193796(9)i)ϵ−1

+(683.533580282257326756447(2) − 979.8622803959722417649340(4)i)ϵ0

I2,0,3,0,1,1,0 (−2.1002726939758899941038249(2) − 1.946173016838776321202506(6)i)ϵ−2

+(−2.73002001462274249751501(5) − 11.4219053231008273766159(3)i)ϵ−1

+(4.04021379649353679113(8) − 30.7731080749037934231(6)i)ϵ0

I2,0,2,0,2,1,0 (0.199193524249726614723674(5) − 3.358730188673610121988528(4)i)ϵ−2

+(14.31665561216199321250629(3) − 13.4641354671954418897663(2)i)ϵ−1

+(61.47564243606201348831(5) − 9.9971411011165999631(3)i)ϵ0

I2,2,1,0,1,1,0 (−9.389450494521746726733(2) − 11.0268694575670401119586(2)i)ϵ−2

+(−45.22413370693602057051(4) − 115.225559434239177163302(2)i)ϵ−1

+(−72.166230469134071149(4) − 627.87906850169687708(2)i)ϵ0

I2,1,2,0,1,1,0 (−3.6921162135735822925962(5) − 3.89988848976218820357311(6)i)ϵ−2

+(−8.938661321549967563831(7) − 28.69988485558428767473430(7)i)ϵ−1

+(2.435828710858997226(1) − 103.595273796578848536(7)i)ϵ0

I2,1,1,0,2,1,0 (−0.0212947246348681018227(8) − 6.23440536853113163302786(8)i)ϵ−2

+(26.15250364294111339252(1) − 39.05592444886478737116313(2)i)ϵ−1

+(175.455075488100296133(1) − 98.195224859292210584(9)i)ϵ0

I1,2,1,0,2,1,0 (10.5163412151011942500044(7) − 26.74263046907044737865912(8)i)ϵ−2

+(251.37459587481481594446(5) − 231.833715143736793219071(6)i)ϵ−1

+(2133.845115664248568939(3) − 845.06715494733483760(2)i)ϵ0

I0,2,0,2,2,1,0 (1.73694996929581616646918(2) − 9.95434934597526374671307(1)i)ϵ−1

+(59.7411480525214857893681(2) − 79.40346504521902476871604(3)i)ϵ0

+(487.328934431697699302672(1) − 332.2717549245353183064151(2)i)ϵ1

+(2620.142507782282659065223(5) − 978.770262566856435738736(2)i)ϵ2

I1,2,0,1,2,1,0 (8.66852344336730530362368(2) − 4.399885074763291165914653(6)i)ϵ−1

+(100.7201543763787601479937(1) + 11.8132989686471057174807(2)i)ϵ0

+(490.8170658525522334245258(2) + 316.906983356891803230297(1)i)ϵ1

I2,2,0,1,2,1,0 (25.0155827025969922431229(2) − 92.8777684866825089716301(1)i)ϵ−1

+(926.931374902771235377093(3) − 953.00022140872008213669167(4)i)ϵ0

+(9299.87971092151498150340(2) − 3461.192623666048873852604(8)i)ϵ1

I0,2,1,2,1,1,0 (−4.074032636063980238694697(6) − 8.57174770577329512502127(2)i)ϵ0

+(−2.93453456075008044245055(9) − 69.2669480060537283297693(1)i)ϵ1

I0,2,1,1,2,1,0 (−0.90231877863951689315101(3) − 23.35119799628597008584045(3)i)ϵ0

+(95.7993934959786181954306(5) − 259.6692848780394739889165(2)i)ϵ1

I1,2,1,1,1,1,0 (3.903532028991533223491(2) − 8.9765758080371977193602(3)i)ϵ0

I1,1,2,1,1,1,0 (0.375949828356908527554(4) − 4.1843448095863002349318(5)i)ϵ0

I2,2,1,1,1,1,0 (−25.65867786386626897063(1) − 42.573829879266823448400(1)i)ϵ0

I3,0,3,1,0,0,1 (−5.692296675241527280930977(8) + 0.185617324406135105448449(8)i)ϵ−1

+(−18.9498296910939196027691695(8) − 18.35444550265516918591303(5)i)ϵ0
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integral value

I3,0,2,0,1,0,1 (−0.965045477812790708998864(2) − 2.545828323467531536117390(5)i)ϵ−2

+(5.05374692381561363259600(3) − 10.6863749933564257321306(2)i)ϵ−1

+(24.29431075364005058386(5) − 16.0906007095104081579(3)i)ϵ0

I3,0,1,0,2,0,1 (−0.570891555874676270433932(2) − 2.179797929323353264519984(4)i)ϵ−2

+(5.29069480998744864805208(3) − 9.9157666091794918238375(2)i)ϵ−1

+(26.12455935200131965458(5) − 16.9434883970457729602(3)i)ϵ0

I3,0,1,0,1,0,2 (−0.687529515839652630455102(4) − 3.378349330952861594630522(6)i)ϵ−2

+(8.06267520088530606740411(8) − 14.8563152203564331320961(5)i)ϵ−1

+(37.1461014198389956516(1) − 27.629279274337110889(1)i)ϵ0

I3,1,1,0,1,0,1 (−1.940394369461363788902375(3) − 4.265698610082124170669848(9)i)ϵ−2

+(3.7793387839224458189534(1) − 25.688083903795273567194(1)i)ϵ−1

+(43.9533518956062202415(2) − 73.779964867889612414(3)i)ϵ0

I2,1,1,0,2,0,1 (2.80129779562052200421549(1) − 6.733553289405667550558101(6)i)ϵ−2

+(47.0917032287518641402995(1) − 30.120713288411122976845(1)i)ϵ−1

+(234.6128673606650257074(2) − 20.644898254368405374(2)i)ϵ0

I2,0,0,1,2,0,2 (1.682206047287792333598495(6) − 2.695314210376705974287429(1)i)ϵ−2

+(18.85883901814948712499155(4) − 7.49603075437049494872420(2)i)ϵ−1

+(68.8156102698855901519614(1) − 2.04659498140836946407749(9)i)ϵ0

+(182.8670046200825533225222(2) + 29.8633516843826847373446(3)i)ϵ1

I1,0,0,2,2,0,2 (2.485196133058751347284105(6) − 1.645113499104829460822134(1)i)ϵ−2

+(20.84524684621531594442709(2) + 5.41973376759840287976992(4)i)ϵ−1

+(49.27183193743445476347004(2) + 63.0617249014673468454902(2)i)ϵ0

+(26.6821880593150347539200(3) + 222.8419346817291604085598(4)i)ϵ1

I2,1,0,1,2,0,1 (2.302527768989571638166752(7) − 2.8380288478684819682537791(8)i)ϵ0

+(25.94403692332447998582960(4) − 5.48469283335280975923486(3)i)ϵ1

I3,1,0,1,2,0,1 (−9.149972621633102847123584(2) − 7.84442844852820320991232(2)i)ϵ−1

+(−38.0332933143947607140084(1) − 106.0576011598782040925515(2)i)ϵ0

+(53.3156706081796772627197(8) − 591.604074586138953664735(1)i)ϵ1

I2,0,2,1,1,0,1 (1.35468288080330928203776(3) − 2.14161352588354822155908(1)i)ϵ−1

+(13.261373963883967886549(7) − 0.143264778107999125046(8)i)ϵ0

I2,0,1,1,2,0,1 (1.6874409039083587010147(5) − 1.2572019221380717536990(2)i)ϵ−1

+(12.5159106589813372819(1) + 3.8192057591744221935(2)i)ϵ0

I2,0,1,1,1,0,2 (2.54516345541249395156110(2) − 1.795334288641831093776512(6)i)ϵ−1

+(18.064762274113116911391(3) + 6.335825893124126963232(5)i)ϵ0

I1,0,2,2,1,0,1 (0.80635830988826140436898(4) − 2.20742438823104755039239(2)i)ϵ−1

+(10.734321441183216312226(3) − 2.503147053281732562505(5)i)ϵ0

I2,1,1,1,1,0,1 (2.93002674462100690567891(4) − 3.05937036555429544419532(2)i)ϵ0

+(27.24286014503540197696(1) + 0.55332292942249101266(1)i)ϵ1

I1,1,1,2,1,0,1 (2.3615738066448575522525(2) − 3.2247479167932383190810(1)i)ϵ0

+(24.20672156293772468976(1) − 2.68000636416035537925(3)i)ϵ1

I1,1,1,1,2,0,1 (4.520710969589522290272(6) − 3.620578190624512346726(3)i)ϵ0

+(45.522587159836769842(2) + 1.850777097115065880(2)i)ϵ1

I0,0,3,3,0,1,1 (−8.87937669962535260294328(2) + 6.522177552850577858161383(3)i)ϵ−1

+(−55.64544670124480246597834(8) − 2.48534691374122351949977(8)i)ϵ0

+(−115.10904329170002583237719(3) − 93.5699889292279833809679(3)i)ϵ1

I2,0,3,1,0,1,1 (−10.24056455688035236049962(1) − 2.51911329204300880257938(2)i)ϵ−1

+(−34.23046004991631788320548(2) − 46.1680154174523951192807(1)i)ϵ0

I1,1,1,1,1,1,1 (5.029627152473532173573(6) − 3.66871945901777544363(3)i)ϵ0

I1,1,1,1,1,2,1 (45.320198923648579185(5) − 92.68568243119606428(3)i)ϵ0

I1,1,1,1,2,1,1 (46.1594587849386946(1) − 43.9309251938021438(1)i)ϵ0

Ic
2,2,1,1,1,0,0 (1.9614467572590914903782(5) − 4.894756734073404398646(4)i)ϵ0

+(29.11681179843566356160(3) − 17.653530885735489342598(7)i)ϵ1

Ic
2,1,2,1,1,0,0 (0.2978948626206104743747(1) − 2.82238900780845171483977(1)i)ϵ0

+(10.788811952304601117009(9) − 8.238731808427991740776(2)i)ϵ1

Ic
1,2,1,2,1,0,0 (0.370679108274706560683(1) − 4.91753966731921105141(1)i)ϵ0

+(16.98005224753033835758(6) − 23.68721061301598404255(4)i)ϵ1
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integral value

Ic
0,0,4,3,0,1,0 (5.454691283631208294372061(2) + 4.12914498168319362763762(1)i)ϵ−2

+(18.07472613336040167831794(4) + 25.58613333997384050900173(2)i)ϵ−1

+(25.8854957894539754712301(2) + 78.673432075046133262678454(7)i)ϵ0

+(−1.9335939762431181632073(4) + 156.42581029601492601942026(2)i)ϵ1

Ic
2,0,4,1,0,1,0 (−3.059739020448213853597649(5) + 4.946456931982141344337018(6)i)ϵ−2

+(−22.59370857747207822379193(2) + 14.70267273251023338022528(1)i)ϵ−1

+(−66.888138051843759159481945(9) + 18.80340858861520287539028(2)i)ϵ0

Ic
0,2,0,2,2,1,0 (−5.06106854353943862739608(4) − 18.97097013037314757525751(1)i)ϵ−1

+(41.1608746236522212536320(6) − 232.05551875425931729352564(2)i)ϵ0

+(863.828870218169996264654(5) − 1448.9608493055503953107686(8)i)ϵ1

+(6950.11821540260495146890(3) − 6173.79644002718924460747(1)i)ϵ2

Ic
1,2,0,1,2,1,0 (8.668523443367305303624(2) − 4.399885074763291165914(2)i)ϵ−1

+(97.66748709441583144305(2) + 12.988543950287174355331(3)i)ϵ0

+(450.52233739582698358700(1) + 308.44351159462852526213(6)i)ϵ1

Ic
2,2,0,1,2,1,0 (38.802815502505808146124(8) − 60.714070342280533941307(9)i)ϵ−1

+(812.53182058831081924585(8) − 424.35643260108859556988(1)i)ϵ0

+(6231.7114786874866890390(3) − 314.2552027879229865800(3)i)ϵ1

Ic
0,2,1,2,1,1,0 (−10.9176830458666877065178(6) − 7.4306661975268063889499(5)i)ϵ0

+(−70.576159679486214547906(3) − 87.887956796827534709399(5)i)ϵ1

Ic
0,2,1,1,2,1,0 (−16.5163732884190570578344(3) − 38.3725208222934887039574(4)i)ϵ0

+(−20.967051436146608088005(4) − 585.6482618640538673365786(5)i)ϵ1

Ic
1,2,1,1,1,1,0 (3.46810543770102184645(4) − 10.4972124022601790320(2)i)ϵ0

Ic
1,1,2,1,1,1,0 (−0.318761279541891745611(8) − 4.862635248103019368665(1)i)ϵ0

Ic
2,2,1,1,1,1,0 (−25.29574389323399997251(2) − 53.293272001660817933(1)i)ϵ0

Ic
3,0,3,1,0,0,1 (−6.53707499072082655695487(2) + 4.853639839292499244614042(2)i)ϵ−1

+(−41.57540909232405137473819(6) − 0.88072426208776470426459(6)i)ϵ0

Ic
3,0,2,0,1,0,1 (−2.201203497799253031111299(2) − 2.460689313947990855947058(4)i)ϵ−2

+(−1.6921365681185437701151(1) − 15.14104758329367702055683(4)i)ϵ−1

+(14.24713337880373015101(1) − 42.01443212555013605113(8)i)ϵ0

Ic
3,0,1,0,2,0,1 (−0.89409218106490247644053(1) − 2.493658696797914212805826(6)i)ϵ−2

+(4.7776368335269798293367(1) − 13.43247572865186649621466(6)i)ϵ−1

+(32.641836027142534478855(5) − 29.94840842175951878960(2)i)ϵ0

Ic
3,0,1,0,1,0,2 (−2.941877194926537369756246(1) − 4.815435616371413854766392(8)i)ϵ−2

+(−0.29529454040276649462607(9) − 33.2111950382684482815249(5)i)ϵ−1

+(44.90489401349237158497(9) − 106.6151041157274514297(7)i)ϵ0

Ic
3,1,1,0,1,0,1 (−3.142634342230047071813(1) − 4.95999301672790038551292(5)i)ϵ−2

+(−0.739844358012812627288(4) − 35.60793732149674633753(3)i)ϵ−1

+(51.007444739252365235(9) − 118.35162094551799889(7)i)ϵ0

Ic
2,1,1,0,2,0,1 (3.284835565185729818327(8) − 8.142563801847218692830(3)i)ϵ−2

+(59.84990818615841858372(1) − 36.5200702556542745396(3)i)ϵ−1

+(304.19408233116236356(7) − 1.4055267626913064(5)i)ϵ0

Ic
2,0,2,1,1,0,1 (0.8021852846264809974438(4) − 3.0075920494067946410077(2)i)ϵ−1

+(14.71502607944883970828(1) − 7.232297742791658046356(9)i)ϵ0

Ic
2,0,1,1,2,0,1 (1.9193842708646316622440(4) − 1.7335201682299046258509(3)i)ϵ−1

+(16.69801524431494493571(1) + 1.93330058395712616635(1)i)ϵ0

Ic
2,0,1,1,1,0,2 (3.2769313843021135187249(4) − 3.9334950400179183648533(3)i)ϵ−1

+(34.304455465226281337071(8) − 2.961639291145203364820(6)i)ϵ0

Ic
1,0,2,2,1,0,1 (0.0348319355590401631230(2) − 2.7476206713127811162922(1)i)ϵ−1

+(9.448000396592772513387(9) − 8.440045968636669794458(8)i)ϵ0

Ic
2,1,1,1,1,0,1 (2.96384517323843279779(5) − 4.38197793282387441512(1)i)ϵ0

+(34.738148793246224666(2) − 7.7706297762994866832(8)i)ϵ1

Ic
1,1,1,2,1,0,1 (1.7701306457788465239(1) − 4.63044744794959914730(2)i)ϵ0

+(27.332625016396995126(3) − 14.607945745806468133(2)i)ϵ1
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integral value

Ic
1,1,1,1,2,0,1 (4.5809825979192144722(1) − 6.0179208078438957804(2)i)ϵ0

+(59.359681766062049179(3) − 15.983565463570657153(4)i)ϵ1

Ic
0,0,3,3,0,1,1 (6.11156530546566412203860(1) + 21.67097607544812030863848(4)i)ϵ−1

+(−26.1072674395728288517596(3) + 137.5950166997233416823782(1)i)ϵ0

+(−292.542564822901844479302(1) + 381.8929824167400021916357(5)i)ϵ1

Ic
2,0,3,1,0,1,1 (−17.85511276489526625332980(3) + 6.902207801341480271035070(5)i)ϵ−1

+(−119.55045675765061543963848(9) − 22.76677703120654305896378(8)i)ϵ0

Ic
1,1,1,1,1,1,1 (6.1217805875813911339(6) − 8.426882406085824005(4)i)ϵ0

Ic
1,1,1,1,1,2,1 (139.9185004432642812(8) − 491.066576860794480(7)i)ϵ0

Ic
1,1,1,1,2,1,1 (94.9310103519581456(7) − 144.244157364640101(6)i)ϵ0

Ia1
1,4,1,1,0,0,1,0,0 (−12.49787116979138596(3) + 6.343548262346152200(9)i)ϵ0

+(−87.2238992095944015(1) + 0.0875224942175103(1)i)ϵ1

Ia1
0,3,2,1,0,1,1,0,0 (−3.506186807636372734(4) − 6.28560232193634948(1)i)ϵ0

+(12.71477727119858309(7) − 39.14237743783716525(4)i)ϵ1

Ia1
1,3,1,1,0,1,1,0,0 (−3.07676785989821335(2) − 16.39396088539505331(3)i)ϵ0

+(58.5973768040630418(2) − 99.65221845421363373(6)i)ϵ1

Ia2
0,3,3,1,0,1,0,0,0 (−2.481323226829965208(1) − 1.584621688009057491(6)i)ϵ0

+(−0.68717007040876102(2) − 12.62036549911258700(2)i)ϵ1

Ia2
0,3,2,1,0,1,0,1,0 (−1.514056019940696717(5) − 4.884597546409176542(9)i)ϵ0

+(15.76683698388269690(5) − 23.02597689816930463(1)i)ϵ1

C.2. Numerical results for the projection coefficients at the
benchmark phase space point

Table C.3.: Numerical results for the one-loop vector current projection coefficients propor-
tional to Nc and N−1

c at the benchmark phase space point.

ϵ−2, Nc ϵ−2, N
−1
c

C1 0(0) +0(0)i 0(0) +0(0)i
C2 0(0) +0(0)i 0(0) +0(0)i
C3 0(0) +0(0)i 0(0) +0(0)i
C4 0(0) +0(0)i 0(0) +0(0)i
C5 10.000000000000(3) +0(3 · 10−12)i 0(0) +0(0)i
C6 0(0) +0(0)i 0(0) +0(0)i
C7 0(0) +0(0)i 0(0) +0(0)i
C8 0(0) +0(0)i 0(0) +0(0)i
C9 0(0) +0(0)i 0(0) +0(0)i
C10 −25.0000000000000(2) +0(2 · 10−13)i 0(0) +0(0)i
C11 −200.000000000000(4) +0(4 · 10−12)i 0(0) +0(0)i
C12 0(0) +0(0)i 0(0) +0(0)i
C13 0(0) +0(0)i 0(0) +0(0)i
C14 0(0) +0(0)i 0(0) +0(0)i
C15 0(0) +0(0)i 0(0) +0(0)i
C16 0(0) +0(0)i 0(0) +0(0)i
C17 0(0) +0(0)i 0(0) +0(0)i
C18 0(0) +0(0)i 0(0) +0(0)i
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ϵ−1, Nc ϵ−1, N
−1
c

C1 0(0) +0(0)i 0(0) +0(0)i
C2 0(0) +0(0)i 0(0) +0(0)i
C3 0(0) +0(0)i 0(0) +0(0)i
C4 0(0) +0(0)i 0(0) +0(0)i
C5 31.23264873830(3) +62.83185307180(3)i 6.1701116070(5) −35.0933451310(5)i
C6 0(0) +0(0)i 0(0) +0(0)i
C7 0(0) +0(0)i 0(0) +0(0)i
C8 0(0) +0(0)i 0(0) +0(0)i
C9 0(0) +0(0)i 0(0) +0(0)i
C10 −78.081621845840(2) −157.079632679490(2)i −15.4252790170(2) +87.7333628280(2)i
C11 −624.65297476670(4) −1256.63706143590(4)i −123.402232140(6) +701.866902630(6)i
C12 0(0) +0(0)i 0(0) +0(0)i
C13 0(0) +0(0)i 0(0) +0(0)i
C14 0(0) +0(0)i 0(0) +0(0)i
C15 0(0) +0(0)i 0(0) +0(0)i
C16 0(0) +0(0)i 0(0) +0(0)i
C17 0(0) +0(0)i 0(0) +0(0)i
C18 0(0) +0(0)i 0(0) +0(0)i

ϵ0, Nc ϵ0, N
−1
c

C1 −34.39009167557150(2) +22.05263566861510(2)i −7.72287497544663(2) +13.916378512665710(2)i
C2 26.93605841404294(5) −14.998255988455620(4)i −5.00723078091639(9) +11.316017972108770(2)i
C3 −49.77462167280340(1) +60.12479593828650(1)i 12.48111052315832(8) +3.175846477480160(2)i
C4 63.7349240320747(2) −60.46808510021190(1)i 6.1334723221193(4) −29.741702723979200(4)i
C5 −75.65042368990(8) +76.68006207570(8)i 79.398829500(2) +12.021798670(2)i
C6 58.00755743540200(2) +1.62693832046390(2)i −39.0898734635210(1) +252.1060269366540(1)i
C7 −57.554116198470080(8) −3.981709279954830(8)i 38.12717716576490(4) −252.05309644279820(4)i
C8 42.2398048473806(1) −141.2918070204922(1)i −21.3681889420170(1) −113.8113835803010(1)i
C9 −8.7626029555790(2) +398.9268710890900(2)i 76.40830867754440(7) +153.15110739677390(7)i
C10 176.127485941620(7) −177.098809218050(7)i −179.6222643190(7) +3.0129824330(7)i
C11 1442.7229303610(2) −469.5875600340(2)i −1135.32991540(3) +303.27097400(3)i
C12 501.3606976274090(1) −614.3698374915550(1)i −491.1972666137180(2) +1028.6518747140280(2)i
C13 −100.33419299300080(2) +73.05524687524420(2)i 30.16033106714231(7) −30.595222972559690(6)i
C14 98.3185347922719(7) −76.86263119394490(2)i 5.477450179640(2) −59.474662156841860(8)i
C15 −39.1653458318958(2) +25.449987182693740(7)i −11.2733385376886(5) +25.341299411336270(4)i
C16 −413.5776745240080(9) +641.9934308082690(1)i 548.138340689228(2) −1062.4364736504140(2)i
C17 340.0323144500370(1) −545.6874854867920(1)i −131.499540936581(1) −139.48244501271950(6)i
C18 25.64257193368130(7) +89.53634356553780(7)i −17.90005443686500(8) +188.49298725048670(8)i

ϵ1, Nc ϵ1, N
−1
c

C1 −190.4034528019576(8) −22.36984760705100(9)i −56.174308435070(2) +17.20079623568640(1)i
C2 142.755549240827(2) +31.00579646220870(3)i −46.439768701047(9) +32.93235535552550(1)i
C3 −412.420001768464(3) +81.24363933778570(9)i 15.939977003037(7) +46.85913113075340(1)i
C4 454.039848061719(8) −57.2781926090270(1)i 99.10116333918(4) −84.40498343074260(3)i
C5 −137.3084459870(2) +103.3203681110(2)i 66.813021100(5) +31.820360170(5)i
C6 146.0562353651589(1) +86.9403356700153(1)i −806.5134163412580(5) +695.4952218500970(5)i
C7 −133.127304230927(1) −83.13979562970920(5)i 811.347176430962(2) −691.0546643816470(3)i
C8 537.8959829108340(3) −419.0050350340670(3)i 235.9779102430940(4) −388.9088372755860(4)i
C9 −976.739436848720(1) +1554.727149377000(1)i −96.3626443146440(2) +535.0533801492560(2)i
C10 237.38476931900(2) −248.08263313920(2)i −216.211892900(2) +84.428379190(2)i
C11 −290.1381775100(5) +1748.9811289560(5)i −1460.56301290(8) +2009.62431380(8)i
C12 2828.39677200290(2) −771.0257267265890(7)i −4067.77580140916(4) +3167.222545241850(1)i
C13 −598.944118766486(3) −15.8087332272800(1)i 129.420418854612(3) −23.27412942786310(4)i
C14 677.78168541636(3) −60.9889055808180(1)i 189.0587202428(2) −185.22501292666650(6)i
C15 −241.831254926637(8) −4.59822642058570(5)i −99.06918537297(4) +38.74583828161900(3)i
C16 −2546.10758830329(4) +1154.8047998973530(7)i 4382.6253670219(2) −3126.696157320700(1)i
C17 2765.72088973811(2) −1062.4841792059770(6)i 196.5150466942(1) −534.1043697945170(2)i
C18 −35.953904665349(4) +422.1665614026680(2)i −389.10987655697(3) +514.0264871846320(2)i

ϵ2, Nc ϵ2, N
−1
c

C1 −358.43534861548(4) −310.0326710368110(3)i −105.17024119606(9) −46.05851980061040(5)i
C2 252.8190391507(1) +259.4543497646230(1)i −133.7405219767(5) −0.29858264633090(5)i
C3 −1109.8754807117(1) −462.1675338813370(4)i −77.0065072006(4) +112.36714461368500(4)i
C4 1159.1063636496(4) +539.5615499051150(4)i 309.442292942(2) −38.3624481085580(1)i
C5 −318.7270448430(5) +37.9028864300(5)i 163.67289820(1) +78.83502990(1)i
C6 81.89916026948(2) +361.6386120453370(3)i −2254.81627679751(2) +391.886936912700(2)i
C7 −54.08491188093(6) −308.3186660862880(1)i 2273.83695236244(8) −367.4440819095470(9)i
C8 1736.5114787343240(7) −324.0487112297130(7)i 950.00827976206(1) −474.130402756870(1)i
C9 −4230.692597434420(4) +2790.409096719320(4)i −847.23399557468(4) +757.5055359350350(6)i
C10 535.58443079220(5) −225.53394704360(5)i −754.572447130(5) +140.788900470(5)i
C11 −5526.5859394580(9) +4873.0877171810(9)i −7418.1016170(2) +3870.1640450(2)i
C12 4663.2395215386(8) +2690.795417891040(2)i −11987.284537071(2) +3241.172302849960(5)i
C13 −1224.2864180062(1) −985.2926950163460(5)i 110.9039548813(2) +142.2571318792850(1)i
C14 1804.878945419(2) +839.2584162673380(6)i 633.72015714(1) −101.6752847336640(2)i
C15 −557.1857286915(4) −357.9967243464960(2)i −201.179993431(2) −72.88699227438060(9)i
C16 −4561.140300055(2) −1407.072497534320(2)i 12612.03470735(1) −2726.031397247780(5)i
C17 7129.3662446428(8) +1187.704150412030(2)i 1213.556955808(6) −598.6416774241240(8)i
C18 −597.8449757122(2) +1053.3013463618440(7)i −1288.183618901(1) +399.5913636941210(5)i
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Table C.4.: Non-zero one-loop vector current coefficients of order N0
c up to order ϵ2. All other

coefficients vanish. These contributions originate purely from the renormalization.

ϵ−1 ϵ1 ϵ2

C5 −16.666666666666666667(1) 2.7415567780803773941(1) −1.3356187812884380949(1)
C10 41.666666666666666667(1) −6.8538919452009434853(1) 3.3390469532210952372(1)
C11 333.33333333333333333(1) −54.831135561607547882(1) 26.712375625768761898(1)

Table C.5.: Numerical results for the leading-colour one-loop axial-vector current projection
coefficients at the benchmark phase space point.

ϵ−2 ϵ−1

C̃1 0(0) +0(0)i 0(0) +0(0)i
C̃2 0(0) +0(0)i 0(0) +0(0)i
C̃3 0(0) +0(0)i 0(0) +0(0)i
C̃4 0(0) +0(0)i 0(0) +0(0)i
C̃5 −10.00000000000000000(1) +0(1 · 10−17)i −31.23264873833704788(2) −62.8318530717958648(2)i
C̃6 0(0) +0(0)i 0(0) +0(0)i
C̃7 0(0) +0(0)i 0(0) +0(0)i
C̃8 0(0) +0(0)i 0(2 · 10−16) +0(2 · 10−16)i
C̃9 0(0) +0(0)i 0(2 · 10−16) +0(2 · 10−16)i
C̃10 25.00000000000000000(4) +0(4 · 10−17)i 78.0816218458426197(1) +157.0796326794896619(3)i
C̃11 200.0000000000000000(3) +0(3 · 10−16)i 624.6529747667409576(9) +1256.637061435917295(3)i
C̃12 0(0) +0(0)i 0(0) +0(0)i
C̃13 0(0) +0(0)i 0(0) +0(0)i
C̃14 0(0) +0(0)i 0(0) +0(0)i
C̃15 0(0) +0(0)i 0(0) +0(0)i
C̃16 0(0) +0(0)i 0(0) +0(0)i
C̃17 0(0) +0(0)i 0(2 · 10−16) +0(2 · 10−16)i
C̃18 0(0) +0(0)i 0(2 · 10−16) +0(2 · 10−16)i

ϵ0 ϵ1

C̃1 34.390091675571540(6) −22.05263566861509(1)i 190.40345280195762(9) +22.3698476070510(7)i
C̃2 −26.93605841404294(2) +14.99825598845562(4)i −142.7555492408268(3) −31.005796462209(2)i
C̃3 49.77462167280342(2) −60.12479593828653(5)i 412.4200017684639(3) −81.243639337786(3)i
C̃4 −63.73492403207472(7) +60.4680851002119(2)i −454.039848061719(1) +57.278192609027(8)i
C̃5 85.2854575308906949(1) −86.7151309400435840(3)i 164.440550249582683(1) −87.56360951337624(2)i
C̃6 −106.665169274345021(2) +222.668009305153666(3)i −555.89283114269089(2) −71.8114589764244(2)i
C̃7 −57.480564157202262(6) +239.40922715615711(1)i −438.97791344978311(9) +117.5664271159078(7)i
C̃8 22.429491712891181(3) +25.272475805395816(5)i −66.04782497526846(3) +217.4305319135133(3)i
C̃9 −14.057711593048798(9) −342.20502754337045(2)i 769.9241648581443(2) −1364.690745576463(1)i
C̃10 −204.368767617941746(1) +211.799391656800991(3)i −340.61202526270618(1) +218.48874675235456(5)i
C̃11 −1666.58820801522448(2) +803.57857871600952(4)i −669.7017422844488(2) −1852.627916359368(1)i
C̃12 −894.06632997699788(9) +1885.5463616081282(2)i −4893.200509133524(1) −455.43388679561(1)i
C̃13 −30.28384606760816(1) +321.49147844493458(3)i −518.5755282228875(2) +699.292584055388(2)i
C̃14 −98.3185347922719(3) +76.8626311939449(6)i −677.781685416359(4) +60.98890558082(3)i
C̃15 39.16534583189576(7) −25.4499871826937(2)i 241.831254926637(1) +4.598226420586(8)i
C̃16 −836.1431845019487(2) +1919.8914608337251(5)i −4705.203635368519(3) −133.04073892441(2)i
C̃17 211.84243726907142(8) −444.4250214319400(2)i 1209.872769007002(1) −209.103233459857(9)i
C̃18 −151.28423041348620(2) +280.05847249315241(4)i −995.9677131986800(3) +317.651160869855(2)i

ϵ2

C̃1 358.435348615485(5) +310.03267103681(4)i
C̃2 −252.81903915070(2) −259.4543497646(1)i
C̃3 1109.87548071169(2) +462.1675338813(1)i
C̃4 −1159.10636364958(6) −539.5615499051(4)i
C̃5 313.9931787576301(1) −12.444866459178(1)i
C̃6 −277.644093457682(1) −441.834809618452(9)i
C̃7 −316.694563703151(5) +59.79040619545(4)i
C̃8 −636.180869340823(2) +454.47809938642(1)i
C̃9 3552.534471060474(8) −2302.45778602109(6)i
C̃10 −580.0155059020637(3) +130.839505740823(2)i
C̃11 4846.883384466256(9) −5595.91211694132(7)i
C̃12 −3082.45560988524(7) −3974.3098758183(6)i
C̃13 −1474.71226083154(1) +1983.66852440014(8)i
C̃14 −1804.8789454185(2) −839.258416267(2)i
C̃15 557.18572869152(6) +357.9967243465(4)i
C̃16 −3023.5448928791(2) −2897.999716494(1)i
C̃17 1557.94171262599(6) −345.6491005308(5)i
C̃18 −1983.88046656304(1) −308.4708418434(1)i
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C.2. Numerical results for the projection coefficients at the benchmark phase space point

Table C.6.: Numerical results for projection coefficients of the leading-colour two-loop vector
current at the benchmark phase space point.

ϵ−4 ϵ−3

C1 0(2 · 10−20) +0(2 · 10−20)i 0(2 · 10−18) +0(2 · 10−18)i
C2 0(7 · 10−20) +0(7 · 10−20)i 0(7 · 10−18) +0(6 · 10−18)i
C3 0(9 · 10−20) +0(9 · 10−20)i 0(7 · 10−18) +0(6 · 10−18)i
C4 0(3 · 10−19) +0(3 · 10−19)i 0(2 · 10−17) +0(2 · 10−17)i
C5 −5.000000000000000000000(1) +0(1 · 10−21)i −58.73264873833704788(8) − 62.83185307179586477(8)i
C6 0(1 · 10−20) +0(1 · 10−20)i 0(1 · 10−18) +0(8 · 10−19)i
C7 0(4 · 10−20) +0(4 · 10−20)i 0(4 · 10−18) +0(3 · 10−18)i
C8 0(5 · 10−22) +0(5 · 10−22)i 0(2 · 10−16) +0(2 · 10−16)i
C9 0(7 · 10−21) +0(7 · 10−21)i 0(6 · 10−16) +0(6 · 10−16)i
C10 12.5000000000000000000000(2) +0(2 · 10−22)i 146.8316218458426197(3) + 157.0796326794896619(3)i
C11 100.000000000000000000000(5) +0(5 · 10−21)i 1174.652974766740958(4) + 1256.637061435917295(4)i
C12 0(5 · 10−19) +0(5 · 10−19)i 0(4 · 10−17) +0(4 · 10−17)i
C13 0(9 · 10−20) +0(9 · 10−20)i 0(9 · 10−18) +0(7 · 10−18)i
C14 0(1 · 10−18) +0(1 · 10−18)i 0(9 · 10−17) +0(8 · 10−17)i
C15 0(3 · 10−19) +0(3 · 10−19)i 0(3 · 10−17) +0(2 · 10−17)i
C16 0(1 · 10−18) +0(1 · 10−18)i 0(1 · 10−16) +0(1 · 10−16)i
C17 0(5 · 10−19) +0(5 · 10−19)i 0(7 · 10−16) +0(7 · 10−16)i
C18 0(1 · 10−19) +0(1 · 10−19)i 0(6 · 10−17) +0(6 · 10−17)i

ϵ−2 ϵ−1

C1 34.390091675571540341(6) − 22.052635668615086668(2)i 436.3736145578179(1) + 169.57294397632336(5)i
C2 −26.93605841404293597(3) + 14.99825598845561843(2)i −321.1208159849225(4) − 153.4065168251449(2)i
C3 49.77462167280342009(2) − 60.124795938286530913(3)i 945.6545636841054(4) + 43.7138690267257(2)i
C4 −63.7349240320747159(1) + 60.46808510021193009(5)i −1033.033081382494(2) − 154.3222994420328(7)i
C5 177.3951791076847100(8) − 388.11231236436841436(8)i 927.18118779032684(1) + 263.032982260747849(6)i
C6 −58.007557435402019641(6) − 1.626938320463862713(4)i −317.006846969215152(8) − 456.49392756170799(2)i
C7 57.55411619847007959(2) + 3.98170927995483322(2)i 287.86623645287897(4) + 457.19890562754362(7)i
C8 −42.2398048473806029(3) + 141.291807020492159(2)i −1557.58468756425843(2) + 594.896251666465752(5)i
C9 8.76260295557899(1) −398.926871089090174(5)i 3510.63882192932496(7) −2745.62437493479626(4)i
C10 −430.4893744860099707(3) + 955.679434939660420(3)i −2079.72567400911941(1) − 631.732169106807291(4)i
C11 −3477.61803871603007(2) + 6698.23256580698790(2)i −8602.4011594749452(2) − 11957.62759921159564(8)i
C12 −501.3606976274092501(2) + 614.36983749155453467(5)i −8254.478564124592(3) − 460.276709222962(1)i
C13 100.334192993000788(2) − 73.055246875244173(2)i 1371.3340331648884(1) + 418.0561740339241(2)i
C14 −98.3185347922718829(4) + 76.8626311939448872(2)i −1467.798666568817(8) − 316.702311530926(3)i
C15 39.1653458318957589(1) − 25.44998718269373940(6)i 524.061989369156(2) + 171.1943008949349(8)i
C16 413.5776745240075071(6) − 641.9934308082692114(3)i 7871.58390350628(1) − 561.335163626064(4)i
C17 −340.03231445003650(1) + 545.687485486792294(1)i −7256.387464550672(4) + 630.324692598777(2)i
C18 −25.642571933681309(4) − 89.536343565537783(3)i 518.438798819698(1) − 862.9293094044211(4)i

ϵ0

C1 −40.107882844428(5) + 1831.4848563593947(6)i
C2 420833.33195088415(1) + 3667.4622531409147(7)i
C3 −419103.36993232946(3) − 1427.169322978936(5)i
C4 −1178.81920613765(8) − 4309.49348100966(1)i
C5 −13178.1690300339339(1) −1126.09984800773147(1) i
C6 533505.997618679724(9) + 12211.496291227070(3)i
C7 −2.07817354864 · 106(3) +8003.50564104692(1) i
C8 −270571.123453530908(4) − 11885.741799955149(1)i
C9 1.05334198405 · 106(2) +5867.809983392475(5) i
C10 12277.32613007092649(1) − 610.30656900787797(2)i
C11 −397479.12422426227(1) − 14388.710941236483(4)i
C12 −4268.5952410965(1) − 26570.11157108272(1)i
C13 4.63440956861 · 106(8) − 55344.84107144175(2)i
C14 −1.4307710776 · 106(4) + 12472.80882474580(5)i
C15 −1.42771480277 · 106(6) + 21340.975898517279(3)i
C16 7424.2906255255(4) + 23179.59792244033(5)i
C17 −853589.6323304906(2) − 35665.49158421301(3)i
C18 226810.59446225434(5) + 18575.403270183907(7)i
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C. Numerical results

Table C.7.: Numerical results for projection coefficients of the leading-colour two-loop axial-
vector current at the benchmark phase space point.

ϵ−4 ϵ−3

C̃1 0(7 · 10−21) +0(7 · 10−21)i 0(4 · 10−19) +0(3 · 10−19)i
C̃2 0(2 · 10−20) +0(2 · 10−20)i 0(1 · 10−18) +0(1 · 10−18)i
C̃3 0(3 · 10−20) +0(3 · 10−20)i 0(2 · 10−18) +0(1 · 10−18)i
C̃4 0(9 · 10−20) +0(9 · 10−20)i 0(5 · 10−18) +0(4 · 10−18)i
C̃5 1.2500000000000000000000(4) +0(4 · 10−22)i 14.68316218458426197(2) + 15.70796326794896619(2)i
C̃6 0(1 · 10−21) +0(1 · 10−21)i 0(1 · 10−19) +0(1 · 10−19)i
C̃7 0(5 · 10−21) +0(5 · 10−21)i 0(5 · 10−19) +0(4 · 10−19)i
C̃8 0(1 · 10−21) +0(1 · 10−21)i 0(5 · 10−17) +0(5 · 10−17)i
C̃9 0(5 · 10−21) +0(5 · 10−21)i 0(5 · 10−17) +0(5 · 10−17)i
C̃10 −3.12500000000000000000000(5) +0(5 · 10−23) i −36.70790546146065492(7) − 39.26990816987241548(7)i
C̃11 −25.000000000000000000000(4) +0(4 · 10−21)i −293.6632436916852394(9) − 314.1592653589793238(9)i
C̃12 0(1 · 10−19) +0(1 · 10−19)i 0(7 · 10−18) +0(6 · 10−18)i
C̃13 0(1 · 10−20) +0(1 · 10−20)i 0(1 · 10−16) +0(1 · 10−16)i
C̃14 0(4 · 10−19) +0(4 · 10−19)i 0(2 · 10−17) +0(2 · 10−17)i
C̃15 0(9 · 10−20) +0(9 · 10−20)i 0(5 · 10−18) +0(4 · 10−18)i
C̃16 0(3 · 10−19) +0(3 · 10−19)i 0(1 · 10−17) +0(1 · 10−17)i
C̃17 0(1 · 10−19) +0(1 · 10−19)i 0(2 · 10−16) +0(2 · 10−16)i
C̃18 0(3 · 10−20) +0(3 · 10−20)i 0(2 · 10−17) +0(2 · 10−17)i

ϵ−2 ϵ−1

C̃1 −8.597522918892885086(1) + 5.5131589171537716670(3)i −109.09340363945448(3) − 42.39323599408084(1)i
C̃2 6.734014603510733994(5) − 3.7495639971139046082(8)i 80.2802039962306(1) + 38.35162920628621(5)i
C̃3 −12.443655418200855023(3) + 15.031198984571632729(2)i −236.4136409210264(1) − 10.92846725668142(5)i
C̃4 15.93373100801867898(2) − 15.11702127505298252373(6)i 258.2582703456234(4) + 38.5805748605082(2)i
C̃5 −46.7575532371614797(2) + 99.53684530717243107(2)i −261.864563012740778(3) − 76.996566458029283(1)i
C̃6 26.6662923185862551667(9) − 55.6670023262884164920(6)i 572.025193010961953(5) + 11.639327839887375(2)i
C̃7 14.370141039300565435(4) − 59.852306789039277594(2)i 530.68936972022600(1) − 126.03595515087020(1)i
C̃8 −5.6073729282227953(3) − 6.3181189513489540(9)i 38.696557506741459(4) − 109.322955162315584(3)i
C̃9 3.514427898262200(2) +85.551256885842613(1)i −719.03895228414526(2) +630.45372367149488(2)i
C̃10 114.68266404058245153(7) − 247.5950043446040854(8)i 622.297030683571794(3) + 182.598037836416053(1)i
C̃11 925.370829092582240(4) − 1758.055896122233080(4)i 3089.98977468752370(5) + 3106.17974828381808(2)i
C̃12 223.51658249424946917(2) − 471.386590402032052896(2)i 4883.2109169225535(4) + 45.9893989388630(2)i
C̃13 7.570961516902039(2) − 80.3728696112336446(6)i 658.28763365977269(2) − 378.27915231560847(2)i
C̃14 24.57963369806797073(6) − 19.215657798486221799(1)i 366.949666642204(2) + 79.1755778827316(8)i
C̃15 −9.79133645797393973(2) + 6.362496795673434848(4)i −131.0154973422891(5) − 42.7985752237337(2)i
C̃16 209.03579612548717773(4) − 479.972865208431265145(3)i 4844.933522777231(1) − 152.4115626774606(6)i
C̃17 −52.960609317267855(2) + 111.1062553579849978(3)i −1165.9793942302377(6) + 66.5287506662209(3)i
C̃18 37.821057603371549(1) − 70.0146181232881031(8)i 807.0319288835549(2) − 60.45027422131332(7)i

ϵ0

C̃1 34.463211163189(1) − 453.8889032245627(2)i
C̃2 −56816.077862557407(3) − 8678.0860819996628(2)i
C̃3 56320.743623925221(7) + 8095.412438429639(1)i
C̃4 165.81850617429(2) + 1061.001935527068(2)i
C̃5 4055.07742980377662(2) + 70.172019174376264(4)i
C̃6 −47340.058116129494(1) − 5472.5961255544885(4)i
C̃7 152570.065173594233(4) + 26280.029712196229(1)i
C̃8 24179.1233229337806(4) + 3791.1341631314068(2)i
C̃9 −79528.394464859820(1) − 14105.0630456657011(6)i
C̃10 −3869.743788317160433(4) +573.632508153165017(6) i
C̃11 50219.325715053084(2) + 13796.6591534091791(8)i
C̃12 −3601.65082608213(2) + 14866.467407359821(2)i
C̃13 −380734.415950966356(9) − 60032.286394715905(3)i
C̃14 −307349.29968204729(8) − 48110.952257626809(8)i
C̃15 307487.59107137777(1) + 49066.3054630638677(5)i
C̃16 −3026.18334822615(6) + 14184.808723951771(8)i
C̃17 −113799.76060038346(3) − 21771.484041572459(3)i
C̃18 20048.121740313765(6) + 5917.9824381401940(6)i
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C.3. Numerical results at a special phase space point

Table C.8.: Numerical results for the projection coefficients of the leading-colour two-loop
Goldstone current at the benchmark phase space point. The coefficients are de-
noted with Ci in this table. These coefficients are used to check Ward identities
for the axial-vector current. The imaginary parts of the order ϵ−4 coefficients of
C1 and C4 are very small but still larger than the numerical uncertainty. However,
the corresponding values and uncertainties are very close to the relative numerical
uncertainty of the ODE solver.

ϵ−4 ϵ−3

C1 −25.00000000000000000000003(6) −2.0(6) · 10−22i −293.663243691685239(1) −314.159265358979324(1)i
C2 0(5 · 10−23) +0(5 · 10−23)i 0(2 · 10−17) +0(2 · 10−17)i
C3 0(3 · 10−21) +0(3 · 10−21)i 0(2 · 10−15) +0(2 · 10−15)i
C4 12.49999999999999999999999(1) +1.7(2) · 10−23i 146.8316218458426197(3) +157.0796326794896619(3)i

ϵ−2 ϵ−1

C1 813.390437723163500(4) −1498.508670538396986(6)i 429.29108907778144(6) +3266.80728995552939(2)i
C2 −7.1115399320092789(6) +6.2331012670417072(8)i −112.4621183727917767(2) −21.2697942546158424(8)i
C3 104.23770461571568(2) −1019.465947080002630(5)i 9615.4064161824442(1) −6332.65407328559204(8)i
C4 −421.9003316304697997(2) +875.549180442447192(4)i −1413.06605740846729(1) −895.417151795146229(4)i

ϵ0

C1 −5961.139452215265(1) −3284.5893836887026(4)i
C2 −78.76084008549019(4) −405.62332102753189(1)i
C3 33019.950476359272(3) +25329.5796100445823(7)i
C4 −902.8220232330503(3) −1371.5968201254246(1)i

C.3. Numerical results at a special phase space point

The master integral basis of the double-box integral family becomes degenerate at the phase
space point x = z = m = 289/2500, s = 1. This gives rise to eq. (4.65) as well as the identities

I0,0,3,0,2,2,0 =I3,2,0,0,2,0,0,

I0,0,4,0,2,2,0 =I4,2,0,0,2,0,0,

I2,0,3,0,1,1,0 =I3,1,2,0,1,0,0,

I2,0,0,1,2,0,2 =I1,2,0,2,2,0,0,

I1,0,0,2,2,0,2 =I2,2,0,1,2,0,0,

I2,0,2,0,2,1,0 = + I4,0,4,0,0,0,0
18m3s

m2 − 6m+ 1

(︄
− 1
ϵ2

+ 1
ϵ

+ 7m2 + 2m− 1
m2(m2 − 6m+ 1) + O (ϵ)

)︄

+ I3,2,0,0,2,0,0
m2

m2 − 6m+ 1

(︃
− 1
ϵ2

+ 7
ϵ

− 14 + O (ϵ)
)︃

+ I4,2,0,0,2,0,0
3m3s

m2 − 6m+ 1

(︃
− 1
ϵ2

+ 1
ϵ

+ O (ϵ)
)︃

+ I3,0,3,0,1,0,0

(︄
−6m2 − 2m+ 1
m (m2 − 6m+ 1) + O (ϵ)

)︄

+ I3,0,3,0,2,0,0

(︄
−16sm2 + 8sm− s

m (m2 − 6m+ 1) + O (ϵ)
)︄

+ I3,1,2,0,1,0,0

(︄
2
(︁
m2 + 4m− 1

)︁
m2 − 6m+ 1 + O (ϵ)

)︄

+ I3,2,1,0,1,0,0

(︄
4
(︁
3m2 −m

)︁
m2 − 6m+ 1 + O (ϵ)

)︄
. (C.1)

The required master integrals are given in tab. C.9. These identities are fulfilled within the
estimated uncertainties. The relative differences of the left- and right-hand sides of eq. (C.1)
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C. Numerical results

are below 10−16 for all coefficients up to order ϵ0.

Table C.9.: Numerical values for some two-loop master integrals at the phase space point
x = z = m = 289/2500 and s = 1.

integral value

I4,0,4,0,0,0,0 ( 2.078652208559656986(2) + 0(3 · 10−24)i) ϵ−4

+(6.570219107579427363(7) + 0(9 · 10−24)i) ϵ−3

+(13.80284414143316133(1) + 0(2 · 10−23)i) ϵ−2

+(20.08198957993065536(2) + 0(3 · 10−23)i) ϵ−1

+(24.39720734155296971(2) + 0(3 · 10−23)i) ϵ0

I2,2,0,1,2,0,0 ( 2.763497344885674096(3) − 2.187689190010290673(2)i) ϵ−2

+(26.43230679419105819(3) + 2.822891659036842250(3)i) ϵ−1

+(81.27312135968845723(8) + 68.70025467847656357(7)i) ϵ0

I1,2,0,2,2,0,0 ( 1.873152895628368976(2) − 3.011856071206025785(3)i) ϵ−2

+(21.98014017263183268(2) − 9.430219854150125426(9)i) ϵ−1

+(87.17672560054666128(9) − 5.272259003634755705(5)i) ϵ0

I0,0,3,0,2,2,0 ( −2.162629757785467128(2) − 3.397050879746748744(3)i) ϵ−4

+(1.027457904992505621(1) − 26.68028303095864959(3)i) ϵ−3

+(56.32677742941012565(6) − 89.87039692128182526(9)i) ϵ−2

+(281.9105698387693922(3) − 138.7370573487527360(1)i) ϵ−1

+(737.0268780425461068(7) + 64.49168362831650646(6)i) ϵ0

I0,0,4,0,2,2,0 ( −6.235956625678970957(6) + 9.79541776166882568(1)i) ϵ−4

+(−86.03569241217430212(9) + 27.95567656350895580(3)i) ϵ−3

+(−359.9490542763335962(4) − 140.6576258092432336(1)i) ϵ−2

+(−577.2258255834204541(6) − 1051.381337111411663(1)i) ϵ−1

+(593.4688122222393216(6) − 2965.195844042988107(3)i) ϵ0

I2,0,3,0,1,1,0 ( −2.257454804119177900(2) − 1.886219863445238394(2)i) ϵ−2

+(−3.915306717367840388(4) − 11.61854696487315544(1)i) ϵ−1

+(0.5421001201460687601(5) − 33.51384153016527507(3)i) ϵ0

I2,0,2,0,2,1,0 ( 0.006712851207298924330(7) − 3.665667088168171970(4)i) ϵ−2

+(14.45906123773678721(1) − 16.54003268430997070(2)i) ϵ−1

+(69.33371847434661383(7) − 20.97674984524004457(2)i) ϵ0

I2,2,1,0,1,1,0 ( −7.465927050084259117(7) − 11.22169571735170823(1)i) ϵ−2

+(−23.03851477578925928(2) − 108.4534205700704758(1)i) ϵ−1

+(45.35783723949059610(5) − 537.1045066725525650(5)i) ϵ0

I2,1,2,0,1,1,0 ( −3.724822437658699349(4) − 3.932457430485097542(4)i) ϵ−2

+(−8.971110547133893803(9) − 29.11731338083836246(3)i) ϵ−1

+(3.592292917822887715(6) − 105.3100197929409337(1)i) ϵ0

I2,1,1,0,2,1,0 ( 0.3337392296703365378(3) − 6.200346365572559716(6)i) ϵ−2

+(29.08330535780810964(3) − 36.64179951461972767(4)i) ϵ−1

+(181.8528336546817851(2) − 77.80716592107028308(8)i) ϵ0

I1,2,1,0,2,1,0 ( 10.45284260697314155(1) − 21.32903507509364087(2)i) ϵ−2

+(216.2607082599166582(2) − 158.4615203262954675(2)i) ϵ−1

+(1648.582453457273170(2) − 408.4744365869250567(4)i) ϵ0
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C.3. Numerical results at a special phase space point

integral value

I3,2,0,0,2,0,0 ( −2.162629757785467128(2) − 3.397050879746748744(3)i) ϵ−4

+(1.027457904992505621(1) − 26.68028303095864959(3)i) ϵ−3

+(56.32677742941012565(6) − 89.87039692128182526(9)i) ϵ−2

+(281.9105698387693922(3) − 138.7370573487527360(1)i) ϵ−1

+(737.0268780425461068(7) + 64.49168362831650646(6)i) ϵ0

I2,0,0,1,2,0,2 ( 1.873152895628368976(2) − 3.011856071206025785(3)i) ϵ−2

+(21.98014017263183268(2) − 9.430219854150125426(9)i) ϵ−1

+(87.17672560054666128(9) − 5.272259003634755705(5)i) ϵ0

I4,2,0,0,2,0,0 ( −6.235956625678970957(6) + 9.79541776166882568(1)i) ϵ−4

+(−86.03569241217430212(9) + 27.95567656350895580(3)i) ϵ−3

+(−359.9490542763335962(4) − 140.6576258092432336(1)i) ϵ−2

+(−577.2258255834204541(6) − 1051.381337111411663(1)i) ϵ−1

+(593.4688122222393216(6) − 2965.195844042988107(3)i) ϵ0

I1,0,0,2,2,0,2 ( 2.763497344885674096(3) − 2.187689190010290673(2)i) ϵ−2

+(26.43230679419105819(3) + 2.822891659036842250(3)i) ϵ−1

+(81.27312135968845723(8) + 68.70025467847656357(7)i) ϵ0

I3,0,3,0,1,0,0 ( −1.409936741342077648(1) − 1.108080930636926778(1)i) ϵ−2

+(−0.9206327685325961820(9) − 5.556793652942957830(6)i) ϵ−1

+(2.515253083956218707(3) − 11.94384732458145779(1)i) ϵ0

I3,0,3,0,2,0,0 ( −2.868063126893464638(3) − 0.7970471023995619243(8)i) ϵ−2

+(−7.987917443824880694(8) − 16.42852181647373565(2)i) ϵ−1

+(22.10458535463570666(2) − 55.91465303475725122(6)i) ϵ0

I3,2,1,0,1,0,0 ( −4.524964575272350187(5) − 3.994540222364581135(4)i) ϵ−2

+(−16.58397358460685181(2) − 32.92183861734267093(3)i) ϵ−1

+(−29.02978617163272324(3) − 137.6991174728067040(1)i) ϵ0

I3,1,2,0,1,0,0 ( −2.257454804119177900(2) − 1.886219863445238394(2)i) ϵ−2

+(−3.915306717367840388(4) − 11.61854696487315544(1)i) ϵ−1

+(0.5421001201460687601(5) − 33.51384153016527507(3)i) ϵ0
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[224] Johannes Blümlein. Analytic integration methods in quantum field theory: an Introduc-

tion. 3 2021.
[225] Go Mishima. High-Energy Expansion of Two-Loop Massive Four-Point Diagrams. JHEP,

02:080, 2019.
[226] Erik Panzer. On hyperlogarithms and Feynman integrals with divergences and many

scales. JHEP, 03:071, 2014.
[227] Hung Cheng and T. T. Wu. EXPANDING PROTONS: SCATTERING AT HIGH-

ENERGIES. 1987.
[228] Vladimir A. Smirnov. Asymptotic expansions of two loop Feynman diagrams in the Su-

dakov limit. Phys. Lett. B, 404:101–107, 1997.
[229] Thomas Becher and Matthias Neubert. Drell-Yan Production at Small qT , Transverse

Parton Distributions and the Collinear Anomaly. Eur. Phys. J. C, 71:1665, 2011.
[230] Michał Czakon, Paul Fiedler, Tobias Huber, Mikołaj Misiak, Thomas Schutzmeier, and

Matthias Steinhauser. The (Q7, Q1,2) contribution to B → Xsγ at O
(︁
α2

s
)︁
. JHEP, 04:168,

2015.
[231] Kirill Melnikov, Lorenzo Tancredi, and Christopher Wever. Two-loop gg → Hg amplitude

mediated by a nearly massless quark. JHEP, 11:104, 2016.
[232] Kirill Kudashkin, Kirill Melnikov, and Christopher Wever. Two-loop amplitudes for pro-

cesses gg → Hg, qg → Hq and qq̄ → Hg at large Higgs transverse momentum. JHEP,
02:135, 2018.

[233] Claude Duhr and Falko Dulat. PolyLogTools — polylogs for the masses. JHEP, 08:135,
2019.

146



Bibliography

[234] D Maitre. HPL, a mathematica implementation of the harmonic polylogarithms. Comput.
Phys. Commun., 174:222–240, 2006.

[235] Daniel Maitre. Extension of HPL to complex arguments. Comput. Phys. Commun.,
183:846, 2012.

[236] Christian W. Bauer, Alexander Frink, and Richard Kreckel. Introduction to the GiNaC
framework for symbolic computation within the C++ programming language. J. Symb.
Comput., 33:1, 2000.

[237] Karsten Ahnert and Mario Mulansky. Odeint – Solving Ordinary Differential Equations
in C++. AIP Conference Proceedings, 1389(1):1586–1589, 2011.

[238] Boost C++ Libraries. http://www.boost.org. (19.04.2022).
[239] R. Bulirsch and J. Stoer. Numerical treatment of ordinary differential equations by ex-

trapolation methods. Numer. Math, 8:1–13, 1966.
[240] Ernst Hairer. Solving Ordinary Differential Equations I Nonstiff Problems / by Ernst

Hairer, Syvert Paul Nørsett, Gerhard Wanner. Springer Series in Computational Mathe-
matics, 8. Berlin, Heidelberg, 1987.

[241] Michele Caffo, H. Czyz, and E. Remiddi. Numerical evaluation of the general massive 2
loop sunrise selfmass master integrals from differential equations. Nucl. Phys., B634:309–
325, 2002.

[242] Michele Caffo, Henryk Czyz, Michal Gunia, and Ettore Remiddi. BOKASUN: A Fast
and precise numerical program to calculate the Master Integrals of the two-loop sunrise
diagrams. Comput. Phys. Commun., 180:427–430, 2009.

[243] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes in C. Cambridge University Press, Cambridge, USA, second edition, 1992.

[244] R. Bulirsch and J. Stoer. Introduction to Numerical Analysis. Texts in Applied Mathe-
matics. Springer, New York, NY, 3rd edition, 2002.

[245] R. W. Clough and J. L. Tocher. Finite element stiffness matrices for the analysis of plate
bending. In Proc. Matrix Methods in Structural Analysis, Wright-Patterson Air Force
Base, Ohio, October 26-28 1965.

[246] Gilbert Strang and George J Fix. An analysis of the finite element method. Prentice-Hall
series in automatic computation. Prentice-Hall, Englewood Cliffs, NJ, 1973.

[247] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni, and E. Vryonidou. NLO predictions
for Higgs boson pair production with full top quark mass dependence matched to parton
showers. JHEP, 08:088, 2017.

[248] T. Hahn. CUBA: A Library for multidimensional numerical integration. Comput. Phys.
Commun., 168:78–95, 2005.

[249] T. Hahn. Concurrent Cuba. J. Phys. Conf. Ser., 608(1):012066, 2015.
[250] J.A.M. Vermaseren. New features of FORM. 10 2000.
[251] J. Kuipers, T. Ueda, and J.A.M. Vermaseren. Code Optimization in FORM. Comput.

Phys. Commun., 189:1–19, 2015.
[252] Ben Ruijl, Takahiro Ueda, and Jos Vermaseren. FORM version 4.2. 7 2017.
[253] Paulo Nogueira. Automatic Feynman graph generation. J. Comput. Phys., 105:279–289,

1993.
[254] R. Kleiss and W. James Stirling. Spinor Techniques for Calculating p anti-p —> W+- /

Z0 + Jets. Nucl. Phys. B, 262:235–262, 1985.
[255] Lance J. Dixon. Calculating scattering amplitudes efficiently. In Theoretical Advanced

Study Institute in Elementary Particle Physics (TASI 95): QCD and Beyond, pages 539–
584, 1 1996.

[256] Ansgar Denner, Stefan Dittmaier, and Lars Hofer. Collier: a fortran-based Complex One-
Loop LIbrary in Extended Regularizations. Comput. Phys. Commun., 212:220–238, 2017.

[257] T. Hahn and M. Perez-Victoria. Automatized one loop calculations in four-dimensions

147



Bibliography

and D-dimensions. Comput. Phys. Commun., 118:153–165, 1999.
[258] A. van Hameren. OneLOop: For the evaluation of one-loop scalar functions. Comput.

Phys. Commun., 182:2427–2438, 2011.
[259] R. Keith Ellis and Giulia Zanderighi. Scalar one-loop integrals for QCD. JHEP, 02:002,

2008.
[260] Stefano Carrazza, R. Keith Ellis, and Giulia Zanderighi. QCDLoop: a comprehensive

framework for one-loop scalar integrals. Comput. Phys. Commun., 209:134–143, 2016.
[261] G. J. van Oldenborgh and J. A. M. Vermaseren. New Algorithms for One Loop Integrals.

Z. Phys. C, 46:425–438, 1990.
[262] David J. Broadhurst, N. Gray, and K. Schilcher. Gauge invariant on-shell Z(2) in QED,

QCD and the effective field theory of a static quark. Z. Phys. C, 52:111–122, 1991.
[263] Stefano Catani. The Singular behavior of QCD amplitudes at two loop order. Phys. Lett.

B, 427:161–171, 1998.
[264] S. Mert Aybat, Lance J. Dixon, and George F. Sterman. The Two-loop soft anoma-

lous dimension matrix and resummation at next-to-next-to leading pole. Phys. Rev. D,
74:074004, 2006.

[265] Alexander Mitov, George F. Sterman, and Ilmo Sung. The Massive Soft Anomalous
Dimension Matrix at Two Loops. Phys. Rev. D, 79:094015, 2009.

[266] Thomas Becher and Matthias Neubert. On the Structure of Infrared Singularities of
Gauge-Theory Amplitudes. JHEP, 06:081, 2009. [Erratum: JHEP 11, 024 (2013)].

[267] Thomas Becher and Matthias Neubert. Infrared singularities of QCD amplitudes with
massive partons. Phys. Rev. D, 79:125004, 2009. [Erratum: Phys.Rev.D 80, 109901
(2009)].

[268] Andrea Ferroglia, Matthias Neubert, Ben D. Pecjak, and Li Lin Yang. Two-loop diver-
gences of massive scattering amplitudes in non-abelian gauge theories. JHEP, 11:062,
2009.

[269] Michal Czakon, Alexander Mitov, and George F. Sterman. Threshold Resummation for
Top-Pair Hadroproduction to Next-to-Next-to-Leading Log. Phys. Rev. D, 80:074017,
2009.

[270] Thomas Becher, Alessandro Broggio, and Andrea Ferroglia. Introduction to Soft-Collinear
Effective Theory, volume 896. Springer, 2015.

[271] S. Catani and M. H. Seymour. The Dipole formalism for the calculation of QCD jet
cross-sections at next-to-leading order. Phys. Lett. B, 378:287–301, 1996.

[272] S. Catani and M. H. Seymour. A General algorithm for calculating jet cross-sections
in NLO QCD. Nucl. Phys. B, 485:291–419, 1997. [Erratum: Nucl.Phys.B 510, 503–504
(1998)].

[273] C. Anastasiou, E. W. Nigel Glover, and C. Oleari. The two-loop scalar and tensor
pentabox graph with light-like legs. Nucl. Phys., B575:416–436, 2000. [Erratum: Nucl.
Phys.B585,763(2000)].

[274] John M. Campbell, R. Keith Ellis, Michal Czakon, and Sebastian Kirchner. Two loop
correction to interference in gg → ZZ. JHEP, 08:011, 2016.

148



Danksagung

Ich bedanke mich bei Prof. Peter Uwer, der meine Forschung und mein Promotionsstudium
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