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Summary 

 
Obesity increases the risk of developing common metabolic disorders such as the metabolic 

syndrome. This is a metabolic abnormality commonly associated with high body weight, 

ectopic fat storage, insulin resistance, high blood pressure, and mild chronic inflammation. 

Estimates of heritability for each trait of metabolic syndrome are high, with some estimates 

exceeding 50%. Nevertheless, identified loci from genome-wide association studies (GWAS) 

on features of the metabolic syndrome together explain only 1 to 7% of the variance in the 

human population. Further studies are needed to identify additional causative genes and to 

better understand their direct and interaction effects that contribute to the metabolic 

syndrome. These studies can be performed on experimental populations such as controlled 

mouse populations, allowing for easier correction for environmental factors or family 

structures compared to human populations. 

The Berlin fat mouse population was selected for juvenile obesity. In a cross between the 

most obese inbred line BFMI860 and the lean control line C57BL/6NCrl, we previously 

identified a recessive genetic defect at a locus on chromosome 3 that accounts for 40% of 

the variance in body fat weight at 6 weeks of age (Neuschl et al., 2010a), (Arends, Heise, 

Kärst, Trost, & Brockmann, 2016). This juvenile obesity locus (jObes1) is fixed in all BFMI 

lines. 

In the current studies, we aimed to identify additional genetic factors that contribute to 

obesity, the metabolic syndrome and fatty liver disease in the Berlin fat mouse. In the focus 

of the studies presented in this thesis, the BFMI861-S1 line served as a model for traits 

associated with obesity and the metabolic syndrome. 

To investigate the cause of a metabolic disorder in BFMI861-S1, we used two different 

breeding partners and generated advanced intercross line (AIL) populations. In these AILs, 

we performed QTL mapping and then prioritization of candidate genes using multiple data 

sources such as whole-genome sequencing and gene expression data. 
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The BFMI861-S1 lineage exhibits high body weight, increased hepatic fat storage, low insulin 

sensitivity, and impaired glucose tolerance, while the BFMI861-S2 lineage is insulin sensitive 

despite obesity. These two lines are genetically very similar. Therefore, the remaining 

genetic diversity must be responsible for the phenotypic differences. To identify genetic loci 

responsible for the observed obesity and impaired glucose homeostasis in BFMI861-S1 mice 

independent of the jObes1 locus, an advanced intercross line was generated, resulting from 

an initial cross between BFMI861-S1 and BFMI861 -S2. 

The second AIL was generated from BFMI861-S1 and B6N (AIL (BFMI861-S1xB6N)), where B6N 

is a lean reference mouse line to BFMI861-S1. 

Overlapping QTL for gonadal fat weight and blood glucose concentration on chromosome 3 

and for gonadal fat weight, liver weight and blood glucose concentration on chromosome 17 

were identified in the AIL (BFMI861-S1xBFMI861-S2). An additional QTL for gonadal fat weight 

is located on chromosome 15. In addition, two QTL with the time course of body weight 

development from weeks 9 to 25 were found on chromosomes 15 and 16. 

In the second AIL (BFMI861-S1xB6N), three QTLs associated with liver weight, body weight 

and subcutaneous adipose tissue weight were identified. A highly significant QTL on 

chromosome 1 showed an association with liver weight. A QTL for body weight at 20 weeks 

of age overlapping with a QTL for subcutaneous fat weight was found at chromosome 3. In a 

multiple QTL mapping approach, another QTL influencing body weight at 16 weeks of age at 

chromosome 6 was identified. Interestingly, the top candidate genes for the identified QTL 

were previously associated with metabolic traits. 

By combining QTL mapping with a detailed prioritization approach, we were able to identify 

new candidate genes in both cross populations and strengthen already known candidates 

associated with metabolic syndrome traits in the BFMI861-S1 line. 

 

 

 
 



IX 

Zusammenfassung 

 

 

 

Zusammenfassung 

Adipositas erhöht das Risiko, weit verbreitete Stoffwechselstörungen wie das metabolische 

Syndrom zu entwickeln. Hierbei handelt es sich um eine Stoffwechselanomalien, die meist 

mit hohem Körpergewicht, ektoper Fettspeicherung, Insulinresistenz, Bluthochdruck und 

leichten chronischen Entzündungen verbunden ist. Heritabilitätsschätzungen für jedes 

Merkmal des metabolischen Syndroms sind hoch, wobei einige Schätzungen 50 % 

überschreiten. Dennoch erklären identifizierte Loci aus genomweiten Assoziationsstudien 

(GWAS) zu Merkmalen des Metabolischen Syndroms zusammen nur 1 bis 7 % der Varianz in 

der menschlichen Population. Weitere Studien sind erforderlich, um zusätzliche ursächliche 

Gene zu identifizieren und um ihre direkten und Wechselwirkungseffekte, die zum 

metabolischen Syndrom beitragen, besser zu verstehen. Diese Studien können an 

experimentellen Populationen wie kontrollierten Mauspopulationen durchgeführt werden, 

was im Vergleich zu menschlichen Populationen eine leichtere Korrektur für Umweltfaktoren 

oder Familienstrukturen ermöglicht. 

Die Population der Berliner Fettmaus wurde auf juvenile Adipositas selektiert. In einer 

Kreuzung zwischen der adipösesten Inzuchtlinie BFMI860 und der schlanken Kontrolllinie 

C57BL/6NCrl haben wir zuvor einen rezessiven genetischen Defekt an einem Ort auf 

Chromosom (Chr) 3 identifiziert, der 40 % der Varianz im Körperfettgewicht im Alter von 6 

Wochen ausmacht (Neuschl et al., 2010a) (Arends et al., 2016). Dieser juvenile Adipositas-

Locus (jObes1) ist in allen BFMI-Unterlinien fixiert. 

In den aktuellen Studien zielten wir darauf ab, zusätzliche genetische Faktoren zu 

identifizieren, die zur Fettleibigkeit, dem metabolischen Syndrom und der 

Fettlebererkrankung bei der Berliner Fettmaus beitragen. Im Focus der in der vorliegenden 

Arbeit präsentierten Studien diente die BFMI861-S1-Linie als Modell für Merkmale, die mit 

Fettleibigkeit assoziiert sind. 

Um die Ursache einer Stoffwechselstörung in BFMI861-S1 zu untersuchen, haben wir zwei 

verschiedene Zuchtpartner verwendet und vorangeschrittene Kreuzungspopulationen 

(advanced intercross line, AIL) generiert. In diesen AILs haben wir eine QTL-Kartierung und 
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anschließend eine Priorisierung von Kandidatengenen unter Verwendung mehrerer 

Datenquellen wie Whole-Genome Sequenz- und Genexpressionsdaten durchgeführt. 

Die BFMI861-S1-Linie zeigt ein hohes Körpergewicht, erhöhte hepatische Fettspeicherung, 

geringe Insulinsensitivität und eine beeinträchtigte Glukosetoleranz, während die Linie 

BFMI861-S2 trotz Fettleibigkeit insulinsensitiv ist. Diese beiden Linien sind genetisch sehr 

ähnlich. Deshalb muss die verbleibende genetische Vielfalt für die phänotypischen 

Unterschiede verantwortlich sein. Um genetische Loci zu identifizieren, die für die 

beobachtete Fettleibigkeit und die beeinträchtigte Glukosehomöostase in BFMI861-S1-

Mäusen unabhängig vom jObes1 Locus verantwortlich sind, wurde eine fortgeschrittene 

Intercross-Linie (AIL) generiert, die aus einer anfänglichen Kreuzung zwischen BFMI861-S1 

und BFMI861-S2 stammt. 

Die zweite AIL wurde aus BFMI861-S1 und B6N (AIL (BFMI861-S1xB6N)) generiert, wobei B6N 

eine schlanke Referenzmauslinie zu BFMI861-S1 ist. 

In der AIL (BFMI861-S1xBFMI861-S2) wurden überlappende QTL für das gonadale Fettgewicht 

und die Blutglukosekonzentration auf Chromosom 3 und für das gonadale Fettgewicht, 

Lebergewicht und Blutglukosekonzentration auf Chromosom 17 identifiziert. Ein zusätzlicher 

QTL für gonadales Fettgewicht befindet sich auf Chromosom 15. Darüber hinaus wurden zwei 

QTL mit dem zeitlichen Verlauf der Körpergewichtsentwicklung von Woche 9 bis 25 auf den 

Chromosomen 15 und 16 gefunden. 

In der zweiten AIL (BFMI861-S1xB6N) wurden drei QTL identifiziert, die mit dem 

Lebergewicht, dem Körpergewicht und dem Gewicht des subkutanen Fettgewebes assoziiert 

sind. Ein hochsignifikanter QTL auf Chromosomen 1 zeigte eine Assoziation mit dem 

Lebergewicht. Ein QTL für das Körpergewicht im Alter von 20 Wochen, der mit einem QTL 

für das Gewicht des subkutanen Fettgewebes überlappte, wurde auf Chromosomen 3 

gefunden. In einem multiplen QTL-Mapping-Ansatz wurde ein weiterer QTL mit Einfluss auf 

das Körpergewicht im Alter von 16 Wochen auf Chromosomen 6 identifiziert. 

Interessanterweise wurden alle Top-Kandidatengene für die identifizierten QTL zuvor mit 

metabolischen Merkmalen. 
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Durch die Verknüpfung des QTL-Mappings mit einem detaillierten Priorisierungsansatz 

konnten wir in beiden Kreuzungspopulationen neue Kandidatengene identifizieren und 

bereits bekannte Kandidaten stärken, die mit Merkmalen des metabolischen Syndroms in der 

BFMI861-S1-Linie assoziiert sind. 
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Chapter 1: Introduction 

 
1.1 Obesity and metabolic syndrome 

 
It is widely known that obesity is a complex multifactorial condition observed in all ages and 

sexes (Engin, 2017) where genetics is an important component. Overweight and obesity are 

proposed to reach levels of 89% and 85% in males and females, respectively by 2030 (Keaver 

et al., 2020). This will result in an increase in the obesity-related prevalence of coronary 

heart disease (CHD) by 97%, cancers by 61% and type 2 diabetes by 21%. In addition obesity 

is associated with decreased life expectancy by 3.3-18.7 years affecting the way we age 

(Keaver et al., 2020). 

It is obvious that obesity increases the risk of developing different metabolic disorders. 

Around 70 % of obesity patients show the metabolically unhealthy obese phenotype where 

high bodyweight is related to metabolic abnormalities such as low insulin sensitivity and 

dyslipidemia (Blüher, 2019). Only 30% of obese patients are metabolically healthy with 

normal insulin sensitivity and low visceral fat content (Blüher, 2019). 

Obesity and its related pathologies such as insulin resistance, type 2 diabetes, and fatty liver 

are associated with an imbalance of energy (Blüher, 2019). A sedentary lifestyle as well as 

the consumption of easily available energy-dense food contribute to this imbalance 

(Hebebrand et al., 2017). In addition to eating behavior, sedentary lifestyle, cultural 

influence and other environmental factors, the genetic constitution sets the stage for the 

phenotypic characteristics of obesity.  

In the last two decades, genome-wide scans identified more than one hundred loci associated 

with obesity (Goodarzi, 2018). Nevertheless, identified loci and underlying genes explain 

only 3 % of the estimated heredity of obesity related phenotypes (Goodarzi, 2018). This 

situation suggests that additional genetic loci predisposing weight gain (including low/rare 

frequency alleles) remain to be discovered. Or other genetic variants such as copy number 

variations (CNVs) and structural variants (SVs). 
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1.2 Genetic association studies 
 

The goal of genome-wide association studies (GWAS) is to identify genotype to phenotype 

associations through testing differences in the means between genotype classes of genetic 

variants such as single nucleotide polymorphisms (SNPs) between individuals that differ in 

phenotypes (Uffelmann et al., 2021). 

In the last 15 years, many loci have been associated with diseases and traits (Uffelmann et 

al., 2021). More than 5,700 GWAS have now been conducted for more than 3,300 traits and 

a push for more statistical power has thrust GWAS sample sizes well beyond a million 

participants, yielding numerous associated and replicable variants for many heritable traits 

(Watanabe et al., 2019). Therefore, many genetic associations for different phenotypes are 

currently known. However, we are facing the next big challenge in the contest of genetic 

discoveries which is the interpretation of these associations in a biological and genomic 

context. Previous GWAS have shown that most traits are influenced by thousands of causal 

variants that individually confer very little risk. These variants are often associated with 

many other traits making direct biological, causal inferences complicated (Holland et al., 

2020). In addition, in human populations genetic associations may differ across ancestries, 

complicating direct comparisons between groups of individuals drawing unambiguous 

conclusions about the biological meaning of GWAS results and limiting their utility to produce 

mechanistic insights or to serve as starting points for drug development (Uffelmann et al., 

2021) (Figure 1.1). However, these several challenges in GWAS can be resolved by using 

controlled populations such as mouse inbred lines (Hao Li & Auwerx, 2020). 
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Figure 1.1. Manhattan plot and Q-Q plot that represent the results of a human GWAS for 

BMI. 

(A) Manhattan plot of a human GWAS for BMI. (B) Q-Q plot showing an early separation of 

the observed from the expected, suggesting population stratification and limiting the utility 

to produce meaningful insights (Uffelmann et al., 2021). 
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1.3 Mouse populations for genetic studies 

 
Mouse models are essential for genetic studies because they allow high control of 

environmental factors during experiments not possible in human studies (Darvasi & Soller, 

1995). In detail, compared to human studies, mouse inbred lines allow rigorously control of 

husbandry and environmental conditions, including diet, activity, stress and the microbiome. 

In such conditions, relations between genotype and phenotype can be tested without the 

confounding effects of heterogeneous genetic backgrounds (Nadeau & Auwerx, 2019). In 

parallel, segregating crosses and outbred populations can be used to test effects of genetic 

heterogeneity. The mouse genome has also been studied in detail more than any other 

animal model, and with the high amount of freely available data sources from many different 

mouse strains genetic studies in mouse populations can be performed at accessible costs 

(Gurumurthy & Lloyd, 2019).  

Although mouse models do not perfectly approximate human biology, when used properly, 

they can provide precise insights into the human condition and enable discovery of 

fundamental biological principles, prioritize human studies and test hypotheses (Yalcin, 

Flint, & Mott, 2005). For example, a variant of the Ob gene responsible for extreme obesity 

in the ob/ob mouse was discovered and shown to encode for Leptin, which is a peptide 

secreted by the adipocytes (Zhang et al., 1994). These findings led to the clarification that 

hunger and satiety are controlled by leptin and the Leptin receptor in the hypothalamus and 

that variants in human orthologs of these genes produced similar phenotypes (Joost & 

Schürmann, 2014). Animal models and in particular mouse models are therefore essential to 

advance in genetic discoveries and to reveal the genetic contributions of complex diseases. 
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1.4 The Berlin Fat Mouse 

 
Mouse populations are essential powerful tools to perform genetic studies because as 

previously explained in mouse genetic studies environmental conditions can be perfectly 

controlled. The Berlin Fat Mouse Inbred (BFMI) line is a model organism for researching 

polygenic obesity (Arends et al., 2016), and is particularly used to understand the genetics 

behind complex traits such as obesity and associated metabolic traits. The origin of the 

different BFMI lines starts around 60 years ago when mice were bought in different pet shops 

in Berlin. After initial crossing experiments, the offspring generations were first selected for 

low protein content, followed by high body mass and high fat content and finally selected 

for high fatness and then inbred for 58 generations, which resulted in the generation of six 

BFMI strains (Wagener et al., 2006). All six of these strains are obese with high body mass, 

high total fat and reduced lean percentage (Heise et al., 2016). Using a QTL mapping 

approach in an AIL population between the most obese BFMI line (BFMI860-12) and B6N has 

discovered that 40 % of the obesity of these strains can be explained by the jObes1 locus on 

chromosome 3 which is present in all BFMI strains and predicts the Bbs7 gene as the most 

likely factor of variance in body weight (Arends et al., 2016). The cause of the remaining 

60% of body weight variance and for the reduced insulin sensitivity has not been discovered 

yet.  

The BFMI lines BFMI861-S1 and -S2 are two sublines that were generated during the process 

of inbreeding. They are 96.4% genetically identical and both carry the jObes1 obesity locus. 

However, despite the high genetic similarity they differ in several metabolic traits such liver 

triglycerides, blood glucose, and plasma insulin (Figure 1.2). In addition, the BFMI861-S1 

shows insulin resistance whereas the S2 line retains its insulin sensitivity (Heise et al., 2016). 

The BFMI861-S1 and BFMI861-S2 lines are therefore suitable mouse lines to perform genetic 

studies and to reveal genetics variants responsible for metabolic syndrome related traits. 
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Figure 1.2. Differences in metabolic traits between the two BFMI lines BFMI861-S1 (blue), 

BFMI861-S2 (green), and the reference B6N (red). FAT %, fat mass percentage; LEAN %, lean 

mass percentage; TG, triglycerides; ITT_AUC, area under the curve for insulin tolerance test. 

 

 

 

 

1.5 Mouse recombinant inbred lines and advanced intercross 
lines  

 
In the last decades much effort has been spent to identify molecular variants responsible for 

complex traits such as obesity and the metabolic syndrome. Despite the effort the 

association between complex traits and genetic variants is still poorly resolved. The final 

goal of quantitative genetics is to map the relationship between genotypes and phenotypes 

to genomic regions and quantitative trait loci (QTL). However, the associated genomic 

regions are usually large and therefore the dissection of QTL into quantitative trait 

nucleotides is still a major challenge (Delpero et al., 2021). 

Mouse populations are optimal tools for genetic studies, and different mouse populations 
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have been designed to improve the resolution of a QTL. For example, recombinant inbred 

lines (RILs) are produced by a series of continued brother-sister mating (Rockman & Kruglyak, 

2008). Additional powerful population used for genetic studies have been developed such as 

advanced intercross lines (AILs). AILs are experimental populations that can provide more 

accurate estimates of QTL map location than conventional mapping populations such as RILs 

(Darvasi & Soller, 1995). This population is produced by randomly and sequentially 

intercrossing a population initially originated from a cross between two inbred lines or some 

variant. Random mating provides increasing probability of recombination between any two 

loci (Darvasi & Soller, 1995). Considering a set of RILs we can reach many of the map-

expanding properties of an AIL. For reasonable statistical power in QTL mapping, however, 

a set consisting of large number of RILs is required. Consequently, a single AIL is efficient 

for fine mapping as a very large number of RILs resulting in a less expensive experimental 

approach. 

AILs are particularly applicable to species with a short generation cycle that can easily be 

reproduced. Inbred lines of mice are the outstanding example for mammals, because these 

can readily be crossed and subsequently intercrossed without great effort. In addition, the 

ability of AILs to increase the number of recombinational events between any two loci, leads 

to a decrease in the confidence interval of a QTL and, therefore, serves as a general fine-

mapping resource for the species in question. 
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1.6 Multiomics approaches for prioritization of candidate genes 
in a QTL region 
 

To perform genetic association studies that lead to high mapping resolution, first we need 

to choose the right population, and second, accurately detect variants that are in high 

linkage disequilibrium (LD). Over 95% of the variants in high LD (R2 > 0.8) are located outside 

of genes in the non-coding DNA and can be located several Kbs or even Mbs apart depending 

on the resolution of the used population (Broekema, Bakker, & Jonkers, 2020). Any of the 

significantly associated variants in a QTL could be the actual causal variant as well as any of 

the genes located in the confidence interval. To overcome these challenges in gene and 

nucleotides prioritization in a newly identified QTL region, computational methods that 

integrates multiple data sources (sequencing data, gene expression data, proteomics and 

literature information) help to narrow down the list of candidate genes and variants allowing 

the identification of the right candidate.  

Computational gene prioritization strategies can be classified into four different types: text 

mining methods, network-based methods, machine learning methods, and hybrid strategies 

(Raj & Sreeja, 2018).  

Text mining method applies published scientific literature to identify associations between 

genes and complex disorders. Network-based methods represent biological data as network 

and apply graph mining techniques to rank genes. The study and implementation of new 

algorithms are explored using machine learning approaches and therefore through the 

creation of new decision trees for achieving ranking and gene prioritization (Raj & Sreeja, 

2018). A combination of any of these methods has been grouped as hybrid methods. Even 

though text mining, network based and machine learning techniques are widely used for 

computational gene prioritization, recent studies show a significant boost in the 

performance by integrating multiple approaches. 
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1.7 Aims of the study 

 
This thesis has three goals: 1) Discover new QTL associated with metabolic traits and the 

metabolic syndrome in the Berlin Fat Mouse line BFMI861-S1, 2) Prioritize and detect 

candidate genes in the newly identified QTL, 3) Identify the causal tissue responsible for the 

metabolic syndrome in the BFMI861-S1 line. To reach these goals, two different AILs were 

generated with always BFMI861-S1 as one parental strain and BFMI861-S2 or C57BL/6N (B6N) 

as breeding partner, respectively.  

To detect QTL for metabolic traits that act independently of the effect of the jObes1 locus, 

an AIL from the initial cross between the lines BFMI861-S1 and BFMI861-S2 was generated. 

Both lines, BFMI861-S1 and BFMI861-S2, share the jObes1 locus on Chr 3 which is responsible 

for the high body weight of all BFMI lines. Despite being genetically closely related these 

two lines differ in metabolic traits such as body weight, and insulin sensitivity. With this AIL 

we performed QTL mapping using traits collected at the end of experiment in week 25 and 

time series data on body weight. 

To detect additional QTL for obesity and fatty liver disease in the BFMI861-S1 mouse model, 

we generated an AIL between BFMI861-S1 and C57BL/6NCrl (B6N).  

To accurately identify the most likely candidate genes and variants in each QTL region that 

are responsible for the associated phenotypes a multiomics prioritization approach that 

includes information from different sources such as next generation sequencing (NGS), gene 

expression, and literature data was designed. Gene expression data collected in multiple 

tissues such as gonadal adipose tissue, liver, pancreatic islets, and skeletal muscle were also 

used to detect the driver tissue for the metabolic syndrome in the BFMI861-S1 line. 

The combination of QTL mapping together with a specific prioritization method allows to 

identify novel candidate genes and provides additional evidence for the action of already 

known genes involved in common human metabolic diseases. Thereby, this study contributes 

to the increasing molecular understanding of obesity and related disorders and helps to set 

the stage for improved prevention and therapy. 
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Background: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the 

metabolic syndrome. This study aimed to identify genetic variants associated with the 

impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are 

genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and 

stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. 

Methods: In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 x 

BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 

weeks. QTL-analysis was performed after selective genotyping of 200 mice using the 

GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL 

regions. For the prioritization of positional candidate genes whole genome sequencing and 

gene expression data of the parental lines were used. 
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Results: Overlapping QTL for gonadal adipose tissue weight and blood glucose 

concentration were detected on chromosome (Chr) 3 (95.8-100.1 Mb), and for gonadal 

adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5-26.1 

Mb). Causal modelling suggested for Chr 3-QTL direct effects on adipose tissue weight, but 

indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver 

weight and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional 

candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 

17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9–

74.6) and for body weight on Chr 16 (3.9-21.4 Mb).  

Conclusions: QTL mapping together with a detailed prioritization approach allowed us to 

identify candidate genes associated with traits of the metabolic syndrome. In addition, we 

provided evidence for direct and indirect genetic effects on blood glucose concentration in 

the insulin resistant mouse line BFMI861-S1. 
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2.1 Introduction 
 

The metabolic syndrome is defined as a metabolic abnormality that leads to high body 

weight, ectopic fat storage, insulin resistance, high blood pressure, and chronic low-grade 

inflammation (Aguilar-Salinas & Viveros-Ruiz, 2019). Heritability estimates for each trait of 

the metabolic syndrome are high with some estimates exceeding 50 % (Goodarzi, 2018). 

Nevertheless, genome wide association studies (GWAS) on body mass index (BMI) and other 

traits of the metabolic syndrome identified loci, that combined, account for only 1 to 7 % of 

the variance in the examined population (Goodarzi, 2018). Therefore, studies on different 

populations are needed to identify additional causal genes to better understand their direct 

and interaction effects contributing to the metabolic syndrome.  

The goal of the current study was to identify genetic factors contributing to obesity and 

glucose homeostasis in the Berlin Fat Mouse. Originally, the Berlin Fat Mouse population was 

selected for juvenile obesity. After 58 generations of selection, different Berlin Fat Mouse 

Inbred (BFMI) lines were generated through repeated brother-sister mating (Wagener et al., 

2006). In a cross between the most obese inbred line BFMI860 and the lean control line 

C57BL/6NCrl, we have previously identified a recessive genetic defect at a locus on 

chromosome (Chr) 3 accounting for 40 % of the variance in adipose tissue weight at 6 weeks 

(Neuschl et al., 2010a) (Arends et al., 2016). This juvenile obesity locus (jObes1) is fixed in 

all BFMI sublines. 

In the current study, we used the inbred lines BFMI861-S1 (S1) and BFMI861-S2 (S2). S1 and 

S2 are sublines created from the BFMI860, as such the BFMI860 is the predecessor of the S1 

and S2. The S1 and S2 lines were conspicuously different with respect to metabolic traits ( 

Heise et al., 2016). In particular, the S1 line showed high body weight, hepatic fat storage, 

low insulin sensitivity, and impaired glucose tolerance. In contrast, S2 is insulin sensitive 

despite being obese (Heise et al., 2016). This observation was particularly interesting, since 

these two lines were derived from one parental line that was divided into two sub-lines only 

after four generations of inbreeding. Therefore, these two lines are genetically highly 

similar, and the remaining genetic diversity is responsible for phenotypic differences. To 
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identify genetic loci accounting for the observed obesity, and glucose homeostasis in S1 

mice, we performed a quantitative trait locus (QTL) mapping study in an advanced intercross 

line (AIL) which was generated from an initial cross between the BFMI861 lines S1 and S2. In 

this study, all AIL mice were challenged with a high-fat, high-carbohydrate diet.  

 
 
 
 
 
 
2.2 Material and methods 
 

Mouse population 

We used male mice of the parental mouse lines BFMI861-S1 (S1) and BFMI861-S2 (S2) and 

generation 10 of an AIL population. The AIL population was generated from an initial cross 

between a BFMI861-S1 (S1) male and a BFMI861-S2 (S2) female followed by repeated random 

mating in every generation. For randomization of mating pairs, the program RandoMate 

(Schmitt, Bortfeldt, Neuschl, & Brockmann, 2009) was used. The BFMI861 lines S1 and S2 

were generated as described in Heise et al., 2016 (Heise et al., 2016).  

 

Animal husbandry 

All experimental treatments of mice were approved by the German Animal Welfare 

Authorities (approval no. G0235/17). Mice were kept under conventional conditions with a 

12:12 h light–dark cycle (lights on at 0600 hours) and at a temperature of 22 ± 2 °C. Mice 

had ad libitum access to food and water.  

 

Experiment and phenotyping 

Data from parental strains S1 and S2 were collected at 20 weeks on a standard diet containing 

16.7 MJ/kg of metabolizable energy, 11 % from fat, 26 % from protein and 53 % from 

carbohydrates (V1534-000, ssniff EF R/M; Ssniff Spezialdiäten GmbH, Soest, Germany) and 
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blood glucose was measured at 25 weeks after five weeks exposure to a high-fat, high-

carbohydrate diet containing 21.9 MJ/kg of metabolizable energy, 28% from fat, 20% from 

protein and 40% from carbohydrates (Kluth et al., 2015). 

To emphasize the difference in glucose homeostasis, all AIL animals were challenged with a 

dietary regime that provides a gluco-lipotoxic environment for the β-cells and thereby 

provokes differences in β-cell resilience (Kluth et al., 2011). This dietary regime challenge 

was undertaken to provoke differences in the phenotypes studied. Until the age of 20 weeks, 

AIL mice were fed the rodent standard diet. In weeks 21 and 22, mice were fed a high-fat, 

low-carbohydrate diet, containing 16.9 MJ/kg of metabolizable energy, 34 % from fat, 19 % 

from protein and 47 % from carbohydrates (C1057; Altromin Spezialfutter GmbH & Co. KG, 

Lage, Germany) to increase obesity but to protect β-cells. Afterwards, animals were fed for 

3 weeks a high-fat, high-carbohydrate diet containing 21.9 MJ/kg of metabolizable energy, 

28 % from fat, 20 % from protein and 40 % from carbohydrates (Oliver Kluth et al., 2015) to 

challenge β-cells with carbohydrates and thereby increase differences in glucose 

metabolism.  

AIL mice were phenotyped between the age of 3 (after weaning) and 25 weeks. Body mass 

was recorded weekly. To investigate the glucose metabolism, an oral glucose tolerance test 

(oGTT) was performed in week 18 and an intraperitoneal insulin tolerance test (ITT) in week 

20 as described before (Heise et al., 2016). The area under the curve (AUC) for blood glucose 

concentration of oGTT and ITT was calculated. At 25 weeks, final blood glucose 

concentration was recorded after fasting for two hours. Afterwards, mice were anesthetized 

with isoflurane and sacrificed (Hesse et al., 2018). Gonadal adipose tissue (GonAT), 

subcutaneous adipose tissue, liver, and skeletal muscle (quadriceps) were dissected and 

weighed. Tissues were collected in liquid nitrogen and stored at -80°C. Protein content and 

triglycerides of homogenized liver samples were determined as described in Hesse et al., 

2014 (Hesse et al., 2014). 

Outliers, defined as individuals which have a measurement that deviates from the population 

mean by more than four standard deviations (SD), were removed from the data. Pearson’s 
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correlation coefficients were calculated between normal distributed traits. For non-normal 

distributed traits, Spearman’s correlation coefficients were calculated. 

 

 

Genotyping 

Out of the 397 males that were phenotyped, selective genotyping was performed; 200 mice 

representing the two tails of the phenotypic distributions of gonadal adipose tissue weight 

and liver weight were selected for genotyping with the Giga Mouse Universal Genotyping 

Array (GigaMUGA; Illumina, San Diego, CA, USA) (Morgan et al., 2016). Genotyping was done 

at Neogen GeneSeek (Lincoln, NE, USA). Due to high genetic similarity of the parental lines 

S1 and S2 of the AIL population, only 5,215 out of 143,259 SNPs on the array were informative 

and passed the quality control (Figure 2.1). 

Remaining 197 males of the AIL population were genotyped for 7 top markers. For these 

markers, KASP genotyping assays were developed as described previously (Kreuzer, 

Reissmann, & Brockmann, 2013). The additional animals were genotyped to counteract any 

bias in the estimates of allele effect sizes introduced by selective genotyping.  
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Figure 2.1. (A) Percentage (%) of heterozygosity for each informative SNP (5,215) in the 

AIL (BFMI861-S1xBFMI861-S2) at generation 10 for 397 males. (B) Distribution of informative 

SNPs across the genome in the AIL (BFMI861-S1xBFMI861-S2).  
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QTL mapping  

QTL mapping was performed in two steps: First, a QTL scan was performed using the 200 

males that were genotyped with the GigaMUGA Array. Afterwards, a final QTL scan was 

performed including all animals (genotyped by GigaMUGA and KASP).  

Covariates (subfamily and litter size) were investigated for a significant influence on each 

phenotype. Covariate analysis showed that litter size significantly influenced liver weight (p 

< 0.02), as such, litter size was added as a covariate to the model when QTL mapping liver 

weight. No other significant covariates were found. Using pedigree information of the AIL 

population, we tested the sub-family effect on the phenotype, but no significant influence 

was found (code available upon request). 

To confirm that QTL mapping models are valid, residuals of the models were tested for 

normality using a Shapiro-Wilk test. If residuals were found to not be normally distributed, 

a non-parametric Kruskal–Wallis one-way analysis of variance was performed to validate the 

top marker. 

The number of independent statistical tests was estimated by simpleM (Gao, 2011) which 

determined the number of independent tests to be 849 (window size = 820, mEff = 849). 

Afterwards Bonferroni correction for multiple testing correction (Haynes, 2013) was 

performed using the number of independent SNPs as determined by simpleM. P-values were 

converted to LOD scores, using LOD = -log10(p-value). LOD scores above 4.9 and 4.2 were 

deemed to be genome-wide highly significant and significant, respectively. The 95% 

confidence interval of a QTL was determined by a 1.5 LOD drop from the top SNP position 

(Dupuis & Siegmund, 1999). Start and end positions were defined as the first SNP upstream 

or downstream of the 1.5 LOD-drop confidence interval. 
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Causal modeling 

In case of an overlapping QTL between multiple traits, we applied pairwise causal modeling 

as previously described (Y. Li, Tesson, Churchill, & Jansen, 2010) (Brockmann, Tsaih, 

Neuschl, Churchill, & Li, 2009). In short when a common QTL is found for two (or more 

traits), we model the effect of the QTL on these traits in a pairwise manner. Causal modeling 

was performed by comparing the independent model (QTL directly affects both T1 and T2) 

with the causal/reactive model (QTL directly affects T1 which in turn affects T2). Of course, 

it can happen that none of the models fit the data satisfactory, we then assume causality is 

undetermined. 

Direct QTL effects are defined as caused by a QTL which directly affects the variability of 

both traits (independent model fits best, QTL directly affect T1 and T2). Indirect effects 

were defined as effects on a trait (T1) caused by a QTL through another trait (T2) (causal 

model fits best). In this case the QTL is defined as having a direct effect on T2, and an 

indirect effect on T1. Causal modeling to determine direct and indirect effects of QTL on 

traits was performed for GonAT weight, liver weight, and blood glucose concentration on 

Gatlgq and for GonAT weight and blood glucose concentration on Gatq1.  

 

 

Whole-genome sequencing 

The two parental lines of the AIL (S1 and S2) were paired-end sequenced using the “Illumina 

HiSeq” (Illumina) platform. Obtained DNA reads were trimmed and aligned to the mouse 

genome (MM10, GRCm38.p3), sequence variants were called using BCFtools and annotated 

using the Ensembl Variant Effect Predictor (VEP) (H. Li et al., 2009) (McLaren et al., 2016). 

VEP provided information on the position of SNPs within known motifs such as promoters, 

regulatory sites and protein domains. DNA sequencing data were deposited at the NCBI 

Sequence Read Archive (SRA) under BioProject ID: PRJNA717237. 
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Gene expression analysis 

RNA was isolated from gonadal adipose tissue (S1: n=7, S2: n=8), liver (S1: n=7, S2: n=8) and 

skeletal muscle (S1: n=7, S2: n=8) of males of the parental lines S1 and S2 at 10 weeks. 

Pancreatic islets (S1: n=6, S2: n=6) were isolated as described in Gotoh et al., 1985 (Gotoh 

et al., 1985) and RNA was extracted as described (Hesse et al., 2018). Gene expression was 

measured with the Clariom S assay for mouse (Thermo Fisher Scientific) using service (ATLAS 

Biolabs, Berlin, Germany). The intensity values of the arrays were transformed to the 

logarithm of base 2 and quantile normalized for each tissue separately. To test for expression 

differences between S1 and S2 mice, t-tests were performed for each probe on the array in 

each tissue. Benjamini-Hochberg correction was applied for multiple testing. R was used for 

statistical analysis and graphical presentation (Team, 2018). Quantitative real time PCR was 

performed as described in Heise et al., 2016 (Heise et al., 2016). Relative transcript amounts 

were calculated using the relative quantification method (ddCT-method) (Livak et al., 2001).  

 

 

Candidate gene prioritization 

Genomic DNA sequences of all protein coding positional candidate genes were downloaded 

using bioMART (Durinck, Spellman, Birney, & Huber, 2009). To include regulatory regions 

such as promoters, we considered additional 1,000 base pairs from the start and end position 

of each gene. Monomorphic genes without sequence variants between S1 and S2 were 

removed from the list of positional candidate genes. All other genes were scored for 

potential functional effects of sequence variants, gene expression differences between S1 

and S2 in gonadal adipose tissue and liver, and their contribution to KEGG pathways 

(Kanehisa, 2000). Coding sequence variants leading to stop gain/stop loss codons and 

missense mutations located in functional protein domains were awarded 3 points to the gene 

score. A missense variant with either a deleterious or a tolerated SIFT 

(Sorting Intolerant From Tolerant) value obtained 3 or 1 point, respectively. Non-coding 

variants were scored based on their location in potential functional sites. If a non-coding 



Chapter 2 
 

20  

variant was located in the promoter or in a splice site, 3 points were awarded; if located in 

untranslated regions (UTRs), enhancers, or CTCF binding sites (involved in 3D structure of 

chromatin) 1 point was awarded. Genes differentially expressed in at least one tissue were 

awarded 2 points. Genes annotated in relevant KEGG metabolic pathways were awarded 1 

point. Genes in KEGG pathways were downloaded using the R package “StarBioTrek” (Cava, 

Bertoli, & Castiglioni, 2015). To find further evidence for potential causality, highest scored 

candidate genes were screened for metabolic processes or diseases using Gene Ontology 

(GO), public literature, and databases such as Mouse Genome Informatics and the 

International Mouse Phenotyping Consortium. 

 

 

2.3 Results 
 

Response of parental lines S1 and S2, and AIL males to high-fat, high carbohydrate 

diet 

According to SNP chip data (GigaMuga), S1 and S2 animals are 96.4% genetically identical 

(Figure 2.1b). However, with a standard diet S1 males had significantly higher body weight 

(p < 0.001, n = 10) and higher liver weight (p < 0.001, n = 10) compared to S2 males at 20 

weeks of age (Figure 2.2). To challenge the glucose homeostasis, we fed 20 weeks-old S1 

and S2 mice a high-fat, high-carbohydrate diet for five weeks and observed extreme high 

blood glucose concentration in S1 males (369 +/- 54 mg/dl) compared to S2 males (178 +/- 

31 md/dl) (Figure 2.2). To elucidate the genetic impact on the response to this challenge 

the AIL population was exposed to a gluco-lipotoxic environment provoking differences in β-

cell resilience (O Kluth et al., 2011). Therefore, the diet was switched at 20 weeks from a 

standard diet to a lipotoxic high-fat, low-carbohydrate diet (two weeks) to increase obesity, 

followed by a gluco-lipotoxic high-fat, high-carbohydrate diet for additional three weeks to 

challenge β-cells. At 25 weeks AIL mice showed an average blood glucose concentration of 

210 +/- 79 mg/dl. In addition, gonadal adipose tissue weight was 1.72 +/- 0.69 g and liver 

weight was 3.07 +/- 0.65 g on average. Liver triglycerides/protein content was 124 +/- 64 
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ug/ug, and body weight was 47.17 +/- 4.00 g on average (Figure 2.2). 

 

 

 
Figure 2.2. Response of parental lines S1 and S2, and AIL males to high-fat, high-

carbohydrate diet. Abbreviations: GonAT, gonadal adipose tissue; BGc, blood glucose 

concentration; ITT, insulin tolerance test; AUC, area under the curve. HFD-CHO, High-

fat/low-carbohydrate diet; HFD+CHO, high-fat/high-carbohydrate diet. 
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Correlation between traits 

In metabolically healthy individuals of our AIL we would expect high body weights associated 

with high adipose tissue weight, unchanged liver weight and normal glucose clearance. In 

contrast, the correlation analysis showed no correlation of body weight with gonadal adipose 

tissue weight (r = 0.02, p = 0.65), but a positive correlation with liver weight (r = 0.65, p = 

2.20E-16) and liver triglycerides (r = 0.39, p = 1.94E-15) (Table 2.1). Moreover, a negative 

correlation was found between gonadal adipose tissue and liver weight (r = -0.47, p = 2.2E-

16), and gonadal adipose tissue weight and liver triglycerides (r = -0.33, p = 2.88E-11). Low 

adipose tissue weight together with high body weight and high liver weight was also 

associated with a large area under the curve for the blood glucose concentration in the ITT 

(r = -0.41, p = 2.2E-16) and high blood glucose concentration (r = -0.59, p = 2.2E-16). 

Consistent with the negative correlation coefficients for adipose tissue weights and the other 

parameters, positive correlations were found between liver weights and the same 

parameters (Table 2.1). 

 

 

Table 2.1. Correlation coefficients between the collected traits in the AIL (BFMI861-
S1xBFMI861-S2). 

 

Abbreviations: GonAT, gonadal adipose tissue; BGc, blood glucose concentration; ITT, 

insulin tolerance test; AUC, area under the curve. 

 

 

Liver weight Liver triglycerides/protein BGc ITT AUC Body weight 

(r and P-value) (r and P-value) (r and P-value) (r and P-value) (r and P-value)

GonAT weight -0.47, 2.20E-16 -0.33, 2.88E-11 -0.59, 2.20E-16 -0.41, 2.20E-16 0.02, 0.65

Liver weight 0.55, 2.20E-16 0.71, 2.20E-16 0.27, 3.98E-08 0.65, 2.20E-16

Liver triglycerides/protein 0.45, 2.20E-16 0.28, 1.41E-08 0.39, 1.94E-15

BGc 0.34, 9.55E-13 0.31, 2.55E-10

ITT AUC 0.21, 2.56E-05
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QTL mapping  

QTL mapping was performed for body weight, gonadal adipose tissue weight, liver weight, 

liver triglycerides, and blood glucose concentration at the end of the experiment and for ITT 

AUC at 20 weeks before the diet switch. The QTL analysis on selectively genotyped 200 AIL 

males revealed significant loci on Chr 3, 15, 16, and 17. The follow up analysis after KASP 

genotyping including all 397 males confirmed all four QTL and provided true estimates for 

the genetic effects (Table 2.2). 

Three significant QTL for gonadal adipose tissue weight were identified on Chr 17 (Gatlgq) 

at 25.25 Mb (LOD = 7.3), Chr 3 (Gatq1) at 98.19 Mb (LOD = 6.3), and on Chr 15 (Gatq2) at 

68.46 Mb (LOD = 4.2). Interestingly, for these three QTL the S1 allele always decreased the 

amount of adipose tissue. Gatlgq had also an effect on liver weight (LOD = 7.5) which could 

be caused by an increased hepatic fat storage. Indeed, liver triglycerides show a significant 

effect on Gatlgq based on genome wide multiple testing correction when we consider the 

selectively genotyping of the initial 200 selected animals (LOD = 4.8). Mapping liver 

triglycerides using the whole population there is still an effect (LOD = 2.4). However, this 

effect does not reach the threshold for genome wide significance (<0.05) but is still 

suggestive (P < 0.1). Furthermore, Gatlgq and Gatq1 affected the blood glucose 

concentration (LOD Gatlgq = 8, LOD Gatq1 = 4.2). For Gatlgq the allele of the insulin resistant 

S1 line was responsible for low adipose tissue weight, elevated liver weight, higher liver 

triglycerides and high blood glucose concentration. The S1-allele effects of the Gatlgq on 

gonadal adipose tissue weight and liver weight and on gonadal adipose tissue weight and 

liver triglycerides were in opposing direction, supporting the negative correlation between 

the traits. In contrast, for Gatq1 the S1-QTL allele decreased the adipose tissue weight, 

reduced the blood glucose concentration (Table 2.2, Figure 2.3b) and was associated with 

faster glucose clearance in the ITT (LOD = 3.8).  

A QTL for body weight was mapped on Chr 16 (Bwq26) at 11.12 Mb (LOD = 7.1). At this locus, 

the S1 allele was increasing body weight (Table 2.2).  

Since Gatlgq and Gatq1 showed pleiotropic effects on several traits, causal modeling was 
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performed. Causal modeling of Gatlgq suggests direct effects on gonadal adipose tissue, liver 

weight, and blood glucose concentration. Causal modeling of Gatq1 showed a direct effect 

of Gatq1 on gonadal adipose tissue weight, which in turn affects blood glucose 

concentration. 

 

 

Table 2.2. Position and effects of QTL identified in the AIL population of 397 mice.  

 
Abbreviations: GonAT, gonadal adipose tissue; BGc, blood glucose concentration; QTL, 

quantitative trait locus; Chr, chromosome number; StartPos, TopPos, and StopPos, position 

of the start of the QTL confidence interval, position of the SNP with the highest LOD score, 

and position of the end of the QTL confidence interval in base pairs, respectively; Positions 

are given according to the Mouse Genome Version MM10, GRCm38.p3. SNP, single-nucleotide 

polymorphism. The confidence interval gives the 1.5 LOD drop region of the top SNP position. 

A LOD score above 4.9 was deemed to be ‘genome-wide highly significant’ and above 4.2 

was deemed ‘genome-wide significant’; BH, Bonferroni correction; LOD, logarithm (base 10) 

of odds; Var %, percentage of total variance. 

 

QTL name Chr StartPos TopPos StopPos

GonAT weight [g] 17 9 483 181 25 258 903 25 391 933 7.3 8.2 1.26 -0.54 -0.61

Liver weight [g] 17 9 483 181 25 258 903 25 391 933 7.5 8.3 3.32 0.26 0.43

BGc [mg/dl] 17 11 934 634 25 258 903 26 054 796 8 9 260 54 73

GonAT weight [g] 3 95 763 020 98 196 163 100 780 367 6.3 6.4 1.49 -0.27 -0.47

BGc [mg/dl] 3 95 763 020 98 196 163 100 543 098 4.2 4.2 194 -13 -44

Body weight [g] Bwq26 16 3 892 297 11 120 784 21 355 904 7.1 7.2 48.28 1.73 3.15

GonAT weight [g] Gatq2 15 67 855 285 68 461 862 74 582 319 4.2 4.1 1.49 -0.23 -0.37

Gatq1

Gatlgq

Δ Mean S1-S2Traits QTL confidence interval LOD(BH) Var % Mean S1 Δ Mean S1-HET
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Figure 2.3. LOD score profiles and effect plots for top SNPs of significant traits (n =397) for 

(A) Gatlgq, (B) Gatq1, (C) Bwq26, (D) Gatq2. Blue line - gonadal adipose tissue weight, black 

line – liver weight, red line - blood glucose concentration, dark green line – body weight, 

light green line – liver triglycerides.  

Abbreviations: QTL, quantitative trait locus; GonAT, gonadal adipose tissue; BGc, blood 

glucose concentration; SNP, single-nucleotide polymorphism; Chr, chromosome number; 

HET, heterozygous. 
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Candidate gene prioritization 

The confidence intervals of the four significant QTL contain 534 protein-coding potential 

candidate genes. Sixty-two genes were polymorphic between S1 and S2; 27 in Gatlgq, 27 in 

Gatq1, 4 in Bwq26, 4 in Gatq2. Mutations in these genes were scored for their potential 

functional effects on the quality or expression level of the encoded protein according to the 

decision tree (Figure 2.5a). None of the genes carried a stop gain or stop loss mutation. 

Nevertheless, different mutations influencing protein sequence or gene regulation occurred. 

According to microarrays analysis, considering the 62 candidate genes, we found 37 genes 

differentially expressed between S1 and S2 in the gonadal adipose tissue, 8 in the liver, 8 in 

pancreatic islets and 3 in skeletal muscle. 

Since correlation analysis of gene expression data between all examined animals showed 

that mice of the same mouse line clustered together only with gene expression data of the 

gonadal adipose tissue (Figure 2.5b), gonadal adipose tissue is suggested as the main tissue 

contributing to obesity, and glucose homeostasis in the S1 line. 

Genes with the highest and second highest score in every QTL confidence interval were 

regarded as top candidates (Table 2.3). Differences in the expression of the top candidate 

genes for each QTL were confirmed by quantitative real time PCR in both gonadal adipose 

tissue and liver (Figure 2.4). Plg (Plasminogen) and Acat2 (Acetyl-CoA acetyltransferase 2, 

cytosolic) are the top candidates in Gatlgq. Plg was not differentially expressed but contains 

one tolerated missense variant in the low-complexity region, one SNP in the promoter and 

additional SNPs in enhancers and CTCF binding sites in mice of the S1 line. Acat2 was lower 

expressed in gonadal adipose tissue of S1 mice (p = 7.45E-06) and carries a deleterious 

missense variant in the thiolase, N-terminal domain. In Gatq1 Fmo5 (Flavin-containing 

monooxygenase 5) and Notch2 (Notch homolog 2) were prioritized. Fmo5 was lower 

expressed in gonadal adipose tissue (p = 3.83E-03) and liver (9.11E-08) of S1 versus S2 mice. 

The Fmo5 gene in S1 mice carries one tolerated missense variant in the FMO-like domain, 

SNPs in the promoter and additional SNPs in enhancers and untranslated regions. Notch2 (p 

= 1.29E-03) was higher expressed in gonadal adipose tissue of S1 mice and carries one 
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deleterious missense variant located in the EGF-like domain plus SNPs in untranslated regions 

in S1 mice. Trap1 (TNF receptor associated protein 1) and Rrn3 (RRN3 homolog, RNA 

polymerase I transcription factor) ranked highest in Bwq26. Both candidate genes Trap1 (p = 

5.50E-05) and Rrn3 (p = 2.05E-06) were lower expressed in gonadal adipose tissue, and Rrn3 

was additionally significantly lower expressed in the liver (p = 1.28E-06) of S1 mice. Both 

Trap1 and Rrn3 carry one tolerated missense variant. For Gatq2 Trappc9 (Trafficking protein 

particle complex subunit 9) and Zfat (Zinc finger and AT hook domain containing) ranged as 

top candidates. Trappc9 was lower expressed in S1 versus S2 mice in both gonadal adipose 

tissue (p = 5.89E-05) and liver (p = 1.92E-04). Trappc9 possess variants in UTRs, CTCF binding 

sites, enhancer, and promoter. Zfat was higher expressed (p = 2.36E-03) in gonadal adipose 

tissue of S1 mice and it carries one deleterious missense variant in the low-complexity region 

in S1 mice.  
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Table 2.3. Expression differences of prioritized positional candidate genes between 
males of the parental lines BFMI861-S1 (n=7) and BFMI861-S2 (n=8). Bold indicates 
significant differences. The p-values are corrected according to Benjamini-Hochberg. 

QTL 
name 

Chr 
Candidate 

Gene 
Type of mutation 

FC GonAT 
(S1/S2) 

P-value 
GonAT 

FC liver 
(S1/S2) 

P-value liver 
Gene 
score 

Gatlgq 

17 Plg 

Tolerated domain 
missense, CTCF 
binds, enhancer 
and promoter 
variant 

0.12 0.23 0.02 4.66E-03 10 

17 Acat2 
Deleterious 
domain missense 
variant 

-0.21 7.45E-06 -0.02 0.28 9 

Gatq1 

3 Fmo5 

Tolerated domain 
missense, UTRs, 
enhancer, and 
promoter variant 

-0.07 3.83E-03 -0.1 9.11E-08 12 

3 Notch2 
Deleterious 
domain missense 
and UTRs variant 

0.05 1.29E-03 -0.06 0.02 10 

Bwq26 

16 Trap1 
Tolerated domain 
missense variant 

-0.06 5.50E-05 -0.01 0.42 7 

16 Rrn3 
Tolerated 
missense variant 

-0.08 2.05E-06 -0.12 1.28E-06 4 

Gatq2 

15 Trappc9 
UTRs, CTCF binds, 
enhancer, and 
promoter variant 

-0.06 5.89E-05 -0.07 1.92E-04 9 

15 Zfat 
Deleterious 
domain missense 
variant 

0.05 2.36E-03 -0.03 0.25 8 

Abbreviations: GonAT, gonadal adipose tissue; Chr, chromosome; FC, fold change. 
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Figure 2.4. Validation of microarrays gene expression data for the top candidate genes 

through semi-quantitative real-time PCR in both (A) gonadal adipose tissue (S1: n=7, S2: 

n=8) and (B) liver (S1: n=7, S2: n=8). Given are transcript amounts in the S1 line relative to 

S2. Transcript amounts were normalized with the endogenous control Gapdh.  
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Figure 2.5. (A) Decision tree for prioritization of candidate genes located in a QTL region. 

Genes in a QTL region containing sequence variants between the parental lines S1 and S2 

were ranked according to the sum of scores based on the functional annotation of coding 

and non-coding variants, gene expression data and KEGG information. (B) Heatmap and 

dendrogram of microarrays gene expression data from 4 different tissues (gonadal adipose 

tissue, skeletal muscle, pancreatic islets and liver) of the parental lines (S1 and S2). 
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2.4 Discussion and conclusions 
 

To better understand the differences in insulin sensitivity in two sub-lines of the Berlin Fat 

Mouse independent of a major obesity QTL on Chr 3 (jObes1) and to unravel the genetic 

architecture underlying the observed aspects of the metabolic syndrome we investigated an 

advanced intercross population of the BFMI861 mouse lines S1 and S2. Besides being 

genetically closely related and sharing the known obesity locus on Chr3 (Arends et al., 2016), 

the two parental mouse lines differ extremely in their metabolic phenotype. The mouse line 

S1 showed clear features of the metabolic syndrome while S2 was also obese, but had a 

normal glucose homeostasis even under a high-fat, high-carbohydrate diet feeding. The 

extreme phenotypic data propose the examined mouse lines as an excellent model for 

studying the genetic determinants of traits of the metabolic syndrome. Due to the random 

mixture of the genomes of the BFMI861-S1 and -S2 lines, the AIL individuals showed a wide 

range of phenotypes. Different from expectations in metabolically healthy individuals, we 

found no correlation between body weight and gonadal adipose tissue weight and negative 

correlations between gonadal adipose tissue weight and all other traits in AIL males, while 

liver weight was positively correlated with all other traits. These findings indicate ectopic 

fat storage in the liver which was indeed confirmed by the assessment of hepatic 

triglycerides in our AIL. Hepatic fat storage is also present in individuals of the S1 line (Heise 

et al., 2016). Ectopic fat storage in the liver instead of storage in the adipose tissue as the 

major fat storage organ has been reported repeatedly as causal defect for later impaired 

glucose clearance (Parker, 2018) (Rosen & Spiegelman, 2006). Therefore, we suggest this 

shift as the likely driver for impaired glucose homeostasis in our mouse model. Gene 

expression data further supported the assumption of impaired adipose tissue function being 

causal for the observed phenotypes of the metabolic syndrome in S1 mice. For example, we 

found distinguished clusters of differentially expressed genes in gonadal adipose tissue 

between S1 and S2 animals but not in liver, muscle and pancreatic islets.  

The overlap of QTL effects in some regions is consistent with the correlations that we found 

between the affected traits. For Gatlgq, the S1 allele reduces adipose tissue weight and 
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increases the liver weight and hepatic fat content. Moreover, by shifting fat storage from 

adipose tissue to ectopic storage in the liver blood glucose concentration is increased. In 

contrast, the S1 allele on Gatq1 contributes to lower adipose tissue weight, lower blood 

glucose concentration and increased insulin sensitivity.  

To disentangle the direct and indirect genetic effects of the different QTL, we performed 

causal modelling. Using causal inference, we were able to provide evidence that out of the 

two QTL associated with blood glucose concentration in our population, likely only Gatlgq 

has a direct influence on blood glucose concentration. The second QTL, Gatq1 influences 

blood glucose concentration indirectly through the regulation of fat storage in adipose 

tissue, whose weight is directly affected by this QTL. A possible explanation for the 

discrepancy in the correlation of adipose tissue weight to blood glucose concentration of the 

two QTL could be that a reduced adipose tissue mass via the S1 allele of Gatlgq could indicate 

a shift towards ectopic fat storage which is reflected in elevated liver weight and liver 

triglycerides and thereby contributes to higher blood glucose concentration. In contrast, 

Gatq1 and Gatq2 could harbor S1 alleles protecting against obesity resulting in lower adipose 

tissue weight which for Gatq1 is accompanied by lower blood glucose concentration. 

However, the overall phenotype of the insulin resistant S1 line appears to be driven mainly 

by the larger effects of Gatlgq. These findings provide strong evidence for the importance 

of direct genetic effects on adipose tissue, which indirectly contribute to the etiology of 

impaired glucose homeostasis.  

The AIL population used in this study has the advantage of having a high mapping resolution 

with respect to the call of positional candidate genes. Because the examined AIL 

accumulates chromosomal recombination over 10 generations, the physical length of the 

QTL regions is relatively short and thereby the number of positional candidate genes low. In 

our study, the number of positional candidate genes could be further reduced because long 

chromosomal stretches are identical between the closely related mouse lines S1 and S2 and, 

therefore, genes in these regions are not polymorphic and can be excluded from further 

studies, resulting in 62 out of 534 protein coding genes as positional candidate genes.  
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In our prioritization approach, Plg and Acat2 are the top candidate genes for direct effects 

of Gatlgq on gonadal adipose tissue, liver weight, and blood glucose concentration. Plg 

possesses one tolerated missense variant in the low-complexity region of the protein in S1 

mice, a region that is significant for the functionality of this protein (Ntountoumi et al., 

2019). Plg-knockout mice have lower amounts of adipose tissue (Hoover-Plow, Ellis, & Yuen, 

2002). During cell differentiation plasminogen binding is increasing in 3T3 cells and isolated 

adipocytes suggesting a role in adipose tissue development (Hoover-Plow & Yuen, 2001). In 

humans, Plg was reported to be relevant for the development of insulin resistance and 

diabetes (Ghosh & Vaughan, 2012) (Ajjan et al., 2013) (Qi, Workalemahu, Zhang, Hu, & Qi, 

2012). Thus, Plg could be causal for the impaired glucose homeostasis by modifying adipose 

tissue in S1 mice. Acat2 is involved in the biosynthesis of fatty acids and cholesterol and is 

mainly expressed in the liver and intestine (Fukao et al., 1997). In S1 mice, Acat2 carries 

one deleterious mutation that leads to a Valine/Methionine substitution at amino acid 

position 216 located in the conserved N-terminal domain. This domain is important for the 

thiolase activity and a mutation in this region could have effects on the protein function. 

Thus, Acat2 is a good candidate for the observed hepatic fat storage in S1 mice.  

Fmo5 and Notch2 were identified as the most likely candidate genes in Gatq1 affecting 

gonadal adipose tissue weight directly. S1 mice carry two SNPs in the promoter of Fmo5. 

According to the Ensembl database one SNP affects a transcription factor binding site for 

Elf5. The other SNP affects two transcription factors binding sites; one for Rxra and one for 

multiple transcription factors such as Nr2f6, Rara, Rarb and Rarg. According to Bgee 

database, all identified transcription factors that potentially bind to the promoter region of 

Fmo5 are expressed in adipose tissue. The identified SNPs in the promoter of Fmo5 could 

therefore be responsible for its lower expression in the gonadal adipose tissue and liver of 

S1 mice. Consistent with the QTL allele effect of S1 mice leading to lower adipose tissue 

weight and lower blood glucose concentration, Fmo5 knockout mice store less fat in gonadal 

adipose tissue and have lower blood glucose concentration at 20 weeks (Gonzalez Malagon 

et al., 2015). Notch2 is important for developmental processes by controlling cell fate 
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decisions (Siebel & Lendahl, 2017) and lipid storage (Bissonnette, Lane, & Chang, 2017). 

Notch2 has been linked to type 2 diabetes in humans (Zeggini et al., 2008). S1 mice carry a 

deleterious mutation leading to a glycine/serine substitution at amino acid position 136. This 

mutation resides in the EGF-like domain which is important for Notch2 activation (Lai, 2004) 

and could be causal for the low-fat deposition in gonadal adipose tissue found in S1 mice. 

Based on the findings of this genetic study, additional research is necessary to further 

validate the suggested candidate genes. This could be done by knockout of certain genes, or 

through continuation of the AIL to reduce the physical length of QTL regions and thereby the 

number of candidate genes. It is important to note that, although we have prioritized 

candidate genes using all available information, we cannot completely rule out that one of 

the polymorphic genes or even an unannotated gene was wrongly discarded.  

The human metabolic syndrome is a complex disease with many actors, many still unknown, 

contributing to its expression. The identification of new potential partners in the network 

by QTL analysis and subsequent data analysis could help to replenish the gaps. 
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Background: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the 

metabolic syndrome. Sublines of BFMI, BFMI861-S1 and BFMI861-S2, differ in body weight 

despite being genetically very similar and sharing the known jObes1 locus on Chr 3 which is 

responsible for 40% variance in the body weight in all BFMI lines. This study aimed to identify 

additional body weight QTL by using time series body weight measurements. 

Methods: In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 x 

BFMI861-S2 were weighted weekly until week 25. Mice were challenged with a high-fat, high-

carbohydrate diet for the last 3 weeks following 2 weeks of a high-fat, free-carbohydrate 

diet to enhance differences in body weight development. QTL-analysis on body weight time 

series data was performed after selective genotyping of 200 mice using the GigaMUGA 

Genotyping Array. Additional 197 males were genotyped for 2 top SNPs in QTL regions.  

Results: One QTL for body weight from week 9 to week 25 was mapped on Chr 16 from 

10.48 Mb to 21.5 Mb. At this locus, the BFMI861-S1 allele increased body weight by 11.6 %. 

An additional genome wide significant QTL for body weight from week 9 to week 20 was 

mapped on Chr 15 from 68.46 Mb to 77.77 Mb. The S1 allele on the QTL on Chr 15 increased 

body weight by 13.8 %. Prioritization of candidate genes identified Trap1 and Rrn3 for the 

QTL on Chr 16 and Trappc9 and Zfat for the QTL on Chr 15 as most likely candidates for 

exerting the effect. 



Chapter 3 

36 

  

 

Conclusions: QTL mapping together with a detailed prioritization approach allowed us to 

identify two QTL (one novel on Chr 15) associated with body weight using two lines of the 

Berlin Fat Mouse. These results helped us to understand which additional genomic regions 

contribute to increased body weight in the Berlin Fat Mouse by using body weight data that 

are normally collected in every mouse study. 

 

 

3.1 Introduction 

More than one-third of the world’s adult population is overweight, and the incidence is 

further increasing (Locke et al., 2015). Besides overeating and reduced activity 

associated energy expenditure, heritability plays a major role in the development of 

obesity. 

Animal models and in particular mouse models are essential to enhance genetic discoveries 

and to reveal the genetic contributions of complex diseases. Weekly body weights are often 

collected during animal experiments including quantitative trait locus (QTL) studies to 

monitor animal health and are used as an additional phenotype for mapping. Usually, these 

time series data are not considered and only analyzed as endpoint measuring points. 

However, QTL mapping with body weight measurements collected weekly could help to 

identify further genes linked to obesity and related metabolic disorders that are only visible 

during the time course and could even loose effect at later time points. 

Originally, the Berlin Fat Mouse population was selected for juvenile obesity. After 58 

generations of selection, different Berlin Fat Mouse Inbred (BFMI) lines were generated 

through repeated brother-sister mating (Heise et al., 2016). In a cross between the most 

obese inbred line BFMI860 and the lean control line C57BL/6NCrl, we have previously 

identified a recessive genetic defect at a locus on chromosome (Chr) 3 accounting for 40 % 

of the variance in adipose tissue weight at 6 weeks (Arends et al., 2016). This juvenile obesity 



Chapter 3 

37 

  

 

locus (jObes1) is fixed in all BFMI sublines. 

The goal of the current study was to identify additional genetic factors (besides the jObes1 

region) contributing to elevated body weight in the Berlin Fat Mouse. 

To detect novel genetic factors contributing to body weight we used the inbred lines 

BFMI861-S1 (S1) and BFMI861-S2 (S2). S1 and S2 are sublines created from the BFMI860, as 

such the BFMI860 is the predecessor of the S1 and S2. These two lines were derived from 

one parental line that was divided into two sub-lines only after four generations of 

inbreeding. Therefore, these two lines are genetically highly similar, and the remaining 

genetic diversity is responsible for phenotypic differences. Although genetically close, the 

S1 and S2 lines are quite different with respect to metabolic traits (Heise et al., 2016). In 

particular, the S1 line shows higher body weight, hepatic fat storage, low insulin sensitivity, 

and impaired glucose tolerance. In contrast, S2 is insulin sensitive despite being obese (Heise 

et al., 2016). To identify more genetic loci accounting for the observed difference in body 

weight, in addition to the previously identified jObes1 locus, we performed a quantitative 

trait locus (QTL) mapping study in an advanced intercross line (AIL) which was generated 

from an initial cross between the BFMI861 lines S1 and S2.  

The advantage of this AIL is that by crossing two BFMI lines we can naturally correct for the 

large effect on body weight of the jObes1 locus and potentially unravel additional, until now 

hidden, minor QTL that contribute to differences in body weight plus investigate additional 

differences in metabolic traits between the BFMI lines. 

By performing QTL mapping in this AIL four novel QTL for traits of the metabolic syndrome 

(gonadal adipose tissue weight, liver weight, blood glucose concentration, liver triglycerides, 

and body weight) were already successfully identified using end point measurements 

(Delpero et al., 2021). In the current study we focused on time series body weight data that 

were collected in this population every week over a period of 25 weeks. This data allowed 

us to identify additional obesity QTL that contribute to the overall obese phenotype peculiar 

of the BFMI lines in addition to the known jObes1 locus on Chr 3. 
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3.2 Material and Methods 

Mouse population 

We used male mice of the AIL population in generation 10 generated from an initial cross 

between a BFMI861-S1 male and a BFMI861-S2 female followed by repeated random mating 

in every generation. For randomization of mating pairs, the program RandoMate (Schmitt et 

al., 2009) was used. The BFMI861 lines S1 and S2 were generated as described in Heise et 

al., 2016 (Heise et al., 2016). 

 

Animal husbandry 

All experimental treatments of mice were approved by the German Animal Welfare 

Authorities (approval no. G0235/17). Mice were kept under conventional conditions with a 

12:12 h light–dark cycle (lights on at 0600 hours) and at a temperature of 22 ± 2 °C. Mice 

had ad libitum access to food and water.  

 

Experiment phenotyping 

AIL mice were fed as described in Delpero et al. 2021 (Delpero et al., 2021). 

AIL mice were phenotyped between the age of 3 (after weaning) and 25 weeks. Body mass 

was recorded weekly. At 25 weeks mice were anesthetized with isoflurane and sacrificed 

(Hesse et al., 2018).  

Outliers, defined as individuals which have a measurement that deviates from the population 

mean by more than four standard deviations (SD), were removed from the data. 

 

Genotyping 

Out of the 397 males that were phenotyped, 200 mice were genotyped as described in 

Delpero et al. 2021 (Delpero et al., 2021). Due to high genetic similarity of the parental lines 

S1 and S2 of the AIL population, only 5,215 out of 143,259 SNPs on the array were informative 

and passed the quality control (Delpero et al., 2021). 
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Remaining 197 males of the AIL population were genotyped for 2 top markers identified to 

be associated with body weight in preliminary analysis (see QTL mapping section). The 

additional animals were genotyped to counteract any bias in the estimates of allele effect 

sizes introduced by selective genotyping. For these markers, KASP genotyping assays were 

developed as described previously (Kreuzer et al., 2013). 

 

 

QTL mapping  

QTL mapping was performed for each body weight time point separately in two steps: First, 

a QTL scan was performed using the 200 males that were genotyped with the GigaMUGA 

Array. Afterwards, a final QTL scan was performed including all animals (genotyped by 

GigaMUGA and KASP).  

Covariates (subfamily and litter size) were investigated for a significant influence on body 

weight at each time point.  

To confirm that QTL mapping models are valid, residuals of the models were tested for 

normality using a Shapiro-Wilk test. If residuals were found to not be normally distributed, 

a non-parametric Kruskal–Wallis one-way analysis of variance was performed to validate the 

top marker. 

The number of independent statistical tests was estimated by simpleM (Gao, 2011) which 

determined the number of independent tests to be 849 (window size = 820, mEff = 849). 

Afterwards Bonferroni correction for multiple testing correction (Haynes, 2013) was 

performed using the number of independent SNPs as determined by simpleM. P-values were 

converted to LOD scores, using LOD = -log10(p-value). LOD scores above 4.9 and 4.2 were 

deemed to be genome-wide highly significant and significant, respectively. The 95% 

confidence interval of a QTL was determined by a 1.5 LOD drop from the top SNP position 

(Dupuis & Siegmund, 1999). Start and end positions were defined as the first SNP upstream 

or downstream of the 1.5 LOD-drop confidence interval. 
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Candidate genes prioritization  

Prioritization of candidate genes in each QTL region was performed as described in Delpero 

et al. 2021 (Delpero et al., 2021).  

 

 

3.3 Results 

QTL mapping 

QTL mapping was performed for body weight with data collected once a week from week 9 

until the end of the experiment (week 25). QTL analysis on selectively genotyped 200 AIL 

males revealed significant loci on Chr 15 and 16 (Figure 3.1 left and Figure 3.1 right, 

respectively). 

The follow up analysis after KASP genotyping including all 397 males confirmed the two QTL 

and provided true estimates for the genetic effects (Table 3.1). 

In detail, a QTL for body weight was mapped on Chr 15 from 68.46 Mb to 77.77 Mb from week 

9 to week 20. This region contains 129 protein-coding genes. At this locus the S1 allele 

increased body weight (Table 3.1). The most significant SNP of this region was UNCHS040893 

at week 20 (78,820,549; LOD = 7.67). In detail, homozygous BFMI861-S1 mice showed 13.8 % 

higher body weight compared to homozygous BFMI861-S2 mice (mean BFMI861-S1 = 44.4 ± 

4.04 g, mean BFMI861-S2 = 39 ± 3.76 g) and 7.8 % elevated compared to heterozygous mice 

(mean heterozygous mice = 41.2 ± 4.47 g) at week 20.  

Another genome-wide significant QTL for body weight from week 9 to week 25 was mapped 

on Chr 16 from 10.48 Mb to 21.5 Mb. This region contains 158 protein-coding genes and the 

most significant SNP of this region was UNCHS041907 at week 18 (16,995,303; LOD = 11.84). 

At this locus, the S1 allele increased body weight (Table 3.1). Homozygous BFMI861-S1 mice 

showed 11.6 % higher body weight compared to homozygous BFMI861-S2 mice (mean 

BFMI861-S1 = 40.4 ± 3.15 g, mean BFMI861-S2 = 36.2 ± 3.84 g) and 6 % elevated compared to 
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heterozygous mice (mean heterozygous mice = 38.15 ± 3.39 g). 

 

 

 

Figure 3.1. LOD curve across Chr 15 (left) and Chr 16 (right) for body weight collected at 

different time points. The orange (1%) and orange dashed (5%) horizontal lines mark the 

significance thresholds. 
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Table 3.1. Position and effects of body weight QTL identified in the AIL (BFMI861-

S1xBFMI861-S2) of 397 mice. 

 

Abbreviations: QTL, quantitative trait locus; Chr, chromosome number; StartPos, TopPos, 

and StopPos, position of the start of the QTL confidence interval, position of the SNP with 

the highest LOD score, and position of the end of the QTL confidence interval in base pairs, 

respectively; Positions are given according to the Mouse Genome Version MM10, GRCm38.p6. 

SNP, single-nucleotide polymorphism. The confidence interval gives the 1.5 LOD drop region 

of the top SNP position. A LOD score above 4.9 was deemed to be ‘genome-wide highly 

significant’ and above 4.2 was deemed ‘genome-wide significant’; LOD, logarithm (base 10) 

of odds. 

 

QTL name Age [weeks] LOD Mean S1/S1 Mean S1/S2 Mean S2/S2

Chr Start [bp] Top [bp] Stop [bp]

9 15 68,461,862       76,820,549       77,770,986       5.82 34 32.7 31.4

10 15 68,461,862       76,820,549       77,770,986       5.92 35.7 34 32.7

11 15 68,461,862       76,820,549       77,770,986       6.52 37.2 35.2 33.8

12 15 68,461,862       76,820,549       77,770,986       6.6 37.8 36.4 35.3

13 15 68,461,862       76,820,549       77,770,986       6.45 40.3 37.8 36.3

14 15 68,461,862       76,820,549       77,770,986       6.75 41.5 38.9 37.2

15 15 68,461,862       76,820,549       77,770,986       6.56 42.2 38.7 37.9

16 15 68,461,862       76,820,549       77,770,986       7.02 43.4 40.1 38.8

17 15 68,461,862       76,820,549       77,770,986       6.45 44.1 41.6 39.4

18 15 68,461,862       76,820,549       77,770,986       7.15 40.9 38.4 36.3

19 15 68,461,862       76,820,549       77,770,986       6.66 44.5 41 39.1

20 15 68,461,862       76,820,549       77,770,986       7.67 44.4 41.2 39

9 16 3,892,297 16,995,303       21,355,904       8.08 33.6 32.5 31.3

10 16 3,892,297 16,995,303       21,355,904       9.52 35.2 33.9 32.5

11 16 3,892,297 16,995,303       21,355,904       9.91 36.5 35 33.5

12 16 3,892,297 16,995,303       21,355,904       10.82 38.1 36.4 34.7

13 16 3,892,297 16,995,303       21,355,904       10.85 39.4 37.6 35.7

14 16 3,892,297 16,995,303       21,355,904       11.59 40.7 38.5 36.7

15 16 3,892,297 16,995,303       21,355,904       10.91 41.6 39.4 37.6

16 16 3,892,297 16,995,303       21,355,904       10.93 42.7 40.5 38.5

17 16 3,892,297 16,995,303       21,355,904       10.5 43.6 41.3 39.3

18 16 3,892,297 16,995,303       21,355,904       11.84 40.4 38.1 36.2

19 16 3,892,297 16,995,303       21,355,904       9.97 43.3 41.1 38.8

20 16 3,892,297 16,995,303       21,355,904       11.49 42.2 40.38 39

21 16 3,892,297 16,995,303       21,355,904       6.13 43.2 41.2 39.4

22 16 3,892,297 16,995,303       21,355,904       5.69 44.82 42.6 41

23 16 3,892,297 16,995,303       21,355,904       6.32 47.3 45 43.5

24 16 3,892,297 16,995,303       21,355,904       6.46 48.1 46 44.7

25 16 3,892,297 16,995,303       21,355,904       6.25 49.3 47.2 45.2

QTL region

BwChr15

BwChr16
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Figure 3.2. Boxplots for 397 mice of the AIL (BFMI861-S1xBFMI861-S2) in generation 10 aged 

4-25 weeks and curves depicting body weight development. For every time point, boxplots 

for all three genotype classes (BFMI861-S1 homozygous; HET, heterozygous; BFMI861-S2 

homozygous) are shown for SNP UNCHS040893 located at the top position on Chr 15 (A) and 

for SNP UNCHS041907 located at the top position on Chr 16 (B). Outliers are represented as 

dots. 

 

 

Prioritization of positional candidate genes 

The confidence intervals of the two significant QTL contain 339 protein-coding potential 

candidate genes. Eight were polymorphic between S1 and S2; four in the Chr 15 QTL, and 

four in Chr 16 QTL. Mutations in these genes were scored for their potential functional effects 

on the quality or expression level of the encoded protein according to the decision tree as 
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described in Delpero et al., 2021 (Delpero et al., 2021). None of the candidate genes carried 

a loss of function mutation. Nevertheless, different mutations influencing protein sequence 

or gene regulation occurred.  

Considering the QTL on Chr 15, Trappc9 (trafficking protein particle complex subunit 9) 

and Zfat (zinc finger and AT hook domain containing) ranked as top candidates (Table 

3.2). Trappc9 was lower expressed in S1 versus S2 mice in both gonadal adipose tissue 

(p = 5.89E-05) and liver (p = 1.92E-04). Furthermore, Trappc9 possesses variants in UTRs, 

CTCF binding sites, enhancer, and promoter. Zfat was higher expressed (p = 2.36E-03) in 

gonadal adipose tissue of S1 mice and it carries one deleterious missense variant in the low-

complexity region in S1 mice. 

Trap1 (TNF receptor-associated protein 1) and Rrn3 (RRN3 homolog, RNA polymerase I 

transcription factor) ranked highest for the QTL on Chr 16 (Table 3.2). Both candidate 

genes Trap1 (p = 5.50E-05) and Rrn3 (p = 2.05E-06) were lower expressed in gonadal adipose 

tissue, and Rrn3 was additionally significantly lower expressed in the liver (p = 1.28E-06) of 

S1 mice. Both Trap1 and Rrn3 carry one tolerated missense variant. 

 

Table 3.2 Top candidate genes after applying the prioritization criteria. 

 

Abbreviations: GonAT, gonadal adipose tissue; Chr, chromosome; FC, fold change. Bold 

indicates significant differences. The p-values are corrected according to Benjamini-

Hochberg. 

 

 

QTL name Chr Candidate Gene Type of mutation
FC GonAT 

(S1/S2)

P-value 

GonAT

FC liver 

(S1/S2)

P-value 

liver
Gene score

15 Trappc9

UTRs, CTCF binds, 

enhancer, and promoter 

variant

-0.07 5.89E-05 -0.07 1.92E-04 9

15 Zfat
Deleterious domain 

missense variant
0.05 2.36E-03 -0.03 0.25 8

16 Trap1
Tolerated domain 

missense variant
-0.06 5.50E-05 -0.01 0.42 7

16 Rrn3
Tolerated missense 

variant
-0.08 2.05E-06 -0.12 1.28E-06 4

BwChr15

BwChr16
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3.4 Discussion and conclusion 

To better understand the differences in body weight in the two sublines of the Berlin Fat 

Mouse BFMI861-S1 and BFMI861-S2 that show 96.4 % of genetic similarity (Delpero et al., 

2021), we investigated an advanced intercross population of the BFMI861 mouse lines S1 and 

S2. Besides being genetically closely related these two BFMI lines share the known juvenile 

obesity locus on Chr 3 which has a 40 % contribution to the overall variance in obesity in all 

BFMI lines (Arends et al., 2016).  

Performing QTL mapping on time series body weight data, we identified a QTL for body 

weight on Chr 16 which explains 12% of body weight variance in the AIL population at 20 

weeks. An additional QTL for body weight was identified on Chr 15 which explains 8.5% of 

the variance at week 20. The effects of the two QTL were highly significant during a long 

period from week 9 until week 25.  

The QTL on Chr 16 had been identified in the AIL (BFMI861S1xB6N) before (Delpero et al., 

2021), where we were mapping QTL for body weight at week 25. In the current study we 

associated this QTL also with body weight at younger age from week 9 until week 25. Yet 

the Chr 15 QTL had not been identified before, because the QTL effect is genome widely 

significant only before week 20 and the effect is lost afterwards. The time-series analyses 

of body weight facilitated the mapping of QTL which are hidden at later age but play a role 

for the evolvement of adult body weight.  

The candidate genes for the novel QTL on Chr 15 associated with body weight are Trappc9 

and Zfat. These two genes have been previously identified as top candidate genes for a QTL 

associated with blood glucose concentration and gonadal adipose tissue weight (Gatq2) in 

the AIL (BFMI861-S1xBFMI861S2) (Delpero et al., 2021). The identification of the same 

candidate genes for the previously identified Gatq2 and for the novel body weight QTL is 

explained by the 6 Mb overlap between the two QTL. Trappc9 and Zfat could therefore be 

responsible partially for the higher body weight observed in the BFMI861-S1 line, and at the 

same time for the differences in gonadal adipose tissue weight and blood glucose 

concentration between the AIL parental lines.  
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The selected prioritization approach allowed to identify Trap1 and Rrn3 as top candidate 

genes for the QTL on Chr 16 which were previously described in Delpero et al. 2021 (Delpero 

et al., 2021) to be associated with final body weight at week 25. This finding on schedule 

draw conclusions on the evolvement of the trait over time and the time pattern could then 

be brought together with puberty or maturity. While the juvenile obesity QTL on Chr 3 is 

responsible for juvenile obesity in all BFMI lines (Arends et al., 2016), this QTL on Chr 16 

affects the persistence of obesity in the BBFMI-861-S1 mouse line at the later age. 

In the current study we identified one novel QTL for body weight and confirmed one 

previously identified body weight QTL in our population by using time series data. The 

identification of these two QTL which are significant over a wide range of ontogenetic 

development help us to unravel the genetic puzzle that is driving the higher body weight 

observed in the BFMI lines over time.  

Obesity is a complex trait driven by multiple genetic and environmental factors. While 

environmental factors are well known, many genetic factors are still unknown. QTL mapping 

and the subsequent identification of genomic regions and candidate genes responsible for 

obesity in both mice and humans are important to help understand the genetic component 

contributing to this common human disease. 
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Background: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the 

metabolic syndrome. This study aimed to identify genetic variants associated with liver 

weight, liver triglycerides, and body weight using the obese BFMI sub-line BFMI861-S1. 

BFMI861-S1 mice are insulin resistant and store ectopic fat in the liver.  

 

Methods: In generation 10, 58 males and 65 females of the advanced intercross line (AIL) 

BFMI861-S1xB6N were phenotyped under a standard diet over 20 weeks. QTL-analysis was 

performed after genotyping with the MiniMUGA Genotyping Array. Whole genome sequencing 

and gene expression data of the parental lines was used for the prioritization of positional 

candidate genes. 

Results: Three QTL associated with liver weight, body weight, and subcutaneous adipose 

tissue (scAT) weight were identified. A highly significant QTL on chromosome (Chr) 1 (157–

168 Mb) showed an association with liver weight. A QTL for body weight at 20 weeks was 

found on Chr 3 (34.1 – 40 Mb) overlapping with a QTL for scAT weight. In a multiple QTL 

mapping approach, an additional QTL affecting body weight at 16 weeks was identified on 

Chr 6 (9.5-26.1 Mb). Considering sequence variants and expression differences, Sec16b and 

http://dx.doi.org/10.1038/s41598-022-14316-5
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Astn1 were prioritized as top positional candidate genes for the liver weight QTL on Chr 1; 

Met and Ica1 for the body weight QTL on Chr 6. Interestingly, all top candidate genes have 

previously been linked with metabolic traits.  

Conclusions: This study shows once more the power of an advanced intercross line for 

fine mapping. QTL mapping combined with a detailed prioritization approach allowed us to 

identify additional and plausible candidate genes linked to metabolic traits in the AIL 

(BFMI861-S1xB6N). By reidentifying known candidate genes in a different crossing population 

the causal link with specific traits is underlined and additional evidence is given for further 

investigations. 
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4.1  Introduction 

 
Obesity and its related pathologies such as insulin resistance, type 2 diabetes, and fatty liver 

are symptoms of an imbalanced energy homeostasis (Blüher, 2019). A sedentary lifestyle as 

well as the (over)consumption of easily available energy-dense food contribute to this 

imbalance (Blüher, 2019). However, genetic constitution sets the stage for the phenotypic 

characteristics. Genome-wide association studies (GWAS) in humans have revealed more 

than 300 single-nucleotide polymorphisms (SNPs) associated with obesity-related phenotypes 

(Goodarzi, 2018). Nevertheless, identified loci and underlying genes explain only a minor 

proportion of the estimated heritability (Goodarzi, 2018) (Albuquerque, Nóbrega, Manco, & 

Padez, 2017).  

Mice are ideal model organisms for studying genetic effects because the environmental 

conditions can be tightly controlled. Furthermore, different inbred mouse lines with distinct 

but well-defined genetic constitution are available, which can be used to improve our 

understanding of the genetic architecture of complex phenotypes like obesity. Crosses 

between inbred lines allow the generation of structured populations. These prerequisites 

make association studies between genetic loci and phenotypes feasible in relatively small 

populations with high statistical power (Darvasi & Soller, 1995). In particular, advanced 

intercross lines (AIL) allow high resolution QTL mapping by increasing recombination 

between any two loci (Darvasi & Soller, 1995) (Rockman & Kruglyak, 2008) (Arends et al., 

2016) (Delpero et al., 2021). 

The Berlin Fat Mouse with its different inbred lines (BFMI) were generated initially by 

crossing various mice from different pet shops, subsequent selection for high body weight 

and high fat mass (Hantschel, Wagener, Neuschl, Teupser, & Brockmann, 2011), and finally 

repeated inbreeding between pairs of full sibs to generate a mouse model for the 

investigation of body weight gain and body composition. The different BFMI sub-lines are 

genetically closely related. They are all obese, but show different features of the metabolic 

syndrome (Heise et al., 2016) (Wagener et al., 2006).  
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Due to their unique genetic background in combination with the distinct obese phenotypes, 

the BFMI sub-lines allow the identification of diverse genetic contributors to the metabolic 

syndrome. In a cross between the obese line BFMI860-12 and C57BL/6N (B6N) as a lean strain, 

a major QTL for total fat mass was mapped on chromosome (Chr) 3 (jObes1) (Neuschl et al., 

2010b). The locus was further fine-mapped and characterized, which led to the identification 

of Bbs7 as causal gene (Arends et al., 2016), a gene that contributes to the Bardet-Biedl 

syndrome in humans. In an AIL between BFMI861-S1 and BFMI861-S2, two genetically very 

similar lines, we identified QTL and candidate genes responsible for differences in liver 

weight, liver triglycerides, gonadal adipose tissue weight, and body weight (Delpero et al., 

2021). The BFMI861-S1 line of this cross does not only carry the mutant jObes1 allele, it also 

shows the highest liver weight and liver triglyceride (TG) concentration among all BFMI sub-

lines (Heise et al., 2016). Therefore, the BFMI861-S1 line is an interesting mouse model to 

study the genetic architecture of hepatic fat deposition in the context of obesity. In this 

study, we have generated the advanced intercross of BFMI861-S1 and B6N, where B6N is a 

lean counterpart to BFMI861-S1 to identify additional genes contributing to the specific 

phenotype of the BFMI861-S1 sub-line, in particular its fatty liver.  
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4.2  Material and Methods 

 
Mouse population 

58 male and 65 female mice of the AIL BFMI861-S1xC57BL/6NCrl (AIL (BFMI861-S1xB6N)) in 

generation 10 were genotyped and phenotyped. The AIL population was generated from an 

F2 population between an obese BFMI861-S1 male and lean B6N females. Beginning in 

generation F1, individuals were randomly mated to mice from the same generation using the 

program RandoMate (Schmitt et al., 2009). 

 

 

Animal husbandry 

All animal experiments were approved by the German Animal Welfare Authorities (approval 

no. G0099/16). Mice were maintained under conventional conditions and a 12:12 h light–dark 

cycle (lights on at 06:00) at a temperature of 22 ± 2°C. Animals had ad libitum access to 

food and water. Animals were fed a standard rodent diet containing 16.7 MJ/kg of 

metabolizable energy, 11 % from fat, 26 % from protein and 53 % from carbohydrates (V1534-

000, ssniff EF R/M; Ssniff Spezialdiäten GmbH, Soest, Germany). 

 

 

Phenotyping 

Animals were analyzed between the age of 4 (after weaning at 3 weeks) and 20 weeks with 

body weight being recorded weekly. To investigate glucose metabolism, an oral glucose 

tolerance test (GTT) (week 18) and an intraperitoneal insulin tolerance test (ITT) (week 20, 

1 U insulin/kg body weight) were performed as previously described (Hesse et al., 2012). 

The area under the curve (AUC) for blood glucose for GTT and ITT was calculated. At 20 

weeks, the mice were anesthetized with isofluorane after a fasting period of 2 hours and 

sacrificed by decapitation (in the morning until 12 AM). Several tissues including gonadal 

adipose tissue (gonAT), subcutaneous inguinal adipose tissue (scAT), and liver were 
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dissected, weighed, shock-frozen in liquid nitrogen and stored until further use at -80°C. 

Body length was measured (Hesse, Dunn, Heldmaier, Klingenspor, & Rozman, 2010) and the 

body mass index (BMI) was calculated using the DuBois equation (Gargiulo et al., 2014). Liver 

TG were assessed as previously described (Hesse et al., 2014). Plasma free fatty acids (FFA), 

cholesterol, and TG were measured as described in Schulz et al. 2011 (Schulz et al., 2011). 

Plasma insulin and skeletal muscle fat % were measured as previously described (Heise et 

al., 2016).  

 

 

Genotyping 

DNA isolation was done by salt extraction (5 M NaCl with β-mercapthoethanol and proteinase 

K) and subsequent ethanol precipitation. Genotypes of all 123 mice were generated by 

Neogen GeneSeek (Lincoln, NE, USA) using the Mini Mouse Universal Genotyping Array 

(MiniMUGA; Illumina, San Diego, CA, USA). The MiniMUGA array contains probes targeting 

10,171 known SNPs (markers) (Sigmon et al., 2020). Markers were removed when all 

genotypes were missing or when the marker was not segregating. In addition, to prevent 

spurious associations, we required that at least two of the genotype groups contained 10 

observations each. In case one out of three genotype groups contained less than 10 

individuals, these were set to N/A, but the marker was kept. After quality control 1,886 high 

quality markers were available and used for subsequent QTL analysis (Figure 4.1). 
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Figure 4.1. Distribution of informative SNPs across the genome in the AIL (BFMI861-S1xB6N). 

 

 

 

QTL mapping 

Linear models were used to investigate the influence of subfamily, litter size, and sex on 

each phenotype. Because the factors affected the phenotypes differently, different 

statistical models were used for mapping each phenotype, which included significant factors 

as fixed covariates accordingly. 

To minimize the influence of population structure, the genomic inflation factor (λ) was 

computed. If the genomic inflation factor was above 1.05 (Devlin & Roeder, 1999), results 

were corrected using λ-correction. To account for multiple testing, significance thresholds 

were corrected using stringent Bonferroni correction. The number of independent SNPs was 

determined using the simpleM method (Gao, Becker, Becker, Starmer, & Province, 2010). 

The threshold for significance was set using the number of independent SNPs (1,365) as the 

total number of tests performed. This resulted in a LOD score (as defined by -log10(pvalue)) 

after λ-correction above 5.1 to be deemed ‘genome-wide highly significant’ and above 4.4 

to be ‘genome-wide significant’. QTL regions were defined by a 1.5 LOD drop from the top 

marker. Region start and end positions are defined by the first marker upstream and 

downstream, respectively, that have a drop of 1.5 from the LOD score of the top marker 
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(Dupuis & Siegmund, 1999).  

To discover additional QTLs for body weight, which might be hidden by the known strong 

effect QTL of the jObes1 locus, a variation of multiple QTL mapping (MQM) was used (Arends, 

Prins, Jansen, & Broman, 2010). The single QTL model was adjusted to compensate for the 

known effect of the jObes1 locus by including the top marker from the Chr 3 region (SNP 

gUNC5036315) as an additional cofactor into the model:  

Body weight = sex + mother + gUNC5036315 + marker genotype + error 

 

 

Gene expression analysis 

Gene expression was measured in RNA isolated from liver of BFMI861-S1 male mice (n=6) at 

10 weeks. RNA was extracted as described in Hesse et al. 2018 (Hesse et al., 2018). Gene 

expression was measured with the Clariom™ S Assay for mouse (Thermo Fisher Scientific) 

using the service of ATLAS Biolabs, Berlin, Germany. Gene expression data of male B6N mice 

(n = 5) measured with the Clariom™ S assay for mouse were downloaded from Gene 

Expression Omnibus (Clough & Barrett, 2016). Probe intensities were log2 transformed and 

quantile normalized. To test for expression differences between BFMI861-S1 and B6N mice, 

two-tailed t-tests were performed. False positives due to multiple testing were minimized 

using a Benjamini-Hochberg correction. For statistical analysis and for graphical presentation 

R: A Language and Environment for Statistical Computing (R Team, 2018) was used. 

 

 

Whole genome sequencing 

The BFMI861-S1 parental genome was paired-end sequenced using the Illumina HiSeq 

(Illumina) platform. Obtained DNA reads were trimmed using trimmomatic (Bolger, Lohse, & 

Usadel, 2014) after which trimmed reads were aligned to the mouse genome (MM10, 

GRCm38.p6) using the Burrows–Wheeler Aligner (BWA) software (Heng Li & Durbin, 2009). 

Subsequently, SAM files were converted to BAM files, sorted, and indexed using Samtools 
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(Heng Li et al., 2009). (Optical) Duplicate reads were removed using Picard tools v2.19.0 

after which indel realignment and base recalibration was done using the GATK v4.1.0.0 

(McKenna et al., 2010), according to GATK best practices. 

All sequence variants in BFMI861-S1 mice were called using BCFtools (Heng Li et al., 2009). 

Variants were further annotated using the Ensembl Variant Effect Predictor (VEP) (McLaren 

et al., 2016). DNA sequencing data were deposited at the NCBI Sequence Read Archive (SRA) 

under BioProject ID: PRJNA717237. 

 

 

Candidate genes prioritization  

Prioritization of candidate genes in each QTL region was performed as described in Delpero 

et al. 2021 (Delpero et al., 2021). In brief, genes in a QTL region containing sequence variants 

between the parental lines BFMI861-S1 and B6N were ranked according to the sum of scores 

for the functional annotation of coding and non-coding variants, gene expression data, and 

the Kyoto Encyclopedia of Genes and Genomes (KEGG). Coding sequence variants leading to 

stop gain/stop loss codons and missense mutations located in functional protein domains 

were awarded a score of 3 points. A missense variant with either a deleterious or a tolerated 

SIFT (Sorting Intolerant From Tolerant) value obtained a score of 3 or 1, respectively. Non-

coding variants were scored based on their location in potential functional sites. If a non-

coding variant was located in the promoter or in a splice site, a score of 3 was awarded; if 

located in untranslated regions (UTRs), enhancers, or CTCF binding sites (involved in 3D 

structure of chromatin) the score was 1. Genes differentially expressed in the liver were 

scored with 2; genes annotated in relevant KEGG metabolic pathways with 1. 
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4.3  Results 
 

Phenotypic variation and correlation analysis in the AIL 

Animals of the AIL population showed high standard deviation for the collected phenotypes 

which were expected and are needed for QTL analysis. In detail, body weight was on average 

21.9 ± 7.27 g at the end of the experiment (week 20). GonAT weight, scAT, and liver weight 

were on average 1.53 ± 1.0 g, 0.65 ± 0.32 g, and 1.92 ± 0.55 g, respectively. The areas under 

the curve for blood glucose during GTT and ITT were 21,002 ± 12,415 and 7,308 ± 3,195, 

respectively. Liver triglycerides and plasma triglycerides were on average 112 ± 68 µg TG / 

µg protein and 896 ± 506 ug/ml, respectively. Additional plasma parameters such as plasma 

cholesterol, plasma FFA, and plasma insulin were on average 44 ± 9 mg/dl, 0.23 ± 0.06 

mmol/l, and 7 ± 13 ng/mL, respectively. Skeletal muscle fat % also showed high standard 

deviation in the AIL population (mean = 19 ± 5 %) (Table 4.1). 

In order to assess the relationship among the phenotypes measured in all AIL mice, Spearman 

correlation was computed between all the collected phenotypes. Most of the phenotypes 

(scAT weight, gonAT weight, liver weight, body weight, GTT AUC, and ITT AUC, plasma 

cholesterol, plasma insulin, BMI, body length, and skeletal muscle fat %) were positively 

correlated among each other (Table 4.2).  

No significant correlation was detected between gonAT weight and liver weight, gonAT 

weight and plasma TG, and scAT weight and plasma TG. Liver TG showed a significant 

positive correlation with body weight at 20 weeks (r = 0.34), gonAT weight (r = 0.32), scAT 

weight (r = 0.44), and skeletal muscle fat % (r = 0.45). In addition, plasma FFA did not show 

any correlation with the collected phenotypes. 
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Table 4.1. Mean and SD for the collected traits in the AIL (BFMI861-S1xB6N). 

  Mean (SD) AIL 

Body weight [g] 21.9 ± 7.27 

GonAT weight  [g] 1.53 ± 1.0  

ScAT weight  [g] 0.65 ± 0.32  

Liver weight  [g] 1.92 ± 0.55  

GTT auc 21,002 ± 12,415  

ITT auc 7,308 ± 3,195 

Liver triglycerides µg TG / µg protein  112 ± 68 

Plasma triglycerides µg TG / µg protein  896 ± 506  

Plasma cholesterol mg/dl 44 ± 9  

Plasma FFA mmol/l 0.23 ± 0.06  

Plasma insulin ng/mL 7 ± 13  

Skeletal muscle fat % 19 ± 5 
 

Abbreviations: GonAT, gonadal adipose tissue; ScAT, subcutaneous adipose tissue; TG, 

triglycerides; ITT, insulin tolerance test; GTT, glucose tolerance test; AUC, area under the 

curve; FFA, free fatty acids; BMI, body mass index; SMuscle fat %, skeletal muscle fat 

percentage.  

 

Table 4.2. Spearman correlation coefficients between the collected phenotypes in the AIL 
(BFMI861-S1xB6N). Bold indicates significant correlation after multiple testing correction (p 
< 9.10E-04). 

 

Abbreviations: gonAT, gonadal adipose tissue; scAT, subcutaneous adipose tissue; TG, 

triglycerides; ITT, insulin tolerance test; GTT, glucose tolerance test; AUC, area under the 

curve; FFA, free fatty acids; BMI, body mass index; SMuscle fat %, skeletal muscle fat 

percentage.  

 

 
 

Liver GonAT ScAT Liver GTT ITT Plasma Plasma Plasma Plasma BMI Body SMuscle 

weight weight weight TG/Proteins AUC AUC TG FFA cholesterol insulin length fat %

Body weight 0.74 0.64 0.81 0.34 0.78 0.84 0.34 0.08 0.66 0.42 0.98 0.63 0.63

(20 weeks)

Liver weight 0.21 0.43 0.15 0.61 0.66 0.56 0.16 0.55 0.2 0.68 0.62 0.33

GonAT weight 0.77 0.32 0.49 0.52 -0.07 0.09 0.36 0.35 0.66 0.23 0.74

ScAT weight 0.44 0.62 0.7 0.12 0.02 0.51 0.48 0.81 0.4 0.81

Liver TG/Proteins 0.25 0.33 -0.29 -0.03 0.26 0.27 0.35 0.08 0.45

GTT AUC 0.74 0.39 0.02 0.49 0.39 0.79 0.37 0.56

ITT AUC 0.33 0.03 0.62 0.39 0.84 0.44 0.59

Plasma TG 0.28 0.34 0.25 0.3 0.38 0.05

Plasma FFA 0.25 0.01 0.03 0.14 -0.01

Plasma cholesterol 0.22 0.65 0.45 0.39

Plasma insulin 0.43 0.13 0.48

BMI 0.48 0.65

Body length 0.22
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QTL mapping 

For QTL analysis, different statistical models were used for mapping each phenotype (Table 

4.3). The results revealed genome-wide significant loci on three different chromosomes (1, 

3, and 6) associated with one or more of the investigated phenotypes (Table 4.4). 

Additionally, a suggestive QTL associated with liver TG was found on Chr 8.  

In detail, the significant QTL on Chr 1 (157,132,066 - 168,495,457) with a LOD score of 4.96 

was associated with liver weight (Figure 4.2a). This region contains 89 annotated protein-

coding positional candidate genes. The most significant SNP for liver weight in this region 

was “gUNC2036998” (Chr1:158,663,689). Interestingly, this SNP showed only two genotype 

classes (homozygous BFMI861-S1 and heterozygous). The liver of homozygous mice carrying 

the BFMI861-S1 allele was 17 % heavier compared to the liver of heterozygous (Het) mice 

(mean BFMI861-S1 = 1.81 ± 0.25 g, mean Het = 1.55 ± 0.42 g) (Figure 4.2b).  

The highly significant region for body weight on Chr 3 (34,066,622 - 40,043,158) 

corresponded with the jObes1 locus that was identified in BFMI mice before (Arends et al., 

2016). This QTL effect in the AIL BFMI861-S1xB6N persisted at all time points starting from 

week 9 until week 20 (Figure 4.3a). The most significant association (LOD = 8.89) was body 

weight at week 14 with the top marker gUNC5036315 (Chr3:35,986,311) (Figure 4.3b). This 

marker was 604 kbp away from the Bbs7 gene that had been identified recently as causal 

gene for obesity in BFMI mice (Arends et al., 2016). At the top marker locus, 14 weeks-old 

mice homozygous for the BFMI861-S1 allele were 10.09 g heavier than homozygous B6N 

counterparts. The same region affected also scAT weight (LOD = 5.8), and BMI (LOD = 4.94) 

with homozygous BFMI861-S1 mice carrying 98 % more scAT than B6N homozygous mice 

(mean BFMI861-S1 = 0.95 ± 0.24 g, mean B6N = 0.48 ± 0.21 g) and 83 % compared to 

heterozygous mice (mean Het = 0.52 ± 0.27 g). In addition, homozygous BFMI861-S1 mice 

showed 14 % BMI increase compared to B6N homozygous mice (mean BFMI861-S1 = 4.20 ± 

0.20 kg/m2, mean B6N = 3.67 ± 0.31 kg/m2) and 12 % compared to heterozygous mice (mean 

Het = 3.76 ± 0.33 kg/m2). This region contains 30 annotated protein-coding genes. 

When correcting for the top marker of the jObes1 locus on Chr 3 (gUNC5036315), an 
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additional region associated with body weight at 16 weeks was detected on Chr 6 (0 - 

17,553,096) (Figure 4.2c). This region contains 59 protein-coding genes. The most significant 

SNP of this region was gUNC10595065 (3,919,413; LOD = 5.41). Heterozygous mice showed 9 

% increase in body weight compared to homozygous B6N mice (mean Het = 45.14 ± 2.91 g, 

mean B6N = 41.47 ± 3.24 g) and 4.5 % increase compared to homozygous BFMI861-S1 mice 

(mean BFMI861-S1 = 43.33 ± 2.7 g (Figure 4.2d).  

A suggestive QTL for liver TG was identified on Chr 8 (86,158,420-106,738,488). Due to the 

suggestive significance, the region is large containing 179 protein-coding genes. The top 

marker in this region was “S1H083826428” (Chr8:95,660,710; LOD = 3.93). On average, 

homozygous mice carrying the BFMI861-S1 allele at this marker showed 90 % increase 

amounts of liver TG compared to homozygous B6N mice (mean BFMI861-S1 = 192 ± 54 µg TG 

/ µg protein, mean B6N = 101 ± 53 µg TG / µg protein) and 83 % increase compared to 

heterozygous mice (mean Het = 105 ± 61 µg TG / µg protein). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

60
72 

  

 

 

Table 4.3. P values for effects of covariates on each phenotype. 

  
  

Covariates 

Sex Subfamily Litter size 

        

Body weight  
(20 weeks) 0.00001 0.00097 0.17152 

GTT AUC 2.01E-06 0.01000 0.05274 

ITT AUC 0.00025 0.00022 0.12422 

GonAT weight 0.00087 0.00029 0.01736 

ScAT weight 0.55182 3.35E-06 0.11907 

Liver weight 1.07E-09 0.00077 0.19891 

Liver TG 0.28798 0.51456 0.48629 

Plasma cholesterol 0.00510 0.01481 0.59906 

Plasma FFA 0.00543 0.20579 0.50047 

Plasma TG 3.24E-10 0.11351 0.98701 

Plasma insulin 0.52115 0.00252 0.54256 

Body length 0.00012 0.10646 0.08461 

BMI 0.00006 0.00062 0.23395 

SMuscle fat % 0.03634 0.00003 0.03419 

 

Abbreviations: P values for effects of covariates on each phenotype. In bold are represented 

signifcant covariates that were included in the model for each trait. gonAT, gonadal adipose 

tissue; scAT, subcutaneous adipose tissue; Gluc, blood glucose concentration; ITT, insulin 

tolerance test; GTT, glucose tolerance test; AUC, area under the curve; FFA, free fatty acids; 

TG, triglycerides; BMI, body mass index; SMuscle fat %, skeletal muscle fat percentage. 
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Table 4.4. QTL identified for different phenotypes in the AIL (BFMI861-S1xB6N). 

 

Abbreviations: ScAT, subcutaneous adipose tissue; BMI, body mass index; QTL, quantitative 

phenotypes locus; Chr, chromosome number; Start, Top, and Stop, position of the start of 

the QTL confidence interval, position of the SNP with the highest LOD score, and position of 

the end of the QTL confidence interval in base pairs, respectively. Positions are given 

according to the Mouse Genome Version MM10, GRCm38.p6. SNP, single-nucleotide 

polymorphism. The confidence interval gives the 1.5 LOD drop region of the top SNP position. 

A LOD score above 5.1 was deemed to be ‘genome-wide highly significant’ and above 4.4 

was deemed ‘genome-wide significant’. BH, Bonferroni correction; LOD, logarithm (base 10) 

of odds; Var %, percentage of total variance in AIL explained. The Mean columns show the 

phenotypic mean adjusted for significant covariates of homozygous BFMI861-S1, 

heterozygous, and homozygous B6N animals, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Phenotype Age [weeks] N LOD(BH) % AIL Var Mean BFMI/BFMI Mean B6/BFMI Mean B6/B6

Chr Start [bp] Top [bp] Stop [bp]

Body weight [g] 9 123 3 34,066,622 35,986,311 40,043,158 7.45 8.1 34.21 29.08 28.02

10 123 3 34,066,622 35,986,311 40,043,158 5.69 9.5 36.27 29.98 29.33

11 123 3 34,066,622 38,187,507 40,043,158 7.24 9.6 38.04 30.75 29.85

12 123 3 34,066,622 35,986,311 40,043,158 5.92 9.2 39.54 31.68 30.51

13 123 3 34,066,622 35,986,311 40,043,158 7.08 11.2 40.93 32.57 31.86

14 123 3 34,066,622 35,986,311 40,043,158 8.89 13 42.46 33.4 32.37

15 123 3 34,066,622 38,187,507 40,043,158 7.22 10.4 42.93 33.86 33.2

16 123 3 34,066,622 35,986,311 40,043,158 7.74 12.7 44.34 34.57 33.53

16 123 6 0 13,919,413 17,553,096 5.41 8 43.33 45.14 41.47

17 123 3 34,066,622 38,187,507 40,043,158 4.97 8.6 44.98 36.07 35.15

18 123 3 34,066,622 38,187,507 40,043,158 5.24 9.1 45.6 36.21 35.81

19 123 3 34,066,622 35,986,311 40,043,158 5.63 9.1 45.05 36.13 34.78

20 123 3 34,066,622 35,986,311 40,043,158 5.07 9.8 46.06 37.54 35.91

ScAT weight [g] 20 121 3 34,066,622 38,187,507 40,043,158 5.8 9.1 0.95 0.52 0.48

BMI [kg/m2] 20 122 3 34,066,622 38,187,507 40,043,158 4.94 10.4 4.2 3.76 3.67

Liver weight [g] 20 123 1 157,132,066 158,663,689 168,495,457 4.96 5.6 1.81 1.55 -

QTL region
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Figure 4.2. (A) QTL mapping curve of the locus on chromosome 1 for liver weight. The black 

(1%) and grey (5%) horizontal lines mark the significance thresholds; likelihood ratios above 

the black line are formally highly significant (LOD > 5.1), likelihood ratios above the grey 

line are formally significant (LOD > 4.4). (B) Boxplots for two genotype classes (BFMI-S1, 

BFMI861-S1 homozygous; HET, heterozygous) at SNP gUNC2036998 which is located at the 

top position for liver weight. (C) QTL mapping curve on chromosome 6 for body weight at 

week 16 after performing MQM. (D) Boxplots for all three genotype classes (BFMI-S1, 

BFMI861-S1 homozygous; HET, heterozygous; B6N, C57BL/6N homozygous) at SNP 

gUNC10595065 which is located at the top position for body weight at week 16 after 

performing MQM.  
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Figure 4.3. (A) QTL mapping curve of the jObes1 locus on chromosome 3 for total body 

weight at week 9, 14, and 20. The black (1%) and grey (5%) horizontal lines mark the 

significance thresholds. (B) Boxplots for mice aged 4-20 weeks and curves depicting body 

weight development. For every time point, boxplots for all three genotype classes (BFMI-S1, 

BFMI861-S1 homozygous; HET, heterozygous; B6N, C57BL/6N homozygous) are shown at SNP 

gUNC5036315, which is located at the top position of the jObes1 region.  

 

 
 
 
 
 
 
 
 
 

Candidate gene prioritization 

Within the confidence intervals of the four QTL (including the QTL on Chr 8 suggestively 

associated with liver TG) 357 protein coding positional candidate genes were located. 152 

genes were polymorphic between BFMI861-S1 and B6N in protein-coding and/or regulatory 

regions; 29 on Chr 1, 38 on Chr 3, 22 on Chr 6, and 63 on Chr 8. To identify the most likely 

candidate genes for each QTL, the 152 polymorphic positional candidate genes were scored 

according to the decision tree. Tissue expression of top candidate genes was investigated 

using MGI (27). After applying the prioritization criteria, two genes (Astn1 and Sec16b) 
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located in the region on Chr 1 associated with liver weight ranked with the highest score of 

12 and 10, respectively (Table 4.5). Astn1 and Sec16b carry deleterious missense variants 

according to the variant effect predictor and are widely expressed including the liver. In 

addition, both Sec16b and Astn1 show variants in the promoter region and 5-prime and 3-

prime UTRs. However, despite variants in regulatory regions Sec16b and Astn1 did not show 

gene expression differences in the liver. Tree genes on Chr 3 (Frem2, Bbs7, and Noct), with 

a score of 13, 12, and 12, respectively ranked as top candidate genes. Among the candidate 

genes located in the region on Chr 3 (jObes1) associated with body weight from week 9 to 

20, Bbs7, Noct, and Frem2 all carried missense variants in domains and regulatory region 

variants and are all widely expressed across tissues including the liver and the nervous 

system. In addition, Bbs7 and Noct were both downregulated (p=0.01346 and p=0.00876, 

respectively) in liver of BFMI861-S1 mice compare to B6N, while Frem2 did not show 

differences in the expression. In the region on Chr 6 associated with body weight two genes 

(Met and Ica1) with scores of 10 and 9, respectively ranked as top candidate genes. Met 

carries a tolerated missense variant in the IPT (Ig-like, plexins, transcription factors) domain 

and variants in regulatory regions such as enhancers and untranslated regions. Ica1 showed 

variants only in regulatory regions (promoter, CTCF binds, enhancers, and untranslated 

regions). According to Mouse Genome Informatics both genes are highly expressed in a large 

variety of tissues. Met and Ica1 were both downregulated in the liver of BFMI861-S1 mice 

(p=8.2E−06 and 0.00200, respectively). In the region affecting liver TG on Chr 8, Fto and 

Lpcat2 were identified as the top candidate genes with scores of 16 and 13, respectively. 

Fto carried a stop gain variant and additional variants in different regulatory regions 

(promoter, CTCF binds, and enhancer) and was downregulated in the liver of BFMI861-S1 

mice (p=0.01092). 

Lpcat2 instead carried one deleterious missense variant and regulatory region variants 

(promoter and enhancer) but did not show expression differences in the liver between 

BFMI861-S1 and B6N mice. According to the Mouse Genome Informatics database both Fto 

and Lpcat2 are widely expressed across tissues including the liver. 
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Table 4.5. Top candidate genes after applying the prioritization criteria. Bold indicates 
differentially expressed in liver after Benjamini-Hochberg correction. 

Gene 
score 

Phenotype Chr 
Positional 
candidate 

gene 
Type of mutation 

P-value  FC liver  

liver (S1/B6N) 

12 
Liver 

weight 
1 Astn1 

Deleterious domain missense, CTCF 
binds, UTRs, enhancer and promoter 
variant 

0.66493 -0.03 

10   1 Sec16b 
Deleterious missense, CTCF binds, 
UTRs, enhancer and promoter variant 

0.54953 -0.01 

13 
Body 

weight, 
3 Frem2 

Deleterious domain missense, CTCF 
binds, UTRs, enhancer and promoter 
variant 

0.02092 0.12 

12 
scAT 

weight, 
3 Bbs7 

Tolerated domain missense, CTCF 
binds, UTRs, enhancer and promoter 
variant 

0.01346 -0.14 

12 BMI 3 Noct 
Tolerated domain missense, CTCF 
binds, UTRs, and promoter variant 

0.00876 -0.17 

10 
Body 

weight 
6 Met 

Tolerated domain missense, CTCF 
binds, UTRs, and enhancer variant 

8.20E-06 -0.1 

9   6 Ica1 
CTCF binds, UTRs, enhancer and 
promoter variant 

0.002 -0.15 

16 Liver TG 8 Fto 
Tolerated domain missense, stop 
gained, CTCF binds, UTRs, enhancer 
and promoter variant 

0.01092 -0.09 

13   8 Lpcat2 
Deleterious domain missense, CTCF 
binds, UTRs, enhancer and promoter 
variant 

0.22981 -0.05 

Abbreviations: scAT, subcutaneous adipose tissue; TG, triglycerides; BMI, body mass 

index; Chr, chromosome; FC, fold change. 
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4.4  Discussion and conclusion 

Genome wide association studies (GWAS) on obesity-associated phenotypes identified loci 

that account in sum only for a small percentage of the total variance of the examined 

population (Goodarzi, 2018). Therefore, studies are needed that better allow the 

identification of genetic effects than most populations do.  

In order to unravel the genetics behind obesity and hepatic fat deposition, we investigated 

an AIL population generated from a cross between the obese BFMI861-S1 mouse line and the 

lean reference strain B6N.  

The AIL population used in this study has the advantage of having a high resolution for QTL 

mapping. Because the examined AIL accumulated recombination over 10 generations, the 

physical length of the QTL regions is relatively short and as such the number of positional 

candidate genes is low (Darvasi & Soller, 1995). In our population, the number of positional 

candidate genes could be further reduced by removing regions in the genome that are 

identical between BFMI861-S1 and B6N. Excluding non-polymorphic genes reduced the 

number of protein coding candidate genes from 357 to 152. In addition, the application of 

the decision tree led to the prioritization of the most likely candidate genes among the 152 

polymorphic genes.  

In the region on Chr 1 associated with liver weight, the top candidate genes are Sec16b and 

Astn1. Sec16b is required for secretory cargo traffic from the endoplasmic reticulum to the 

Golgi apparatus (Bhattacharyya & Glick, 2007). Previously, the gene has been linked to 

increased fat storage in both mice and humans. A human GWAS associated Sec16b with 

differences in body composition (Sahibdeen et al., 2018). In mice, dysfunctional Sec16b was 

associated with increased body weight (Bult et al., 2019). The BFMI861-S1 mice of our study 

carry a deleterious missense variant of Sec16b leading to an impaired protein variant and, 

in addition, SNPs in the promoter region and 3-prime and 5-prime UTRs. Since Sec16b was 

not differentially expressed between the parental lines BFMI861-S1 and B6N, we hypothesize 

that the detected deleterious missense variant is responsible for the dysfunction of the 

encoded protein. Therefore, we consider Sec16b as a very strong candidate responsible for 
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the increased liver weight in BFMI861-S1 mice. Astn1, the second prioritized candidate gene 

in the Chr 1 region, is a neuronal adhesion molecule required for the migration of young 

postmitotic neuroblasts along glial fibers (Zheng, Heintz, & Hatten, 1996). The gene has not 

been associated with obesity related phenotypes yet. In BFMI861-S1 mice, Astn1 carries one 

deleterious missense variant in the fibronectin type 3 domain. This domain is known to be 

responsible for interactions with other extracellular matrix (ECM) or cell surface proteins 

(Kim, McKnite, Xie, & Christian, 2018). Therefore, the identified deleterious mutation could 

reduce the interaction ability of the encoded protein. Additional SNPs between the BFMI861-

S1 and B6N in the promoter, 5-prime UTR, enhancers, and CTCF binding sites of Astn1 could 

be responsible for the observed downregulation of the gene in the liver of BFMI861-S1 mice 

versus B6N. This finding confirms that the selected prioritization approach is useful to 

identify so far unknown candidate genes for the phenotype under investigation which should 

be considered for follow-up studies. 

In the QTL interval for body weight on Chr 3, the prioritization approach identified Frem2, 

Bbs7, and Noct as the top candidate genes. Bbs7 has been identify to be the causal gene for 

elevated fat mass and obesity in all BFMI lines before (Arends et al., 2016). Among diverse 

sequence variants between BFMI and B6N in the Bbs7 gene, it has been clarified that a large 

intronic deletion is partially responsible for the high fat content in BFMI mice (Krause et al., 

2021) This is additional evidence for the prioritization approach being suitable for the correct 

identification of positional candidate genes in a defined confidence interval. 

Only if we accounted for the strong effect of jObes1 by including the top marker from the 

Chr 3 region (gUNC5036315) as a cofactor into the model we detected another QTL for body 

weight on Chr 6. This QTL affecting body weight at 16 weeks partially overlaps with a 

previously identified QTL for body weight at 10 weeks that was identified in the F2 

population BFMI860-12xB6N, which used BFMI860-12 instead of BFMI861-S1 from the current 

study (Neuschl et al., 2010b). In the confidence interval of the QTL identified in our cross, 

Met and Ica1 are the highest scored top candidate genes. Met encodes a receptor tyrosine 

kinase involved in the transduction of signals from the extracellular matrix to the cytoplasm 
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by binding to hepatocyte growth factor/HGF ligand (Bladt, Riethmacher, Isenmann, Aguzzi, 

& Birchmeier, 1995). In BFMI861-S1 mice Met carries a tolerated missense variant in the Ig-

like, plexins, transcription factors domain which is involved in the control of cell 

dissociation, motility, and invasion of extracellular matrices (Collesi, Santoro, Gaudino, & 

Comoglio, 1996). In addition, Met carries SNPs in regulatory regions (enhancers and CTCF 

binds) which could contribute to the observed downregulation in the liver of BFMI861-S1 

mice compare to B6N. According to literature, Met is known to be involved in pancreatic-

cell death and diabetes (Bult et al., 2019) (Mellado-Gil et al., 2011). Therefore, we consider 

this gene to be an interesting candidate for the increased body weight of heterozygous mice 

compared to homozygous BFMI861-S1 and homozygous B6N mice. Ica1 which is the second 

prioritized gene of the Chr 6 region encodes for Islet cell autoantigen 1 and plays a role in 

neurotransmitter secretion (Pilon, Peng, Spence, Plasterk, & Dosch, 2000). Ica1 carries 

several SNPs in the promoter and 5-prime UTR which might cause the downregulation in liver 

of BFMI861-S1 mice. Ica1 is also known to be associated with type 1 diabetes mellitus in non-

obese diabetic mice (Bonner et al., 2012) as well as with glucose homeostasis (Bult et al., 

2019). Therefore, Ica1 could cause the higher body weight that we observed in heterozygous 

mice compared to homozygous BFMI861-S1 and homozygous B6N mice. 

In the confidence interval of the suggestive liver TG QTL on Chr 8, Fto and Lpcat2 are the 

most likely candidate genes responsible for hepatic fat accumulation in BFMI861-S1 mice. 

The same genomic region has previously been associated with liver TG in the Collaborative 

Cross (Abu-Toamih Atamni, Botzman, Mott, Gat-Viks, & Iraqi, 2018). In this QTL, we 

suggested Fto to be responsible for the increased amount of TG in the liver of BFMI861-S1 

mice. Fto has been associated with the body mass index in humans and therefore this gene 

has been examined extensively (Lan et al., 2020) (Zhao, Yang, Sun, Zhao, & Yang, 2014). 

Fto codes for an RNA demethylase. In mice, both Fto knockout and Fto missense variants are 

responsible for fat accumulation and hypertriglyceridemia (Church et al., 2009). The 

BFMI861-S1 allele carriers of our study carry a stop gain variant at FTO amino acid position 

314, which leads to a premature stop codon, and thereby to a shortened protein. 
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Furthermore, BFMI861-S1 mice contain additional missense and promoter variants. The 

BFMI861-S1 Fto haplotype likely contributes as a whole to the observed downregulation in 

the liver of BFMI861-S1 mice. These findings led us to consider Fto as the main contributor 

to the hepatic fat accumulation in BFMI861-S1 mice. Lpcat2, the other prioritized candidate 

gene is an acetyltransferase (Shindou et al., 2007). In BFMI861-S1 mice Lpcat2 carries a 

missense variant at amino acid position 59 located in the transmembrane helical domain 

which could affect the function of the protein. In addition, Lpcat2 carries variants in 

regulatory regions but is not differentially expressed in liver of BFMI861-S1 mice compare to 

B6N. According to literature, Lpcat proteins are associated with polyunsaturated fatty acid 

accumulation (Harayama et al., 2014). Moreover, knockdown of both Lpcat1 and Lpcat2 

leads to an increase in lipid droplets size (Moessinger et al., 2014). The occurrence of several 

SNPs in functional regions of Lpcat2 in BFMI861-S1 mice and its known function in fat 

accumulation let us to consider this gene as another potential contributor to liver TG 

accumulation. 

In conclusion, our approach identified strong candidate genes that are likely involved in the 

development of obesity and fatty liver disease in our Berlin Fat Mouse model. However, 

although we have prioritized candidate genes using the available information, we cannot 

completely rule out that one of the other polymorphic genes was wrongly discarded, or that 

non-protein coding regions might be causal. Nevertheless, the natural mutations found in 

this study in the Berlin Fat Mouse Inbred line BFMI861-S1 contribute to our understanding of 

which genes impact obesity and hepatic fat storage. These findings help to clarify and 

support the role of known candidates. The examined mouse model and the applied gene 

prioritization approach allow to unravel the effects of the identified QTL regions and to link 

genes with observed phenotypes. Additional studies on the candidate genes should be 

performed to discover by which molecular mechanisms they contribute to the development 

of obesity and liver associated diseases in mouse models but also in humans.  
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Chapter 5: General discussion 

 
The overall goal of this thesis is to identify QTL and candidate genes that are responsible for 

the unhealthy metabolic phenotypes observed in one peculiar BFMI line (BFMI861-S1). The 

specific goals are: 1) Discover new QTL associated with metabolic traits in the Berlin Fat 

Mouse line BFMI861-S1, 2) Prioritize and detect candidate genes in the newly identified QTL, 

3) Identify the causal tissue responsible for the metabolic syndrome in the BFMI861-S1 line. 

To detect QTL for metabolic traits responsible for the unhealthy BFMI861-S1 phenotypes one 

AIL was generated from the cross between the BFMI lines BFMI861-S1 and BFMI861-S2. Both 

BFMI861-S1 and BFMI861-S2 lines carry the BFMI obesity locus on chromosome 3. However, 

BFMI861-S1 shows the highest liver weight and liver triglycerides when compared to other 

BFMI lines while BFMI861-S2 is insulin sensitive despite being obese (Heise et al., 2016). 

Mating these two genetically close inbred lines we created the AIL (BFMI861-S1xBFMI861-S2). 

Using the AIL population, overlapping QTL for gonadal adipose tissue weight and blood 

glucose concentration were detected on chromosome (Chr) 3 (95.8-100.1 Mb), and for 

gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5-

26.1 Mb). Causal modelling suggested for Chr 3-QTL direct effects on adipose tissue weight, 

but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, 

liver weight and blood glucose concentration were suggested for Chr 17-QTL. Prioritized 

positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and 

Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 

15 (67.9–74.6) and for body weight on Chr 16 (3.9-21.4 Mb). Using the AIL (BFMI861-

S1xBFMI861-S2) we also performed time series analysis using body weight data.  

To detect further genetic variants for obesity and liver disease, a cross between BFMI861-S1 

and C57BL/6N (B6N) was generated in addition. This additional population was suitable for 

the identification of gene variants that contribute to obesity and liver associated phenotypes 

not detected in the AIL (BFMI861-S1xBFMI861-S2) due to the high genetic similarity of the 

parental lines (both BFMI861-S1 and BFMI861-S2 carry the obesity locus jObes1 on Chr 3). In 
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this cross, three QTL associated with liver weight, body weight, and subcutaneous adipose 

tissue (scAT) weight were identified. A highly significant QTL on Chr 1 (157–168 Mb) showed 

an association with liver weight. A QTL for body weight at 20 weeks was found in the jObes1 

locus on Chr 3 (34.1 – 40 Mb) overlapping with a QTL for scAT weight. In a multiple QTL 

mapping approach using the top marker of the jObes1 locus as a covariate, one additional 

QTL affecting body weight at 16 weeks was identified on Chr 6 (9.5-26.1 Mb). Considering 

sequence variants and expression differences, Sec16b and Astn1 were prioritized as top 

positional candidate genes for the liver weight QTL on Chr 1; Met and Ica1 for the body 

weight QTL on Chr 6.  

Gene expression data collected in multiple tissues such as gonadal adipose tissue, liver, 

pancreatic islets, and skeletal muscle were used to detect the driver tissue for the metabolic 

syndrome in the BFMI861-S1 line. Applying correlation and cluster analysis on the gene 

expression data, the gonadal adipose tissue was suggested as causal for the metabolic 

syndrome in the BFMI861-S1 line. 

 

 

 

5.1 AIL (BFMI861-S1xBFMI861-S2) vs AIL (BFMI861-S1xB6N) 
 

According to literature, sample size is a critical factor that influences statistical power and, 

therefore, the power to detect QTL (Darvasi & Soller, 1995). The two generated AILs differed 

in size and therefore in the ability to detect hidden QTL associated with obesity and 

additional metabolic phenotypes. In particular, the AIL (BFMI861-S1xBFMI861-S2) contained 

in total 397 males while the AIL (BFMI861-S1xB6N) contained in total 123 mice (58 male and 

65 female). In addition, due to the high genetic similarity of the parental lines, the AIL 

(BFMI861-S1x BFMI861-S2) was genotyped for 143,259 SNPs while the AIL (BFMI861-S1xB6N) 

was genotyped only for 10,171 known SNPs considering the high genetic differences between 

BFMI861-S1 and the reference B6N. 

In the AIL (BFMI861-S1xBFMI861-S2), the large sample size increased the ability to detect 
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significant effects. In addition, individuals of this AIL showed a wide range of phenotypes 

despite being closely related, enhancing the power of QTL detection. The high genetic 

similarity of the two BFMI lines allowed better prioritization of positional candidate genes 

excluding monomorphic genes in the discovered QTL regions.  

The AIL (BFMI861-S1xB6N), which is the second AIL used in this thesis had a smaller sample 

size compared to the AIL (BFMI861-S1xBFMI861-S2). Despite the small sample size even in 

this population we were able to detect significant effects due to large differences in 

phenotypes between the parental lines, especially in body weight and fat mass. However, 

the higher genetic differences between the parental lines BFMI861-S1 and B6N impacted the 

ability to exclude candidate genes in the QTL regions. 

Considering differences in the genetic background, another point of divergence between the 

two AILs is that the BFMI861-S1 and BFMI861-S2 lines share the jObes1 locus on chromosome 

3 responsible for the high body weight of all BFMI lines. Therefore, the resulting AIL allowed 

to naturally correct for this major obesity locus and detect additional hidden obesity QTL. 

In contrast, in the AIL (BFMI861-S1xB6N) hidden obesity QTL were detected by performing 

multiple QTL mapping and thereby correcting for the top marker of the jObes1 locus on Chr 

3 when QTL mapping body weight. This well-established method allowed to correct for major 

effect and detect one hidden QTL for body weight. 

 

 

 

5.2 QTL mapping in the AIL populations 

To identify candidate gene variants that are responsible for the metabolic features of the 

BFMI861-S1 line, QTL mapping was performed in the two described AILs both generated using 

the BFMI861-S1 as one of the two parental lines. Due to the large sample size and the high 

phenotypic variance in the AIL (BFMI861-S1xBFMI861-S2) we identified four QTL associated 

with the collected metabolic phenotypes. High correlation between phenotypes leads to 

overlapping QTL (Y. Li et al., 2010). As expected, overlapping QTL for highly correlated traits 
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were identified. The main QTL identified in this population was located on Chr 17 (Gatlgq) 

and was associated with five collected traits (GonAT weight, liver weight, liver triglycerides, 

and blood glucose). For Gatlgq, the S1 allele reduces adipose tissue weight and increases 

the liver weight and hepatic fat content. Moreover, reduced uptake in AT and maybe other 

tissues increased gluconeogenesis in the liver leading to an increase in blood glucose 

concentration. This shows that the identified QTL on Chr 17 seems to be the main driver for 

ectopic fat deposition and abnormal blood glucose concentration in the S1 line. Indeed, 

hepatic fat storage had been observed already as responsible for high blood glucose 

concentration (Parker, 2018). The Gatlgq was not replicated in the AIL (BFMI861-S1xB6N). 

This could be for two main reasons: 

1. The lower number of animals available in the AIL (BFMI861-S1xB6N) and the fact that 

both males and females were considered for the analysis. 

2. The different diet regimes between the two AILs.  

We can speculate that one reason that allowed us to identify the QTL on chromosome 17 in 

the AIL (BFMI861-S1xBFMI861-S2) is the high fat, high carbohydrate diet that was fed from 

week 22 until week 25 (end of the experiment). This diet increased the differences in 

metabolic traits such as adipose tissue weight and blood glucose concentration between the 

animals of the AIL (AILBFMI861-S1xBFMI861-S2). The AIL (BFMI861-S1xB6N) was kept under a 

standard diet for the entire experiment (from week 0 until week 20) and therefore 

differences in blood glucose and other metabolic traits associated with Gatlgq were not 

enhanced in this population.  

Despite Gatlgq was not identified In the AIL (BFMI861-S1xB6N), additional QTL were 

identified in this population. Particularly, we replicated the known obesity QTL on chr 3 

(jObes1) which was associated also with BMI and scAT weight. Furthermore, performing MQM 

we identified one additional obesity QTL on chromosome 6. The ability to identify major and 

minor QTL associated with multiple traits is an additional confirmation that the BFMI861-S1 

line used with different breeding partners generates a powerful population to study genetics 

behind complex metabolic traits. 
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5.3 Prioritization of positional candidate genes  

As previously introduced the most difficult challenge when performing QTL analysis is the 

ability to identify the correct candidate genes in a large QTL region. One QTL region can 

contain even hundreds of genes and the identification of the right candidate is usually not 

straight forward (Warwick Vesztrocy, Dessimoz, & Redestig, 2018). 

To prioritize candidate genes in the QTL regions we designed a decision tree prioritization 

approach that takes into consideration data from different sources such as WGS, gene 

expression and literature data. Using these different types of information, we suggest 

potential candidate genes in each QTL region. 

The application of a decision tree using different biological data sources, can have 

applications in drug discovery to prioritize the right candidate genes that are linked to 

diseases in a specific genomic region. Decision trees can be designed de novo (as the one 

used in this thesis) or through training of machine learning models using different datasets. 

However, the design and implementation of training datasets based on previous genetic 

knowledge is not an easy task (Vesztrocy et al., 2018). 

Our prioritization approach includes enough details for a fine candidate gene prioritization 

by using multiple data sources such as WGS, gene expression data and literature. However, 

several limitations of this approach need to be considered. For example, we cannot rule out 

that one of the candidate genes is an unannotated gene in the identified QTL region. In 

addition, all the identified regions are large and include even hundreds of genes which 

increased chances of false positive identification. These chances can be reduced by 

performing QTL mapping with further generations of the current AIL. Another limitation of 

this approach is that we considered only protein coding genes. Doing so, we exclude e.g. 

non-coding RNAs that could be the correct candidate genes responsible for the associated 

traits. Integrating RNA sequencing data will be essential to not exclude non-coding RNAs 

such as microRNAs as potential candidates (Liu et al., 2017). 

In the AIL (BFMI861-S1xBFMI861-S2) we identified 534 protein-coding potential candidate 

genes in total considering the four discovered QTL regions. After removing the genomic 
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regions that are identical between BFMI861-S1 and BFMI861-S2 only sixty-two genes 

remained as polymorphic between the two BFMI lines. Applying the prioritization approach 

the sixty-two polymorphic genes were scored according to sequencing, gene expression and 

literature data. The most promising candidates were therefore identified as the genes with 

the highest and second highest score in each region. 

The same prioritization method was applied in the AIL (BFMI861-S1xB6N). Also in this 

population, with this approach we were able to identify the most likely candidates for each 

QTL region. To confirm the strength of the prioritization method we identified Bbs7 as one 

of the top candidates in the jObes1 locus that was identified in the AIL (BFMI861-S1xB6N).  

Literature search applied after running the prioritization method confirmed that all the 

discovered candidate genes in both AILs are involved in metabolic pathways or had been 

previously linked to metabolic traits. These results indicate the ability of the applied 

prioritization method to discover accurately candidate genes. 

With the studies that are part of this thesis we were able to identify candidate genes involved 

in the development of the metabolic syndrome which could help in the future to develop 

new treatments in humans for fatty liver disease, obesity or even type 2 diabetes. However, 

additional research will be needed to confirm in vivo and in vitro the identified candidate 

genes and to clarify their molecular mechanism and interactions. In vivo studies could 

involve direct knockout of certain genes or performing fine mapping studies with further 

generations of the presented AILs. In vitro assays allow insight into the mechanism and could 

include reporter gene assays or functional protein assays depending on the investigated 

candidate. 

 

 

 

5.4 Correlation analysis and identification of the causal tissue 

Phenotypic correlation is an important parameter to understand observational relationships 

between complex traits underlying complex diseases (T. Li, Ning, & Shen, 2021). Considering 
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the results of the correlation analysis, in the AIL (BFMI861-S1xBFMI861-S2) there is no 

correlation between body weight and gonadal adipose tissue weight and negative 

correlations between gonadal adipose tissue weight and all other traits in AIL males, while 

liver weight was positively correlated with all other traits. These results are totally opposite 

to our expectations in metabolically healthy individuals where liver weight and adipose 

tissue weight should show positive correlation. This indicates ectopic fat storage in the liver 

(O’Neill & O’Driscoll, 2015). Ectopic fat deposition in the liver is also present in individuals 

of the S1 line (Heise et al., 2016). When crossing the unhealthy S1 mice with healthy B6N 

mice, the mice of the AIL (BFMI861-S1xB6N) showed a positive correlation between body 

weight and gonadal adipose tissue weight together with a weak positive correlation between 

gonadal adipose tissue weight and liver weight. Therefore, by crossing BFMI861-S1 with B6N 

the dysfunction in the gonadal adipose tissue that leads to hepatic steatosis is not evident 

in the resulted AIL. These results make it clear that the genetic interaction of background 

genes is important and therefore many different strains should be used to understand the 

whole pattern of ectopic fat deposition. 

Ectopic fat storage in the liver instead of storage in the adipose tissue as the major fat 

storage organ has been reported many times already to be linked with impaired glucose 

homeostasis (Parker, 2018) (Rosen & Spiegelman, 2006). Ectopic fat storage is a peculiarity 

of our BFMI861-S1 line which is even more evident in the AIL (BFMI861-S1xBFMI861-S2). 

Hepatic fat deposition likely is the main driver for impaired glucose homeostasis in the 

BFMI861-S1 line, which could be initiated by adipose tissue dysfunction. Gene expression 

data supported the assumption of impaired adipose tissue function being causal for ectopic 

fat storage in S1 mice due to the high number of differentially expressed genes identified in 

the gonadal adipose tissue between the BFMI861-S1 and BFMI861-S2 line. In addition, when 

performing hierarchical clustering analysis on the correlation matrix using gene expression 

data, were observed distinguished clusters of differentially expressed genes only in the 

gonadal adipose tissue and not in other analyzed tissues. Correlation and cluster analysis 

applied to gene expression data is widely used to identify patterns of differentially expressed 
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genes between healthy and unhealthy tissues both in mouse and humans (Kosti, Jain, Aran, 

Butte, & Sirota, 2016). We assume that the BFMI861-S1 line is an interesting mouse model in 

addition to the most common C57BL/6 (which shows a similar pattern) (Van Herck, Vonghia, 

& Francque, 2017) to investigate the genetic component behind adipose tissue dysfunction 

which in turns leads to ectopic fat deposition. 
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Chapter 6: Conclusions 

 
In this study we successfully identified QTL associated with metabolic traits such as gonadal 

adipose tissue weight, liver weight, body weight, and blood glucose concentration using the 

AIL (BFMI861-S1xBFMI861-S2) and the AIL (BFMI861-S1xB6N). Applying a decision tree 

prioritization approach in all the QTL identified in both AILs we scored positional genes from 

the most likely candidate to the less likely candidate gene. Finally, performing correlation 

and cluster analysis on gene expression data, the gonadal adipose tissue was suggested as 

causal for the metabolic syndrome in the BFMI861-S1 line. 

Based on the results obtained in these studies, the following conclusions are drawn: 

1- BFMI lines are excellent mouse models not only to investigate obesity but also 

additional metabolic diseases, in particular traits associated with the metabolic 

syndrome. In this study, the BFMI861-S1 was successfully used as model for the fatty 

liver as a feature of the metabolic syndrome.  

2- AILs obtained from closely related inbred lines are excellent tools that can be used 

to fine map QTL and for prioritization of candidate genes in a QTL. Due to high 

genetic similarity large genomic regions can be excluded.  

3- Four QTL were identified in the AIL (BFMI861-S1xBFMI861-S2). The QTL on Chr 17 was 

associated with gonadal adipose tissue weight, liver weight, blood glucose 

concentration, and liver triglycerides and is the main driver of the metabolic 

syndrome in the BFMI861-S1. The genes Plg and Acat2 were prioritized as top 

candidate genes. These genes had been previously linked to metabolic traits. These 

results add evidence on the detected candidate genes and could therefore be used 

for further studies. 

4- The main driver tissue in the BFMI861-S1 line contributing to the metabolic syndrome 

and related traits (gonadal adipose tissue weight, liver weight, blood glucose 

concentration, liver triglycerides, and body weight) is the gonadal adipose tissue. 
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Correlation analysis of gene expression data showed that mice of the same mouse 

line clustered together only with gene expression data of the gonadal adipose tissue. 

5- In the AIL (BFMI861-S1 x B6N) we identified four QTL associated with body mass, liver 

triglycerides and liver weight. The decision tree prioritization approach identified for 

each QTL region candidate genes and confirmed Bbs7 as top candidate genes for high 

body weight in the BFMI lines. This additional cross was important to obtain an AIL 

with a different background which allowed us to discover QTL that had not been 

identified in the crosses BFMI861-S1xBFMI861-S2 and BFMI860-12xB6N. 

6- A decision tree that includes multiomics data from AIL parental lines allow to 

prioritize candidate genes even in large QTL regions. 

7- QTL mapping together with a detailed prioritization approach can be used for the 

identification of candidate genes linked to common human diseases. 
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