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Abstract: Model-based soil erosion studies have increased in number, given the availability of geodata
and the recent technological advances. However, their accuracy remains rather questionable since the
scarcity of field records hinders the validation of simulated values. In this context, this study aims
to present a method for measuring sediment deposition at a typical Mediterranean catchment (870
ha) in Greece through high spatial resolution field measurements acquired by an Unmanned Aerial
Vehicle (UAV) survey. Three-dimensional modeling is considered to be an emerging technique for
surface change detection. The UAV-derived point cloud comparison, applying the Structure-from-
Motion (SfM) technique at the Platana sediment retention dam test site, quantified annual topsoil
change in cm-scale accuracy (0.02–0.03 m), delivering mean sediment yield of 1620 m3 ± 180 m3 or
6.05 t ha−1yr−1 and 3500 m3 ± 194 m3 or 13 t ha−1yr−1 for the 2020–2021 and 2021–2022 estimation.
Moreover, the widely applied PESERA and RUSLE models estimated the 2020–2021 mean sediment
yield at 1.12 t ha−1yr−1 and 3.51 t ha−1yr−1, respectively, while an increase was evident during
the 2021–2022 simulation (2.49 t ha−1yr−1 and 3.56 t ha−1yr−1, respectively). Both applications
appear to underestimate the net soil loss rate, with RUSLE being closer to the measured results. The
difference is mostly attributed to the model’s limitation to simulate gully erosion or to a C-factor
misinterpretation. To the authors’ better knowledge, this study is among the few UAV applications
employed to acquire high-accuracy soil loss measurements. The results proved extremely useful in
our attempt to measure sediment yield at the cm scale through UAV-SfM and decipher the regional
soil erosion and sediment transport pattern, also offering a direct assessment of the retention dams’
life expectancy.

Keywords: soil erosion; RUSLE; PESERA; UAV; point cloud; Structure-from-Motion; geoenvironment

1. Introduction

Soil erosion, as a natural soil degradation process, primarily caused by the physical
impact of water and wind on the exposed soil surfaces, is one of the principal factors of soil
degradation [1]. The quantification of soil erosion is critical for designing and implementing
appropriate river/watershed management and pollution control strategies [2]. However,
the complex non-linear processes that characterize the phenomenon’s evolution in space
and time, i.e., sediment production, transport, and deposition [3], make the validation of
modelled soil loss an intractable problem. The scientific community attempts to simulate
the water-driven soil displacement by developing conceptually diverse models (i.e., process-
based, agent-based, logic-based, empirical, etc.), able to perform in various spatial and
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temporal scales [4–6]. In the attempt to parameterize erosion’s spatiotemporal dynamics,
models of different philosophies have been developed [5], e.g., process-based, empirical,
conceptual, etc., such as the USLE [7], EPM [8], ANSWERS [4], RUSLE [9,10], WEPP [11],
SWAT [12], PESERA [13,14], G2 [15], etc. The development of so many erosion models
and their constant upgrade/modification confirm the complexity of the process and the
difficulty in assessing soil erosion. As to the focal point of this research, RUSLE has been
widely used in various temporal and spatial scales [16,17], while PESERA has mainly been
applied at the regional level [16,18]. Both models have been employed for sheet, rill, and
inter-rill erosion analysis [19,20], with RUSLE being characterized by simplicity, ease of use,
and low computational demands, contrary to PESERA, which requires a vast amount of
input layers [18]. The latter model was initially developed for average annual water erosion
assessment in agricultural areas. It is a physical-based model, suitable for large watersheds
and regional scales [21]. Sediment yield is calculated from runoff and each storm event,
resulting in the dominant sheet and rill erosion estimation [13]. Esteves et al. [22] were the
first to use PESERA in a forested area, followed by the work of other researchers [18,23,24].

Thus far, research needs required models to be able to represent the erosion mechanism
in the most accurate manner possible, be overall flexible, reliable, and user-friendly tools,
and have standardized input data [25,26].

Modern challenges, however, further mandate the need to (i) properly calibrate in-
put data according to the local landscape characteristics and (ii) evaluate the simulated
results, tackling the lack of direct erosion measurements, especially at the local or regional
scales [27]. In this direction, specific parameter calibration attempts have been made
at the international level for PESERA [28,29] and RUSLE [30], with parallel suggestions
about the input data quality [21]. In Greece, indicative calibration efforts involve the
work of Polykretis et al. [31] regarding the RUSLE R-/C-factor calibration in Crete and of
Tsara et al. [19] regarding the PESERA soil-related input in Zakynthos Island and at the
region of Spata. Concerning model validation, Sigalos et al. [32] compared the sediment vol-
ume measured in three cross-sections of the Giannoulas river, with soil loss being estimated
by RUSLE. Efthimiou et al. [33] evaluated RUSLE outputs against the sediment discharge
measurements recorded by the Greek Public Power Corporation (PPC) to four gauging
stations in North-western Greece. Tsara et al. [19] evaluated the outputs of PESERA in three
experimental transects extending 10 m along the hill slope. Rozos et al. [34] cross-evaluated
erosion hot spots identified by RUSLE with the field-identified landslide-prone areas.

The principle that not all eroded material reaches the basin outlet has long been
reported by Walling [35]. This is the reason why the Sediment Delivery Ratio (SDR) and
Connectivity Indices (CI, aiming to locate potential sediment pathway obstacles such
as depressions and sinks) concepts were developed and are long used. The index of
connectivity (IC) introduced by Borselli et al. [36] provided the fundamental methodology
following researchers, while Cavalli et al. [37] updated the main model by using different
weightings. Unfortunately, several soil erosion models, PESERA and RUSLE included,
cannot directly estimate the sediment yield delivered to a basin’s outlet. Hence, the SDR
index has to be employed when attempting to calculate net erosion.

However, the scarcity of spatio-temporally detailed input information at basin-level,
and the labor-intensive calibration of the frequently data-hungry soil erosion models, call
for the adoption of new approaches for the acquisition of semi-detailed field data. At
large spatial scales, aerial photographs/orthoimages [38] are more appropriate for the
investigation of erosion processes. Over the years, Remote Sensing (RS) has evolved into a
valuable tool in soil erosion [39–43]. At smaller scales, soil surface (or volume) differencing
through the successive recording of topographic changes is a different pathway to locate and
quantify soil loss rates. The latter utilizes Terrestrial Laser Scanning (TLS) [44–47]—also
known as terrestrial Light Detection and Ranging (t-LiDAR)—and Unmanned Aerial
Vehicle (UAV) photogrammetry [48–53].

At the local scale, UAV imagery can bridge the spatiotemporal resolution gap between
field investigation and RS observations [manned aircraft-based [54] or satellite-based].
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UAVs are widely applied in the field of geospatial research and are involved, inter alia, in
the study of soil erosion [48,50,55–57]. UAVs are commonly used in topographic change
detection applications thanks to the newly emerged techniques and sensor evolution, result-
ing in highly efficient data acquisition [58,59]. This advanced and cost-effective technology
has led to multiple research applications concerning landscape analysis and erosive process
estimation [60–63]. The use of Structure-from-Motion (SfM) and multi-view stereopsis
(MVS) enhances the capability of transforming a large number of overlapping images into
3D point clouds, Digital Terrain Models (DTM) and orthomosaics, even at mm-level accu-
racy [49,64–67]. Recent studies have highlighted the importance of cm-accuracy mapping
and erosive process estimation through UAV imagery [68]. The temporal DEM or point
cloud analysis can thoroughly estimate the volume of the eroded or depositional material
through the volume difference of previously assessed and current surface reconstruction.
Runoff pathways caused by extremely erosive rainfall events can now be highly delineated
through the high accuracy of the UAV-SfM technique [69].

In light of the above, the study estimated soil loss at the anteceded reservoir of a
sediment-retention dam (Platana dam) located in the broader Sperchios River watershed,
Central Greece, using an empirical (RUSLE) and a process-based (PESERA) erosion model.
Both models were found to estimate different erosion rates when compared to each other,
while differences were also present within the same model simulation (e.g., the RUSLE
simulation) when the C factor was altered.

The models’ results were cross-evaluated against field measurements obtained by a
UAV survey. The latter involved three campaigns performed during a two-year period (in
August 2020, September 2021, and October 2022) and were utilized to develop two sequen-
tial topographic datasets of the reservoir. Their differencing deciphered into soil surface
change and sediment yield, providing a highly accurate measurement of contemporary
annual sediment deposition rates. Overall, this study tests the capabilities of the UAV-SfM
technique in measuring high-resolution topsoil change detection.

2. Materials and Methods
2.1. Study Area

The research focuses on the well-defined reservoir of a sediment retention dam located
in the northern mountainous part of the Sperchios watershed in central Greece, namely
the Platana dam (Figure 1). Sperchios watershed is a graben-like asymmetrical depression
as a part of a tectonic trough that separates the catchment into a northern and a southern
part, with the latter being lifted and the former sinking. The watershed’s (1820 km2) vast
quantities of sediment loads resulted in the gradually extending of the coastal delta area,
which increased by approximately 135 km2 in the last 6500 years, corresponding to a mean
annual growth of 0.02 km2/yr [70–72]. The study area is formed by a dense dendritic-type
hydrographic network with drainage frequency values > 5.0 that reveal the impact of
the existing geological formations, tectonic activity, and the high relief with steep slopes.
The slopes vary from 0 up to 120% (mean value 55%) with a mean south aspect, which,
when correlated with lithology, indicates an erosion-prone soil system. Moreover, the form
factor, circularity ratio and length–width index values of the basin are low, contrary to
the elongation ratio value, which is considered high, implying the presence of elongated
basins with less side flow for a shorter duration and high main discharge, since the study
area is tectonically active [73]. The total basin area is about 870 ha, covered mostly by
shrubs, including a small portion of forest trees and agricultural land [according to Corine
Land Cover (CLC) 2018 dataset]. The mean elevation is about 523 m a.s.l. Concerning
the bedrock geology, the basin area is part of the Subpelagonian Geotectonic unit. The
geological structure comprises the ophiolitic complex, including thick volcanic formations
(meta-dolerites and basic tuffs), with localized Triassic–Jurassic limestones with cherts. The
upland dam basin area consists of alluvial deposits of great thickness (Geological Sheet
“Lamia”, H.S.G.M.E, Athens, scale 1:50,000 [74]). Soil sample analysis was carried out to
define the soil properties. Each sample was collected at a depth of 10–30 cm, in a sufficient
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proportion for all the experiments to be carried out. Three soil samples were retrieved for
every soil unit, while 6 samples were retrieved from the reservoir area to precisely estimate
the Bulk Density (BD) of the deposition soil material. The soil analysis included the pH
analysis, the electrical conductivity measurement, the granulometry test analysis according
to Bouyoucos [75] and the soil organic matter content analysis according to Walkley &
Black [76]. The USDA soil classification classifies the alluvial-related soils as Loamy soils
(L), the calcareous soils are Sandy Loam (SL), and the volcanic soils are Clay Loam (CL)
(Table A1, Appendix A).
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In this paper, the lowest downstream point of the main drainage area studied was
defined as the basin’s outlet located 150 m upstream of the dam.

The Platana dam is an embankment (rockfill with an impervious core) dam. Its features
are presented in Table 1 and Figure 2.

Table 1. Platana dam characteristics.

Latitude (N) 350,206

Longitude (E) 4,313,396

Type Earth Dam

Dam crest height (m) 205.50

Dam crest length (m) 208.00

Spillway crest length (m) 20.00

Maximum retention volume (m3) 140,000
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2.2. Data and Measurements
2.2.1. Earth Observation Data

UAV images: acquisition and processing: A DJI Phantom 4 quadcopter platform was
used for the mapping needs of the study (Figure 2). The model was equipped with a 1

2 .3”
12.4 MP with FOV 94◦, 20 mm (35 mm equivalent) camera sensor and 4000 × 3000 image
size. The operator took photos using nadir camera orientation due to the dam basin’s flat
surface in a predefined flight plan grid. The images were acquired when the UAV platform
was in a still position. The automated flight plan led to consistent flight paths repeated on
every flight. The minimum image overlap and the maximum forward and side overlap
reached 75%, as other researchers also indicated in forestry areas [77–79]. Flight planning
and operation were performed on DJI GS PRO. The minimum flight altitude was set to 18 m
above ground level (AGL) with a 5 mm/pixel ground sampling distance (GSD). The first
flight took place on 28 August 2020, the second on 16 September 2021 and an additional
flight was made on 13 October 2022. In general, the flight altitude remained constant for
all field surveys to achieve more accurate results. The flight surveys delivered 295 photos
on 28 August 2020, 360 photos on 16 September 2021, and 232 photos on 13 October 2022.
Additional photos during the second survey were required due to localized vegetation
growth. During the first fieldwork, 15 ground control points (GCP) were used, while on
16 September 2021 and 13 October 2022, 23 GCP and 30 GCP, respectively (Figure 3), were
finally selected for better image acquisition setup. The number of the GCP was based on
the area extent. GCP setting and measurement can be really challenging in forestry and
unreachable environments [80]. The GCPs were selected based on the shape and material
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of the plate. We selected white, rectangular aluminum plates to avoid any deformation
on the targets. The GCPs were spread across the study area, and their coordinates were
retrieved by using a Spectra SP60 and SP85 Real-time Kinematic Global Navigation Satellite
System (RTK GNSS), with a range accuracy of <1 cm in the horizontal plane and 1.7 cm in
the vertical axis.
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Figure 3. GCP locations on the three acquired orthomosaic images on (a) 28 August 2020; (b) 16
September 2021; (c) 13 October 2022. The numbering refers to the GCP location.

The sampling workflow comprised the (i) distribution of the ground control points
(GCPs) over the study site, (ii) Sp85 GNSS GPS survey of the GCP points, and (iii) flight
of the UAV mission. GCPs are used to translate and rotate the generated point clouds in
a specific reference system [81], and their distribution constitutes a time-consuming part
of the UAV survey [82]. Overall, the low flight altitude and the considerable overlapping
provided high-resolution products.

The acquired images were photogrammetrically processed using Agisoft PhotoScan
Metashape Professional (v. 1.5.5; http://www.agisoft.com/downloads/installer/, accessed
on 16 September 2020). The complete study workflow is summarized in Alexiou et al. [44].

http://www.agisoft.com/downloads/installer/
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To conclude, all data were processed in the high-accuracy mode for the alignment, the
dense cloud derivation and the mesh, texture, and tiled model production. Conclusively,
the photogrammetry workflow comprised the (i) data selection, (ii) appropriate image
selection, (iii) image alignment and dense cloud development (high quality and mild
filtering definition), (iv) detailed surface (mesh and texture) and tiled model development,
(v) adding and checking the markers (same name and coordinate system as the GCP),
(vi) checking the markers’ error, (vii) development of the DEM, and (viii) export of the
point cloud (Figure 4), DEM and orthomosaic. The low-altitude flight and the significant
overlapping resulted in high-resolution products (Table 2).
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Table 2. Agisoft products resolution (mm/pixel).

Resolution mm/pix

Product 28 August 2020 16 September 2021 13 October 2022

Tiled model 10 7 10
DEM 20 14.8 17

Orthomosaic 10 7.4 8.6

Subsequently, the point clouds between the two surveys (2020–2021 and 2021–2022) were
compared using the CloudCompare software (version 2.6.1; https://www.cloudcompare.org/
doc/, accessed on 20 October 2022). The point cloud analysis was considered to be more
appropriate for soil surface change detection since, in 3D space, a point-to-point comparison
would perform better than that of the derivative DEMs by avoiding the interpolation
of the 2D data required when assessing DEM differentiation in three dimensions [83].
The software offers a user-friendly environment, saving computational time by reducing
the total volume of data using a specific Octree structure. In this context, during our
research, in order to achieve a clear point cloud with sufficient point density, we chose to
manually remove (i) the cloud noise, (ii) points exceeding the area of interest, (iii) remaining
vegetation traces, (iv) incorrectly placed points within the cloud due to UAV-SfM issues
(e.g., dust points in the air). Afterward, the clouds were ‘registered’ in the software by
correlating/aligning their points with the already stable GNSS-identified GCPs. The high
alignment accuracy achieved indicated the adequacy of the GCP number used in the study.
Finally, the comparison was performed utilizing the model-to-model cloud comparison
(M3C2) algorithm/plugin, allowing for (vertical) distance computation between clouds

https://www.cloudcompare.org/doc/
https://www.cloudcompare.org/doc/
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in accordance with the natural surface of the site [84]. According to Lague et al. [84],
the algorithm combines the local distance of two-point clouds in correlation with normal
surface detection, which tracks 3D variations in surface orientation. This algorithm has
the advantage of operating directly on point clouds and estimating a confidence interval
depending on point clouds’ characteristics and registration error. After the experimental use
of different values and the “guess params” option (provided by the software), we concluded
with a 0.30 m normal scale diameter and a 0.20 m projection scale diameter. All of the
points of the defined “point cloud #1” were used as core points for normal calculations.

Normalized Difference Vegetation Index (NDVI): The NDVI was used for the land
cover condition assessment required by the PESERA input data (monthly vegetation cover-
age estimation) and the FVC index (described below). This index expresses the difference
between wavelength reflectance in two portions of the electromagnetic spectrum, the visible
Red and the near-infrared [85], corresponding to the relative vegetation properties. NDVI
acquires values in the range −1 (no vegetation) to +1 (dense vegetation).

Fraction of Vegetation Cover (FVC): The FVC corresponds to the percentage of the
green (photosynthetically active) vegetation vertical projection over the reference ground
area, which has already been applied in monitoring soil erosion [86–88]. Compared to the
uniform vegetation coverage, which is typically assigned, the FVC enables more detailed
specification of the inter-monthly vegetation variations, which are tightly related to the soil
erosion processes [89], offering a more accurate estimate of coverage percentage. The widely
used NDVI is considered less suitable for change detection over time since atmospheric
correction is required. Particularly in the Mediterranean area, the atmospheric correction of
the Remote Sensing (RS) products is exceptionally challenging due to the highly fragmented
landscapes and the multi-level changes in the vegetation coverage throughout the year [90].
It is highly appropriate for monitoring ecosystems and supporting service assessments
at different spatiotemporal scales [91]. Technically, the FVC is a re-normalization of the
reflected near-infrared light (700–1100 nm), which is captured by modern multispectral
sensors [92]. FVC can be calculated as a function of NDVI according to the ‘two-end
members’ formula of Zeng et al. [93] (Equation (1)). The NDVIo and NDVIfull can be
estimated as the minimum and maximum NDVI values since they depend on the study
area soil and vegetation types [94,95]. NDVIfull coincides with the highest NDVI value
during the wet period.

FVC = (NDVIx − NDVIo)/(NDVIfull − NDVIo), (1)

where NDVIx is the monthly NDVI value, NDVIo is the NDVI value for bare soil, and
NDVIfull is the NDVI value of a fully vegetated area.

2.2.2. Geospatial Data

Meteorological data were acquired by the National Observatory of Athens (NOA) for
the gauging station of Makrakomi covering three periods, the years 2020, 2021, and 2022.
The climatic data comprise daily time series of rainfall (30 min resolution), temperature,
and potential evapotranspiration. The station location is considered to adequately cover
the area of interest, being representative of the local climatic conditions.

Annual precipitation for each application was 572.0 mm (September 2020 to August
2021) and 793.2 mm (October 2021 to September 2022) (Table 3). The variable’s temporal
resolution is controlled by the catchment’s climate pattern. Rainfall depth displays distinct
seasonal variation evolving in clear cycles, typical of the Mediterranean climate. At the
mean monthly scale, its fluctuation within a calendar year is depicted by an inverse bell
distribution, acquiring its highest values in the winter (left/right tail) and the lowest in
the summer (bottom of the curve). In the first period, between the 2020 and 2021 surveys,
the minimum rainfall value was recorded in May 2021 (2.0 mm), a turning point of the
‘hydrological year’-like regulation after which precipitation started to decrease entering
the warm season of the year (June to September), and the maximum in September 2020
(148.2 mm). In the second period, i.e., between the 2021 and 2022 campaigns, minimum
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and maximum precipitation were yielded in September 2022 (2.0 mm) and December 2021
(155.8 mm), respectively.

Table 3. Precipitation values (in mm).

Period Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Total

09.2020–08.2021 148.2 33.6 9.8 84.0 91.4 46.6 58.6 49.2 2.0 30.2 7.6 10.8 572.0
10.2021–09.2022 115.8 133.8 155.8 76.6 53.2 60.8 26.4 49.2 71.2 28.8 19.6 2.0 793.2

Topography and geology delineation were based on a 5 m DEM and a local geological
map, respectively. Detailed soil mapping, fieldwork, and laboratory soil analysis were
conducted in order to define pedological properties. Soil depth, rock fragments, and
soil texture were also assessed for each soil unit. The land use coverage estimation was
based on fieldwork and the CLC database. The land use was depicted using the novel
high-resolution map of Efthimiou et al. [91] (see their Figure 6). This hybrid dataset was
developed using as base-layer the 2018 CLC database, upgraded in its agricultural areas by
the integration of the Land Parcel Identification System (LPIS) [96] and Beneficiaries Decla-
rations (BD) inventories’ elemental/reference features, namely ilot polygons (European
Court of Auditors, 2016) and individual farmlands, respectively. The sequential geospatial
fitting of the participating registries (GIS layers) as BD, ilot→ BD-ilot→ BD-ilot, CLC→
BD-ilot-CLC led to the progressive update of the individual datasets’ cultivated parcels.
Classification harmonization was achieved by matching the ilot and BD nomenclatures to
the CLC registry. Overall, the new map comprises CLC features, ilot polygons, and BD
parcels. The basin is mostly covered by shrubs, including a small portion of forest trees
and agricultural land (Figure 5, Table 4).
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Figure5 Figure 5. Land use classification of the Platana Dam basin (see Table 4 for code descriptions).
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Table 4. Land use classification of the Platana Dam basin delineation and respective RUSLE
C-factor values.

Level 1 LULC * Level 3 a Status Area (km2) C-Factor

Agricultural areas

211 Arable 0.019 0.3
223 Non-arable 0.009 0.1
231 Non-arable 0.669 0.02
243 Non-arable 0.027 0.07

Forest and semi-natural areas 321 Non-arable 2.734 0.05
323 Non-arable 5.231 0.03

* Land use/Land Cover; a 211: Non-irrigated arable land, 223; Olive groves, 231; Pastures, meadows, and other
permanent grasslands under agricultural use, 243; Land principally occupied by agriculture, with significant areas
of natural vegetation, 321; Natural grasslands, 323: Sclerophyllous vegetation.

2.3. The Pan European Soil Erosion Risk Assessment (PESERA) Model

The PESERA model [13,14] was initially developed for average annual water erosion
assessment in agricultural areas at the European level. It is a physical-based model, suitable for
large watersheds and regional scale applications [21]. As it can be applied on different spatial
scales (hillslope, regional or national), it is often used in the Mediterranean [18,97,98], where
detailed data are available and more detailed distributed soil erosion rates estimation is
required. PESERA is based on the precipitation division into overland flow and infiltration.
Sediment yield is calculated from runoff and each storm event, resulting in the dominant
sheet and rill erosion estimation [13]. Permanent gully, channel erosion, channel delivery
processes, and channel routing are not considered [14]. The model estimates soil erosion as
(Equation (2)).

E = k∆Ω, (2)

where E is soil loss in t ha−1 y−1, k is the erodibility based on land use, soil parameters,
and vegetation cover, ∆ is the topographic factor, and Ω is the runoff/climate/vegetation
soil erosion potential. Ω is based on the gridded climate data, vegetation cover, water
balance, and plant growth [14]. Input data requirements include land use and land cover,
soil parameters, climatic and topographic records. Overall, 128 input data layers are built
by the model and compiled in a single final layer.

2.4. The Revised Universal Soil Loss Equation (RUSLE) Model

The RUSLE is an empirically based soil erosion model originally developed for agri-
cultural areas in the United States. It has been widely used for the spatial distribution of
soil erosion in the Mediterranean [32,99,100]. It estimates soil loss (A, t ha−1 y−1) as the
linear product of five coefficients (Equation (3)), namely the rainfall erosivity (R-factor, in
MJ mm ha−1 h−1 y−1); soil erodibility (K-factor, in t ha h ha−1 MJ−1 mm−1); topographic
(LS-factor, dimensionless); cover management (C-factor, dimensionless); and conserva-
tion practice (P-factor, dimensionless) factors. The R-factor is the climatic component,
accounting for the effect of rainfall on soil loss. The K-factor represents soil’s vulnerability
against the abrading action of rainfall and overland flow. The LS-factor is the model’s
topographic component. The C- and P- factors simulate the protective effect of land cover
and conservation measures against soil erosion, respectively (Equation (3)).

A = R × K × LS × C × P, (3)

2.5. The Sediment Delivery Ratio (SDR) and Connectivity Index (CI)

The Sediment Delivery Ratio (SDR) and the Connectivity Index (CI) are empirical
tools developed to address the problem of not all of the eroded material reaching the basin
outlet [35], aiming to overcome potential sediment pathway obstacles, such as flow sinks
and depressions (deposition areas). This is a common method applied in erosion modeling
due to the absence of net erosion rate estimation. CI development is based on topography,
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surface roughness, and land cover [36,37,101,102]. SDR is related to the upslope area,
climatic conditions, and the shape and slope of the catchment.

The Borselli et al. [36] CI approximation was used in the present study (Equation (4))
since it was established in a medium-sized watershed under similar Mediterranean con-
ditions (in Tuscany, Italy). The index was compiled in a Geographic Information Systems
(GIS) environment, utilizing the ArcMap 10.5 suite (Figure 6). The RUSLE C-factor was used
as a proxy of surface roughness, delineated as in the RUSLE implementation [36,103,104].

ICk = log10

(Dup,k

Ddn,k

)
= log10

 wkSk
√

Ak

∑i=k,nk
di

wisi

 (4)

where DUP,k is the upstream component, Ddn,k is the downstream component, Wk is the
weight of the k cell (where W = CRUSLE factor), Ak is the upslope area (m2) Sk is the slope
gradient of the cell, and d is the length of the cell.
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Figure 6. Connectivity Index map, showing medium and high connectivity across the study area,
resulting in the absence of significant sinks, and the rise in soil erosion potential.

The land use and the topography (absence of sink areas) control the sediment routing
to the main channel. Figure 6 shows that the basin is characterized by a medium to high
connectivity index due to the dense stream network and the steep slope, implying that
most sediment can be delivered to the outlet through the dense stream network.

The SDR formulas tested [105–108], yield an index range of 35% to 45%, hence the
mean value of 40% was selected (Equations (5)–(8)).

Log (SDR) = 1.8768 − 0.14191 ∗ log(10 ∗ A) (MANER 1962, A is the area in mi2), (5)

Log (SDR) = 1.7935 − 0.1419log(A) (Renfro 1975, A is the area in km2), (6)

SDR = 0.51 ∗ Aˆ− 0.11, (USDA 1975, A is the area in mi2), (7)

SDR = 0.42 ∗ Aˆ− 0.125 (Vanoni, 1975, A is the area in mi2), (8)

The complete study workflow is summarized in Figure 7.
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3. Results
3.1. UAV Photogrammetry and Measurement of the Actual Deposition at the Retention Dam

UAV photogrammetry was applied in order to measure the real annual deposition
at the retention dam. In particular, a point-to-point comparison of the two campaigns’
(data collected in 2020, 2021, and 2022, resulting in two study campaigns, e.g., 2020–2021
and 2021–2022 datasets) point clouds led to the calculation of the annual topsoil change
(Figures 8 and 9). The point cloud difference revealed a significant topsoil deposition,
consistent with the strong sedimentation observed during the 2021 and 2022 fieldwork. The
analysis shows significant upland soil mass movement, reaching the dam and gradually
accumulating behind the upstream slope.

The annual sediment distribution change is obvious in Figure 10, where the originally
even sediment distribution (approximately 100 m) behind the dam in 2020 DSM was
interrupted by the new stream pathway, revealing a more intrusive sediment deposition in
2021 and 2022 DSM. The initial surface was cannibalized by the stream erosional process,
resulting in a new redistribution closer to the dam. This is attributed to the 2021–2022
rainfall events (see also Table 3), where almost a 40% increase in precipitation occurred
within the last year of observation (2022). Additionally, the low-height vegetation along
the surrounding area of the dam in 2020 DSM, during the next year of data collection, was
found buried under a large volume of sediment.

During the second data collection (September 2021), vegetation cover (low-height
grass) was denser in some areas, making vegetation point removal more demanding and
time-consuming. However, the watershed’s mean vegetation cover was stable (65%) for all
campaigns. The defined data acquisition UAV-SfM setup is considered appropriate for this
type of research, according to the error estimation analysis. The defined low flight height
(<18 m) and the high accuracy data collection (in correlation with GSD) resulted in highly
detailed derived products with mm-scale (3D tiled model accuracy less than 1 cm).

The application of the M3C2 algorithm results in a mean annual vertical 0.27 m rise
of the topsoil surface at the stream outlet during the first simulation and 0.36 m for the
2021–2022 simulation. In Figure 8, the sediment deposition pattern is straightforward and
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can be related to the stream flow. The red flow towards the retention dam indicates the
areas where sediment deposition and maximum values are observed. Figure 8 shows the
spread of the newly annual arrived sediments, initially more localized along the stream,
then widely scattered as approaching the dam. In Figure 9, the sedimentation is not totally
controlled by the stream, as a wide sediment distribution is visible at the right part of the
dam. The SfM technique yielded an annual volume change of about +1620 m3 and 3500 m3,
covering a total (dam upland) area of 6000 m2 and 9700 m2 for each study, respectively
(2020–2021 and 2021–2022). The unoccupied areas in the M3C2 visualization (black areas)
are caused by the tree canopy obscuring the area, which were chosen not to be interpolated
to decrease volume estimation errors.
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Concerning the final measurement errors, four GCP were used for XYZ accuracy
assessment by comparing their XYZ coordinates extracted from the point cloud with the
actual coordinates, as measured in the field using the RTK GNSS. The GCP used were
selected based on their location. We also selected GCP based in the central area where
the main deposition seemed to take place and to be able to estimate any probable dome
effect error of the UAV-SfM model that may occur. During the second field study in 2021,
we placed more targets within the previously delineated study area to avoid any central
dome deformation of a flat area. The final model error was slightly reduced (−0.01 m), so
the 2021 GCP grid was considered more appropriate, and more GCP were placed during
the last study (2022). Low accuracy was observed towards the boundaries, where fewer
photos were aligned to the model. According to the XYZ GCP error analysis, a range of
0–0.03 m mean error was calculated. The registration errors of the point clouds ranged from
0.02 to 0.04 m. Conclusively, we resulted in a 0.03 m measurement error for the 2020–2021
dataset and 0.02 m for the 2021–2022 dataset. The error analysis in correlation with the total
measured area of 6000 m2 (2020–2021) and 9700 m2 (2021–2022) leads to the volume error
estimation of about ±180 m3 and ±194 m3, respectively.

For a complete error estimation, we additionally calculated the error, including the veg-
etation removed areas (+1650 m2 for 2020–2021 and +2800 m2 for 2021–2022, Figure 10a–c)
by interpolating the mean surrounding sediment deposition value. The sediment volume
reaches 2065 m3 considering an error of ±275 m3 (2020–2021) and 4500 m3, considering an
error of ±437 m3 (2021–2022).

3.2. The PESERA Application

The PESERA model was used to simulate soil erosion for the years 2020, 2021, and
2022, in a 5 × 5 m grid, based on the available 5 m DEM. The soil and land use-related
parameters were specified based on the 1997 Ministry of Rural Development and Food
(1:50,000) and the 1:30,000 Misopilinos 2015 AUTH Lamia’s soil map, the geological map
(Geological Sheet “Lamia”, H.S.G.M.E, Athens [74]) and the CLC 2018 land use map, and
they were validated by in situ inspection, soil sampling and laboratory analysis by the
authors (Table A1, Appendix A). All of the input parameters were translated into suitable
PESERA model layers based on the correspondence provided by Gobin & Govers [29]. The
PESERA application is thoroughly described in Appendix A.

One model application per year was made, resulting in an annual soil loss of 1.12 t/ha
and 2.5 t/ha (Figure 11a,b) for 2020–2021 and 2021–2022 simulations, respectively. A high
mean 0.44 t/ha soil loss value of September 2020 has been extracted, but it is attributed to
the rainfall event of 18 September 2020, when, following a dry summer period, a high-depth
precipitation occurred (88 mm of rain on 18 September 2020 and 23 mm on 19 September
2020), resulting in an extreme flood event related to Ianos Medicane. Ianos was a rare
tropical-like cyclone that caused severe damage in central Greece [109].

The classes of the degree of soil erosion corresponding to the ranges of soil erosion rates
were defined according to Kirkby et al. [14]. The moderate erosion-prone area corresponds
to areas where the delimiting slopes are greater and the soil type is more susceptible to
erosion (Figure 8b), while the slight erosion class corresponds to more flat areas. The mean
bulk density value of 1.3 t/m3 was used for the sediment yield estimation (for both models)
according to the soil textural classes identified [110,111]. The total PESERA sediment
volume estimate that reached the outlet was 300 m3 for the year 2020–2021 and 670 m3 for
2021–2022, following the 40% SDR application.
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3.3. The RUSLE Application

Mean source erosion was estimated as the linear spatial product of RUSLE’s individual
factors (Figure A2, Appendix B) for the 2020–2021 and 2021–2022 simulations. All of the
layers were delineated at 5 m spatial resolution. The RUSLE application is thoroughly
described in Appendix B.

Mean annual soil loss (gross erosion) was estimated at 3.51 t ha−1 y−1 (2020–2021)
and 3.56 t ha−1 y−1 (2021–2022) (Figure 12a,b). Since RUSLE cannot directly estimate the
sediment yield delivered to the basin outlet, the SDR (40%) was used, and net (transported
gross) erosion was estimated by multiplying the index by the source soil loss. The outcome
was 937 m3 for the first simulation and 953 m3 for the 2021–2022 simulation of soil delivered
to the basin outlet.
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 Figure 12. RUSLE erosion rates (t ha−1) (a) from September 2020 to August 2021, (b) from October

2021 to September 2022.

4. Discussion

The availability of soil loss records is mandatory for sediment control management [112].
However, the uncertainty that characterizes the outputs of contemporary soil erosion
models [26,27] hinders the design of appropriate mitigation strategies.
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Our application clearly demonstrates that the gap between field measurements and
sediment modeling can be bridged by the UAV-SM method. UAV and photogrammetry
technique is considered a highly efficient and affordable tool for high-resolution spatial
analysis/change detection [54,69,113,114]. Additionally, point clouds and UAV-SfM meth-
ods are the baseline for the production of 3D models for surface reconstruction, surface
change detection, and soil erosion monitoring [44,82,83,115]. The 3D point-to-point analysis
leads to high-accuracy results in several scientific applications regarding surface change
detection [45,50,116,117]. This multi-vector analysis denotes the complexity of the micro-
surface, which cannot be accurately represented by 2.5D DEM data and the interpolation
method [83]. The M3C2 algorithm that we selected as the baseline for surface change
detection is currently used in a broad field of geo-research applications, such as landslides,
flood events, post-fire erosion, and forests [44,45,118–120]. In this study, we managed
to achieve a cm-accuracy of the microsurface reconstruction, leading to high-accuracy
sediment pathway and distribution delineation.

Caution should be taken during the 3D reconstruction (SfM software application)
since it entails a complex error behavior; thus, measurements for error estimation are vital
during the complete study procedure. We estimated a 0.03 m error through the XYZ GCP
error analysis, while an error of 0.02 m was calculated during the registration of point
clouds. Wang et al. [115] found similar RMSE of 1.1 to 3.83 cm by using Phantom 3 UAV.
Such low errors estimation was a consequence of the low flight height, the optimized
overlapping, and the proper vegetation removal (the presence of vegetation leads to data
occlusion, i.e., gaps in the measured point cloud due to shadowing, and is considered the
most obstructing factor in the application of UAV-based photogrammetry for soil erosion
estimation). These values are within the accuracy margins reported by other similar studies,
e.g., 0.1–0.15 m [116], 0.03 m [48], and 0.025–0.04 m [64,67]. Increasing GCP within our study
area led to a decrease in the total accuracy error by 33.3% [121,122]. For this study, height
flight and nadir image capture were selected in accordance with the flattery environment
and the simple anaglyph pattern.

We measured a mean annual surface increase of 0.27 m, resulting in a mean depo-
sition of 1620 m3 ± 180 m3 or 2065 m3 ± 275 m3 (including the vegetated areas) for the
2020–2021 research. The 2021–2022 measurements revealed a significant increase at the
entire dam upland basin, reaching a mean value of 0.36 m, resulting in a mean deposition of
3500 m3 ± 194 m3 or 4500 m3 ± 437 m3. By applying the BD and SDR defined, these values
correspond to a mean erosion rate of 6 t ha−1 and 13 t ha−1 for the 2020–2021 and 2021–2022
simulation years, respectively, for the total watershed. Neugirg et al. [50] measured similar
sediment deposition of 2000 m3 by applying the DoD method of both UAV photogram-
metry and TLS techniques at a 125,000 m2 catchment. Other researchers have concluded
a mean annual gully erosion rate of 0.58 t in 18.65 m2 of the detailed monitored area and
5.25 t covering an area of 17.45 m2 [82], highlighting that photogrammetry is appropriate
for erosion quantification. Wang et al. [115], by monitoring gully erosion, calculated an
annual volume change of 9.66 m3 through DTM temporal comparison.

Regarding the soil erosion simulation, both modelling approaches, PESERA and
RUSLE, were able to identify hotspots/areas of land degradation. Both models appear to
underestimate the mean annual erosion rates. Specifically, mean erosion for the period
September 2020–August 2021 was estimated at 3.51 t ha−1 by RUSLE and at 1.12 t ha−1 by
PESERA. Waltner et al. [123] also state that when PESERA is applied in high spatial resolu-
tion, as in the case of this study (5 m grid), it delivers lower than expected erosion rates, a
fact that explains the underestimation of the actual field measurements. Similar results of
PESERA underestimation were also validated in Mediterranean environments [28,124,125],
while Sigalos et al. [32] found similar values for RUSLE erosion rates compared to measured
stream section measurements. In van Rompaey et al. [28], the validation method was based
on measured sedimentation volumes in reservoirs. Stefanidis et al. [126] implemented the
RUSLE model, resulting in an average value of 6.15 t ha−1 in Crete. Our PESERA values
are in accordance with Spain rates in similar Mediterranean conditions reported by de



Remote Sens. 2023, 15, 1339 18 of 31

Vente et al. [127] and Cerdan et al. [128], with an estimated annual range of 0.02–13.6 t ha−1

and 0.05–32 t ha−1, respectively. On the other hand, the RUSLE simulated lower values
compared to the average soil loss rate of 11 t/ha/yr, as reported by Borelli et al. [129] in
the Apennines. Apart from mean soil loss, RUSLE also yielded a higher peak value than
PESERA, a fact consistent with the literature findings [18,24,123,130]. This was attributed to
the different character of the model and the way they approach the soil erosion mechanism,
i.e., RUSLE is an empirical model developed to estimate annual soil loss in croplands [10],
while PESERA is a runoff-based model developed to quantify water erosion [14]. Overall,
the models do not account for gully, bank, and channel erosion, so any of these processes
are excluded from the erosion rates. This difference between the simulations and the actual
UAV- measurements may be partly attributed to the lack of gully erosion estimation from
the models. Panagos et al. [131] highlight that the mean erosion values calculated by the
national institutes (EIONET-SOIL) are greater than the PESERA rates, so as also reported
in our case, there is an underestimation prediction of the model for this Mediterranean
mountainous small-size watershed, where no agricultural land is present.

The sediment transport (at the watershed outlet) limitation of RUSLE and PESERA
was surpassed by utilizing the IC and SDR indices. In our study, the SDR equations tested
showed similar results; hence a mean value was applied. Our approach is in accordance
with other similar approximations found in the literature [21,36,101,132–135]. The rate
differences could be attributed to SDR underestimation (calculated value 40%) where
uncertainties occur. Hence, a further sensitivity analysis led to the acceptance of this value
based on multiple equation implementation and literature review. Every equation applied
led to a 35–45% value range, including an additional SDR estimation based on the main
stream length and mean basin CN (based on Williams equation, 1977 [136]), which resulted
in a value of 46% SDR (CN = 65 for total watershed according to USDA soil Hydrologic
group and land use), so the mean value of 40% is considered to be appropriate for this type
of Mediterranean watershed.

Overall, Remote sensing and UAV-SfM techniques can support quantitively and in
cm-scale the monitoring of soil erosion and deposition. This methodology offers the capa-
bility of actual cm-accuracy measurements in complex catchments where no vegetation
cover (or where it is removed) is present, and the deposition rate is higher when compared
to the measurement error estimation. This type of cm-surface reconstruction in complex
environments leads to a cm-accurate pathway and spatial sediment volume distribution
delineation. As a result, the annual stream pathway changes and redistribution pattern
leads to an accurate sediment volume estimation, where sediment removal and dam man-
agement practices need to be applied. Furthermore, reservoirs of sediment retention dams
are seldom resurveyed in the years following their construction, and their initial volume
estimates are limited by the accuracy of the topographic maps used. Hence, such surveys
are of utmost importance to engineers and stakeholders to assess (i) the life expectancy and
current storage capacity of the dam, (ii) its operational and maintenance cost (e.g., dead vol-
ume storage restoration), and (iii) the necessity of taking erosion control measures, [137,138]
aiming to serve as a framework guide application for similar cases/study sites.

5. Conclusions

This study uses new advances in remote sensing and UAV photogrammetry for
measuring with high accuracy (cm scale) the annual sediment yield deposited on a retention
dam in a small (870 ha) Mediterranean-type watershed. The methodology proposed in this
study can be used as guidance for high-accuracy sediment yield deposition measurement
through the detailed analysis of 3D modeling and point cloud comparison related to the
high density of the UAV-SfM data collection. The UAV-SfM emerging technique appears
to accurately measure topsoil change detection and erosion/deposition patterns, and the
derived point clouds adequately simulated the upland dam basin topsoil microtopography.
The annual sediment transport and the sediment pathways were accurately delineated due
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to the cm-based surface reconstruction. Additionally, the annual monitoring of sediment
yield is feasible through the cost-effective technique of UAV-SfM.

The 3D point-to-point comparison and the M3C2 distance algorithm are suitable for
annual (September 2020 to August 2021 and October 2021 to September 2022) sediment
quantification, delivering a mean sediment yield of about 1620 m3 or 6.05 t ha−1 yr−1 and
3500 m3 or 13 t ha−1 yr−1 for 2020–2021 and 2021–2022 estimation. The errors extracted
correspond to the order of a few centimeters (2–3 cm), while point cloud analysis can be
successively applied to swiftly changing landscapes, such as erosion-prone areas, in con-
junction with the phenomenon’s temporal evolution. Overall, the UAVs constitute a valuable,
cost-effective tool for rapid assessment of soil degradation and topsoil change detection.

Additionally, the monitoring of the sediment deposition offers the possibility to eval-
uate two of the most widely used soil erosion models in Europe, the PESERA and the
RUSLE. Both models seem to underestimate erosion rates in the Platana catchment, with
RUSLE yielding higher soil loss rates compared to PESERA, against the field measure-
ments, even though gully, bank and channel erosion are not considered. The PESERA and
RUSLE models estimated a 2020–2021 annual mean gross erosion at 1.12 t ha−1 yr−1 and
3.51 t ha−1 yr−1, respectively, while a significant increase was recorded at the 2021–2022
simulation (2.49 t ha−1 yr−1 and 3.56 t ha−1 yr−1, respectively).

Overall, the study can serve as a reference guide on high-accuracy sediment yield
measurements, especially in complex mountainous catchments, providing an indirect
estimate of erosion rate estimations and offering a realistic assessment of the retention
dams’ life expectancy that could be crucial for the mitigation of flooding events and debris
flows to nearby villages.
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Appendix A. The PESERA Application

The climate-related parameters were calculated based on local meteorological station
records operated by the National Observatory of Athens (Makrakomi NOANN weather
station) [139], and the topography-related parameters were derived from the DEM 5 × 5 m.
The land use parameter registration was based on the validated CLC 2018 dataset, while the
monthly vegetation cover was estimated using the Fraction of Vegetation Cover (FVC) [93].
NDVI, the component of Equation (1), was used for the estimation of the vegetation
coverage percentage. The complete NDVI time series 2005–2021 was assessed via Google
Earth Engine (Figure A1). The basin consists of continuous vegetation cover (annual mean
value greater than 60%), and no wildfire event has occurred at least over the last 18 years.
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Table A1. PESERA soil classes.

Soil Samples Texture Code Texture

Alluvial deposits L 2

Calcareous soils SL 1

Volcanic soils CL 2
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The soil dataset includes the susceptibility to surface crusting and erosion, the effective
soil water storage capacity (SWSC), the soil water available to plants (AWSC at topsoil
and subsoil), and the scale depth for erosion assessment (zm). For the evaluation of
these parameters, an in-depth analysis of various physical–chemical soil characteristics is
required [140]. The Soil Texture (ST) and the organic matter content (OMC) were specified
through laboratory analysis for the demarcated soil mapping units. The Parent Material
(PM) and the type of soil were specified using the available maps (1997 Ministry of Rural
Development and Food (1:50,000) and the 1:30,000 Misopilinos 2015 AUTH Lamia’s soil
map), and they were validated by in situ inspection in August 2020. The susceptibility
to surface crusting and erosion were approximated based on recorded soil characteristics
(ST and OMC), the dominant land use type of the Soil Mapping Unit (SMU) and Table A2
provided by le Bissonnais et al. [140].

Table A2. Assessment of soil crusting and soil erodibility by the combination of physical–chemical
and textural crusting parameters and textural erodibility parameters, respectively [140].

Physical Chemical Erodibility Textural Crusting 1 Very Low 2 Low 3 Medium 4 High 5 Very High

1 very low 1 1 1 2 3

2 low 1 2 2 3 5

3 medium 2 2 3 4 5

4 high 2 3 4 4 5

5 very high 3 4 5 5 5

Physical Chemical Erodibility Textural Erodibility

1 very low 1 1 1 2 3

2 low 2 2 2 3 4

3 medium 3 3 3 4 5

4 high 3 4 4 4 5

5 very high 4 4 5 5 5

The concluded crusting and erodibility classes were translated into suitable values for
the PESERA model based on the proposed values in Table A3 [29].



Remote Sens. 2023, 15, 1339 21 of 31

Table A3. Erodibility and crusting proposed values [29].

Proposed Values

Class Erodibility Crusting

1 0.1 100

2 1 20

3 3 10

4 6 5

5 12 2

The Soil Water Storage Capacity (SWSC) is a soil property that can be approached
in a multitude of ways. Richards [141] distinguished two main contributing processes:
(a) the ability of plant roots to absorb and use the water and (b) the speed with which
water can move inside the soil body in order to refill the water consumed by the plants.
da Silva et al. [142] introduced the concept of least limiting water range (LLWR), which
goes beyond the definition of Available Water Capacity (AWC). LLWR was defined as the
range of water content within which limitations for plant growth associated with the water
potential, aeration, and mechanical resistance are minimal.

Other factors based on which the SWSC has been estimated are the Bulk Density,
the Packing Density, the Relative Field Capacity, the Air Capacity, the microporosity, the
structural stability, the degree of compactness, etc. [143]. The current study estimates the
SWSC of Soil Typological Units (STU), as indicated by [13]. The required input and the
assumptions conducted for the calculation of the SWSC are presented in Table A4.

Table A4. The PESERA model SWSC implementation.

Parameter Symbol Value Class Assumption

Depth to rock Dr 40–80 cm M This range of values
covers all STUs

Depth restriction Dr_rest
Dr_res_10t 60 cm M

Given that
Dr_rest < 200 cm, Dr_rest

= Dr_res_10t

Obstacle to roots Roo 40–60 cm 3 This range of values
covers all STUs

Topsoil/subsoil
Packing Density

Pd_top
Pd_sub

1.4 g/cm3

(Lower value)
L

Laboratory analysis
measured for all samples

OM < 3%
*1

Texture of top/subsoil Textawctop
Textawcsub

Coarse
Medium

1
2

*1
The texture of the soil

samples was within the
ranges

Clay < 18% & Sand > 65%
Clay < 18% & 15% < Sand

< 65% and

Available water capacity
in top- & subsoil

AWC_top2s/2 mm
AWC_sub2s/2 mm

120 mm/m
220 mm/m

Medium
Very High *1

Drainable pores in topsoil Po_top % 30
20

Coarse textured soil
Medium-textured soil

Drainable pores in subsoil Po_sub % 25
18

Coarse textured soil
Medium-textured soil

Portion of SWAP in
top- & subsoil P1swap_top/sub 1 For both the coarse and

medium—textured soil

SWSC_eff 154.5 mm
189 mm

Coarse textured soil
Medium-textured soil

*1: The soil is treated as a uniform body. No clear distinction between top and sub-soil was recorded; L: Low;
M: Moderate.
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The scale depth parameter (zm) is a constant assuming a homogeneous subsurface
hydraulic behavior of soil, which depends on soil texture [144]. It derives from the TOP-
MODEL, a set of conceptual models intended to describe hydrological processes, typically
at the catchment level and in humid environments [145]. The correspondence between
soil texture and the zm, as indicated by Kirkby et al. [13], is applied in the current work
(Table A5).

Table A5. PESERA zm estimation according to soil texture class [13].

Soil Texture Code zm (mm)

Coarse C 30

Fine F 10

Medium M 20

Medium fine MF 15

Organic soils O 10

Very fine VF 5

The initial surface roughness and the surface roughness reduction per month are
parameters specified based on the vegetation cover type and introduced into the model
based on Gobin & Govers [29] (Table A6).

Table A6. PESERA zm estimation according to soil texture class [29].

Land Cover Type Initial Roughness Storage
(Rough 0 mm) % Reduction after 1 Month

Both (in 1 year) arable 10 50

Cereal-dry farmed 10 50

Natural degraded 5 0

Forest (close canopy) 5 0

Heterogeneous 5 0

Permanent pasture 5 0

Rock, urban, wetlands etc 0 0

Spring sown arable 10 50

Vineyards, tree crops etc 5 0

Autumn sown Med’n arable 10 50

Winter sown arable 10 50

Uncultivated-natural
vegetation 5 0

Bare ground 5 0

The climate parameters were calculated based on the meteorological data acquired by
the National Observatory of Athens weather station of Makrakomi covering three periods:
2020, 2021, and 2022. From October 2022 to December 2022, meteorological values were set
to zero. The climatic data comprises daily time series of rainfall, temperature, and potential
evapotranspiration. The data were interpolated to a 5 m pixel size raster. These data
were used to provide the monthly data layers required. The required data include mean
monthly rainfall, mean monthly rainfall per rain day, coefficient of variation of monthly
rainfall, mean monthly temperature and monthly temperature range (max–min). Mean
monthly PET values were calculated using the FAO ETo calculator, with monthly input
data for mean, min and max Temperature, RH, wind speed, and location characteristics.
The FAO ETo calculator estimates evapotranspiration based on the FAO Penman–Monteith
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equation [146]. Finally, the topographic data include the standard deviation of the elevation
layer, which was calculated based on DEM (5 × 5 m pixel size) in the ArcGIS environment.
(v. 10.5, Environmental Systems Research Institute-ESRI, Redlands, CA, USA). Table A7
presents all input parameters with their data source.

Table A7. PESERA zm estimation according to soil texture class.

Model Parameter Value Range Input Data
Description/Reference

Land cover type (use) 240, 320 CORINE 2018, processed by
fieldwork

Coverage 0–100%
Based on FVC and NDVI

computed on Google Earth
Engine

Surface roughness
reduction (roughed) 0.1 [29]

Surface roughness (rough0) 5 [29]

Root depth 400, 600 mm [29]

Surface crusting 20, 40 [29]

Soil erodibility 2 [29]

Effective Soil Water Storage
Capacity (SWSC) 154.5–189 mm [13]

zm 20, 30 (mm) [13]

Meteorological data Value range based on
meteorological data (mm) analysis

Processed by the researchers
FAO Penman–Monteith equation.

(FAO ETo calculator)

Standard deviation of elevation 0–10.01 Processed by ArcGIS

Appendix B. The RUSLE Application

The R-factor was estimated based on the rainfall erosivity index EI30 (MJ mm ha−1 h−1) [147]
(Table A8, Figure A2a,b), using the RIST (Rainfall Intensity Summarization Tool) plat-
form [148]. Low-intensity rain events, i.e., with precipitation values less than 12.7 mm (in
10 min step), were excluded from the energy and intensity calculations since they have a
minor effect on EI30.

The K-factor (Figure A2c) was calculated based on the fieldwork performed at the
basin. Specifically, three distinct lithological units were identified, namely calcareous rocks
(dolomites and limestones), alluvial deposits, and volcanic formations. Such description is
necessary due to the decisive effect of the underlying bedrock on runoff and sedimentation
potential and the fact that soil erodibility can easily be related to the bedrock’s susceptibility
to erosion [149]. Hence, the soil formations developed per unit were recorded, and an
erodibility value was assigned to each (Table A9), calculated based on the equation of
Wischmeier and Smith [7]. Given the relatively small size of the basin, and the fact that clay
loam soils occupy their larger part (i.e., soil variability is rather small), spatial interpolation
was not performed, and a static K-factor value was assigned to each formation instead. The
coefficient values ranged between 0.016 and 0.022 t ha h ha−1 MJ−1 mm−1, with a mean
(spatial) value of 0.021 t ha h ha−1 MJ−1 mm−1. The highest K values characterize the most
erosion-prone formations (e.g., volcanic formations), while the lowest are the most resistant
ones (e.g., limestones).

The composite LS-factor (Figure A2d) was based on the local 5 m DEM, developed
especially for the needs of the study. Calculations were made on the SAGA GIS software
package provided by QGIS, employing the Desmet and Govers [150] equation.

The C-factor (Figure A2e) was calculated based on the basin’s Land use/Land Cover
(LULC) delineation (Table 4). Three distinct level-1 classes were identified, namely Agri-
cultural areas, Forest, and semi-natural areas. A cover management coefficient value was
assigned, following the methodology presented in Efthimiou et al. [91], an adjusted ap-
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proximation of the work of Panagos et al. [30] that aims to incorporate and exploit the
spatiotemporal dynamics of land use and the intra-annual variability of vegetation charac-
teristics. In brief, the LULC map was divided into arable/non-arable land and non-erodible
uses (e.g., Artificial areas, etc.). Arable lands and non-erodible uses were assigned with
a non-temporal C-factor value considering a bibliographic review [7,30,42,43]. In non-
arable lands, the parameter was estimated utilizing Equation (9), according to which the
C-factor is a function of its empirical bibliographic value range per feature class, adjusted
to the spatiotemporal variation of vegetation cover. The latter was assessed employing
a proxy vegetation layer (Fcover) at 10 m resolution, developed from Sentinel-2 imagery
and literature data on crop types. The lowest values characterize densely vegetated areas
(e.g., non-arable land), and the highest areas of mild or low vegetation cover (e.g., arable
land). The P-factor (Figure A2f) was set equal to the unit since no support practices take
place in the study area.

CNonArable = Min(Clanduse) + Range(Clanduse) × (1 − Fcover), (9) 

3 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 
 

Figure A2. Cont.
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Figure A2. The RUSLE application. (a) R-factor 2020–2021; (b) R-factor 2021–2022; (c) K-factor;
(d) LS-factor; (e) C-factor; (f) P-factor.

Table A8. R-factor values, analytical estimation, Makrakomi station, September 2020–August
2021/October 2021–September 2022.

Rain 1

(mm)
Rain 2

(mm)
Energy

(MJ ha−1)
EI30

(MJ mm ha−1 h−1)
Erosivity Density *

(MJ ha−1 h−1)

TOTAL *
2020–2021 572.00 490.91 44.46 716.21 1.46

TOTAL *
2021–2022 793.20 599.15 74.31 729.43 1.22

1 Precipitation measurements—all storms included; 2 Precipitation data—RIST outputs after storm exclusions;
* Total values represent the sum of monthly averages, except for Erosivity Density, which is the ratio of total EI30
to total precipitation.

Table A9. Soil attributes of the Platana Dam basin and K-factor values.

Soil Samples (Texture) K-Factor

Sandy Loam (SL) soil 0.016
Clay Loam (CL) soil 0.022

Loam (L) 0.017
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