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Abstract
When choosing among multi-attribute options, integrating the full information may be computationally costly and time-
consuming. So-called non-compensatory decision rules only rely on partial information, for example when a difference 
on a single attribute overrides all others. Such rules may be ecologically more advantageous, despite being economically 
suboptimal. Here, we present a study that investigates to what extent animals rely on integrative rules (using the full infor-
mation) versus non-compensatory rules when choosing where to forage. Groups of mice were trained to obtain water from 
dispensers varying along two reward dimensions: volume and probability. The mice’s choices over the course of the experi-
ment suggested an initial reliance on integrative rules, later displaced by a sequential rule, in which volume was evaluated 
before probability. Our results also demonstrate that while the evaluation of probability differences may depend on the reward 
volumes, the evaluation of volume differences is seemingly unaffected by the reward probabilities.

Keywords  Multi-attribute choice · Non-compensatory decision rules · Economic decision-making · Home cage testing · 
Mice

Introduction

Animals confronted with options that differ on a single 
attribute generally make economically rational choices 
consistent with gain maximization (Monteiro et al. 2013; 
Rivalan et al. 2017). In multi-attribute choice (Pitz and 
Sachs 1984; Jansen et al. 2012; Hunt et al. 2014), however, 
where reward attributes must be weighed against each other 
(price vs. quality, risk vs. pay-off, etc.), consistent deviations 
from economical rationality have been described in humans 
(Tversky and Kahneman 1974; Rieskamp et al. 2006; Kat-
sikopoulos and Gigerenzer 2008) and non-human animals 
(Shafir et al. 2002; Bateson et al. 2003; Schuck-Paim et al. 
2004; Scarpi 2011; Nachev and Winter 2012; Nachev et al. 
2017; Constantinople et al. 2019). Some deviations from 
gain maximization can be accounted for by considering the 
ecological circumstances of an animal, which may confer fit-
ness benefits to seemingly irrational choices (Kacelnik 2006; 
Houston et al. 2007; Trimmer 2013; McNamara et al. 2014).

An animal foraging in its natural environment mostly 
encounters food items that differ on multiple attributes, 
but only some of those attributes affect the long-term 
gains. We refer to those attributes as reward dimensions. 
In multidimensional choice, the decision task is consider-
ably simplified if differences that are (nearly) equal are 
not evaluated but ignored (Tversky 1969; Pitz and Sachs 
1984; Shafir 1994; Shafir and Yehonatan 2014). For 
example, an animal might only consider the one reward 
dimension (e.g., prey size) that most strongly affects the 
long-term gains. Such decision processes in which one 
reward dimension overrides the others have been described 
as non-compensatory (Pitz and Sachs 1984; Reid et al. 
2015) and can potentially increase speed of decision and 
decrease computation costs at the expense of accuracy. 
Attributes can be considered sequentially, for example 
ranked by salience, until a sufficient difference is detected 
on one attribute, so that a decision can be reached (Brand-
stätter et al. 2006; Jansen et al. 2012). In compensatory 
decision-making (Pitz and Sachs 1984; Reid et al. 2015) 
on the other hand, choice is affected by multiple attrib-
utes that are integrated into a common decision currency 
(utility) (Levy and Glimcher 2012). A fully integrative 
approach that makes use of all the available information 
(also referred to as absolute reward evaluation Tversky 
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1969; Shafir 1994; Shafir and Yehonatan 2014) is equiva-
lent to gain maximization. For example, if options differ 
along the reward dimensions of amount and probability 
of obtaining this amount, maximizing the gain is ensured 
by selecting the option with the highest expected value, 
which is the product of the amount and probability. Even 
in two-dimensional reward evaluation, a range of strategies 
are possible, from sequential and other non-compensatory 
rules, up to full integration.

When studying animal decision-making, preferences 
are measured over many choices, especially when options 
differ in reward probability. Although a rational subject 
should exclusively select the most profitable option, ani-
mals can persist in choosing less profitable options even 
after long training, usually at some low frequency (Kacel-
nik 1984). The partial preference observed in choice 
experiments can be explained by profitability matching 
(Kacelnik 1984), which states that animals proportionally 
allocate their effort depending on the relative pay-off of 
the options.

Scalar utility theory (SUT: Kacelnik and Brito e Abreu 
1998; Marsh and Kacelnik 2002) is a framework that pro-
poses a proximate mechanism that accounts for partial 
preferences in the context of reward amount and reward 
variability (Rosenström et al. 2016). Based on findings in 
psychophysics, SUT postulates that cognitive represen-
tations of stimuli exhibit a scalar property, i.e., they have 
error distributions that are normal with a mean equal to the 
magnitude of the stimulus and a standard deviation that is 
proportional to the mean. In other words, SUT states that 
the memory traces of perceived or expected outcomes of 
choices are subject to Weber’s law (Akre and Johnsen 2014) 
and that rewards are evaluated proportionally rather than 
linearly (Marsh and Kacelnik 2002; Rosenström et al. 2016). 
Therefore, according to SUT, choice is modelled by sam-
pling from the internal representations of the choice options 
and selecting the most favorable sample. This allows for 
making quantitative predictions about the strength of prefer-
ences from the contrasts between options.

In previous experiments, we have demonstrated that 
proportional processing can be used to predict the choice 
behavior of animals when options vary along a single dimen-
sion (Nachev et al. 2013; Rivalan et al. 2017). In the present 
study, we extend the application of proportional processing 
and SUT to two-dimensional choice tasks with the aim to 
test whether (contradictory) information from two reward 
dimensions generates choices more consistent with integra-
tive or non-compensatory decision rules. We used a combi-
nation of behavioral studies of mice and a decision-making 
model based on SUT.

Animals, methods, and materials

Animals

The experiments were conducted with three cohorts of 
C57BL/6NCrl female mice (Charles River, Sulzfeld, Ger-
many, total n = 30). Mice were 5 weeks old on arrival. The 
mice from each cohort were housed together, before and dur-
ing the experiments. They were marked with unique radiof-
requency identification tags (RFID: 12 × 2.1 mm, 125 kHz, 
Sokymat, Rastede, Germany) under the skin in the scruff of 
the neck and also earmarked at age 6 weeks. At age 7 weeks, 
mice were transferred to the automated group home cage 
for the main experiment. Pellet chow (V1535, maintenance 
food, ssniff, Soest, Germany) was always accessible from a 
trough in the cage lid. Water was available from the operant 
modules of the automated group cage, depending on indi-
vidual reward schedules. Light conditions in the experiments 
were 12:12 LD and climatic conditions were 23 ± 2,◦ C and 
50–70% humidity.

Ethics statement

The experimental procedures were aimed at maximizing 
animal welfare. During experiments, mice remained undis-
turbed in their home cage. Data collection was automated, 
with animals voluntarily visiting water dispensers to drink. 
The water intake and health of the mice was monitored daily. 
Due to the observational nature of the study, animals were 
free from damage, pain, and suffering. The animals were 
not sacrificed at the end of the study, which was performed 
under the supervision and with the approval of the animal 
welfare officer heading the animal welfare committee at 
Humboldt University. Experiments followed national regula-
tions in accordance with the European Communities Council 
Directive 10/63/EU.

Cage and dispenser system

We used two automated home cages (612 × 435 × 216 mm, 
P2000, Tecniplast, Buggugiate, Italy) with woodchip bed-
ding (AB 6, AsBe-wood, Gransee, Germany), and enriched 
with two gray PVC tubes and paper towels as nesting mate-
rial. The cage was outfitted with four computer-controlled 
liquid dispensers. The experimental set-up of cage 1 is 
described in detail in Rivalan et al. (2017). Briefly, mice 
were detected at the dispensers via infrared beam-break sen-
sors and RFID sensors. Water delivery at each dispenser 
could be controlled, so that it could be restricted or dis-
pensed at different amounts on an individual basis. Mice 
were therefore rewarded with droplets of water from the 
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dispenser spout that they could remove by licking. We 
changed cage bedding and weighed all animals on a weekly 
basis, always during the light phase and at least an hour 
before the start of the testing session. Data were recorded 
and stored automatically on a laptop computer using Phe-
noSoft Control software (PhenoSys, Germany). Time-
stamped nose poke events and amounts of water delivered 
were recorded for each dispenser, with the corresponding 
mouse identity.

The second automated group cage (cage 2) was made for 
the purposes of this study and was nearly identical to cage 1. 
The crucial modification was that the stepping-motor syringe 
pump was replaced with a model that used disposable plastic 
25-mL syringes (cage 2) instead of gas-tight Hamilton glass 
syringes (Series 1025, cage 1). Thus, the pumping systems 
in the two cages differed in the smallest reward that could 
be delivered and in the precision of reward delivery (mean ± 
SD: 0.33 ± 0.03 μL step−1 in cage 1 vs. 1.56 ± 0.24 μL step−1 
in cage 2). The precision of each pump was estimated by 
manually triggering reward visits at different preset pump 
steps (17 and 42 in cage 1, 3 and 12 in cage 2) and collect-
ing the expelled liquid in a graduated glass pipette placed 
horizontally next to the cage. Each dispenser was measured 
by the same trained experimenter at least 20 times for each 
pump step value.

Experimental schedule

The general experimental procedure was as described before 
(Rivalan et al. 2017). The water dispensers were only active 
during an 18-h-long drinking session each day that began 
with the onset of the dark phase and ended 6 h after the 
end of the dark phase. The reward properties (volume and 
probability) were dependent on the experimental condition. 
Rewards were drawn from fixed pseudo-random repeating 
sequences. These sequences were: 11101111101101111110 
fo r  80%,  11011101110101101110  fo r  70%, 
10110101101001001010 for 50%, 10010100100001001000 
for 30%, and 10001000010001000000 for 20%, where 1 is 
a rewarded nose poke and 0 is an unrewarded nose poke.

Although individual mice shared the same dispensers 
inside the same cage, they were not necessarily in the same 
experimental phase during training or experimental con-
dition in the main experimental phase. The three cohorts 
(1–3 in chronological order) were tested consecutively, with 
cohort 2 housed in cage 2 and the other cohorts housed in 
cage 1. If after any drinking session during any experimental 
phase a mouse drank less than 1 mL of water, we placed two 
water bottles in the automated cage, gently awakened all 
mice, and allowed them to drink freely until they voluntar-
ily stopped. An overview of the training and experimental 
phases is given in Fig. 1a.

Exploration phase

At the beginning of this phase, there were ten mice in 
each cohort, except for cohort 2, in which one mouse was 
excluded due to the loss of the RFID tag after implantation 
(the mouse was in good health condition). The mice were 
transferred to the automated cages 1–2 h before the first 
drinking session of the exploration phase. The purpose of 
this phase was to let mice accustom to the cage and learn to 
use the dispensers to obtain water. Therefore, each nose poke 
at any dispenser was rewarded with a constant volume of 
20 μ L. The criterion for advancing to the following training 
phase was consuming more than 1 mL in a single drinking 
session. Mice that did not reach the criterion remained in 
the exploration phase until they either advanced to the fol-
lowing phase or were excluded from the experiment (n = 1 
mouse in cohort 2).

Training phase

In this phase, the reward volume was reduced to 10 μ L and 
the reward probability was reduced to 0.3 at all dispensers. 
These reward values ensured that mice remained motivated 
to make several hundred visits per drinking session. Associa-
tive learning is also enhanced by the unpredictability of the 
expected reinforcer (Maddux et al. 2007). The training phase 
was repeated for 1–2 days until at least eight mice fulfilled 
the criterion of consuming more than 1 mL of water in one 
drinking session. The purpose of the training phase was to 
introduce mice to the reward dimensions (volume and prob-
ability) that would be used in the following discrimination 
experiments. In cohorts 1 and 2, mice were excluded from 
the experiment if they did not reach the criterion in 2 days, 
or, alternatively, if more than eight mice had reached the cri-
terion, mice were excluded at random to ensure a balanced 
number of mice per dispenser. These mice were returned to 
regular housing.

Noise habituation

We introduced a noise habituation phase for the mice 
in cohort 3, because after 2 days, only six of them had 
advanced to the training phase (Fig. 1a). The unusually 
low number of visits made by mice that did not pass the 
exploration phase suggested that the noise produced by the 
pumping systems might scare naive, shy mice away from 
the dispensers. To ensure that all mice were successfully 
trained, we designed the noise habituation, so that rewards 
at all four dispensers were delivered at regular intervals (7 
μ L every minute), regardless of the behavior of the mice. 
After 2 days, all mice had made at least 200 nose pokes and 
the cohort then continued with either exploration or training. 
Two days later, all mice successfully completed the training 
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phase and two mice were randomly selected for removal 
from the experiment, bringing the number of mice to eight. 
We therefore updated our training procedure to always begin 
with noise habituation, followed by the exploration phase 
and the training phase.

General procedure in the main experiments

After eight mice had successfully passed the training 
phase, they proceeded with experiment 1 from the main 
experiments (1–4). In all of the main experiments, mice 
had a choice between four dispensers, where two were not 
rewarding and the other two gave rewards with volumes and 
probabilities that depended on the experimental condition 
(Figs. 1b, 2). In most conditions, one of the rewarding dis-
pensers (high-profitability dispenser) was more profitable 
than the other (low-profitability dispenser). The sequence of 
conditions was randomized for each individual, so that any 
given mouse was usually experiencing a different experi-
mental condition than all other mice. On any given day, two 
of the dispensers were rewarding for four mice and the other 

two were rewarding for the other four mice. Within each 
group of four, each pair of mice shared the same high- and 
low-profitability dispensers, which were spatially inverted 
between pairs of mice. This pairing was done to increase the 
throughput of the experiments, while controlling for poten-
tial social learning effects and distributing mice evenly over 
the dispensers to minimize crowding effects.

The behavioral measure of interest was the relative 
visitation rate to the high-profitability dispenser that 
could develop in one drinking session. Choice behavior 
in sequential testing with multiple conditions can be influ-
enced by the previous conditions and by side bias. We 
aimed to mitigate the sequential effects through randomi-
zation, and the side bias through spatially reversing the 
choice options. As a control for positional biases, each 
condition was followed by a reversal on the next day, so 
that the high- and low-profitability dispensers were spa-
tially inverted for all mice, whereas the two non-rewarding 
dispensers remained unchanged. Reversal was followed 
by the next experimental condition, with pseudo-random 
distribution of the dispensers among the pairs of mice 

Fig. 1   Experimental conditions 
and schedules. a Experimental 
schedule with all phases. The 
number of days is given in 
parentheses. Mice began with 
an exploration phase, followed 
by a training phase. Before 
every experiment (Exp. 1–4), 
there was another training phase 
for 1 day. Between experiments 
3 and 4, there was a 4-day break 
with water from a bottle. Phases 
shown with dashed lines were 
only present in the schedule 
for cohort 3, because four 
mice had difficulties advancing 
beyond the exploration phase. 
b Behavioral task in four condi-
tions (BPLV, BVHP, C, and I) 
of experiment 1. Mice were free 
to nosepoke in all four corners, 
two of which (shown in blue) 
were rewarding for the example 
mouse, with the reward proper-
ties shown above or below the 
reward corners. For clarity, only 
one example mouse of the eight 
mice is shown, with other mice 
experiencing different condi-
tions at different dispensers. 
BPLV baseline for probability 
at low volume, BVHP baseline 
for volume at high probability, 
C congruent condition, I incon-
gruent condition (colour figure 
online)
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following the constraints described above. The reversal 
condition is potentially harder to learn and may represent 
the lower bound of choice performance, but its exclusion 
from the results did not lead to any qualitative changes. 
Over the 50 total days in the main experiment (twice the 
number of conditions shown in Fig. 2, because of rever-
sals, plus experiment 4), each mouse experienced each 
dispenser as a high-profitability dispenser between 11 and 
14 times. In the event of an electrical or mechanical mal-
function, data from the failed condition and its reversal 
were discarded and the failed condition was repeated at the 
end of the experiment, lengthening slightly the duration 
of the experiment. Such a failure occurred once in cohort 
1, four times in cohort 2, and did not occur in cohort 3. 
After experiments 1 and 2, mice were given another train-
ing phase (rewards with 10 μ L and 0.3 probability) for a 
single day, before they proceeded with the next experi-
ment. After experiment 3, mice were given water from 
a standard water bottle for 4 days (with water dispensers 
inactive), followed by 1 day in the training phase, before 
proceeding with experiment 4. At the end of experiment 4 
mice were returned to the animal facility.

Experiment 1

In the baseline conditions, rewards only differed on one 
reward dimension (the relevant dimension), but not on the 
other dimension (the background dimension). For example, 
in the baseline for probability at low volume (BPLV) con-
dition, both options had the same volume of 4 μ L, but one 
option had a probability of 0.2 and the other, a probability 
of 0.5 (Figs. 1b, 2). In the baseline for volume conditions 
(Fig. 1b), both rewarding options had the same probabilities 
(either 0.2, baseline for volume at low probability, BVLP; 
or 0.5, baseline for volume at high probability, BVHP), but 
one had a volume of 4 μ L, and the other had a volume of 20 
μ L. Based on previous experiments (Rivalan et al. 2017), 
we expected a baseline difference between 4 μ L and 20 μ L 
volumes to result in a similar discrimination performance 
(relative preference for the superior option) compared to 
a baseline difference between probabilities 0.2 and 0.5. In 
the congruent (C) condition, one option was superior to the 
other on both dimensions (Fig. 1b). Finally, in the incon-
gruent (I) condition, each of the options was superior to the 
other on one of the reward dimensions, so that the option 

Fig. 2   Overview of the experimental conditions in all four experi-
ments. Options (A and B) differed on one or both reward dimensions 
(reward volume and probability), resulting in different expected val-
ues (EV). The black dots give the volume and probability for each 
option. The transparent segments connect the two options available 
in each condition. Gray curves give points of equal expected value 
(EV = volume × probability). The relative value is EV

A
∕EV

B
 . The 

conditions in experiment 4 were identical to those in experiment 
1. The baseline for volume at low-probability condition (BVLP) 
in experiment 1 was not repeated in experiment 2, but, instead, the 
results from experiment 1 were reused in further analyses. Condition 
sequences were randomized for each mouse. Volumes shown (in μ L) 
are for cohorts 1 and 3. In cohort 2, the volumes were 4.7 instead of 
4, 9.4 instead of 10, 14.0 instead of 15, and 20.3 instead of 20 μL
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that had the higher volume had the lower probability and 
vice versa (Fig. 1b). The main goals of this experiment were 
to (1) test whether the baseline performance when only one 
dimension was relevant was a good predictor for the dis-
crimination performance in the congruent and incongru-
ent conditions when both dimensions were relevant and (2) 
whether the trade-off between dimensions affected prefer-
ence in the incongruent condition. Since the differences on 
both dimensions were chosen to be of comparable salience 
(Rivalan et al. 2017), we expected the mean discrimination 
performance in the incongruent condition to be at chance 
level (0.5), despite the difference in expected value (Fig. 2).

Experiment 2

In previous experiments (Rivalan et al. 2017), we had shown 
that the relative stimulus intensity (i), i.e., the absolute dif-
ference between two options divided by their mean (differ-
ence/mean ratio), was a good predictor of discrimination 
performance for both volume and probability differences. 
Another finding from these experiments was that, at least 
initially, mice responded less strongly to differences in vol-
ume than to differences in probability, despite equivalence 
in expected values (Rivalan et al. 2017). We aimed to cor-
rect for this effect in experiment 1 by selecting options with 
a higher relative intensity for volume (4 μ L vs. 20 μ L, i = 
1.33) than for probability (0.2 vs. 0.5, i = 0.857). In experi-
ment 2, we wanted to test whether mice would exhibit a 
decreased sensitivity for volume when both reward dimen-
sions had the same relative intensity (i = 1.33). Thus, for 
the conditions in experiment 2, we simply replaced the 0.5 
probability from the conditions in experiment 1 with a prob-
ability of 1 (Fig. 2). We did not repeat the BVLP condition, 
in which both probabilities were set at 0.2. With the two 
choice options having the same expected values, we hypoth-
esized that the discrimination performance in the incongru-
ent condition would be at chance level if both dimensions 
were equally weighed and equally perceived. On the other 
hand, if mice were less sensitive for volume than for prob-
ability differences as in our previous experiments, then the 
discrimination performance in the incongruent condition 
should be skewed towards probability ( < 0.5).

Experiment 3

In the previous experiments, we used two different baseline 
conditions for each dimension (BPLV, BPHV, BVLP, and 
BVHP, Fig. 2), to exhaust all combinations of reward stim-
uli and balance the experimental design. However, we also 
wanted to test whether the level of the background dimen-
sion despite being the same across choice options neverthe-
less affected the discrimination performance on the relevant 
dimension. If mice use a non-compensatory decision rule, 

we can predict that, regardless of the level of the background 
dimension, the discrimination performance on the relevant 
dimension should remain constant. Alternatively, with abso-
lute reward evaluation, the subjective difference between the 
options is said to decrease as the background (irrelevant) 
dimension increases and, therefore, the discrimination per-
formance is also expected to decrease (Shafir and Yehonatan 
2014). This prediction is derived from the concave shape of 
the utility function, which is generally assumed to increase at 
a decreasing rate with the increase in any reward dimension 
(Kahneman and Tversky 1979; Kenrick et al. 2009; but see 
also Kacelnik and Brito e Abreu 1998). The same predic-
tion can be made if we assume that motivation decreases 
with satiety, i.e., the strength of preference decreases under 
rich environmental conditions (Schuck-Paim et al. 2004), 
for example at high-reward volume or probability. To test 
whether the two reward dimensions (volume and probability) 
interact with each other even when one of them is irrelevant 
(as background dimension that is the same across choice 
options), we performed experiment 3.

The conditions in experiment 3 were chosen to be similar 
to the baseline conditions in the previous experiments, by 
having one background and one relevant dimension (Fig. 2). 
The relevant dimension always differed between the two 
options. For the probability dimension, we selected the same 
values of 0.2 and 0.5 (i = 0.86), as in the previous experi-
ments. For the volume dimension, we selected the values 
of 4 μ L and 10 μ L (4.8 μ L and 9.6 μ L in cohort 2, Fig. 2), 
because these values have the same relative intensity as the 
two probabilities. Furthermore, the combination of a higher 
volume with a probability of 0.8 was expected to result in 
an insufficient number of visits for analysis. Cohort 2 had 
different reward volumes due to differences in the pump-
ing process between the two cages used (cage and dispenser 
system), which also resulted in a lower relative intensity for 
volume (i = 0.67 instead of 0.86; we will return to this point 
in the discussion). There were four different levels for each 
background dimension (volume and probability, Fig. 2). 
Each mouse had its own pseudo-random sequence of the 
eight possible conditions.

Experiment 4

For laboratory mice that have unrestricted access to a water 
bottle, the volume of a water reward is not usually a stimulus 
that predicts reward profitability. In previous experiments 
(Rivalan et al. 2017), mice had shown an improved discrimi-
nation performance for volume over time. This suggests that 
with experience, mice become more attuned to the relevant 
reward dimension. To test whether the discrimination per-
formance for one or both dimensions improved over time, 
we performed experiment 4, which had the same conditions 
as experiment 1 (Fig. 2), but with a new pseudo-random 
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order. The same mice participated in all experiments (1–4), 
with about 7 weeks between experiment 1 and experiment 4.

Data analysis

Data analysis and simulations were done using R (R Core 
Team 2020). All data and code are available in the Zenodo 
repository: https://​doi.​org/​10.​5281/​zenodo.​42237​29.

On average (mean ± SD), mice made 477 ± 163 nose 
pokes per drinking session (Fig. S1), with a mean propor-
tion of 0.79 ± 0.1 nose pokes at the rewarding dispensers. 
To analyze choices only after mice had some experience 
with each option (Rivalan et al. 2017), we excluded the first 
150 nose pokes at the rewarding dispensers (Figs. S2–S5). 
We also tried the following alternative approaches: taking 
the 100 nose pokes between the 151st and the 251st, tak-
ing the last 100 or the last 20 nose pokes, or only taking 
the nose pokes after the discrimination performance (see 
below) in two consecutive blocks of 20 nose pokes exceeded 
the individual mean performance for that drinking session. 
None of the major results were qualitatively changed with 
the alternative cut-off points (except for experiment 3, see 
discussion), so in the main results, we only report the results 
with the exclusion of the first 150 nose pokes at the reward-
ing dispensers.

From the remaining nose poke data, we calculated the dis-
crimination performance for each mouse and each condition 
of each experiment. Since each condition was repeated twice 
(initial acquisition and reversal), we calculated the discrimi-
nation performance as the total number of nose pokes at the 
high-profitability dispenser divided by the sum of the total 
number of nose pokes at the high- and at the low-profitabil-
ity dispensers. Nose pokes at the non-rewarding dispensers 
were ignored. In the incongruent condition of experiment 
2 in which the profitability was equal (relative value = 1, 
Fig. 2), the dispenser with the higher reward volume was 
treated as the “high-profitability” dispenser. It is important 
to emphasize that the discrimination performance does 
not necessarily reflect the capability of mice to distinguish 
between options, but also depends on other factors such as 
(over-)training, motivation, and exploratory behavior. Thus, 
the primary measure in our experiments was the discrimina-
tion performance that could develop in one drinking session, 
controlled for positional biases.

Equivalence tests in experiments 1, 2, and 4

To investigate how the two reward dimensions contributed 
towards choice in experiments 1, 2, and 4, we looked at the 
contrasts between the baselines (when only one dimension 
was relevant) to the conditions when the two dimensions 
were congruent or incongruent to each other. We statis-
tically evaluated these contrasts with the two one-sided 

procedure (TOST) for equivalence testing (Lauzon and 
Caffo 2009; Lakens 2017b).

First, we picked a priori a smallest effect size of interest 
(sesoi) as the difference in discrimination performance of 
0.1 units in either direction. This value was chosen based 
on standard deviations (sd) in discrimination perfor-
mance observed in previous studies (e.g., Fig. 4 in Riva-
lan et al. 2017), which ranged from 0.05 to 0.1. Although 
discrimination performance is bound by 0 and 1, most 
empirical values, especially the differences between two 
values, are far enough from these bounds so that their 
distribution approaches the normal. The expected sd of 
the difference between two normal distributions with 
sd of 0.1 (we conservatively picked the largest value) is 
√

0.12 + 0.12 = 0.141 . With this standard deviation and 
a sample size of 24, the equivalence bounds needed to 
detect equivalence of paired samples with a power of 0.95 
are [− 0.1, 0.1] (powerTOSTpaired.raw function 
in package TOSTER, Lakens 2017a). The sesoi can be 
graphically represented as the [− 0.1, 0.1] interval around 
the difference of zero, or as [0.4, 0.6] around the chance 
performance of 0.5.

We then estimated the mean differences and their confi-
dence intervals (CIs) from 1000 non-parametric bootstraps 
using the smean.cl.boot function in package Hmisc 
(Harrell and Dupont 2019). For a single equivalence test, 
the 90% CI is usually constructed, i.e., 1 − 2� with � = 0.05 , 
because both the upper and the lower confidence bounds 
are tested against the sesoi (Lauzon and Caffo 2009; Lak-
ens 2017b). This 90% CI can be fully bounded by the sesoi 
interval, in which case the observed effect is statistically 
smaller than any effect deemed worthwhile. In the opposite 
case, there is no statistical support for equivalence. With 
conventional null hypothesis testing, the 95% CI either does 
not include the null hypothesis (usually zero), in which case 
there is a statistically significant difference, or, if it does 
include the null, the difference is not statistically significant. 
When combining the equivalence and null hypothesis tests 
(which can also be done with examination of the 95% and 
90% confidence intervals), there are four possible outcomes 
(Lakens 2017b): 

1.	 If the 90% CI is fully bounded by the sesoi and the 95% 
CI includes the null, there is statistical support for equiv-
alence.

2.	 If the 90% CI is fully bounded by the sesoi, but the 95% 
CI does not include the null, there is statistical support 
for difference with an effect size smaller than the sesoi. 
This result can be interpreted as practical equivalence 
or trivial difference.

3.	 If the 90% CI is not fully bounded by the sesoi, but the 
95% CI includes the null, the result is deemed inconclu-
sive.

https://doi.org/10.5281/zenodo.4223729
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4.	 If the 90% CI is not fully bounded by the sesoi and the 
95% CI does not include the null, there is statistical sup-
port for difference.

Therefore, we only considered absolute differences in dis-
crimination performance of at least 0.1 to be of practical 
significance in our study. Smaller differences, regardless of 
their statistical significance using other tests, were consid-
ered to be trivial.

Linear regression and equivalence tests in experiment 3

To test whether the background dimension affected discrimi-
nation performance, we fitted linear regression models for 
each mouse and each dimension, with discrimination perfor-
mance as the dependent variable and background level as the 
independent variable. The background level was the propor-
tion of the actual value to the maximum of the four values 
tested, e.g., the background levels for volumes 4, 10, 15, and 
20 were 0.2, 0.5, 0.75, and 1, respectively. We defined a pri-
ori smallest effect size of interest (sesoi), as 0.125, which is 
the slope that would result from a difference of 0.1 (the sesoi 
in experiments 1, 2, and 4) in discrimination performance 
between the smallest and the largest background levels (PV1 
and PV4, 0.2 and 1, respectively). A slope estimate (whether 
positive or negative) within the sesoi interval would allow 
us to reject an effect of background dimension of 0.125 or 
larger, which can be interpreted as practically equivalent to 
an absence of a meaningful effect.

Control of type I error rate

Researchers have shown that to correct for multiple compari-
sons in equivalence tests, it suffices to apply a familywise 
correction of the � for the problematic cases where the type 
I error is most likely (Davidson and Cribbie 2019), i.e., when 
equivalence is supported, but the mean difference is close 
to the sesoi bound. The families of tests, for which multiple 
comparisons occur in our study, are the eight contrasts in 
each of experiments 1, 2, and 4 (three families), the tests 
on the two slopes in experiment 3, and the six before-after 
contrasts between experiment 1 and 4. For each of these five 
families, the � was divided by k2∕4 , where k was the num-
ber of problematic cases in each family (Caffo et al. 2013). 
However, the number of problematic cases did not exceed 
two in any of the test families, which resulted in the cor-
rected � equal to the original value of 0.05. Furthermore, 
even with k equal to eight, two, and six (the total number 
of tests in each test family), only a single result changed 
from non-equivalent to inconclusive. We therefore report 
the uncorrected 90% and 95% CIs.

Simulations

To examine whether the behavior of the mice was more con-
sistent with integrative or with non-compensatory rules, we 
implemented simulations with six different decision rules. 
We based our decision models on the scalar utility theory 
(SUT: Kacelnik and Brito e Abreu 1998; Rosenström et al. 
2016), which models memory traces for reward amounts 
(or volumes) as normal distributions rather than point esti-
mates. The scalar property is implemented by setting the 
standard deviations of these distributions to be proportional 
to their means. Choice between two options with different 
volumes can be simulated by taking a single sample from 
each memory trace distribution and selecting the option with 
the larger sample.

As previously explained, the discrimination performance 
for reward probabilities can be reasonably predicted by the 
relative intensity of the two options (Rivalan et al. 2017). 
This suggests that the memory traces of reward probabilities 
also exhibit the scalar property, so that discrimination of 
small probabilities (e.g., 0.2 vs. 0.5, i = 0.86) is easier than 
discrimination of large probabilities (e.g., 0.5 vs. 0.8, i = 
0.46). Consequently, discrimination (of either volumes or 
probabilities) when options vary along a single dimension 
can be predicted by SUT.

Virtual mice

To extend the basic SUT model for multidimensional choice 
situations, we implemented six variations that differed in the 
use of information from the volume and probability dimen-
sions (Table 1), including integrative and non-compensatory 
models. The information from the different reward dimen-
sions was used to obtain for each choice option a remem-
bered value (utility), which exhibited the scalar property. 
Choice was simulated by single sampling from the remem-
bered value distributions with means equal to the remem-
bered values and standard deviations proportional to the 
remembered values.

In an earlier version of the foraging model, mice started 
without knowledge of the reward properties and learned 
through Bayesian updating (Foley and Paul 2017). To focus 
on post-acquisition performance, we removed the first 150 
visits, like we did with the empirical data. Analyzing the 
remembered values of the virtual mice revealed that they 
had converged on the actual reward values with a small fluc-
tuation around those. For simplicity, here, we decided to 
simulate only post-acquisition discrimination performance. 
The virtual mice thus began each experimental condition in 
a learned state with remembered values equal to the reward 
dimensions for both choice options and (further) learning 
was not simulated. Modelling the learning process is outside 
the scope of this study.
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From its memory traces, a virtual mouse generated one 
remembered value distribution for each choice option, 
according to one of six different rules (see Table 1). Action 
selection was then implemented by taking a single sample 
from each distribution and selecting the option with the 
larger sample.

Decision‑making models

1.	 Scalar expected value model. There is a single memory 
trace for each option and it consists in the simple prod-
uct of the estimate for the volume and the estimate for 
the probability (expected value). The scalar property is 
implemented as �N(v, �v) , where � is the probability 
estimate. N(�, �) is a normal distribution with mean μ 
and standard deviation � , v is the volume estimate, and 
� is a free parameter, the coefficient of variation. This 
model thus utilizes information from all dimensions for 
every decision.

2.	 Two-scalar model. There are traces for each dimension 
for every option, where each trace exhibits the scalar 
property independently and the value is obtained by 
simple multiplication of the traces for each dimension: 
N(�, ��) ×N(v, �v) . This model also utilizes informa-
tion from all dimensions for every decision. Although 
it allows each dimension to have its own scalar factor, 
e.g., �� ≠ �

v
 , for simplicity, we assume that they are both 

equal.

The memory traces in the remaining models are identical to 
the traces in the two-scalar model, but these models usually 
consider only a single dimension. 

3.	 Randomly non-compensatory model. Each decision is

4.	 Winner-takes-all model. Each decision is based only on 
the dimension with the highest salience. The salience for 
a vector of estimates from memory traces (mean values) 
along one dimension, e.g., volume v = (v1, v2,… , v

n
) , 

is calculated as max(v)−min(v)

v
 , where n is the number of 

options. In the case of n = 2 , the salience is equivalent 
to the previously described relative intensity measure. 
For dimensions of equal salience, the model reverts to 
random choice.

The last two models are examples of a lexicographic rule, in 
which the dimensions are checked in a specific order. If the 
salience of a dimension is higher than a given threshold, then 
a decision is made based only on this dimension. Otherwise, 
the next-order dimension is checked. If all dimensions have 
saliences below the threshold, the model reverts to random 
choice. The value of the threshold was set at 0.8, the psy-
chometric function threshold for probability (Rivalan et al. 
2017), but we also performed sensitivity analyses on the 
threshold values (Figs. S8, S9). 

5.	 Probability first model. Probability is checked first and 
then volume.

6.	 Volume first model. Volume is checked first and then 
probability.

Environment

Each of the experimental conditions was recreated in the 
simulations as a binary choice task between the high-
profitability and the low-profitability options. We did not 
simulate the two non-rewarding options. Upon a visit by a 
virtual mouse, a choice option would deliver a reward with 
its corresponding volume and probability (Fig. 2). The vir-
tual environment was not spatially and temporally explicit. 
Thus, no reversal conditions were simulated and the test of 

Table 1   Decision-making 
models

�—probability estimate; v—volume estimate; �—coefficient of variation; r—either v or � depending on 
the criterion; �

v
—probability of selecting the volume dimension; �—probability of selecting the dimension 

with the higher salience; s(r)—salience of dimension r, calculated as max(r)−min(r)

r
 , where r is the arithmetic 

mean of r over all options

Abbreviation Model Remembered value Criterion �

sev Scalar expected value �N(v, �v) – 1.05
2scal Two-scalar N(�, ��) ×N(v, �v) – 0.65
rnonc Randomly non-compensatory N(r, �r) �

v
 = 0.5 0.05

wta Winner-takes-all N(r, �r) � = 1 0.7
pfirst Probability first N(r, �r) If s(𝜋) > 0.8 then r = � , 

if s(v) > 0.8 then r = v , 
otherwise � = 0.5

0.95

vfirst Volume first N(r, �r) If s(v) > 0.8 then r = v , 
if s(𝜋) > 0.8 then r = � 
, otherwise � = 0.5

0.5
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each experimental condition consisted in a sequence of 100 
choices. All experimental conditions in all four experiments 
were tested.

Model fits

All models described above share the same free parameter, 
the scalar factor � . To obtain baseline estimates for � for 
each of the models (Table 1), we focused on the probability 
baseline discrimination performances of all mice in experi-
ments 1 and 4 (baseline conditions BPLV and BPHV). We 
performed a grid search sensitivity analysis by varying � 
with steps of 0.05 in the range of (0.05, 2). We generated 100 
decisions by 100 mice for each cell in this grid and then used 
locally weighted scatterplot smoothing (loess) to fit a model 
for each condition. The free parameter values that resulted in 
the smallest RMSEs compared to the observed baseline data 
were selected for the comparison of the six models (Table 1). 
We also performed a sensitivity analysis for different values 
of the free parameters �

v
 in the randomly non-compensatory 

model and of the thresholds for volume and probability in 
the volume first and probability first models, in the range of 
(0, 1), with a step of 0.05. The resulting free parameter esti-
mates (across animals) were then used in out-of-sample tests 
of the six models. For each of the experimental conditions in 
the four experiments (Fig. 2) and for each of the six models, 
we simulated 100 choices by 100 (identically parametrized) 
mice. Over the 100 choices, we calculated the discrimination 
performance for each mouse and then used the median of the 
individual discrimination performances as the model predic-
tion. We then quantified the model fits to the empirical data 
by calculating root-mean-square-errors (RMSE), excluding 
the BPLV and BPHV conditions in experiments 1 and 4. 
Finally, we ranked the models by their RMSE scores.

Results

Experiment 1: mice consistently preferred 
the more profitable option, even with a trade‑off 
between reward probability and reward volume

Generally, compared to the baselines, mice showed an increase 
in discrimination performance in the congruent condition 
and a decrease in performance in the incongruent condition 
(Fig. 3a, b). The only exception was the C-BVHP contrast, 
which had an effect size smaller than the sesoi (0.05, 95% CI 
= [0.02, 0.09]). Furthermore, when we excluded cohort 2, the 
C-BVHP contrast became equivalent to zero (0.01, 95% CI = 
[− 0.02, 0.04]). Contrary to our expectations based on previous 
work, the trade-off between volume and probability chosen for 
this experiment did not abolish preference for the higher vol-
ume option in the incongruent condition, with a discrimination 

performance significantly higher than the chance level of 0.5 
(0.57, 95% CI = [0.51, 0.64], Fig. 3c). However, we again 
observed very different behavior in cohort 2, which showed a 
preference for the higher probability option (Fig. 3c). Thus, at 
least for mice in cohorts 1 and 3, in the incongruent condition, 
there was a preference for the more profitable option and the 
subjective contrast in probability was not stronger than the 
subjective contrast in volume.

Experiment 2: some evidence for equal weighing 
of reward probability and reward volume

Similar to experiment 1, in experiment 2, mice showed 
an increase in discrimination performance in the congru-
ent condition (with one exception) and a decrease in per-
formance in the incongruent condition (Fig. 4a, b). This 
time, the exception was the C-BPLV contrast, which was 
equivalent to 0 (0.02, 95% CI = [− 0.01, 0.04]). Although 
the discrimination performance in the incongruent condition 
was again different from 0.5 (0.41, 95% CI = [0.35, 0.47]), 
it was lower than chance, thus skewed towards probabil-
ity (Fig. 4b). However, when the data from cohort 2 were 
excluded, the discrimination performance became equivalent 
to 0.5 (0.48, 95% CI = [0.42, 0.54]). We return to the dif-
ferences between cohorts in the discussion. Thus, it appears 
that, at least for mice in cohorts 1 and 3, the subjective con-
trasts in volume and probability were equal and no reward 
dimension seemed to have priority over the other.

Experiment 3: probability discrimination decreased 
with an increase in reward volume, but volume 
discrimination was not affected by changes 
in reward probability

The results of experiment 3 show that the discrimination 
performance for probability decreased with increasing vol-
umes, although the effect size was small (− 0.1, 95% CI 
= [− 0.16, − 0.06], without cohort 2: (− 0.147, 95% CI = 
[− 0.212, − 0.088], Fig. 5). In contrast, the discrimination 
performance for volume was practically independent from 
probability as the background dimension, since the estimate 
for the slope was smaller than the sesoi (0.06, 95% CI = 
[− 0.01, 0.14], Fig. 5). Without cohort 2, the slope estimate 
for the volume dimension was still small, but significantly 
positive (0.072, 95% CI = [0.009, 0.139]). These results 
partially support the hypothesis that decision-makers may 
ignore a reward dimension along which options do not vary.

Experiment 4: mice improved their volume 
discrimination over time

In the comparison between experiment 1 and experiment 
4, mice showed an improved discrimination performance 
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in both volume baselines, as well as in the incongruent 
and BPLV conditions (Fig. 6). There was only a trivial 
improvement in the congruent condition (Fig. 6). When 
we applied a familywise error control procedure, only the 
BPLV result changed from an increase to inconclusive and 
the congruent condition, from trivial to equivalent. Thus, 
consistent with our prior findings, mice improved their 
volume discrimination over time.

The discrimination performance in the congruent condi-
tion was better than either of the probability baselines, but 
equivalent to the volume baselines (Fig. 7a, b). For cohorts 
1 and 3, the discrimination performance in the incongru-
ent condition was lower than in any of the four baselines, 
but the difference from the volume baselines was smaller 
(Fig. 7b). Cohort 2 showed the opposite pattern (Fig. 7b). 
Finally, compared to experiment 1, the influence of the 
volume dimension on choice and the discrepancy between 

cohort 2 and the other cohorts were even more pronounced 
(Fig. 7c).

Decision models of two‑dimensional choice suggest 
that mice initially relied on both reward volume 
and reward probability, but then developed a bias 
for reward volume

There was no single model that could best explain the choice 
of the mice in all four experiments, but the scalar expected 
value, two-scalar, and winner-takes-all models were in the 
top-three performing models most frequently (Tables 1, 2, 
Figs. S10–S13). However, due to the unexpected differences 
in performance between cohort 2 and the other cohorts 
(e.g., Fig. S13), we also ranked the models separately for 
the different mouse groups, depending on which cage they 

Fig. 3   Discrimination performance in experiment 1. a Each dot is 
the mean discrimination performance of an individual mouse over 
two presentations of the same condition (initial acquisition and 
reversal). Experimental conditions are described in detail in Fig.  2. 
The discrimination performance gives the relative visitation rate 
of the more profitable option, or, in the incongruent condition, the 
option with the higher volume. Dotted line gives the chance level 
(0.5). Data are shown in different colors for three different cohorts 
of eight mice each (total n = 24). Data from the same individuals 
are connected with lines. Cohort 2 (green) was tested in a different 
cage set-up than the other two (see Methods for details). b Difference 
between discrimination performance in the baseline conditions and in 
the congruent and incongruent conditions. Dots show the individual 
differences in discrimination performance for the given conditions 
of each individual mouse (color-coded for cohort as in a). Positive 
differences indicate an increase in performance and negative differ-

ences—a decrease in performance, compared to the baseline. Hori-
zontal colored lines give the cohort means. Large blue circles give the 
means and the blue vertical lines the 90% confidence intervals from 
non-parametric bootstraps. The smallest effect size of interest (sesoi) 
is represented by the dashed lines. Green whiskers give the 95% CI 
from non-parametric bootstraps. When the blue confidence intervals 
lie completely within the sesoi interval, there is statistical support for 
equivalence (Lakens 2017b). The discrimination performance in the 
incongruent condition was calculated as the relative preference for 
the higher probability dispenser when contrasted with the probability 
baselines (e.g.,  I-BPLV) and for the higher volume dispenser when 
contrasted with the volume baselines (e.g.,  I-BVHP). c Discrimina-
tion performance in the incongruent condition. Dashed lines give the 
sesoi around chance level performance. Remaining notation is the 
same as in b. In this experiment, the option with the higher volume 
was also the more profitable option
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Fig. 4   Discrimination performance in experiment 2. Same nota-
tion as in Fig.  3. a Discrimination performance in all conditions. b 
Difference between discrimination performance in the baseline con-
ditions and in the congruent and incongruent conditions. The dis-
crimination performance in the incongruent condition was calculated 
as the relative preference for the higher probability dispenser when 

contrasted with the probability baselines (e.g.,  I-BPLV) and for the 
higher volume dispenser when contrasted with the volume baselines 
(e.g., I-BVHP). c Discrimination performance in the incongruent con-
dition. In this experiment, both options were equally profitable and 
had the same expected value

Fig. 5   Effect of background dimension on discrimination perfor-
mance in experiment 3. a The two choice options always differed 
along the relevant dimension either probability or volume (panels). 
The discrimination performance for each mouse was measured at 
four different levels of the background dimension, which was set at 
the same values on both rewarding options during a single drinking 
session, but differed from condition to condition (Fig.  2). Each dot 
(color-coded for cohort number) is the mean discrimination perfor-
mance of an individual mouse over two presentations of the same 
condition (initial acquisition and reversal). Dotted line gives the 
chance level of 0.5. Data are shown in different colors for three dif-
ferent cohorts of eight mice each (total n = 24). Lines give best lin-

ear fits. Cohort 2 (green) was tested in a different cage set-up than 
cohorts 1 and 3 (see Methods for details). b Each colored dot repre-
sents the individual slope of one line in a. The smallest effect size of 
interest (sesoi, dashed lines) was determined to be the slope (0.125) 
that would have resulted in a difference in discrimination perfor-
mance of 0.1, from the lowest to the highest level of the background 
dimension (from PV1 to PV4 in (a)). Large blue circles give the 
means and the blue vertical lines the 90%-confidence intervals from 
non-parametric bootstraps. Green whiskers give the 95% CI from 
non-parametric bootstraps. Horizontal colored lines give the cohort 
means
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performed the experiments in (cohorts 1 and 3 in cage 1 and 
cohort 2 in cage 2). Indeed, two different patterns emerged 
for the different cages. For the two cohorts in cage 1, scalar 
expected value and two scalars were the best supported mod-
els, followed by the winner-takes-all and volume first mod-
els (Table 3). Notably, the volume first model was the best-
performing model in the later experiments 3 and 4, but the 
worst model in the earlier experiments 1 and 2. In contrast, 
the probability first model was the best supported model for 
cohort 2, followed by the randomly non-compensatory, win-
ner-takes-all, and scalar expected value models (Table 4).

Discussion

The foraging choices of the mice in this study provide evi-
dence both for and against full integration of reward volume 
and probability. In the first two experiments, most mice dif-
fered in discrimination performance (increased or decreased) 
in the conditions in which both reward dimensions were 
simultaneously relevant (congruent and incongruent condi-
tions) compared to the baselines, in which only one of the 
two dimensions was relevant at a time (Figs. 3, 4). Conse-
quently, the best supported models for these two experiments 
(cohort 2 excluded, see discussion about differences between 
cohorts below) were the models that made use of the full 
information from both reward dimensions (sev, 2scal), or 

from the dimension that was subjectively more salient (wta, 
Table. 3). Although these models were good predictors of 
choices in experiments 3 and 4, as well, the best-performing 
model in experiments 3 and 4 was the one that considered 
the volume dimension first and the probability dimension 
only if differences on the volume dimension were insuffi-
cient to reach a decision (Table 3). Thus, it appears that 
mice initially used information from all reward dimensions 
without bias and with experience started to rely more on 
one reward dimension and disregarded the other when both 
dimensions differed between choice options. Interestingly, in 
human development, the use of integrative decision rules has 
also been shown to decrease with age (Jansen et al. 2012).

In similar and more complex choice situations when 
options vary on several dimensions, an animal has no imme-
diate method of distinguishing the relevant from the back-
ground dimensions. Instead, it must rely on its experience 
over many visits before it can obtain information about the 
long-term profitability associated with the different reward 
dimensions. Under such circumstances, a decision rule that 
considers all or the most salient reward dimensions initially 
and prioritizes dimensions based on gathered experience can 
be profitable without being too computationally demanding. 
Indeed, with the particular experimental design in this study, 
a mouse using a “volume first” priority heuristic would have 
preferentially visited the more profitable option (whenever 
there was one) in every single experimental condition, 
including the incongruent conditions.

Scalar property considerations

An alternative explanation of our main results is that the 
mice used the “volume first” heuristic from the beginning 
of the experiment, but only became better at discriminating 
volumes (their coefficient of variation � decreased) in the 
last two experiments. This interpretation is supported by the 
comparison between experiments 1 and 4 (Fig. 6), as well as 
from previous experiments (Rivalan et al. 2017), in which 
mice improved their volume discrimination over time. How-
ever, it is not possible with these data to distinguish whether 
the effect was caused by training or maturation. Perhaps an 
increase in mouth capacity (Vora et al. 2016) or, potentially, 
in the number of acid-sensing taste receptors (Zocchi et al. 
2017) due to growth and maturation could allow adult mice 
to better discriminate water volumes. We assumed that mice 
consumed all water without spilling, but perhaps less-expe-
rienced mice spill some water. Alternatively, with prolonged 
training, mice might transition from goal directed strategies 
to egocentric or habitual responses (Packard and McGaugh 
1996; Kosaki et al. 2018; and in mice: Kleinknecht et al. 
2012). Comparing the discrimination performance of older 
untrained and younger trained mice would help clarify this 
confound.

Fig. 6   Difference in discrimination performance between identical 
conditions in experiment 1 and experiment 4. Same notation as in in 
Fig. 3. The sequence of conditions was pseudo-random in each exper-
iment and different for each individual. Positive differences indicate 
an increase in discrimination performance with time. Mice were 7 
weeks old at the beginning of experiment 1 and 13–14 weeks old at 
the beginning of experiment 4. The discrimination performance in the 
incongruent condition was calculated as the relative preference for the 
higher volume dispenser
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The increase in discrimination performance for volume 
between experiments 1 and 4 (Fig. 6) suggests that the sca-
lar property only approximately holds, and that the � (coef-
ficient of variation) for volume is not truly constant over a 
long period of time. This can be seen as evidence against 
the scalar expected value model, which assumes that the 
same coefficient of variation affects performance along each 
reward dimension. Instead, the improving volume discrimi-
nation supports a version of the two-scalar model, in which 
there are two different scalars ( �� ≠ �

v
 ). Alternatively, there 

might be only one scalar, associated with dynamic relative 
weights of the two dimensions (which can be implemented 
as a changing �

v
 in the randomly non-compensatory model, 

Fig. S7). Yet, another model extension that can account for 
the improving volume discrimination would be to introduce 
an explicit sampling (exploration–exploitation balance) 
method (Sih and Del 2012; Nachev and Winter 2019). In 
natural conditions, reward dimensions rarely remain stable 
over time and foragers can benefit from making sampling 
choices to gather information about the current state of 

Fig. 7   Discrimination performance in experiment 4, with identical 
conditions to experiment 1. Same notation as in Fig. 3. a Discrimi-
nation performance in all conditions. b Difference between discrimi-
nation performance in the baseline conditions and in the congruent 
and incongruent conditions. The discrimination performance in the 
incongruent condition was calculated as the relative preference for 

the higher probability dispenser when contrasted with the probability 
baselines (e.g.,  I-BPLV) and for the higher volume dispenser when 
contrasted with the volume baselines (e.g.,  I-BVHP). c Discrimina-
tion performance in the incongruent condition. In experiments 1 and 
4, the option with the higher volume was also the more profitable 
option. Compare to Fig. 3

Table 2   Best-performing models ranked by root-mean-square errors 
(RMSE)

Experiment

Rank 1 2 3 4

1 sev sev vfirst 2scal
2 2scal 2scal sev wta
3 wta wta 2scal sev
4 rnonc pfirst wta vfirst
5 pfirst rnonc pfirst rnonc
6 vfirst vfirst rnonc pfirst

Table 3   Best-performing models ranked by root-mean-square errors 
(RMSE) for cohorts 1 and 3

Experiment

Rank 1 2 3 4

1 sev 2scal vfirst vfirst
2 2scal sev sev 2scal
3 wta wta 2scal wta
4 rnonc rnonc wta sev
5 pfirst pfirst rnonc rnonc
6 vfirst vfirst pfirst pfirst



995Animal Cognition (2021) 24:981–998	

1 3

the environment. Thus, not all choices need to be based on 
expected values and individuals may differ in their sampling 
rates (Sih and Del 2012; Rivalan et al. 2017; Nachev and 
Winter 2019). With such an implementation, it is not the 
scalar but the frequency of sampling visits that changes over 
time, causing differences in discrimination performance. 
The biggest challenge is that when it comes to volumes and 
probabilities, no direct method of interrogating an animal’s 
estimate, and coefficient of variation exist, so that research-
ers have to infer these values from choice behavior, which 
is also affected by motivation, learning, and sampling fre-
quency. In contrast, when it comes to time intervals, the 
peak procedure gives us a more direct measurement of the 
time estimation of animal subjects (Kacelnik and Brito e 
Abreu 1998).

Interaction between dimensions 
and non‑compensatory decision‑making

Although mice were practically equally good at discrimi-
nating volume rewards at each different probability, the 
discrimination of probabilities decreased at higher vol-
umes (Fig. 5; the estimated effect size was a decrease of 
0.12 between a volume background at 4 μ L and at 20 μL). 
This suggests that the two dimensions interact with each 
other. Absolute reward evaluation (Shafir 1994; Shafir and 
Yehonatan 2014) and state-dependent evaluation (Schuck-
Paim et al. 2004) are both consistent with this decrease in 
discrimination performance, but not with the small posi-
tive effect in the conditions in which the probability was the 
background dimension. With comparable expected values 
(Fig. 2) between the two series of conditions, these hypoth-
eses make the same predictions regardless of which dimen-
sion is relevant and which is background. An alternative 
explanation is that arriving at a good estimate of probability 
requires a larger number of visits, and when the rewards are 
richer (of higher volume), mice satiate earlier and make a 
smaller total number of visits, resulting in poorer estimates 
of the probabilities and poorer discrimination performance. 
Consistent with this explanation, mice made on average (± 

SD) 474 ± 199 nose pokes at the relevant dispensers at 4 μ L, 
but only 306 ± 64 nose pokes at 20 μ L (Figs. S1, S4: PV1 
and PV4, respectively). Furthermore, when we controlled 
for the number of nose pokes by only analyzing the nose 
pokes between the 151st and 251st, the effect of volume on 
probability discrimination became equivalent to zero, sug-
gesting that further learning after the 150st nose poke could 
have led to an improved discrimination performance. At the 
same time, controlling for the number of nose pokes also led 
to a significant (but small) positive effect of probability on 
volume discrimination (slope estimate 0.9, 95% CI = [0.01, 
0.18]). This also suggests that at 0.2 probability, it took mice 
more than 150 nose pokes to reach the same discrimination 
performance for volumes observed at probabilities higher 
than 0.2 (Fig. S4). These were the only qualitative changes 
caused by taking an alternative cut-off point rather than 
simply removing the first 150 nose pokes to the rewarding 
dispensers.

As mentioned earlier, researchers have proposed that with 
absolute reward evaluation, the difference/mean ratio in an 
experimental series like our experiment 3 should decrease 
with the increase of the background dimension, leading 
to a decrease in the proportional preference for the high-
profitability alternative, i.e., discrimination performance 
(Shafir and Yehonatan 2014). However, this is only the case 
if the difference is calculated from the relevant dimension 
and divided by the mean utility. We suggest that both the 
difference and the mean should be calculated from the same 
entity, either utility or one of the reward dimensions. When, 
as in our sev and 2scal models 1, we calculate utility by 
multiplying the estimates for each dimension together, the 
difference/mean ratio of the utility does not change with the 
change in the background dimension between treatments. In 
fact, none of our models in experiment 3 exhibited an effect 
of the background dimension on the discrimination perfor-
mance, with all slopes equivalent to zero (Fig. S14). Thus, 
our results also show that absolute reward evaluation does 
not necessarily predict an effect of background dimension 
on discrimination performance.

Difference between cohorts

Our results revealed some striking differences in behav-
ior between cohort 2 and cohorts 1 and 3 (most obvious 
in Fig. 7). The most likely explanation for this is an effect 
of the specific experimental apparatus. As explained in the 
section “Methods”, the precision of the reward volumes 
was lower in cage 2, which housed cohort 2. However, it 
is unlikely that such a small magnitude of the difference 
( 0.33 ± 0.03 μL step−1 in cage 1 vs. 1.56 ± 0.24 μL step−1 
in cage 2) could influence volume discrimination to the 
observed extent. Future experiments can address this issue 
by specifically manipulating the reliability of the volume 

Table 4   Best-performing models ranked by root-mean-square errors 
(RMSE) for cohort 2

Experiment

Rank 1 2 3 4

1 pfirst pfirst pfirst pfirst
2 rnonc rnonc wta rnonc
3 sev sev 2scal wta
4 wta 2scal sev 2scal
5 2scal wta rnonc sev
6 vfirst vfirst vfirst vfirst
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dimension using the higher precision pump. Instead, we sus-
pect that the difference between cohorts might have been 
caused by the acoustic noise and vibrations produced by 
the stepping motors of the pumps. The pump in cage 1 was 
much louder, whereas the one in cage 2 was barely audible 
(to a human experimenter). This could have made it harder 
for mice in cage 2 to discern whether a reward was forth-
coming, which could have influenced their choices (Ojeda 
et al. 2018). As a result, mice in cage 2 waited longer before 
leaving the dispenser during unrewarded nose pokes (Fig. 
S15). This potentially costly delay might have increased the 
relative importance of the probability dimension (decreased 
�
v
 ), resulting in the observed discrimination performance in 

cohort 2. Furthermore, the same line of reasoning can also 
explain the improving volume discrimination: from the first 
to the fourth experiment, there was a shift towards shorter 
unrewarded nose poke durations in the loud cage (cohorts 1 
and 3, Fig. S15), suggesting that mice had learned over time 
to abort the unrewarded visits. This could have decreased the 
relative importance of the probability dimension (increased 
�
v
 ), resulting in better volume discrimination. In an unrelated 

experiment, we tested two cohorts of mice in both cages 
simultaneously and then translocated them to the other cage. 
The results demonstrated that differences in discrimination 
performance were primarily influenced by cage and not by 
cohort (Nachev, in prep.). Thus, the sound cue associated 
with reward delivery may be an important confounding fac-
tor in probability discrimination in mice, as it provides a 
signal for the reward outcome (Ojeda et al. 2018).

Conclusion

In summary, our results show that mice could integrate 
reward volume and reward probability, which allowed them 
to select the more profitable option when the two reward 
dimensions varied independently. The resulting partial pref-
erence was consistent with SUT. However, we also found 
that, with time, mice improved their performance in volume 
(but not as much in probability) discrimination tasks and 
their choices became more consistent with a non-compen-
satory decision rule, in which volume is evaluated before 
probability. Finally, we found that mice could discriminate 
the same pair of probabilities better when reward volumes 
were smaller, but changes in the reward probability did not 
seem to affect their volume discrimination performance.
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