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Abstract
Renormalization in perturbative quantum field theory is based on a Hopf algebra of
Feynman diagrams. A precondition for this is locality. Therefore one might suspect
that non-local field theories such as matrix or tensor field theories cannot benefit
from a similar algebraic understanding. Here I show that, on the contrary, pertur-
bative renormalization of a broad class of such field theories is based in the same
way on a Hopf algebra. Their interaction vertices have the structure of graphs. This
gives the necessary concept of locality and leads to Feynman diagrams defined as “2-
graphs” which generate the Hopf algebra. These results set the stage for a systematic
study of perturbative renormalization as well as non-perturbative aspects, e.g. Dyson-
Schwinger equations, for a number of combinatorially non-local field theories with
possible applications to random geometry and quantum gravity.
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1 Locality in Combinatorial Non-local Field Theories

Locality in QFT allows to perform perturbative renormalization order by order. Sub-
tracting divergences is described mathematically by a Hopf algebra of Feynman
diagrams [1–4]. For a given diagram, the coproduct separates divergent subdiagrams.
Then the renormalization operation subtracting the divergences of this subdiagram
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is based on the Hopf algebra’s antipode. Combinatorially, one needs a closed set of
diagrams in which it is possible to “separate” divergent diagrams and counter them
by single vertices with the same external structure. It is well known that this works
in many cases for local, i.e. point-like, interactions [1–10]. But there are also exam-
ples of renormalizable field theories with certain “non-local” interactions for which
a Connes-Kreimer type Hopf algebra can be found [11–14]. More specifically, these
are combinatorially non-local field theories such as non-commutative quantum field
theory and matrix field theory [15–19], and its generalization to field theories of
higher rank tensor fields [20–22], including group field theory [23–26]. It is thus a
natural question whether this is just a coincidence in specific examples or a more
general feature, and whether the (Hopf algebra) mechanisms are different or the
same.

Standard quantum field theories on a D-dimensional space are local in the sense
that they have point-like interactions, for example λnφ(x)n for a scalar field φ on
coordinates x1, ..., xD . This relates to energy-momentum conservation at interaction
vertices via Fourier transformation φ(x) �→ φ̃(p),

SIA[φ] =
∫

dx λnφ(x)n = λn

∫
dx

n∏
i=1

∫
dpi φ̃(pi )e

ıpi ·x

= λn

∫ n∏
i=1

dpi δ

( n∑
i=1

pi

) n∏
i=1

φ̃(pi ) (1)

where δ is the Dirac distribution which constrains the n incoming and outgoing
momenta pi to be equal. This external constraint characterizes also the n-point cor-
relation function as well as each amplitude term in its perturbative power series. For
perturbatively renormalizable field theories, it is the possibility to find for each diver-
gent subgraph a counter term of the same external structure which allows to subtract
the divergent part of an amplitude. Remarkably, the structure of this renormaliza-
tion procedure, independent of a specific renormalization scheme, is captured by the
Hopf algebra of Feynman diagrams [1–4]. Thereby, the external structure of vertices
induced by locality of the interactions plays a crucial role.

The aim of this work is to show that also a broad class of “non-local” field theories
is characterized by the same Hopf-algebraic structure of perturbative renormaliza-
tion. Thus, it is not locality in the sense of point-like interactions but an appropriate
class of external structures which is crucial for perturbative renormalization. The
field theories under consideration are characterized by an external constraint struc-
ture which pairs single entries of “momenta”. For example, let φ again be a scalar
field, a function of r arguments p = (p1, ..., pr) where each argument pa is in a d-
dimensional manifold. Then, a generic interaction of order n, with n · r even, has the
form

SIA[φ] = λn

∫ n∏
i=1

dpi

∏
(i,a;j,b)

δ(pa
i − pb

j )

n∏
i=1

φ̃(pi ) (2)

where the product over pairs (i, a; j, b) means that for each argument pa
i there is a

convolution δ(pa
i − pb

j ) with exactly one other argument pb
j . As a consequence the

diagrammatic representation of interactions is not just a vertex in a graph but has
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to capture this pairing of arguments (see Fig. 1). In effect, each interaction has the
combinatorial structure of a graph itself, i.e. the necessary class of external structures
is graphs.

Consequently, the Feynman diagrams of a combinatorially non-local field theory
are certain gluings of vertex graphs, or equivalently, they are graphs with the addi-
tional structure of “strands” at each edge. Following a strand through a cycle (loop)
of the graph gives a face. Thus, such “strand graphs” are actually two-dimensional
objects. Indeed, they are two-dimensional combinatorial complexes in a specific
sense (Proposition 2). This is well known in the case of fields with r = 2 arguments,
that is matrices; these generate combinatorial maps, also called ribbon or fat graphs,
which are dual to n-angulations of surfaces [27]. With more arguments r > 2, one
can use additional structure to extend this duality to n-angulations of r-dimensional
(pseudo) manifolds [28–30]. Here I want to consider such diagrams in full generality
allowing vertices of arbitrary order n with fields φi , i = 1, 2, ..., n, with an arbitrary
number of arguments ri (similar to [31]). To emphasize that such Feynman diagrams
are just a generalization of standard Feynman graphs adding a second layer I will
call them 2-graphs and any field theory with such combinatorics a combinatorially
non-local field theory (cNLFT).

In this work I show that the Hopf-algebraic structure underlying renormalization
in cNLFT is very general and independent of any specific theory, along a similar
logic as for local field theory [8]. Renormalizablity of various cNLFTs is known
as for example Grosse/Wulkenhaar’s non-commutative field theory [16, 17] related
to Kontsevich’s matrix model [15, 32], tensor-field models [20, 22] and group field
theories [23]. In any such case there is a set of superficially divergent 2-graphs and
the Hopf algebra encodes the procedure of identifying (coproduct) and subtracting
(antipode) these divergences in a given Feynman 2-graph via subgraph contraction. I
will generalize the contraction operation from graphs to 2-graphs. This gives rise to
a general Hopf algebra of 2-graphs (Theorem 2). One can then derive the renormal-
ization Hopf algebra of any specific renormalizable theory (such as the known ones
for the non-commutative field theory [11, 12] and some tensor-field models [13, 14])
as a subalgebra of the general Hopf algebra.

Fig. 1 Comparison of the combinatorial structure of an order-n interaction vertex in a combinatorially
local theory (left) and non-local theory (right). In both cases, there are n fields (red ellipses, here n = 4)
which depend on a number of arguments (green lines). In the local case, (1), due to Lorentz (or some other
“rotational”) symmetry these arguments form a vector which is constrained by a single delta distribution
(blue circle) such that all of this structure is equivalently captured by a vertex (black) with n half edges (red
lines). On the other hand, in the non-local case, (2)) the arguments are convoluted pairwaise (blue dots);
to capture this structure it is necessary to add a second set of edges (green lines) leading to the notion of a
2-graph
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With the appropriate concept of 2-graphs as well as contraction and insertion oper-
ations at hand, the general algebraic structure of renormalization in cNLFT turns out
to be exactly the same as for local field theory, but the algebras differ in combinato-
rial details. In particular, 2-graphs have more structure, and thus less symmetry, than
usual graphs. I show this for the central identity (Theorem 1), i.e. the action of the
coproduct on an infinite series over 2-graphs which captures the combinatorics of
the perturbative expansion of Green’s functions; this formula differs from the one of
local field theory in that there occurs the symmetry factor of the boundary graph of
each interaction vertex, not just the factorial n!. These concrete formula set the stage
for explicit (BPHZ) renormalization [33] and the investigation of Dyson-Schwinger
equations in cNLFT which we will report on elsewhere.

The structure of the paper is the following: The concept of 2-graphs is introduced
in Section 2, followed by the definition of 2-graph contraction in Section 3 with
a discussion on relevant subtleties concerning the connectedness of the 2-graph’s
boundary and topology. In Section 4 I define the co-algebra and prove the central
identity. Finally, Section 5 provides the general Hopf algebra and explains how to
obtain the Connes-Kreimer Hopf algebra for a specific cNLFT as the subalgebra
generated by the theory’s set of divergent 2-graphs. I close with two examples, the
Hopf algebra for the Grosse-Wulkenhaar model and for tensorial field theories.

2 Combinatorial Basis: 2-Graphs

For perturbative field theory it is convenient to define graphs in terms of half-edges
associated to vertices which are then pairwise combined into edges [8–10]. This cap-
tures nicely the appearance of self-loops, multi-edges and external legs in Feynman
diagrams.

Definition 1 (graph) A 1-graph, or simply graph, is a tuple g = (V,H, ν, ι) with

(1) a set of vertices V ,
(2) a set of half-edgesH,
(3) an adjacency map ν : H → V associating half-edges to vertices,

(4a) an involution on H, that is ι : H → H such that ι ◦ ι = id. The resulting pairs
of half-edges are called edges.

The involution may have fixed points, half-edges paired to themselves. These are
understood as external edges (or legs).

Alternatively, one can define a graph in terms of an explicit set of edges:

Definition 2 (graph with edge set) A 1-graph is a tuple (V,H, ν, E) with the above
properties (1) – (3) and

(4b) a set of disjoint, two-element subsets of H, (that is E ⊂ 2H such that e1 ∩e2 =
∅ for all e1, e2 ∈ E and |e| = 2 for all e ∈ E).
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The two definitions in terms of either property (4a) or (4b) are equivalent [8] since
an involution (4a) partitions H into sets of either one or two elements where the latter
are in one-to-one correspondence to edge sets (4b).

The simplest way to extend from such notion of graphs to the general class of
Feynman diagrams of cNLFT is to introduce another pairing of half-edges, only this
time between those at a vertex, to capture the strands. However, it can happen that
also the stranding at a vertex between different edges is multiple, and there can also
be self-loops at a single edge. Thus it is not sufficient to describe the stranding by an
involution but it is necessary to explicitly introduce a second layer of (dimension-two)
half-edges for the strands:

Definition 3 (2-graph) A 2-graph is a tuple G = (V,H, ν, ι;S, μ, σ1, σ2) with the
above properties (1) – (3), (4a) and

(5) a set of strand sections S
(6) an adjacency map μ : S → H associating them to half-edges,

(7a) a fixed-point free involution σ1 : S → S pairing strand sections at a given
vertex, that is for every s ∈ S: ν ◦ μ ◦ σ1(s) = ν ◦ μ(s),

(8a) an involution σ2 : S → S describing the pairing of strands along edges, that is

– ι ◦ μ(s) = μ ◦ σ2(s) for all strand sections s ∈ S
– every s ∈ S is a fixed point of σ2 iff μ(s) is a fixed point of ι.

Note that the fulfillment of properties (4a) for ι and (8a) for σ2 depend on each
other: There can only be an edge between two half-edges when both have the same
number of adjacent strand sections. And if there is an edge, than the adjacent strands
have to be paired along that edge. In that sense ι and σ2 together define stranded
edges. One could collapse the two defining properties into one (in particular ι is
eventually redundant), but since the involutions act on different objects (half-edges
and strands) and both are needed for some purpose, it is clearer to separate them.

Definition 4 (corollae, vertex graph) It is common to refer to the preimage ν−1(v)

of a graph’s vertex v as corolla. Its cardinality gives the degree of the vertex dv =
|ν−1(v)|. In a 2-graph G, also half edges have a corolla, that is μ−1(h) for a half-
edge h ∈ HG, as well as a degree dh = |μ−1(h)|. Thus, the full 2-corolla of a vertex
is (ν ◦ μ)−1(v) for v ∈ VG.

For the entire structure at the vertex v ∈ V it is necessary to include the pairing of
the strand sections in the 2-corolla. I call this the vertex graph

gv = (Vv,Hv, νv, ιv) :=
(
ν−1(v), (ν ◦ μ)−1(v), μ|Hv

, σ1|Hv

)
(3)

in which half-edges become vertices and strands become edges. Note that ver-
tex graphs are not necessarily connected but can have several components. Such a
disconnected vertex is also called a multi-trace vertex.

Remark 1 (vertex-graph representation) Since the strand sections S are paired at
individual vertices v ∈ V (property (7a)), a 2-graph partitions into its vertex graphs.
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That is, there is a bijective map from 2-graphs to a class of graphs equipped with an
additional edge structure

βvg : (V,H, ν, ι;S, μ, σ1, σ2) �→ ({gv}v∈V , ι, σ2
)
. (4)

The 2-graph can thus be understood as a gluing of vertex graphs along their half-
edge corollae. I will call this the vertex-graph representation of a 2-graph. This is
a common way physically relevant classes of 2-graphs are defined in the literature.
In particular they arise in invariant tensor models, group field theory and spin-foam
models where the vertex graphs have been given various colourful names, e.g. “bub-
bles” connected by 0-edges [34], “atoms” bonded along “patches” [31], or “squid
graphs” glued along their “squids” [35].

It has to be emphasized that it is essential for the bijectivity of the map that its
image is defined in terms of the set {gv}v∈V of vertex graphs and not just using the
disjoint union

⊔
v∈V gv . A single vertex graph g = gv can have several connected

components, g = ⊔
j gj . Thus, in the disjoint union

⊔
v∈V gv the information which

connected components belong to one vertex in the 2-graph is lost. The map to a
vertex-graph representation using the disjoint union,

πvg : (V,H, ν, ι;S, μ, σ1, σ2) �→ ( ⊔
v∈V

gv, ι, σ2
)
. (5)

is therefore in general a projection (which is bijective only if all vertices have
connected vertex graphs). For the algebraic structures defined below based on con-
traction and insertion operations it will be crucial that βvg is bijective and conserves
the vertex-belonging information. The underlying physical reason is that it is the
coupling constants associated to vertices which have to be renormalized.

The framework of 2-graphs is very general and covers many examples of field the-
ory. Even standard local field theory is covered if one considers trivial 2-graphs with
S = ∅. The paradigmatic example in mind, though, are theories of tensor fields, in
particular matrix field theories [18, 19] (related to noncommutative field theory) with
combinatorial maps as diagrams and theories with tensorial interactions of arbitrary
rank whose diagrams are coloured graphs [22, 23]:

Example 1 (combinatorial maps) Combinatorial maps (also called “ribbon” graphs
or “fat graphs” in physics) are a special example of 2-graphs with all edges of degree
dh = 2: A (finite) combinatorial map is a triple (H, σ, ι) with the above properties
(1) and (4a)1 and a permutation σ : H → H whose cycles are called vertices.

In this case it is not necessary to define the strand sections explicitly; like the
vertices, they are already encoded in the cyclic structure around vertices given by σ .
Thus a σ -cycle v = (h1, h2, ..., hn), n � 3, defines the full vertex graph

gv = ({h1, h2, ..., hn}, {s1n, s12, s21, s23, ...sn n−1, sn1}, νv, ιv) (6)

1In contrast to combinatorics literature (e.g. [36]), I include boundaries as fixed-points of ι (external
edges) and not in terms of marked edges. In this way, diagrams which are disconnected upon removing a
disconnected boundary are in fact disconnected maps.
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Fig. 2 A combinatorial map (H, σ, ι) = ({1, 2, 3, 4, 5, 6, 7}, (1)(234)(576), (12)(35)(46)(7) drawn
on the plane with counter-clockwise orientation of the vertices (left) and the corresponding 2-graph
(V,H, ν, ι;S, μ, σ1, σ2) in the stranded representation (ribbon graph, middle) and vertex-graph represen-
tation (right; dashed lines represent the pairing σ2 into stranded edges). For each half-edge j ∈ H there
are strand sections sji , sjk ∈ S according to the cycle (...ijk...) of the permutation σ , for example here s32
and s34 adjacent to h3, and σ1 pairs each sij with sji . As example of the special case n < 3, the univalent
vertex v1 defined by the cycle (1) in σ has two strand sections s11 and s′

11 at the half-edge h1 which are
paired with each other by σ1

where νv encodes the adjacency of each strand sij to the half-edge hi and ιv pairs sij
with sji iff σ(hi) = hj . Also univalent and bivalent vertices (one-cycles and two-
cycles) are captured in this way, one only has to distinguish s11 and s′

11 respectively
s12, s21 and s′

12, s
′
21. See Fig. 2 for an example. Note that due to the definition of

vertices in terms of cycles, these vertex graphs are always connected. Thus, not all
2-graphs with edge degree dh = 2 are combinatorial maps.

In the same way, the edge involution ι : H → H defines already a pairing σ2 of
the edges’ strands in terms of the orientation given by σ . Then, the explicit 2-graph
is given by the vertex graphs and the bijection βvg, (4). In particular, if all vertices
have degree n � 3, faces are simply the cycles of σ ◦ ι [36].

Example 2 (coloured graphs) Another standard example are the Feynman diagrams
of rank-r tensor theories with invariant interactions [30, 34]. These are (r+1)-regular,
edge-coloured graphs, or (r + 1)-coloured graphs for short, that is graphs for which
each vertex is adjacent to exactly one edge decorated with “colour” c = 0, 1, ..., r
each. The interpretation as a Feynman diagram, and thus the bijection to 2-graphs is
the following (see also Fig. 3):

For a (r + 1)-coloured graph, the connected components of the r-coloured graph
obtained by deleting all 0-edges define a set of vertex graphs; that is, the coloured
edges are bijective to coloured strand sections in the 2-graph with pairing σ1 at each
vertex according to this graph structure. Clearly, all half edges h are r-valent, dh = r .

Fig. 3 Example of a (4+1)-coloured graph (left) and its corresponding 4-coloured 2-graph (in its vertex-
graph representation, right). In the coloured graph, dashed lines represent colour-0 edges, internal and
external. The internal ones become the edges in the 2-graph whose strand structure is completely
determined by the strands of colour c1, c2 ∈ {1, 2, 3, 4}

Page 7 of 26    19Math Phys Anal Geom (2021) 24: 19



Then the 0-edges define then stranded edges whereby a unique pairing σ2 of the
strand sections follows from the condition that only pairings of strand sections of the
same colour are allowed. This means that in the result, the r-coloured 2-graph, the
involution σ2 is redundant.

This bijection maps only to coloured 2-graphs with connected vertices, that is
all vertices have connected vertex graphs. In fact, the bijection is exactly the map
πvg discussed in Remark 1 which is bijective only upon restriction to 2-graphs with
connected vertices. To extend to coloured 2-graphs with disconnected vertices the
bijection βvg is needed. For this the coloured graphs lack the additional information
which subsets of connected components form 2-graph vertices after 0-edge deletion.

For some purposes it is useful to define the pairings σ1 and σ2 explicitly in terms
of subsets of 2S like the edges in Definition 2:

Definition 5 (2-graph with edge set) A 2-graph is defined as a tuple
(V,H, ν, E;S, μ,Sv,Se) with the above properties (1) – (4b) – (6) and

(7b) a complete partition of S into disjoint subsets of two elements adjacent to the
same vertex, that is Sv ⊂ 2S such that

– a ∩ b = ∅ for all a, b ∈ Sv , a 
= b, and |a| = 2 for all a ∈ Sv ,
– for every vertex v ∈ V and every s1 ∈ (ν ◦ μ)−1(v) there is an s2 ∈

(ν ◦ μ)−1(v) such that {s1, s2} ∈ Sv .

(8b) a set of disjoint, two-element subsets of S compatible with the edges E , that is
Se ⊂ 2S such that

– a ∩ b = ∅ for all a, b ∈ Se, a 
= b, and |a| = 2 for all a ∈ Se,
– for every e = {h1, h2} ∈ E and every s1 ∈ μ−1(h1) there is an s2 ∈

μ−1(h2) such that {s1, s2} ∈ Se.
– An h ∈ H is not contained in any edge e ∈ E iff all s ∈ μ−1(h) are not

contained in any edge strand a ∈ Se.

Proposition 1 The two 2-graph definitions, Definitions 3 and 5, are equivalent.

Proof The fixed-point free involution σ1 partitions S into disjoint 2-element sets
Sv ⊂ 2S . Property (7a) says that such pairs are adjacent to the same vertex v ∈ V .
Thus, for every s1 ∈ S adjacent to v ∈ V there is also the unique s2 = σ1(s1) 
= s1
adjacent to v which gives (7b), and (7a) follows from (7b) in the same way.

The same argument applies to the adjacency of pairs {s, σ2(s)} ∈ Se to an edge
{h, ι(h)} ∈ E . The equivalence of fixed points of ι and σ2 is equivalent to the equiv-
alence of half-edges h ∈ H and their adjacent strands s ∈ μ−1(h) not occurring
in the power sets E and Se respectively. Together this shows that (8a) and (8b) are
equivalent.

Definition 6 (external edges and strand sections) Half-edges which are not part
of any edge are called external, Hext := H \ ⋃

e∈E e. Equivalently, their associated
strand sections are called external strands, Sext := S \ ⋃

s∈Se s. For some purpose
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it is meaningful to define external edges as one-element sets Eext := {{h}|h ∈ Hext}
compatible with the actual (internal) edges.

Definition 7 (faces) Let f = (s1, s2, ..., s2n) be an 2n-tuple of distinct strand sec-
tions si ∈ S, i = 1, 2, ..., 2n, which are each mapped to the following one by σ1 and
σ2 alternating:

s1
σ1�→ s2

σ2�→ s3
σ1�→ ...

σ1�→ s2n. (7)

Then f is an external face iff s1 and s2n are fixed points of σ2, i.e. they are external.
If σ2(s2n) = s1 there is an equivalence relation of cyclic permutations si �→ si+2.

The equivalence class [(s1, s2, ..., s2n)] is called an internal face.
In the following, Fext denotes the set of external faces, F int of internal faces and

F = Fext ∪ F int.
As faces are complete chains of strand sections, they are sometimes simply called

strands. This is why, to avoid confusion, I refer to the elements s ∈ S as strand
sections.

The reason to call the chains of strand sections faces, and the diagrams themselves
2-graphs is that they are indeed 2-dimensional complexes (in the sense of Reidemeis-
ter [37]; the reason to use the old combinatorial definition is simply that 2-graphs are
also purely combinatorial objects [38]).

Proposition 2 2-graphs are pure complexes. If a 2-graph has no trivial vertices
(degree-0) nor trivial half-edges it is furthermore a 2-dimensional complex.

Proof Recall that according to [37] a complex (C, dim,�) is a set C of cells c with a
dimension map dim : C → N and a partial ordering � that obeys the property (CP):
If c > c′′ and dim(c) − dim(c′′) > 1, then there is a cell c′ such that c > c′ > c′′.

For a 2-graph G, define the complex

CG := VG ∪ (EG ∪ Eext
G ) ∪ FG (8)

and assign the dimension 0,1,2 to vertices, edges and faces respectively. The adja-
cency maps ν and μ induce a partial ordering: For v ∈ V, e ∈ E and f ∈ F : v < e

iff h ∈ e such that ν(h) = v; e < f iff there is an h ∈ e and s ∈ f (independent of
a chosen representative of f ) such that μ(s) = h ; and v < f iff there is an e ∈ E
such that v < e < f . Then (CP) holds by definition.

A complex is pure if each cell of non-zero dimension bounds a 0-cell [37]. By
definition of the bounding relation via adjacency maps ν and μ this holds.

A complex is n-dimensional iff n is the maximal dimension of cells and for each
cell there is a bounding n-cell [37]. For CG the maximal dimension is n = 2 by
definition. However, as ν and μ are not necessarily surjective, there might be ver-
tices or half-edges not bounded by a face. Thus CG is 2-dimensional only if both are
surjective, that is all vertices and half-edges are not 0-valent.

Remark 2 (D-dimensional complexes from edge-coloured graphs) With some addi-
tional structure, 2-graphs can also be bijective to complexes of higher dimension,
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and even to discrete pseudo manifolds (topological spaces which are manifolds up
to certain singularities [39]). In fact, bipartite (r + 1)-coloured graphs (Example 2)
are dual to r-dimensional abstract simplicial pseudo manifolds. This works since the
connected components upon deleting edges of p colours define (p − 1)-dimensional
cells [28, 29].

3 Contraction and Boundary

The central operation for the coproduct on 2-graphs, and thus for the Hopf algebra, is
contraction of a subgraph. In effect, the components of the subgraph are substituted
by single vertices with the subgraph’s external structure, usually called the residue.
For a 2-graph the residue is bijective to a boundary 1-graph. Since such a boundary
1-graph can be disconnected even for a connected 2-graph it is crucial to keep track
of which boundary (1-graph) connected component belongs to which bulk (2-graph)
connected component.

Definition 8 (subgraph) For a 2-graph G, a subgraph H is a 2-graph which is only
different from G in having EH ⊂ EG and Se

H ⊂ Se
G. Then one writes H ⊂ G.

Note that EH and Se
H must still be compatible due to the 2-graph property (8b).

They form indeed stranded edges.

Definition 9 (contraction) For 2-graphs H ⊂ G the contraction of H in G is
defined by shrinking all stranded edges which belong to H . That is, the contracted
graph G/H consists of

– VG/H = KH the set of connected components of H , that is each connected
component in H is shrunken to a single vertex,

– HG/H = Hext
H , SG/H = Sext

H , only half-edges and strand sections which are
external in H remain in G/H ,

– νG/H = πH ◦ νH

∣∣
HG/H

where πH : VH → KH is the projection of vertices on

their connected component,
– μG/H = μH

∣∣
SG/H

, simply the restriction to the remaining strand sections,

– EG/H = EG \ EH , Se
G/H = Se

G \ Se
H , stranded edges of H are deleted and

– Sv
G/H = {{s1, s2n}|(s1...s2n) ∈ Fext

H

}
, external faces are shrunken to the strands

at the new contracted vertices.

Note that internal faces are deleted completely since SG/H = Sext
H .

Take as an example the coloured 2-graph of Fig. 3, with explicit labelling of half-
edges

(9)
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It has 2 edges, and thus 22 = 4 different subgraphs, and

(10)

Contraction with H0 is trivial, G/H0 = G. In general one has to distinguish the cases
c1 = c2 = c and c1 
= c2. In the first case,

(11)

while for c1 
= c2 the contractions are

(12)

The last contraction G/G is an example of a multi-trace vertex, i.e. a vertex with
disconnected vertex graph.

In field theory, the structure of graphs is relevant up to relabelling their com-
ponents. In this sense, H1 and H2 in (10) are equivalent and so are G/H1 and
G/H2.

Definition 10 (iso/automorphism) An isomorphism j between 2-graphs G1 and G2
is a triple of bijections j = (jV , jH, jS) where jV : VG1 → VG2 , jH : HG1 → HG2

and jS : SG1 → SG2 such that

– νG2 = jV ◦ νG1 ◦ j−1
H and μG2 = jH ◦ μG1 ◦ j−1

S ,

– ιG2 = jH ◦ ιG1 ◦ j−1
H ,

– σ1G2 = jS ◦ σ1G1 ◦ j−1
S and σ2G2 = jS ◦ σ2G1 ◦ j−1

S .

A 2-graph automorphism is an isomorphism from a 2-graph G to itself.

Definition 11 (unlabelled 2-graphs) Two 2-graphs G1 and G2 are equivalent upon
relabelling, G1 ∼= G2, iff there is a 2-graph isomorphism G1 → G2. Such an equiv-
alence class is an unlabelled 2-graph, Γ = [G1]∼= = [G2]∼=. Let G2 denote the set
of all unlabelled 2-graphs and G1 the set of unlabelled 1-graphs.

Thereby I use the convention to denote unlabelled objects by Greek letters while
labelled ones by Roman letters. Capital letters refer to 2-graphs and small letters to
1-graphs.

Definition 12 (residue) In analogy to usual Feynman graphs, one refers to the class
of 2-graphs without any stranded edge as residues R∗ ⊂ G2 and denotes the set of
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those with a single vertex as R ⊂ R∗. Shrinking all stranded edges of a 2-graph
results in a residue. This is commonly defined as the residue map

res : G2 → R∗, Γ �→ Γ/Γ . (13)

Furthermore, for every 2-graph Γ ∈ G2 there is a trivial subgraph Θ0 ⊂ Γ without
stranded edges, called the skeleton (not to be confused with the p-skeleton of a cell
complex):

skl : G2 → R∗, Γ �→ Θ0 . (14)

This can be used to define a subset of 2-graphs with a given type of vertices S∗ ⊂ R∗
as

G2(S∗) := {
Γ ∈ G2

∣∣ skl(Γ ) ∈ S∗ ⊂ R∗} . (15)

Remark 3 (boundaries) The residue is very similar to the usual notion of a boundary
for 2-dimensional complexes, with subtle but crucial distinctions. Indeed, the union
of vertex graphs (3) of the residue of a 2-graph Γ ∈ G2 is its boundary.

Thus it is meaningful to define the boundary map

∂ : G2 → G1, Γ �→ ∂Γ := πvg(res(Γ )) (16)

where by slight abuse of notation the image of πvg is simply taken as the set of
1-graphs G1 since there are no stranded edges in the image of res.

It is straightforward to check that this definition of boundary is equivalent to
the notion of boundary for a complex according to Proposition 2, in particular
in the example of r-coloured graphs (Example 2) to the notion of boundary of
r-dimensional simplicial pseudo manifolds (Remark 2).

However, for field-theory renormalization it is necessary to distinguish the bound-
aries of the different connected components of the 2-graph Γ = ⊔

i∈I Γi . To
appropriately take this into account another boundary map is needed,

∂̃ : G2 → P(G1), Γ =
⊔
i∈I

Γi �→ ∂̃Γ := {∂Γi}i∈I , (17)

where here P(G1) denotes the power set of all multisets of G1 since any γ ∈ G1 may
appear multiple times in ∂̃Γ . In fact, this boundary map contains exactly the same
information as the residue. That is, the two are bijective by changing to the vertex-
graph representation, ∂̃Γ = βvg(res(Γ )), since each connected component Γi maps
to one vertex under the residue map. Thus, the difference between ∂̃ and ∂ mirrors
the one between βvg and πvg discussed in Remark 1.

Similarly one can distinguish two types of skeletons in the vertex-graph picture,

ς : G2 → G1, Γ �→ ςΓ := πvg(skl(Γ )) = ⊔
v∈VΓ

γv and (18)

ς̃ : G2 → P(G1), Γ �→ ς̃ Γ := βvg(skl(Γ )) = {γv}v∈VΓ
. (19)

This allows for a definition of 2-graphs with specific vertex types in terms of their
vertex graphs V ⊂ G1 as

G2(V) := {Γ ∈ G2 | ς̃ Γ ∈ P(V)} (20)

which is equivalent to the definition (15) in the sense that for S∗ ⊂ R∗ it holds that
G2(V) = G2(S∗) iff P(V) = ∂̃S∗.
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The important point here is that it makes a difference to compare the external
graph structure on the level of vertex graphs or the single graph given by their disjoint

union. Take for example the unlabelled 2-graph of Fig. 3 or (9).

If the distinguished colours c1 
= c2 are not the same, the residue res

is a multi-trace vertex. Thus for several such components, e.g. Γ � Γ , there is a
difference between

(21)

as the boundary ∂ misses the information which boundary component belongs to
which 2-graph component.

Remark 4 (topology change) When one can associate manifolds with 2-graphs,
contraction may lead to change of topology.

The boundary of a connected component Θi of a subgraph Θ ⊂ Γ might be
disconnected, that is a 1-graph with several connected components ∂Θi = ⊔

j γj , as
exemplified in (21). Contraction of such Θi leads to multi-trace vertex in Γ/Θ .

From the field-theory perspective alone, it is not obvious how to understand
the topology of such 2-graphs in cases where they relate to pseudo manifolds
(e.g. surfaces (Example 1) or higher dimensional (Example 2)):

(1.) One could focus simply on the strands (propagation of degrees of freedom)
and ignore the fact that the disconnected parts are adjacent to the same vertex;
this would lead to topology change since the contracted component would be
separated.

(2.) Topology change upon contraction could be avoided by simply assigning to the
multi-trace vertex with vertex graph ∂Θi = ⊔

j γj the topology of Θi . But this
might not be unique as there could be various 2-graphs Θi related to different
topologies.

(3.) In matrix models such multi-trace vertices are interpreted as singular points.2

This suggests to understand multi-trace vertices as points at which the complex
is only one-dimensionally connected.

In fact, in some examples of surfaces, the last possibility is in agreement with the
Euler characteristic. Consider for example the following contraction of combinatorial
maps

(22)

2In particular, one finds that there is a region in the phase diagram of multi-trace matrix models [40,
41] with the critical behaviour of the continuum random tree [42]. This regime is dominated by “cactus”
geometries, that is surfaces connected along single points thus leading to a tree-like fractal structure.
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While Γ has torus topology, Θ is a cylinder. The contraction of Θ in Γ leads to
a double-trace vertex whose strands are disconnected. Considering only the strands
but not the vertex (1.), Γ/Θ is a sphere different from the original torus (2.). On the
other hand, taking the vertex as a singular point (3.) gives a pinched torus and in fact
a naive calculation of Euler characteristic gives

χ(Γ/Θ) = V − E + F = 3 − 4 + 2 = 1 (23)

as expected for a pinched torus. It is an interesting question whether these topological
considerations can be generalized and would apply for example to the r-dimensional
pseudo manifolds of r-coloured graphs (Example 2).

4 The 2-Graph Coalgebra and the Central Identity

Algebraic structure can be defined on 2-graphs in the same way as for 1-graphs [8].
With the proper definition of a 2-graph (Definition 3) and of contraction of subgraphs
(Definition 9) a product, a coproduct as well as an antipode can be defined in a stan-
dard way promoting the set of 2-graphs G2 to an algebra, coalgebra and Hopf algebra
respectively. The crucial difference to 1-graphs lies in the combinatorial details as
I will exemplify with the central identity for the action of the coproduct on power
series over 2-graphs in Theorem 1.

Definition 13 (2-graph algebra) Let G := 〈G2〉 be the Q-algebra generated by all
2-graphs Γ ∈ G2 with multiplication in terms of the disjoint union defined on the
generators,

m : G ⊗ G → G , Γ1 ⊗ Γ2 �→ Γ1 � Γ2 . (24)

This is clearly associative and commutative and the empty 2-graph is the neu-
tral element. With a unit, that is a linear map this is a unital
commutative algebra.

The set G2(V) of 2-graphs with vertex graphs of restricted types V ⊂ G1, (20),
generates a subalgebra GV := 〈G2(V)〉 since by definition m(GV ⊗ GV) ⊂ GV.

As common, there is a coproduct Δ on the algebra of 2-graphs defined on their
generators as a sum over all subgraphs tensored with their contraction. For example,
the coloured 2-graph of (9) with distinguished colours c1 
= c2 has

(25)

In this way one obtains a coalgebra and furthermore a bialgebra:
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Proposition 3 (2-graph coalgebra) Equipping G with the coproduct, a linear map
defined on its generators as

Δ : G → G ⊗ G, Γ �→
∑
Θ⊂Γ

Θ ⊗ Γ/Θ , (26)

and the counit, a projector defined as

ε : G → Q, Γ �→
{

1 if Γ ∈ R∗
0 else

, (27)

G is an associative counital coalgebra. Since m and Δ are compatible in the sense
that Δ is an algebra homomorphism and m is a coalgebra homomorphism, G is
furthermore a (unital and counital ) bialgebra.

Proof For an associative coalgebra one has to show that

(Δ ⊗ id) ◦ Δ = (id ⊗ Δ) ◦ Δ and (ε ⊗ id) ◦ Δ = (id ⊗ ε) ◦ Δ = id . (28)

The proof is the same as for the 1-graph coalgebra (e.g. [8] Prop. 5.2.1) and for the
bialgebra property [8], Prop. 5.2.2.

In field theory, one is often interested in the subalgebra GV = 〈G2(V)〉 of 2-
graphs with vertex graphs of specific type V ∈ G1. But this is not a subcoalgebra
since contractions of 2-graphs in GV might lead to 2-graphs with other vertices, as
in the example (11) and (12). Thus, in general GV ∈ G is only a right co-ideal,
i.e. Δ(GV) ⊂ GV ⊗ G. To upgrade it to a subcoalgebra it is thus necessary to extend
the set of 2-graphs by all possible contractions:

Definition 14 (Contraction closure and subcoalgebras) Given a set P ⊂ G2, a set
K ⊂ G2 is called P-contraction closed iff for all Θ ⊂ Γ ∈ K with Θ ∈ P also
Γ/Θ ∈ K.

The P-contraction closure of K ⊂ G2 is the extension of K by all such
contractions,

PK := {
Γ = Γ ′/Θ

∣∣Θ ⊂ Γ ′ ∈ K, Θ ∈ P
}

. (29)

For P = G2 one calls the G2-contraction closure of K simply the contraction closure
and writes K.

Proposition 4 (2-graph subbialgebra) For a set of 2-graphs G2(V) of given vertex
types V ⊂ G1, the algebra 〈G2(V)〉 is a subbialgebra of G.

Proof Let Γ ∈ G2(V) be a 2-graph in the contraction closure of 2-graphs of vertex
types V ⊂ G1. By definition this means that there are 2-graphs Θ̃ ⊂ Γ̃ ∈ G2(V)

such that Γ = Γ̃ /Θ̃ . In particular, it might be the case that there are connected
components Γ̃i and Θ̃j = Γ̃i such that Γ̃i/Γ̃i = res(Γ̃i) is a connected component
of Γ . Thus the vertices of Γ can be of any type of residues (respectively boundaries)
of G2(V), that is skl(Γ ) ∈ res(G2(V)). Since there are no restrictions on edges, this
completely characterizes 2-graphs in the closure G2(V).

A subgraph Θ ⊂ Γ has by definition skl(Θ) = skl(Γ ). Thus, it is also in G2(V).
The contraction Γ/Θ is in the closure by definition and thus ΔΓ ∈ G2(V)⊗G2(V),
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which proves that G2(V) is a subcoalgebra. As G2(V) is also a subalgebra, it is a
subbialgebra.

Example 3 (Bialgebra of maps and coloured 2-graphs) Both the example of com-
binatorial maps (Example 1) and of r-coloured graphs (Example 2) are classes of
2-graphs which are characterized by a fixed half-edge degree, dh = 2 respectively
dh = r , as well as a specific edge stranding σ1 induced by orientation respectively
colour structure. The first property, dh = r , defines a set of vertex graphs Vr ∈ G1.
In this case, since the residue (boundary) of any 2-graph with such vertex type is
again of this type, i.e. has fixed dh = r , the set G2(Vr ) is already contraction closed.
The second property of specific edge stranding is also preserved under contractions.
Thus the set of combinatorial maps and the set of r-coloured 2-graphs each generate
a subbialgebra in the bialgebra of all 2-graphs G. In field theory such sets of diagrams
are called “theory space” exactly because of this closure property.

The quantity of interest in field theory is the perturbative expansion of Green’s
functions which is a formal power series labelled by Feynman diagrams. The
corresponding combinatorial object therefore is the formal series

X :=
∑

Γ ∈G2

Γ

|Aut Γ | , or Xγ =
∑

Γ ∈Gγ
2c

Γ

|Aut Γ | , (30)

that is its restriction to a sum over Gγ

2c, connected 2-graphs with a given external
boundary structure ∂Γ = γ ∈ G1. The crucial operation for the renormalization of
Green’s functions is the coproduct on the series Xγ which is induced by the general
case ΔX [5, 6, 9, 43]:

Theorem 1 (central identity) The coproduct of the weighted series over all
2-graphs is

(31)

The same formula is also true for more restricted formal power series where the
sum runs over a subset K ⊂ G2 such as Xγ , the sum over 2-graphs with specific
boundary γ , or the restriction to bridgeless (one-particle irreducible) 2-graphs. The
necessary property for such a subset K is to be contraction closed ([8] Corollary
5.3.1).

To prove the theorem one needs the inverse operation to contraction which is inser-
tion. However, one has to be careful with the definition since for 2-graphs not any
kind of insertion is dual to a contraction. To insert a labelled 2-graph G into another
G′ appropriately, one replaces all vertices of G′ with connected components of G.
For this it is necessary that the boundaries of the components of G agree with (are
isomorphic to) the vertex graphs of G′, that is ∂̃G ∼= ς̃ G′, and to specify how edges
and strands of G′ connect to ∂̃G:
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Definition 15 (insertion) Let G and G′ be 2-graphs and i = (iH, iS) : ∂G → ςG′
a 1-graph isomorphism which is component sensitive, that is

for every g ∈ ∂̃G there is a g′ ∈ ς̃ G′ such that i(g) = g′.

Then the insertion of G into G′ along i is

G′ ◦i G :=
(
VG,HG, νG, EG ∪ i−1

H (EG′);μG,SG,Sv
G,Se

G ∪ i−1
S (Se

G′)
)

. (32)

One denotes the set of possible insertions of G into G′, i.e. the set of component-
sensitive 1-graph isomorphisms i, as I(G, G′).

Remark 5 The number of possible insertions is the number of component-sensitive
1-graph automorphisms. As each such isomorphism is already fixed by the specific
element in the orbit which it is mapping to, the only choice left is an additional
automorphism. Thus one has

|I(G, G′)| = |Aut ∂̃G| = |Aut ς̃ G′| =
∏

g∈G1

V
g

G′ !
∏

v∈VG′
|Aut gv| (33)

where V
g

G′ is the number of vertices in G′ with vertex graph g.
Dropping the restriction to component sensitivity would allow to insert a 2-graph

G′ into G with ∂G ∼= ςG′ but ∂̃G � ς̃ G′. For example, a 2-graph with two bound-

ary components such as from (9) with distinguished colours c1 
= c2

could then be inserted not only into a vertex of its residue type, the multi-trace ver-

tex , but also in two copies of the vertex . While this is definitely an

interesting operation from a topological point of view (basically the operation of
adding a handle), it cannot be inverted in terms of a contraction. This is because
it involves two vertices but contraction yields by definition only one vertex per
connected component.

With this crucial concept of component sensitivity the proof of the central identity
is basically the same as for usual graphs (see e.g. [8]):

Proof One can expand the coproduct of a 2-graph Γ which is a sum over contractions
of subgraphs equivalently as a sum over pairs of 2-graphs (Θ, Γ̃ ) whose insertion of
one into the other yields Γ ,

ΔΓ ≡
∑

Θ ′⊂Γ

Θ ′ ⊗ Γ/Θ ′ =
∑

Θ,Γ̃ ∈G2

∣∣∣{Θ ′ ⊂ Γ |Θ ′ ∼= Θ and Γ/Θ ′ ∼= Γ̃ }
∣∣∣ Θ ⊗ Γ̃ .

(34)
How many such pairs (Θ, Γ̃ ) are there? On the level of their representatives, that is
for labelled 2-graphs H, G, G̃, the set of triples (H ′, j1, j2) of subgraphs H ′ ⊂ G

with isomorphisms j1 : H → H ′ and j2 : G/H ′ → G̃ is isomorphic to the set of
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pairs (i, j) of an insertion place i ∈ I(H, G̃) and an isomorphism j : G̃◦i H → G.3

Therefore the cardinality of the two sets agrees,

|{H ′ ⊂ G|H ′ ∼= H and G/H ′ ∼= G̃}| · |Aut H | · |Aut G̃|
= |{i ∈ I(HG̃)|G̃ ◦i H ∼= G}| · |Aut G| . (35)

Using this identity again on the level of unlabelled 2-graphs one finds

ΔX = ∑
Γ ∈G2

1
|Aut Γ |

∑
Θ,Γ̃ ∈G2

|{i∈I(ΘΓ̃ )|Γ̃ ◦iΘ∼=Γ }| |Aut Γ |
|Aut Θ| |Aut Γ̃ | Θ ⊗ Γ̃ (36)

One can change the sums and use for given Θ, Γ̃ ∈ G2 the simple fact∑
Γ ∈G2

|{i ∈ I(Θ, Γ̃ )|Γ̃ ◦i Θ ∼= Γ }| = |I(Θ, Γ̃ )| (37)

to find

ΔX =
∑

Θ,Γ̃ ∈G2

|I(Θ, Γ̃ )| Θ

|Aut Θ|⊗
Γ̃

|Aut Γ̃ | =
∑

Θ,Γ ∈G2

|I(Θ, Γ )| Θ

|Aut Θ|⊗
Γ

|Aut Γ |
(38)

(where the second step is simply a relabelling).
The symmetry-weighted sum over all 2-graphs Θ with a suitable struc-

ture of connected components in order to be inserted into a 2-graph Γ is∏
v∈VΓ

Xγv/
∏

γ∈G1
V

γ
Γ ! in which the denominator takes care of implicit automor-

phisms between isomorphic 2-graphs with the same boundary. Inserting the number
of insertions (33) one has finally

ΔX =
∑

Γ ∈G2

∏
γ∈G1

V
γ
Γ !

∏
v∈VΓ

|Aut γv|
∏

v∈VΓ
Xγv∏

γ∈G1
V

γ
Γ ! ⊗ Γ

|Aut Γ | (39)

which concludes the proof.

5 The Hopf Algebra of 2-Graphs and Renormalization in cNLFT

In this section I show that for every renormalizable combinatorially non-local field
theory there is a Connes-Kreimer type Hopf algebra of divergent Feynman diagrams
[2–4]. Besides the specific external structure of such diagrams being 2-graphs with
a 1-graph boundary, one can use the same logic to construct these algebras as for
local field theory [8]: There is a general Hopf algebra of all 2-graphs which can be
restricted to the specific set of diagrams of a given theory and further to the subset

3The argument works along the lines of Lemma 5.3.1 of [8] with a straightforward generalization from
1-graphs to 2-graphs: From (H ′, j1, j2) one can construct an insertion place i′ ∈ I(H ′G/H ′) which is
isomorphic to i ∈ I(H, G̃) via j1 and j2. Furthermore this gives an isomorphism j : G̃ ◦i H → G since
G/H ′ ◦i′ H ′ = G. The other way, from (i, j) one has H ⊂ G̃ ◦i H such that there must be a unique
H ′ ⊂ j (G̃ ◦i H) = G with an induced isomorphism j1 such that j1(H) = H ′. Contraction on both sides
induces further the isomorphism j2.
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of divergent diagrams. In the end I will illustrate how this works in the example of
matrix field theory and for field theories with tensorial interactions.

By the same arguments as for 1-graphs, the bialgebra of 2-graphs G has a unique
coinverse element and is thus a Hopf algebra. From the renormalization perspective,
the important insight in this is that there is group structure on the set of algebra
automorphisms on G which extends also to algebra homomorphisms φ, ψ : G →
A mapping to any other unital commutative algebra A. The multiplication of such
homomorphisms is given by the convolution product

φ ∗ ψ := mA ◦ (φ ⊗ ψ) ◦ Δ (40)

which due to (co)associativity of mA and Δ is also associative and has the neutral
element uA ◦ εG . In particular, A can be the algebra of amplitudes of a field theory
and φ the evaluation of the amplitude labelled by a given Feynman diagram Γ ∈ G.
For renormalization, the object of interest is then the group inverse of this evaluation
map of diagrams.

Theorem 2 (Hopf algebra of 2-graphs/group of algebra homomorphisms) The
bialgebra of 2-graphs G is a Hopf algebra, i.e. there exists an antipode S, that is a
unique inverse to the identity id : Γ �→ Γ with respect to the convolution product,

S ∗ id = id ∗ S = u ◦ ε . (41)

Furthermore, the set ΦG
A of algebra homomorpisms from G to a unital commutative

algebra A is a group with inverse Sφ = φ ◦ S for every φ ∈ ΦG
A,

Sφ ∗ φ = φ ∗ Sφ = uA ◦ εG . (42)

The subbialgebra 〈G2(V)〉 generated by 2-graphs with specific vertex graphs V ⊂
G1 (Proposition 4) is a Hopf subalgebra of G.

Proof The 1-graph structure contained in the 2-graphs is already sufficient and there
are two standard ways to prove the unique existence of the antipode [44] which both
use the fact that the bialgebra G is a graded bialgebra G = ⊕

E�0 GE with respect
to the number of edges (which follows directly from Definition 9). The common
first option is to reduce to the augmentation ideal which
is a connected (G0 is one-dimensional) graded bialgebra, and thus automatically a
Hopf algebra (Sec. III.3 in [44]). Here we use the second construction following [8]
where one keeps all the residues r ∈ R∗ which behave as group-like elements w.r.t.
the coproduct [44], Δr = r ⊗ r , and augment G by formal inverses r−1 for all

defining . Then the antipode on r ∈ R∗
is SR∗(r) := r−1 from which one can construct the antipode on G as

S :=
∑
k�0

(u ◦ ε − SR∗)∗k ∗ SR∗ (43)

as proven for example in [8].
For the inverse of a homomorphism φ : G → A one directly calculates

Sφ∗φ = mA◦((φ◦S)⊗φ)◦Δ = φ◦mA◦(S⊗id)◦Δ = φ◦uG◦εG = uA◦εG . (44)
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Finally, by definition of the antipode m ◦ (id ⊗ S) ◦ Δ(〈G2(V)〉) = u ◦ ε(〈G2(V)〉).
It follows that 〈G2(V)〉S(G) = S(〈G2(V)〉)G and thus S(〈G2(V)〉) ⊂ 〈G2(V)〉.

Connes-Kreimer-type Hopf algebras for specific renormalizable field theories fol-
low from the general Hopf algebra of 2-graphs by a further restriction. With Theorem
2 one has already a Hopf subalgebra for a specific class of Feynman diagrams as for
example (Example 3) combinatorial maps in matrix theories or r-coloured 2-graphs
in tensor-invariant theories. One can always further restrict to one-particle irreducible
(bridgeless) 2-graphs as a quotient Hopf algebra dividing out the Hopf ideal gen-
erated by one-particle reducible 2-graphs ([8] Ex. 5.5.1). For renormalization one
restricts then further to the subset of superficially divergent diagrams which will turn
out to be contraction-closed by definition, and thus will also be a Hopf algebra.

Concerning the structure of renormalization one can consider quantum field theory
from a purely combinatorial perspective [9, 10, 45]. In this spirit, a local quantum
field theory is specified by its field content, the interactions and their weights as well
as the spacetime dimension D [8, 9]. For combinatorially non-local field theory let us
restrict here to a single field type (of which there could still be various, for example
with different number dh of arguments [31]). Then a combinatorially non-local scalar
field theory is simply given by its interactions, their weights and a dimension:4

Definition 16 (comb. field theory) A combinatorial cNLFT, that is a tuple T =
(Ge

1,G
v
1, ω, d), consists of a dimension d ∈ N, boundary graph sets Ge

1 ⊂ Gv
1 ⊂ G1

and a weight map

ω : Ge
1 ∪ Gv

1 → Z (45)

where Gv
1, or equivalently Rv ⊂ R ⊂ G2 under the bijection βvg, is the set of inter-

actions and Ge
1 (or Re) is the set of propagators which are graphs with two vertices

(or respectively 2-valent 2-graph vertices).5 Its Feynman diagrams are all 2-graphs
with Gv

1-type vertices,

GT
2 := G2(Gv

1) = {
Γ ∈ G2

∣∣ς̃ Γ ∈ P(Gv
1)

} ⊂ G2 , (46)

and they generate a Hopf algebra GT := 〈GT
2 〉 by closure with respect to contractions

according to Theorem 2.

4This dimension d is not the dimension of spacetime but simply the dimension of a single argument of
the field. It can have various meaning depending on the specific theory. For example, a matrix field theory
derived from D-dimensional non-commutative field theory has d = D/2 [16, 17, 19]. In group field
theory, d is the dimension of the group G which the field arguments are valued in and G is related to the
Lorentz group if the theory has an interpretation as a quantum theory of gravity [23–26].
5In field theory it is usually not necessary to have the two-valent interactions included (Re ⊂ Rv); Without
restriction to the underlying theory, these are added here for the simple formula of contraction according
to Definiton 9 which necessarily leads to such a vertex when contracting a propagator-type subgraph [8].
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Definition 17 (renormalizability and the Hopf algebra of Feynman 2-graphs)
Let T = (Ge

1,G
v
1, ω, d) be a combinatorial cNLFT. For a Γ ∈ GT

2 , the superficial
degree of divergence is

ωsd(Γ ) =
∑

v∈VΓ

ω(γv) −
∑
e∈EΓ

ω(γe) + d · FΓ (47)

where FΓ = |F int
Γ | is the number of internal faces (Definition 7), γv is the vertex

graph of the vertex v, (3), and γe the “vertex graph” of the edge e, defined as the
1-graph with two vertices and as many edges between them as there are strands at
the edge e in the 2-graph Γ . The set of superficially divergent diagrams in T are
bridgeless 2-graphs whose nontrivial components are superficially divergent,

Ps.d.
T :=

{
Γ =

⊔
i∈I

Γi ∈ GT
2 bridgeless

∣∣∣∣∣∀i ∈ I : if Γi 
∈ R then ωsd(Γi) � 0

}
.

(48)
The cNLFT T is renormalizable iff ωsd depends only on the boundary of 2-graphs
and for every connected Γ ∈ GT

2 :

ωsd(Γ ) = ω(∂Γ ) . (49)

Then Hf2g
T = 〈Ps.d.

T 〉 is the Connes-Kreimer Hopf algebra of divergent Feynman 2-
graphs of the theory T . It is a Hopf subalgebra of GT and G according to Proposition 4
and Theorem 2 as it is contraction closed due to renormalizablity.

This is the combinatorial structure of renormalization. To perform actual renor-
malization of a cNLFT, a renormalization scheme has to be specified by choosing
an appropriate linear operator R on the algebra of amplitudes A on which diagrams
are mapped by the homomorphism φ : Hf2g

T → A. Based on the existence of the
antipode S this allows to recursively define the counterterm map

(50)

which is in the group ΦHf2g

A if R is a Rota-Baxter operator [44]. Then the renormal-

ized Feynman amplitudes are evaluated by S
φ
R ∗ φ. I exemplify how this works for a

cNLFT in practice in [33] and close this work with two examples of renormalizable
cNLFT from the purely combinatorial perspective.

Example 4 (Hopf algebra of matrix field theory/Grosse-Wulkenhaar model) The
Feynman diagrams of matrix field theories [17–19] are combinatorial maps which
are 2-graphs with bivalent edges, dh = 2 (Example 1). Thus, the interaction ver-
tex graphs can be polygons with n vertices and disjoint unions thereof (multi-trace
vertices).

So called φn
D matrix field theory is specified by , a set of interac-

tions Gv
1 of maximal order n and a dimension d = D/2 which can be derived as the
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spectral dimension of an external matrix (the kinetic operator in the action) [18, 19]
and relates to the spacetime dimension D of a corresponding non-commutative field
theory for even D [17]. Let the weights be ω|Ge

1
= 1 and ω|Gv

1\Ge
1

= 0.

According to (47) the superficial degree of divergence is ωsd(Γ ) = d · FΓ − EΓ

where EΓ = |EΓ | is the number of (internal) edges and FΓ = |F int
Γ | is the number of

internal faces. The Euler formula for such a 2-graph Γ (dual to a triangulated surface)
is

2 − 2gΓ − K∂Γ = VΓ − (EΓ + V∂Γ ) + FΓ + E∂Γ = VΓ − EΓ + FΓ (51)

with genus gΓ and K∂Γ the number of connected components of the boundary. The
number of boundary vertices/external edges V∂Γ = |V∂Γ | = |Eext

Γ | and boundary
edges/external faces E∂Γ = |E∂Γ | = |Fext

Γ | agree since the boundary graphs are
polygons.

Together with the relation

2EΓ + V∂Γ =
∑

γ∈Gv
1

Vγ · V
γ
Γ =

n∑
k=1

kV
(k)
Γ (52)

between edges and the number V
γ
Γ of interactions in Γ with Vγ boundary vertices,

or V
(k)
Γ interactions of order Vγ = k, one obtains

ωsd(Γ ) ≡ dFΓ − EΓ

= −d(VΓ − 1)+ d−1

2

(
n∑

k=1

kV
(k)
Γ −V∂Γ

)
−d (2gΓ +K∂Γ −1) . (53)

For example, the Grosse-Wulkenhaar model, a φ4
D matrix field theory (only

V
(4)
Γ 
= 0) related to D = 2d dimensional non-commutative field theory, has [46]

2ωsd(Γ ) = D − D − 2

2
V∂Γ + (D − 4)VΓ − D(2gΓ + K∂Γ − 1) . (54)

For D = 4 the divergence degree is independent of VΓ and only planar maps Γ ,
that is genus gΓ = 0, with single boundary component K∂Γ = 1 and a maxi-
mal number of V∂Γ � 4 boundary vertices/external edges can be divergent. Then,
divergence depends only on the external structure of diagrams and φ4

4 matrix theory
is renormalizable. In particular, the only Green’s functions which need renormal-
ization are the effective propagator (2-point function) and the regular (K∂Γ = 1)
4-point function. This defines the set of superficially divergent diagrams Ps.d.

GW which
generates the Connes Kreimer Hopf algebra of divergent 2-graphs for the D = 4
Grosse-Wulkenhaar model.

A first attempt to construct the Connes-Kreimer Hopf algebra of quartic non-
commutative field theory in D = 4 dimensions has been obtained already in [11]
and further detailed in [12]. However, this earlier work is lacking the understand-
ing that the external structure of 2-graphs are 1-graphs (here dh = 2 regular graphs,
i.e. polygons) and that it is in particular crucial to respect their number of connected
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components K∂Γ .6 The systematic approach here clarifies this issue and applies to
renormalizable non-commutative field theory and matrix field theory of arbitrary
interactions and corresponding to any dimension D.

Example 5 (Hopf algebra of tensorial field theories) The Feynman diagrams of com-
plex tensorial field theories of rank r � 2 [22] are 2-graphs with r-valent edges,
dh = r , which can be represented as bipartite (r + 1)-coloured graphs (up to multi-
trace vertices, Example 2). The interaction vertex graphs can be any r-coloured
graphs.

A φn
d,r tensorial field theory is specified by , i.e. the propagator

vertex graph with r edges, a set of bipartite r-coloured graphs Gv
1 with maximal

number of vertices n and a dimension d. The weights for the propagator are ω|Ge
1

=
2ζ , ζ > 0 [22].

Transforming the superficial degree of divergence ωsd(Γ ) = dFΓ − 2ζEΓ +∑
v ω(γv) into a form which is meaningful for the question of renormalizability is

more involved than for matrices since the 2-graphs are now dual to simplicial pseudo
manifolds of dimension r . Generalizing the genus g, the relevant quantity for power
counting turns out to be Gurau’s degree ωG of a coloured graph [47, 48]. The Gurau
degree ωG ∈ N is not a topological invariant (except for r = 2 where ωG = g)
but induced from the genus of Heegaard splitting surfaces of the pseudo manifold
[49] (for r = 3, and a generalized notion of splitting surfaces in r � 4). Since the
boundary of an (r + 1)-coloured graph is an r-coloured graph, and thus a pseudo
manifold of dimension r − 1, also the Gurau degree of the boundary plays a role.
Applying the Euler formula (51) repeatedly for the various splitting surfaces and
using the edge-vertex relation (52) one finds [22, 23, 50]

ωsd(Γ ) = −dr(VΓ − 1) + dr − 2ζ

2

(∑
k

kV
(k)
Γ − V∂Γ

)
+

∑
v∈Gv

1

ω(γv)

−d

(
2ωG

Γ − 2ωG
∂Γ

(r − 1)! + K∂Γ − 1

)
(55)

where dr := d(r − 1) is thus the counterpart to the dimension of local field theory
from the renormalization perspective, i.e. φn

d,r tensorial field theory behaves simi-
lar to φn

D=dr
local field theory. Note that the above example of matrices, r = 2, is

covered by this formula.7

A vanishing Gurau degree gives the maximal contribution to the divergence
degree. One can prove that always ωG

Γ � ωG
∂Γ [20]. Thus, −(ωG

Γ − ωG
∂Γ ) is maximal

6In earlier work on non-commutative field theory the focus was on the concept of the number of “broken
faces” B lacking the understanding that this is actually the number of boundary components K∂Γ . The
issue becomes apparent with the definition of insertions in [12] which does not respect the boundary
structure (see for example Fig. 9 therein where a diagram with K∂Γ = 2 is inserted in a vertex v with
Kγv = 1).
7More precisely, the r = 2 case is a complex matrix field theory, not Hermitian as in Example 4. Still, it is
known that the large-N properties of complex and Hermitian matrix models agree [51] and it is therefore
no surprise that the same is true for renormalizability of their field theory versions.
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for ωG
Γ = ωG

∂Γ = 0. The question which φn
d,r tensorial theories are renormalizable

is then as usual a question of how the maximal order of interactions n is balanced
by the dimension dr , with some more freedom given by the propagator weight 2ζ .
When setting the vertex weights for each vertex v of degree dv to

ω(γv) = dr − dv

2
(dr − 2ζ ) , (56)

the dependence of the divergence degree on the number of 2-graph vertices vanishes,

ωsd(Γ ) = dr − dr − 2ζ

2
V∂Γ − d

(
2ωG

Γ − 2ωG
∂Γ

(r − 1)! + K∂Γ − 1

)
. (57)

Thus, the maximal degree for renormalizable interaction vertices is n = � 2dr

dr−2ζ
�

[22]. The theory is just renormalizable if the number in the floor bracket is integer.
The first example, and a particularly interesting one, is the BenGeloun-Rivasseau

model [20], i.e. φ6
1,4 tensorial field theory with ζ = 1. Thus, it has divergence degree

ωsd(Γ ) = 1

2
(6 − V∂Γ ) − 1

3

(
ωG

Γ − ωG
∂Γ

) − (K∂Γ − 1) . (58)

This means that among others also the 4-point Green’s function with two boundary
components needs renormalization. It is thus necessary to include the multi-trace

vertex in the set Gv
1 of interactions and all the subtleties discussed in Section 3

apply. Furthermore, there are divergent diagrams with ωG
Γ > 0. Thus, there is some

dependence on the bulk topology in this case. Still, the set Ps.d.
BGR of divergent 2-graphs

is contraction closed since one can prove that the Gurau degree is invariant under
contractions ([13], Lemma 4.1). Then one obtains the Connes-Kreimer Hopf algebra
of divergent 2-graphs of the BenGeloun-Rivasseau model as Hf2g

BGR = 〈Ps.d.
BGR〉. In the

same way this works also for a number of renormalizable tensorial theories with other
rank r and dimension d [22].
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