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ABSTRACT 

Local mechanical stimuli in the bone microenvironment are essential for the homeostasis and adaptation 

of the skeleton, with evidence suggesting that disruption of the mechanically-driven bone remodelling 

process may lead to bone loss. Longitudinal clinical studies have shown the combined use of high-

resolution peripheral quantitative computed tomography (HR-pQCT) and micro-finite element analysis 

can be used to measure load-driven bone remodelling in vivo; however, quantitative markers of bone 

mechanoregulation and the precision of these analyses methods have not been validated in human 

subjects. Therefore, this study utilised participants from two cohorts. A same-day cohort (n=33) was used 

to develop a filtering strategy to minimise false detections of bone remodelling sites caused by noise and 

motion artefacts present in HR-pQCT scans. A longitudinal cohort (n=19) was used to develop bone 

imaging markers of trabecular bone mechanoregulation and characterise the precision for detecting 

longitudinal changes in subjects. Specifically, we described local load-driven formation and resorption 

sites independently using patient-specific odds ratios (OR) and 99% confidence intervals. Conditional 

probability curves were computed to link the mechanical environment to the remodelling events detected 

on the bone surface. To quantify overall mechanoregulation, we calculated a correct classification rate 

measuring the fraction of remodelling events correctly identified by the mechanical signal.  Precision was 

calculated as root-mean-squared averages of the coefficient of variation (RMS-SD) of repeated 

measurements using scan-rescan pairs at baseline combined with a one-year follow-up scan. We found no 

significant mean difference (p<0.01) between scan-rescan conditional probabilities. RMS-SD was 10.5% 

for resorption odds, 6.3% for formation odds, and 1.3% for correct classification rates. Bone was most 

likely to be formed in high-strain and resorbed in low-strain regions for all participants, indicating a 

consistent, regulated response to mechanical stimuli. For each percent increase in strain, the likelihood of 

bone resorption decreased by 2.0±0.2%, and the likelihood of bone formation increased by 1.9±0.2%, 

totalling 38.3±1.1% of strain-driven remodelling events across the entire trabecular compartment. This 
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work provides novel robust bone mechanoregulation markers and their precision for designing future 

clinical studies.   
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1 Introduction 

The bone remodelling process is a complex mechanism that enables structural adaptation to align with 

physiological loading conditions, such as gravitational loading or muscle forces, thereby minimising the 

risk of bone fractures [1]. At the cellular level, this process is orchestrated by osteocytes, which sense 

local mechanical forces and signal bone-forming cells in regions where mechanical stimulations are high, 

and bone-resorbing cells in areas where the stimulus is low [2–4]. This mechanoregulated exchange of old 

bone for newly formed material reduces fatigue damage and promotes skeletal strength [5].  However, the 

ageing skeleton is believed to respond less effectively to mechanical stimuli, such as loading induced by 

physical exercise [6–8]. The discordant mechanoregulation of bone due to ageing and disease may be 

attributed to decreased osteoblast activity and increased apoptosis [9,10], increased osteoclast number 

[11], or declining osteocyte density [12,13]. This loss of mechanoregulative response may also occur 

from various chronic diseases, including diabetes mellitus [14]. Previous biological observations may 

explain the loss of bone volume, quality, and strength ex vivo, but they do not give conclusive proof of 

potentially dysregulated mechanoregulation in living bone tissue. Therefore, approaches for monitoring in 

vivo bone microstructure at high resolution are necessary to explore the effects of ageing and diseases on 

bone remodelling in humans. 

High-resolution peripheral quantitative computed tomography (HR-pQCT) can non-invasively assess 

individual trabecular structures in vivo in humans at microscopic resolution (60.7 – 82.0 µm) [15,16]. 

Acquisition of longitudinal images can even allow for the quantification and visualisation of remodelling 

sites on the bone surface [17]. When HR-pQCT is combined with micro-finite element (micro-FE) 

analysis, the local mechanical environment can be simulated and linked to remodelling events (i.e. 

mechanoregulation). Previous clinical studies exploring mechanoregulation in humans [18–21] have 

demonstrated relationships between local strains induced by normal physiological activity and bone 

remodelling, showing promise for HR-pQCT-based mechanoregulation to investigate the effects of 

disease, ageing, or intervention on the skeleton’s ability to adapt to mechanical stimuli. However, the 
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resolution of HR-pQCT is in the same order of magnitude as the depth of individual remodelling sites 

(between 5 – 116 µm) [22,23]. To overcome the current limitation of imaging resolution, image filtering 

protocols are necessary to remove noise and image artefacts that can overshadow these subtle changes on 

the bone surface [17]. 

The studies by Christen et al. and Mancuso et al. have estimated the precision of analysing bone 

remodelling sites derived from same-day repeat scans and reported a broad range of measurement 

precision ranging from 2.5% [17] to 11% [18].  Image noise and motion artefacts during scanning can 

confound the precision of longitudinal bone microstructure assessment [17]. To reduce false detections, 

previous studies have proposed noise-filtering protocols [17]. However, with the recent advancements 

from a nominal resolution of 82 μm to 61 μm in second-generation XtremeCT scanners, previous filtering 

methods must be revised to account for differences in image resolution, artefacts, and noise. Importantly, 

repeat assessments do not consider the spatial variance of remodelling sites, i.e. the net rate of false 

detections. Previous imaging-based assessments of bone mechanoregulation [19,24] correlate the 

mechanical signal with local remodelling events voxel-by-voxel. Therefore, the spatial variance of these 

remodelling sites may have a significant impact on the quantification of remodelling sites relative to local 

mechanical strains and needs to be assessed using longer follow-up scans during which true remodelling 

events take place. Assessing the precision in estimating mechanoregulation of local bone remodelling is 

critical for determining whether measured differences within or across patients are due to genuine 

changes or caused by noise and artefacts. 

This study aimed to develop bone mechanoregulation imaging markers and to determine their precision 

for detecting longitudinal changes in human subjects. In this context, precision describes the consistency 

of measurements obtained by a single team using the same procedure, equipment, and operating 

conditions, in a single location, over multiple iterations [25].  The first objective of this study was to adapt 

an existing image filtering protocol for detecting local bone formation and resorption sites to current 

imaging capabilities, and to evaluate the effect of motion artefacts on the accuracy and precision of the 
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adapted filtering approach. The second objective of this study was to establish robust patient-dspecific 

markers that characterise strain-driven bone formation and bone resorption as well as their interplay (i.e., 

mechanoregulation).   

2 Methods 

2.1 Participants and image acquisition 

This study utilised participants from two cohorts, summarised in the following paragraphs, to address 

each study objective. The first is the same-day cohort, used to assess filtering parameters designed to 

remove false formation and resorption sites. The second cohort is referred to as the longitudinal cohort, 

used to determine the precision of mechanoregulation over one year of bone remodelling. All participants 

gave written informed consent before participation, and local ethics committees approved all studies. All 

scans were obtained at the distal radius using second-generation HR-pQCT (XtremeCT II, Scanco 

Medical AG, 61 μm) [15]. For consistency across cohorts, scans were automatically graded for motion 

artefacts using a previously developed motion-scoring algorithm [26] on a five-point scale (1 = none, 2 = 

minor, 3 = moderate, 4 = severe, and 5 = extreme), with manual verification.  

The same-day cohort consisted of 33 participants (17 males of mean age 46.2±18.4 years; 16 females of 

mean age 41.3±15.8 years) from a previous study [27]. Three same-day HR-pQCT scans of the distal 

radius were acquired at the University Department of Osteoporosis in Bern for all participants. 

Individuals were scanned by the same operator with two operators in total. The scan region used herein 

began at the reference line placed at the dense articular surface formed with the scaphoid and lunate 

fossae of the radiocarpal joint and extended proximally 10.2 mm (168 slices) in length [28].  

The longitudinal cohort consisted of 19 participants (9 males of mean age 43.9±13.1 years; 10 females of 

mean age 59.1±18.9 years) selected from an ongoing multi-centre longitudinal study investigating 

fracture healing [29], where longitudinal scans acquired on the contralateral (i.e. non-fractured distal 

radius) were used in the present study. Three scans were used per participant, including a baseline scan, a 
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repeat scan performed within one month, and a third scan performed at a one-year follow-up. Scans were 

obtained from a previous study at the Innsbruck Medical University in Innsbruck, Austria [30], or newly 

acquired at the University Department of Osteoporosis in Bern, Switzerland. Participants were included 

from the more extensive longitudinal study if they had attended all three visits and all scans had a motion 

score of 2 or lower (on the five-point scale), resulting in 19/132 participants that met the inclusion 

criteria. In this cohort, HR-pQCT scans were acquired following the manufacturer’s standard in vivo 

protocol [31]. Briefly, a reference line was placed on the distal radial joint surface using anteroposterior 

scout views. The scan region (168 slices) was 10.2 mm extended, positioned at a fixed offset of 9.0 mm 

from the reference line.  

2.2 Image processing and registration 

Periosteal and endocortical contours were automatically identified in all images using the dual-threshold 

technique (cortical bone: 450 mg HA/cm
3
, trabecular bone: 320 mg HA/cm

3
) [32]. Contours were visually 

inspected for notable deviations from the periosteal or endocortical surfaces and manually corrected 

where necessary [33]. HR-pQCT scans were registered using rigid-body registration based on Python 

(v3.8.5) and SimpleITK (v2.1.1.2) [34,35]. Specifically, Euler angles around the density-weighted centre 

of the image were optimised, maximising the voxel-wise correlation between grayscale density values 

within the periosteal contour to align the images. Powell optimisation with brent line search, an initial 

step length of 1, and a sampling rate of 0.01 in conjunction with a five-level pyramid registration 

framework (shrink factors: 12x, 8x, 4x, 2x, 1x) was used. Optimisations terminated after 100 iterations or 

if the value or step tolerance of 10
-6

 was reached. Grayscale images were transformed using linear 

interpolation, and a Gaussian filter was applied to reduce noise (sigma 1.2, support 1). Binary 

segmentations of the bone and compartment masks (cortical and trabecular) were transformed using 

nearest-neighbour interpolation. In all cases, the earliest timepoint was used as the fixed reference image, 

and all follow-up images were transformed into the reference space. 
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2.3 Objective 1: Bone remodelling site identification and quantification of precision  

Image filtering parameters needed to identify true bone formation and resorption fractions were 

determined using the same-day cohort. Due to the short follow-up time (same-day scans), no measurable 

true bone remodelling is expected, and thus all detected remodelling events can be considered false 

remodelling sites. First, the common trabecular region across rescans was determined from the registered 

images to exclude voxels outside the common region. Segmented images were then superimposed to 

identify regions of false formation and resorption in the trabecular compartment. Volumes of the 

segmented bone present only in the earlier measurement were regarded as resorbed bone, whereas bone 

voxels present only in the latter measurement corresponded to formed bone [24]. For the same-day scans, 

all possible combinations of the three measurements were evaluated. To reduce the detection of false 

remodelling events caused by registration interpolation and partial-volume effects, the identified 

formation and resorption sites were further filtered using information from the grey-scale images to 

remove small remodelling clusters or sites with minimal density changes [17]. For this purpose, the 

threshold for the absolute difference in density between rescans of the formed and resorbed voxels was 

varied from 0 to 300 mg HA/cm
3
 with a step size of 25 mg HA/cm

3
, and the threshold for cluster volume 

was varied from 0 to 48 voxels in steps of 4 voxels. The proportion of removed remodelling clusters was 

calculated at different filter combinations, and filtering settings within a tolerable 1% noise level were 

selected to remove false remodelling sites. Finally, formation and resorption volumes were expressed as a 

fraction of the baseline trabecular mineralised bone volume (Tb.BV).  

 

Short-term precision of formation and resorption measurements were calculated as root-mean-squared 

averages of the standard deviation of repeated measurements (RMS-SD) [36] Individual precision errors 

were calculated for resorption (Tb.R) and formation (Tb.F) volume fractions derived from combinations 
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of scan/rescan pairs. For example, for a patient with three scans (t1-3), the following comparisons (c1-3) 

between detected resorption fractions were made with c1: RMS-SD(Tb.Rt2,t3, Tb.Rt1,t3), c2: RMS-

SD(Tb.Rt2,t3, Tb.Rt1,t2), and c3: RMS-SD(Tb.Rt1,t2, Tb.Rt1,t3) and grouped by the maximum motion score of 

all scans within the comparison. Differences in precision outcomes between grading scores were tested 

with an unpaired Mann-Whitney-Wilcoxon test with Holm–Bonferroni correction for multiple 

comparisons after confirming the non-normality of variables with a Shapiro-Wilk test. Least-significant 

change of bone Tb.F and Tb.R was calculated at a 95% confidence level (where LSC = 2.77*RMS-SD) 

[36] with the developed filtering approach and compared against no filtering steps applied (i.e. 

remodelling sites obtained from subtracted segmented images).   

2.4 Objective 2: Bone mechanoregulation quantification over one year 

The precision of detecting remodelling sites and bone mechanoregulation markers was evaluated in the 

longitudinal cohort between the baseline and one-year follow-up scans (Figure 1A), as it requires the 

presence of true bone formation and resorption sites. The formation and resorption sites occurring after a 

one one-year interval were identified using the optimised filtering approach determined in objective 1. A 

paired Wilcoxon signed-rank test was used to determine the presence of substantial bone resorption, 

formation, and net change between baseline and one year, after confirming the non-normality of variables 

with a Shapiro-Wilk test. The approach was performed again with the repeat scan (taken within one 

month of the baseline) in place of the baseline scan to test the agreeability of the approach (Figure 1B). 

Bland-Altman plots were used to measure the limits of agreement between baseline and repeat scans 

when determining the resorption, formation, and net change fraction after one year.  

The local mechanical signal in the bone tissue of the baseline scan was calculated using micro-FE 

analysis (Figure 1C). Finite element meshes were generated by converting all voxels to 8-node 

hexahedral elements and assigning a Young’s modulus of 8.748 GPa and Poisson’s ratio of 0.3 [37]. A 

standard uniaxial compression of up to 1% apparent strain was applied. Linear micro-FE calculations 
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were solved using ParOsol [38] at the ETH research computing cluster (Euler, ETH Zurich, Zurich, 

Switzerland) using 48 threads (Intel Xeon Gold 5118, 3.2 GHz, 96 GB). Voxel-wise strain energy density 

(SED) was derived as the local mechanical signal [19,24]. 

Following the method presented by Schulte et al. [24], patient-wise conditional probability curves were 

computed to link the mechanical signal (baseline SED) at different strain levels to the remodelling events 

detected on the bone surface between baseline and the one-year follow-up (Figure 1D). Briefly, SED was 

normalised using the 99
th
 percentile and binned at 1% intervals (nbins=100). Conditional probability was 

calculated from strain frequency distributions to analyse the probability of bone remodelling events at 

various strain levels. The conditional probability curves were used to calculate the correct classification 

rate (CCR), a measure for estimating the proportion of remodelling events (resorption, quiescence, and 

formation) correctly relative to mechanical signal [39]. However, CCR only provides an overall marker of 

agreeability, not an independent assessment of the extent to which formation and resorption events are 

load-driven. Thus, logistic regression was performed to independently ascertain the patient-specific 

association between mechanical signal (baseline SED) with voxel-wise bone formation and resorption. 

Odds ratios for bone resorption (ORR) formation (ORF) with 99% confidence intervals (CI) were 

computed per one-percentage-point change in normalised mechanical signal (SED/SEDmax) to quantify 

strain-driven bone formation and resorption in individual participants. The 99% CIs were constructed 

using bootstrapping (k=1000). A confidence interval of 99% was used due to the large sample size when 

performing voxel-wise analysis. 

The mechanoregulation analysis was repeated using the repeat scan (taken within one month of the 

baseline) in place of the baseline scan to determine the precision of the approach. [45]. Bland-Altman 

plots, with 99% CI were used to measure the limits of agreement between baseline and repeat scans in 

estimating the conditional probability of resorption, quiescence and formation events for each strain bin 

(nbins=100). One-year RMS-SD and least-significant change of ORR, ORF, and CCR were calculated using 

outcomes of the baseline-to-one-year and repeat-to-one-year pairs to assess the method’s precision.  
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Figure 1: Study design for objective 2. (A) Baseline and repeat scans were acquired within one month, 

along with a one-year follow-up for each patient (n = 19) using HR-pQCT to measure bone mineral 

density (BMD) and microstructure. (B) Remodelling sites were identified based on changes in density 

between baseline and follow-up as well as repeat and follow-up. (C) Micro-FE analysis was performed on 

the baseline and repeat scans. (D) Mechanoregulation was assessed using quantitative markers. (E) The 

precision of mechanoregulation markers was assessed.  

3 Results 

Objective 1: Bone remodelling sites identification and precision 

Removal of remodelling events with a density change lower than 225 mg HA/cm
3
 and clusters smaller 

than 12 voxels eliminated 99% of false remodelling sites observed in the same-day cohort (Figure 2A). 

The remaining 1% of false remodelling sites were considered acceptable noise levels. Overall, filtering 

significantly improved (p < 0.01) absolute errors in the detection of false formation and resorption sites 

across all motion scores (Figure 2B and Table 1). When assessing the absolute errors relative to motion 
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scores after filtering, no significant differences were found for scans with motion scores of one or two. 

However, when at least one scan in the scan-rescan pair had a motion score of three or more, absolute 

errors significantly increased (p < 0.01), despite implementing the optimised filtering protocol. 

Specifically, when the maximal motion score in scan-rescan pairs shifted from two to three, the detection 

of false resorption events increased from 6.0% to 11.3% and false formation events increased from 6.4% 

to 11.9%. Therefore, scans with motion scores one or two were selected for further processing in the 

longitudinal cohort.  

 

The precision error of formation and resorption events was unchanged (p = 1.0) by the added filtering 

protocol across all motion scores. However, the precision of bone formation and resorption events 

significantly improved with lower motion grading (p < 0.05, Figure 2C and Table 1). Overall, the 

precision of detecting bone formation versus resorption events was comparable across image quality 

gradings (RMS-SD = 3.3%, for all scans, and RMS-SD = 1.7% for motion scores of two or less). Overall, 

these results confirm that motion artefacts play a considerable role in the method's precision, while image 

filtering significantly influences absolute errors of false remodelling events. 
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Figure 2: (A) Filter strategy determined using three same-day rescans of participants (n=33). The colour 

code indicates the percentage of filtered formation and resorption sites with different filter combinations. 

(B) Absolute errors were calculated assuming no true bone remodelling between scans. Boxplots show 

absolute errors with and without filtering for formation and resorption fractions at different motion scores. 

(C) Precision errors expressed as RMS-SD between individual measurements were grouped by maximum 

motion score within the comparison set. Boxplots show precision errors with and without filtering for 

formation and resorption fractions at different motion scores. Significant differences are indicated (∗p < 

0.05; **p<0.01,  ****p < 0.0001, Mann-Whitney-Wilcoxon test with Holm–Bonferroni correction). 

 

 

Table 1: Precision errors for resorption (Tb.R)  and formation (Tb.F) detections expressed as standard 

deviation of repeated measurements (RMS-SD) and least-significant change (LSC). Measurements were 

grouped progressively restricting inclusion criteria for patient motion. Maximum motion score indicates 

the highest motion score tolerated.  

Maximum Degrees abs. error (95% CI) RMS-SD LSC 
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motion 

score 

of 

freedom 

Tb.F Tb.R Tb.F Tb.R Tb.F Tb.R 

4 58 9.2% (6.9% - 11.5%) 9.8% (7.2 % - 12.3%) 3.2% 3.3% 9.0% 9.2% 

3 50 9.2% (6.6% - 11.8 %) 9.7% (6.9% - 12.6%) 2.9% 3.0% 7.9% 8.2% 

2 26 6.1% (4.2% - 8.0%) 6.4% (4.5% - 8.2%) 1.7% 1.7% 4.6% 4.7% 

=1 10 4.5% (1.1% - 7.9%) 4.8% (1.6% - 8.1%) 0.9% 0.7% 2.4% 1.8% 

 

Objective 2: Precision of bone mechanoregulation analysis  

In the longitudinal cohort, the determined filtering strategy (objective 1) visually reduced the amount of 

detected formation and resorption sites relative to the unfiltered approach, and the filtering strategy 

showed good precision between baseline repeat measurements (Figure 3). We found significant bone 

resorption of 5.3% (95% CI:  3.1% – 7.5%, p < 0.05) and formation of 5.2% (95% CI:  3.0% – 7.4%, p < 

0.05) after one year compared to resorption of 3.7% (95% CI:  2.4% – 5%, p < 0.05) and formation of 

3.1% (95% CI:  1.7% – 4.5 %, p < 0.05) within one month, between baseline and the repeat scan (Figure 

4A). Bland-Altman plots showed no significant bias (p< 0.01) between baseline and repeated scans for 

deriving one-year bone formation and resorption volume fractions. The 95% limits of agreement 

identified one participant with high bone resorption (Tb.R > 6.6%) and formation (Tb.F > 6.7%) as an 

outlier (Figure 4B).  

 

In terms of mechanoregulation outcomes over the one-year follow-up, we found that bone had the highest 

conditional probability to be formed in high-strain and resorbed in low-strain regions (Figure 5A), and no 

bias (p< 0.01) was found between conditional probabilities computed when using the baseline versus 

repeat scan (Figure 5B). No participants showed a dysregulated response (OR < 1.0 or CCR < ⅓) to 

mechanical stimuli. The range of participant-level ORR was between 1.3 to 3.5, and ORF was between 1.3 

to 2.9 (Figure 5C). The overall population showed that the likelihood of bone resorption was 
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significantly associated with decreasing strain, and bone formation was significantly associated with 

increasing strain, with an overall ORR of 2.0 (99% CI: 1.8 – 2.2) and ORF of 1.9 (99% CI: 1.7 – 2.1). On 

average, 38.3% (99% CI: 37.2 – 39.4) of strain-driven remodelling events were detected with CCR, 

ranging from 35.7% to 42.5%. In most cases, confidence intervals between one-year mechanoregulation 

markers estimated from baseline and repeat scans showed consistent participant-level overlap, 

demonstrating good precision at the participant level. Visually, trending differences in ORR, ORF, and 

CCR between age and sex groups of participants were observed, yet no explicit comparisons were made 

due to insufficient statistical power. Precision errors of ORR (RMS-SD = 0.2, LSC = 0.6) were higher 

than ORF (RMS-SD = 0.1, LSC = 0.3). CCR showed excellent precision (RMS-SD = 5.1*10
-3

, LSC = 

14.0*10
-3

). Overall, bone mechanoregulation markers acquired from the baseline and repeat scans show 

consistent results on a participant-specific level, demonstrating the method's precision. 
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Figure 3: (A) Representative axial cross-sections (15 slices thick) of the human distal radius show bone 

remodelling over one year. Sites of bone formation (for) and resorption (res) were determined using three-

dimensional image registration of baseline and 1-year follow-up measurements for scans (repeat 1) and 

rescans (repeat 2). (B) Remaining formation and resorption sites are shown after filtering small 

remodelling clusters (< 12 voxels) with a minimum change in density of ±225 HA mg/cm
3
, using the 

optimised filtering strategy from objective 1. (C) Corresponding micro finite element analysis (micro-FE) 

visually shows higher strain energy density in regions of formation and lower strain energy density in 

regions of resorbed bone.  
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Figure 4: (A) Bone resorption, formation and net change fraction over one year of bone remodelling 

assessed by longitudinal HR-pQCT imaging. Significant increases in remodelled tissue fraction from 

baseline to one year are indicated (∗p < 0.05; Wilcoxon signed-rank test). (B) Bland-Altman plots 

illustrating the mean offset (solid mid-line, grey) and 95% confidence limits (dashed lines, grey) of 

agreement for one-year resorption, formation, and net-change fractions when the baseline versus repeat 

scans (within one month of baseline) were used.  
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Figure 5: (A) Conditional probability of bone resorption, quiescence, and formation throughout one year 

of bone remodelling (n=19) with varying local strain energy density (SED) magnitudes. (B) Bland-

Altman plots illustrate mean offset (solid mid-line, grey) and 95% confidence limits (dashed lines, grey) 

of conditional probability agreement of a repeat assessment (<1 month) conducted on the same 

participant. (C) Respective odds ratios of bone resorption/formation with decreasing/increasing SED and 

correct classification rates quantify the mechanically-driven bone remodelling in participants. Vertical 

dashed lines indicate average measurement values, and the shaded area shows the 99% confidence 

intervals for baseline scans (red) and repeat scans (black).  
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4 Discussion 

Mechanical signals are one of the most important determinants of bone health in humans [40], yet, 

quantifying the metabolic response of bone tissue to this stimulation has proven difficult. Here, we 

demonstrated that longitudinal HR-pQCT at 61 µm resolution can detect local bone formation and 

resorption on the bone surface over the course of one year. Combined with micro-FE analysis, we found a 

substantial temporospatial relationship between bone remodelling and local mechanical signals. We 

quantified the capacity of regional mechanical stimulus variations to initiate bone remodelling events 

using participant-specific formation and resorption odds ratios. We showed that local strain variations 

affected remodelling differently across participants. Further, we demonstrated that the proportion of 

remodelling events that were correctly correlated to the mechanical signal varied across participants. 

Using repeat scans, we evaluated the precision of this method to ensure that bone formation and 

resorption detected among individuals were not solely related to noise and measurement errors. Finally, 

our study provided robust in vivo mechanoregulation markers characterising the effect of local 

mechanical stimuli on bone remodelling and quantified their precision.  

For a reliable evaluation of bone mechanoregulation, consistent detection of local bone formation and 

resorption sites is required. Using an independent same-day-repeat HR-pQCT cohort, we showed that 

filtering of remodelling sites based on density change and cluster volume can reduce false detections 

without adversely impacting the method's precision. The basis of the proposed filtering approach was first 

developed for the first generation of HR-pQCT (XtremeCT, ScancoMedical, 82 µm) [17]. Although the 

resolution has increased from 82 µm to 61 µm, we found consistent filtering parameters of 225 mg/cm
3
 

minimum density change and 12 voxels minimum cluster size, which is equivalent to 5 voxels at 82 µm 

resolution, were effective for removing the majority (99%) of false remodelling events. Previous studies 

have shown that it is possible to retrospectively estimate specific second-generation HR-pQCT 

measurements from first-generation acquired images using cross-calibration techniques [41]. Our findings 

suggest that this could also be viable for mechanoregulation measurements, allowing comparisons to 
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published longitudinal data at 82 µm resolution; however, future cross-calibration studies would be 

required to confirm this. Further, the LSC required to detect bone formation was comparable to the LSC 

required to detect resorption and did not change from the previous scanner generation. We found that 

LSC rapidly increased with increasing patient motion, roughly 2% for high-quality (score 1) and 5% for 

good-quality (score 2) scans. Although the average volume replacement (turnover) of bone is 

approximately 10% per year [42], it varies across different sites. It is estimated to be substantially lower 

at yellow bone marrow sites, such as the distal radius, at roughly 2% per year [43,44]. Considering 

comparable one-year remodelling fractions in our longitudinal cohort, our findings suggest that a one-year 

follow-up may be the minimum required period to assess bone formation and resorption using this 

method. Although filtering can reduce false detections of formation and resorption events, our findings 

suggest future studies should only use low-motion HR-pQCT scans (motion  2), especially for short 

follow-ups or when investigating diseases with low bone turnover, such as diabetes mellitus. Differences 

observed in the current study compared to a previous study [17], recommending the inclusion of motion 

scores up to grade 3, may be due to operator variability of the manual motion scoring procedure [33]. To 

ensure inter-study comparability, we used a previously developed automatic motion grading system [26] 

to eliminate the subjectivity of motion scores. Studies may be able to use scans with moderate motion 

artefacts grade (motion grades 3) for more extended follow-up periods or when investigating bone 

diseases with more rapid changes, such as chronic kidney disease [45].   

Understanding the mechanisms behind localised bone loss and turnover dynamics in response to strain 

patterns may have important implications for treating age-related or disease-induced bone loss [1]. For 

example, previous HR-pQCT studies have identified impaired bone microstructure in patients with 

diabetes mellitus [46]. In these patients, observed microstructural deficits [47] may be directly related to 

an impaired response to mechanical loading, as has been observed in diabetic animal models [48]. Our 

proposed mechanoregulation method has the potential to bridge the gap between clinically observed bone 

phenotype and animal models and may help to develop mechanical intervention therapies that enhance 
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bone health and lower fracture risk in diabetic patients. Through determination of the level of strain that 

constitutes bone growth and the level of strain that may be excessive and raise the risk of damage or 

failure, similar analysis methods could also be incorporated into personalised physiotherapy or exercise 

treatments. Further, interventions that improve mechanosensitivity, as measured using the techniques 

described herein, may provide novel treatments for these patients. In support of this, a previous study 

showed that bone mechanoregulation could be used to assess the effects of vitamin D and calcium 

supplementation in individuals [21]. Our findings provide the necessary precision for these and future 

studies to interpret observed changes in mechanoregulation within and across participant groups.  

There are several limitations to our study. First, the linear transformation used after image registration 

may have introduced interpolation artefacts [49]. Yet, preliminary tests showed using higher-order 

interpolations did not substantially improve outcomes while significantly increasing computational time. 

Second, we assessed the precision of the mechanoregulation methods using a single follow-up timepoint, 

which is not completely independent since the one-year follow-up was used for both the baseline and 

repeat measurement. Therefore, we expect slightly higher precision errors when performing this analysis 

using scans/rescans at baseline and scans/rescans at follow-up. Yet, in combination with the same-day 

reproducibility assessment, our study provides first estimates for further investigations. Finally, the 

employed micro-FE model was linear in terms of material and geometry. These simplifications do not 

account for nonlinear behaviour or viscoelastic effects; however, only minor linear-elastic deformations 

are anticipated during daily activities [50]. Although our results show promising precision of our method 

for high-quality images, patient motion remains an issue for longitudinal HR-pQCT investigations. As a 

result, we had to exclude many participants in the longitudinal cohort due to patient motion. This is 

consistent with other studies investigating bone mechanoregulation using HR-pQCT that included subsets 

of 9 out of 126 [19], 21 out of 102 [18] and 25 out of 106 participants [21]. Future advances in motion 

suppression, whether through computational or hardware approaches, will be necessary to move HR-

pQCT-based bone remodelling methods closer to clinical implementation. Further, HR-pQCT is limited 
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to the peripheral skeletal sites. Therefore, direct assessment identification of reduced mechanoregulation 

at osteoporotic fracture sites with higher bone turnover rates, such as the hip or spine, is not yet possible. 

However, with the advent of new imaging technologies such as photon counting computed tomography 

[51] the application of mechanoregulation to other skeletal sites of interest could be possible in the future. 

The combination of time-lapsed bone remodelling with micro-finite element analysis provides a powerful 

tool for investigating skeletal adaptation to mechanical load. This work provides the necessary filtering 

protocol to identify the true bone formation and resorption sites using longitudinal HR-pQCT. Further, we 

propose patient-specific bone mechanoregulation imaging markers and report their precision to aid in 

designing future clinical studies investigating bone mechanoregulation in vivo. Bone mechanoregulation 

markers have the potential to help decipher the underlying causes of abnormal bone remodelling in many 

osteodegenerative disorders and age-related bone loss.  Future research should determine whether these 

markers can be utilised to identify patients at risk for fracture and develop individualised mechanical 

treatment regimens. 

5 References 

[1] A.A. Biewener, Safety factors in bone strength, Calcified Tissue International 1993 53:1. 53 (1993) S68–

S74. https://doi.org/10.1007/BF01673406. 

[2] M.B. Schaffler, W.Y. Cheung, R. Majeska, O. Kennedy, Osteocytes: Master orchestrators of bone, Calcif 

Tissue Int. 94 (2014) 5–24. https://doi.org/10.1007/S00223-013-9790-Y/FIGURES/3. 

[3] M.B. Schaffler, O.D. Kennedy, Osteocyte signaling in bone, Curr Osteoporos Rep. 10 (2012) 118–125. 

https://doi.org/10.1007/S11914-012-0105-4/FIGURES/1. 

[4] L. Qin, W. Liu, H. Cao, G. Xiao, Molecular mechanosensors in osteocytes, Bone Research 2020 8:1. 8 

(2020) 1–24. https://doi.org/10.1038/s41413-020-0099-y. 

[5] B. Martin, Mathematical model for repair of fatigue damage and stress fracture in osteonal bone, Journal of 

Orthopaedic Research. 13 (1995) 309–316. https://doi.org/10.1002/JOR.1100130303. 

[6] E.J. Bassey, M.C. Rothwell, J.J. Littlewood, D.W. Pye, Pre- and Postmenopausal Women Have Different 

Bone Mineral Density Responses to the Same High-Impact Exercise, Journal of Bone and Mineral Research. 

13 (1998) 1805–1813. https://doi.org/10.1359/JBMR.1998.13.12.1805. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

[7] R. Chow, J.E. Harrison, C. Notarius, Effect of two randomised exercise programmes on bone mass of 

healthy postmenopausal women., Br Med J (Clin Res Ed). 295 (1987) 1441–1444. 

https://doi.org/10.1136/BMJ.295.6611.1441. 

[8] G.F. Maddalozzo, C.M. Snow, High intensity resistance training: Effects on bone in older men and women, 

Calcif Tissue Int. 66 (2000) 399–404. https://doi.org/10.1007/S002230010081. 

[9] G.F. Muschler, H. Nitto, C.A. Boehm, K.A. Easley, Age- and gender-related changes in the cellularity of 

human bone marrow and the prevalence of osteoblastic progenitors, J Orthop Res. 19 (2001) 117–125. 

https://doi.org/10.1016/S0736-0266(00)00010-3. 

[10] G. D’Ippolito, P.C. Schiller, C. Ricordi, B.A. Roos, G.A. Howard, Age-Related Osteogenic Potential of 

Mesenchymal Stromal Stem Cells from Human Vertebral Bone Marrow, Journal of Bone and Mineral 

Research. 14 (1999) 1115–1122. https://doi.org/10.1359/JBMR.1999.14.7.1115. 

[11] Y. Koshihara, A. Suematsu, D. Feng, R. Okawara, H. Ishibashi, S. Yamamoto, Osteoclastogenic potential of 

bone marrow cells increases with age in elderly women with fracture, Mech Ageing Dev. 123 (2002) 1321–

1331. https://doi.org/10.1016/S0047-6374(02)00071-4. 

[12] E.A. Tonna, Electron microscopic study of bone surface changes during aging. The loss of cellular control 

and biofeedback, J Gerontol. 33 (1978) 163–177. https://doi.org/10.1093/GERONJ/33.2.163. 

[13] S. Qiu, D.S. Rao, S. Palnitkar, A.M. Parfitt, Relationships between osteocyte density and bone formation 

rate in human cancellous bone, Bone. 31 (2002) 709–711. https://doi.org/10.1016/S8756-3282(02)00907-9. 

[14] Z. Seref-Ferlengez, S.O. Suadicani, M.M. Thi, A new perspective on mechanisms governing skeletal 

complications in type 1 diabetes, Ann N Y Acad Sci. 1383 (2016) 67. https://doi.org/10.1111/NYAS.13202. 

[15] S.L. Manske, Y. Zhu, C. Sandino, S.K. Boyd, Human trabecular bone microarchitecture can be assessed 

independently of density with second generation HR-pQCT, Bone. 79 (2015) 213–221. 

https://doi.org/10.1016/j.bone.2015.06.006. 

[16] S. Boutroy, M.L. Bouxsein, F. Munoz, P.D. Delmas, In Vivo Assessment of Trabecular Bone 

Microarchitecture by High-Resolution Peripheral Quantitative Computed Tomography, J Clin Endocrinol 

Metab. 90 (2005) 6508–6515. https://doi.org/10.1210/JC.2005-1258. 

[17] P. Christen, S. Boutroy, R. Ellouz, R. Chapurlat, B. van Rietbergen, Least-detectable and age-related local in 

vivo bone remodelling assessed by time-lapse HR-pQCT, (2018). 

https://doi.org/10.1371/journal.pone.0191369. 

[18] M.E. Mancuso, K.L. Troy, Relating Bone Strain to Local Changes in Radius Microstructure Following 12 

Months of Axial Forearm Loading in Women, J Biomech Eng. 142 (2020) 1–11. 

https://doi.org/10.1115/1.4048232. 

[19] P. Christen, K. Ito, R. Ellouz, S. Boutroy, E. Sornay-Rendu, R.D. Chapurlat, B. van Rietbergen, Bone 

remodelling in humans is load-driven but not lazy, Nat Commun. 5 (2014) 1–5. 

https://doi.org/10.1038/ncomms5855. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

[20] M. Walle, F.C. Marques, N. Ohs, M. Blauth, R. Müller, C.J. Collins, Bone Mechanoregulation Allows 

Subject-Specific Load Estimation Based on Time-Lapsed Micro-CT and HR-pQCT in Vivo, Front Bioeng 

Biotechnol. 9 (2021) 486. https://doi.org/10.3389/fbioe.2021.677985. 

[21] C.J. Collins, P.R. Atkins, N. Ohs, M. Blauth, K. Lippuner, R. Müller, Clinical observation of diminished 

bone quality and quantity through longitudinal HR-pQCT-derived remodeling and mechanoregulation, 

Scientific Reports 2022 12:1. 12 (2022) 1–13. https://doi.org/10.1038/s41598-022-22678-z. 

[22] M.G. Goff, C.R. Slyfield, S.R. Kummari, E. v. Tkachenko, S.E. Fischer, Y.H. Yi, M.G. Jekir, T.M. 

Keaveny, C.J. Hernandez, Three-dimensional Characterization of Resorption Cavity Size and Location in 

Human Vertebral Trabecular Bone, Bone. 51 (2012) 28. https://doi.org/10.1016/J.BONE.2012.03.028. 

[23] E.F. Eriksen, H.J.G. Gundersen, F. Melsen, L. Mosekilde, E.F. Eriksen, Reconstruction of the Formative 

Site in Iliac Trabecular Bone in 20 Normal Individuals Employing a Kinetic Model for Matrix and Mneral 

Apposition, 1984. 

[24] F.A. Schulte, D. Ruffoni, F.M. Lambers, D. Christen, D.J. Webster, G. Kuhn, R. Müller, Local Mechanical 

Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level, PLoS One. 8 (2013) e62172. 

https://doi.org/10.1371/JOURNAL.PONE.0062172. 

[25] H.E. Plesser, Reproducibility vs. Replicability: A brief history of a confused terminology, Front 

Neuroinform. 11 (2018) 76. https://doi.org/10.3389/FNINF.2017.00076/BIBTEX. 

[26] M. Walle, D. Eggemann, P.R. Atkins, J.J. Kendall, K. Stock, R. Müller, C.J. Collins, Motion grading of 

high-resolution quantitative computed tomography supported by deep convolutional neural networks, Bone. 

166 (2023) 116607. https://doi.org/10.1016/J.BONE.2022.116607. 

[27] D. Schenk, A. Mathis, K. Lippuner, P. Zysset, In vivo repeatability of homogenized finite element analysis 

based on multiple HR-pQCT sections for assessment of distal radius and tibia strength, Bone. 141 (2020) 

115575. https://doi.org/10.1016/J.BONE.2020.115575. 

[28] S. Bonaretti, S. Majumdar, T.F. Lang, S. Khosla, A.J. Burghardt, The comparability of HR-pQCT bone 

measurements is improved by scanning anatomically standardized regions, Osteoporosis International. 28 

(2017) 2115–2128. https://doi.org/10.1007/S00198-017-4010-7/TABLES/7. 

[29] P.R. Atkins, K. Stock, N. Ohs, C.J. Collins, L. Horling, S. Benedikt, G. Degenhart, K. Lippuner, M. Blauth, 

P. Christen, others, Formation Dominates Resorption with Increasing Mineralized Density and Time-Post-

Fracture in Cortical but not Trabecular Bone: A Longitudinal HR-pQCT Imaging Study in the Distal Radius, 

JBMR Plus. (n.d.) e10493. 

[30] P.R. Atkins, K. Stock, N. Ohs, C.J. Collins, L. Horling, S. Benedikt, G. Degenhart, K. Lippuner, M. Blauth, 

P. Christen, others, Formation Dominates Resorption with Increasing Mineralized Density and Time-Post-

Fracture in Cortical but not Trabecular Bone: A Longitudinal HR-pQCT Imaging Study in the Distal Radius, 

JBMR Plus. (n.d.) e10493. 

[31] D.E. Whittier, S.K. Boyd, A.J. Burghardt, J. Paccou, A. Ghasem-Zadeh, R. Chapurlat, K. Engelke, M.L. 

Bouxsein, Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution 

peripheral quantitative computed tomography, Osteoporosis International. 31 (2020) 1607–1627. 

https://doi.org/10.1007/s00198-020-05438-5. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

[32] H.R. Buie, G.M. Campbell, R.J. Klinck, J.A. MacNeil, S.K. Boyd, Automatic segmentation of cortical and 

trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis, Bone. 41 

(2007) 505–515. https://doi.org/10.1016/j.bone.2007.07.007. 

[33] D.E. Whittier, A.N. Mudryk, I.D. Vandergaag, L.A. Burt, S.K. Boyd, Optimizing HR-pQCT workflow: a 

comparison of bias and precision error for quantitative bone analysis, Osteoporosis International. 31 (2020) 

567–576. https://doi.org/10.1007/S00198-019-05214-0/TABLES/3. 

[34] Z. Yaniv, B.C. Lowekamp, H.J. Johnson, R. Beare, SimpleITK Image-Analysis Notebooks: a Collaborative 

Environment for Education and Reproducible Research, J Digit Imaging. 31 (2018) 290–303. 

https://doi.org/10.1007/S10278-017-0037-8. 

[35] R. Beare, B. Lowekamp, Z. Yaniv, Image Segmentation, Registration and Characterization in R with 

SimpleITK, J Stat Softw. 86 (2018). https://doi.org/10.18637/JSS.V086.I08. 

[36] C.-C. Gliier, G. Blake, Y. Lu, B.A. Blunt, M. Jergas, H.K. Genant, Osteoporosis International Accurate 

Assessment of Precision Errors: How to Measure the Reproducibility of Bone Densitometry Techniques, 5 

(1995) 262–270. 

[37] D.E. Whittier, S.L. Manske, D.P. Kiel, M. Bouxsein, S.K. Boyd, Harmonizing finite element modelling for 

non-invasive strength estimation by HR-pQCT, J Biomech. 80 (2018) 63. 

https://doi.org/10.1016/J.JBIOMECH.2018.08.030. 

[38] C. Flaig, P. Arbenz, A scalable memory efficient multigrid solver for micro-finite element analyses based on 

CT images, Parallel Comput. 37 (2011) 846–854. https://doi.org/10.1016/j.parco.2011.08.001. 

[39] D.C.T. né Betts, E. Wehrle, G.R. Paul, G.A. Kuhn, P. Christen, S. Hofmann, R. Müller, D.C. Tourolle né 

Betts, E. Wehrle, G.R. Paul, G.A. Kuhn, P. Christen, S. Hofmann, R. Müller, The association between 

mineralised tissue formation and the mechanical local in vivo environment: Time-lapsed quantification of a 

mouse defect healing model, Sci Rep. 10 (2020) 1–10. https://doi.org/10.1038/s41598-020-57461-5. 

[40] L. Wang, X. You, L. Zhang, C. Zhang, W. Zou, Mechanical regulation of bone remodeling, Bone Research 

2022 10:1. 10 (2022) 1–15. https://doi.org/10.1038/s41413-022-00190-4. 

[41] S.L. Manske, E.M. Davison, L.A. Burt, D.A. Raymond, S.K. Boyd, The Estimation of Second-Generation 

HR-pQCT From First-Generation HR-pQCT Using In Vivo Cross-Calibration, Journal of Bone and Mineral 

Research. 32 (2017) 1514–1524. https://doi.org/10.1002/jbmr.3128. 

[42] S.C. Manolagas, A.M. Parfitt, What old means to bone, Trends in Endocrinology and Metabolism. 21 (2010) 

369–374. https://doi.org/10.1016/j.tem.2010.01.010. 

[43] A.M. Parfitt, Misconceptions (2): Turnover Is Always Higher in Cancellous Than in Cortical Bone, 2002. 

[44] A.M. Parfitt, D.S. Rao, J. Stanciu, A.R. Villanueva, M. Kleerekoper, B. Frame, Irreversible bone loss in 

osteomalacia. Comparison of radial photon absorptiometry with iliac bone histomorphometry during 

treatment, Journal of Clinical Investigation. 76 (1985) 2403–2412. https://doi.org/10.1172/JCI112253. 

[45] S. Salam, O. Gallagher, F. Gossiel, M. Paggiosi, A. Khwaja, R. Eastell, Diagnostic accuracy of biomarkers 

and imaging for bone turnover in renal osteodystrophy, Journal of the American Society of Nephrology. 29 

(2018) 1557–1565. https://doi.org/10.1681/ASN.2017050584/-/DCSUPPLEMENTAL. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

[46] M. Walle, D.E. Whittier, M. Frost, R. Müller, C.J. Collins, Meta-analysis of Diabetes Mellitus-Associated 

Differences in Bone Structure Assessed by High-Resolution Peripheral Quantitative Computed 

Tomography, Curr Osteoporos Rep. (2022). https://doi.org/10.1007/s11914-022-00755-6. 

[47] A. Parajuli, C. Liu, W. Li, X. Gu, X. Lai, S. Pei, C. Price, L. You, X.L. Lu, L. Wang, Bone’s Responses to 

Mechanical Loading are Impaired in Type I Diabetes, Bone. 81 (2015) 152. 

https://doi.org/10.1016/J.BONE.2015.07.012. 

[48] K.L. Troy, M.E. Mancuso, J.E. Johnson, Z. Wu, T.J. Schnitzer, T.A. Butler, Bone Adaptation in Adult 

Women Is Related to Loading Dose: A 12-Month Randomized Controlled Trial, J Bone Miner Res. 35 

(2020) 1300–1312. https://doi.org/10.1002/JBMR.3999. 

[49] F.A. Schulte, F.M. Lambers, T.L. Mueller, M. Stauber, R. Müller, Image interpolation allows accurate 

quantitative bone morphometry in registered micro-computed tomography scans, Comput Methods Biomech 

Biomed Engin. 17 (2014) 539–548. 

[50] T. Sugiyama, Physical activity and bone health: understanding mechanical strain-related stimuli, Int J 

Epidemiol. 47 (2018) 669–670. https://doi.org/10.1093/IJE/DYY037. 

[51] M. Bonvento, T. Button, P. Srivastava, E. Roessl, R. Proksa, K-edge imaging in x-ray computed 

tomography using multi-bin photon counting detectors, Phys Med Biol. 52 (2007) 4679. 

https://doi.org/10.1088/0031-9155/52/15/020. 

  

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

CRediT author statement:  

Matthias Walle: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, 

Resources, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization. Danielle 

E. Whittier: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data Curation, 

Writing - Original Draft, Writing - Review & Editing. Denis Schenk: Data Curation, Writing - Review & 

Editing. Penny R. Atkins: Data Curation, Writing - Review & Editing. Michael Blauth: Data Curation, 

Writing - Review & Editing, Project administration. Philippe Zysset: Data Curation, Writing - Review & 

Editing, Project administration. Kurt Lippuner: Data Curation, Writing - Review & Editing, Project 

administration. Ralph Müller: Data Curation, Writing - Review & Editing, Project administration, 

Funding acquisition, Supervision. Caitlyn J. Collins: Conceptualization, Methodology, Formal analysis, 

Data Curation, Writing - Review & Editing, Project administration, Supervision. 

 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

Highlights 

 Assessed in vivo precision of HR-pQCT-based bone mechanoregulation methods. 

 The measured precision was between 1.3% and 10.5% RMS-CV for various markers. 

 All participants consistently formed bone in high-strain and resorbed in low-strain regions. 

 Likelihood for resorption decreased by 2.0±0.2% and formation increased by 1.9±0.2% per 

percent increase in strain. 

 In the trabecular compartment, 38.3±1.1% of remodelling events were strain-driven. 
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