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Abstract

Conventional MRI features of canine gliomas subtypes and grades significantly over-

lap. Texture analysis (TA) quantifies image texture based on spatial arrangement of

pixel intensities. Machine learning (ML) models based on MRI-TA demonstrate high

accuracy in predicting brain tumor types and grades in humanmedicine. The aimof this

retrospective, diagnostic accuracy study was to investigate the accuracy of ML-based

MRI-TA in predicting canine gliomas histologic types and grades.Dogswith histopatho-

logical diagnosis of intracranial glioma and available brain MRI were included. Tumors

weremanually segmented across their entire volume in enhancing part, non-enhancing

part, and peri-tumoral vasogenic edema in T2-weighted (T2w), T1-weighted (T1w),

FLAIR, and T1w postcontrast sequences. Texture features were extracted and fed

into three ML classifiers. Classifiers’ performance was assessed using a leave-one-out

cross-validation approach. Multiclass and binary models were built to predict his-

tologic types (oligodendroglioma vs. astrocytoma vs. oligoastrocytoma) and grades

(high vs. low), respectively. Thirty-eight dogs with a total of 40 masses were included.

Machine learning classifiers had an average accuracy of 77% for discriminating tumor

types and of 75.6% for predicting high-grade gliomas. The support vector machine

classifier had an accuracy of up to 94% for predicting tumor types and up to 87%

for predicting high-grade gliomas. The most discriminative texture features of tumor

types and grades appeared related to the peri-tumoral edema in T1w images and to the

non-enhancing part of the tumor in T2w images, respectively. In conclusion, ML-based

MRI-TA has the potential to discriminate intracranial canine gliomas types and grades.
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1 INTRODUCTION

Conventional MRI features of canine gliomas types and grades largely

overlap.1–4 These intra-axial tumors have a predominant localiza-

tion within the frontal, temporal, and parietal lobes.5 They most
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commonly show ovoid to irregular shape, well to poorly defined

margins, T2-weighted (T2w) hyperintense, T1-weighted (T1w) iso-

to hypointense signal, variable degrees of contrast enhancement,

intratumoral hemorrhage, peri-tumoral edema, and mass effect.1,6

Oligodendrogliomas have been reported to more likely contact the
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brain surface and distort the ventricular system, to have smoother

margins and T1w hypointense signal compared to astrocytomas.2–4,7

Neoplastic spread into neighboring brain structures and contrast

enhancement have been reported more commonly in high-grade than

low-grade gliomas.2–4,7 However, despite the broad description of

canine gliomas MRI features, the evaluation of previously defined

conventional MRI predictors3,4,8 yielded a sensitivity and specificity

of 58.8% and 68.8%, respectively, for the diagnosis of astrocytoma,

and 67.2% and 57.1% for the diagnosis of a high-grade gliomas in

dogs.2 The low sensitivities and specificities may be explained by

the restricted ability of the human eye to objectively detect subtle

heterogeneous features of specific tissues or lesions.9

Texture analysis (TA), on the contrary, mathematically extracts

quantitative information from medical images, providing objec-

tive measurements of tumor heterogeneity.10,11 It is based on the

assumption that biomedical images contain information reflecting

specific diseases or lesions,10,12,13 describing the spatial arrange-

ment of pixel intensities and providing a representation of tumor

heterogeneity within a specific region of interest (ROI).9 Texture fea-

tures can be divided into shape-based, first-order, and second-order

texture features.12 Shape-based features describe the geometrical

characteristics of ROIs. First-order texture features are histogram

intensity-based features that describe the distribution of each pixel

or voxel intensity without considering their spatial relationships

and second-order texture features study pixels or voxels inter-

relationships.12 These texture features can serve as an input to

machine learning (ML)models,14 and offer an alternative to the predic-

tion of different types of pathologies. Machine learning is a subfield of

artificial intelligence that provides computers the ability to learn from

experience by pattern recognition,15 aiming to find hard-to-discern

patterns in large amounts of data.12

In small animal medicine, TA, with or without ML, has proven to

be valuable in differentiating radiographic lung patterns16, histologic

grade of meningiomas on MRI17, healthy from abnormal lung18 or

malignant from benign hepatic lesions19 on computed tomography,

and inflammatory brain lesions from gliomas on MRI.20 However,

a TA-based random forest (RF) classifier was unable to correctly

discriminate canine gliomas types and grades.20 In this study,20 a single

segment across a single slice including the entire tumor and excluding

the perilesional edema was used for texture features extraction. In

human medicine, multiple studies have demonstrated the benefit

of using multiple segments across the entire tumor volume, as well

as using different ML models to classify neoplasia or predict their

outcome, especially in the field of neuroradiology.21–24 Different ML

models were able to classify human glioma grades based on TAwith an

average area under the curve (AUC) of 0.9.23

We hypothesized that using multiple segments across the entire

tumor volume, which has not been previously performed in canine

patients, would allow a more accurate ML classification of canine

glioma types and grades based on MRI-TA compared to conventional

MRI. Therefore, the aimof our studywas to test differentML classifiers

based onMRI-TA for this purpose.

2 MATERIALS AND METHODS

The study design is summarized in Figure 1.

2.1 Selection and description of subjects

For this retrospective diagnostic accuracy study, the medical records

of a single academic institution (Vetsuisse Faculty, University of Bern)

were searched for dogs with histopathological diagnosis of intra-axial

glioma, for which a brainMRIwas performed. Approval for use of med-

ical data was provided by the owner’s informed consent prior hospital

F IGURE 1 Flowchart of the study design.
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BARGE ET AL. 3

F IGURE 2 T2-weighted (A) (TE, 100ms; TR, 5921.69ms; slice thickness, 3.5 mm), FLAIR (B) (TE, 140ms; TR, 11000ms; TI, 2600ms; slice
thickness, 3.5 mm), and T1-weighted pre- (C) and post-contrast (D) (TE, 15ms; TR, 411.58ms; slice thickness, 3.5 mm) transverse images at the
level of the caudate nuclei, of a dog with a high-grade oligoastrocytoma. In eachMRI slice, the tumor was segmented in enhancing, non-enhancing,
and vasogenic edema segments (E) to extract the texture features. [Color figure can be viewed at wileyonlinelibrary.com]

admission. Patients were included if the histopathological diagnosis

was obtained by a board-certified pathologist based on postmortem

examination or stereotactic brain biopsy. The pathology report had to

include the glioma type (oligodendroglioma, astrocytoma, oligoastro-

cytoma) and grade (II, III, IV) based on the World Health Organization

classification.5,25 MRI examinations had to be performed using the

same scanner (Panorama High Field Open 1.0 Tesla; Philips Medical

Systems), and transverse T2w fast spin echo, fluid-attenuated inver-

sion recovery (FLAIR), pre- and postcontrast (obtained immediately

after intravenous administration of 0.2ml/kg of gadoteratemeglumine

[ClariscanTM, 0.5 mmol/mL, GE Healthcare Pharmaceutical, Chicago,

IL,USA]) T1wspin echo sequences had tobe available for inclusion. The

typeof coil, timeof echo (TE), repetition time (TR), timeof inversion (TI),

slice thickness, and presence or absence of artifacts in each sequence

were recorded for each dog. If a dog demonstratedmore than onemass

with confirmed histopathological diagnosis of glioma, each mass was

included independently.

2.2 Data recording and analysis

2.2.1 Magnetic resonance images co-registration
and segmentation

Images were exported as Digital Imaging and Communications in

Medicine files and converted into Neuroimaging Informatics Technol-

ogy Initiative format. T2w, FLAIR, and T1w precontrast images were

co-registered to the T1w post-contrast sequence using an available

software (3DSlicer, v4.11.2, slicer.org).26

Three-dimensional segmentations of the enhancing and non-

enhancing parts of the tumor, and of the perilesional vasogenic edema

weremanually performed by consensus among a second-year diagnos-

tic imaging resident (P.B.) and a board-certified veterinary radiologist

(A.D.) using 3DSlicer Segment Editor module. The “enhancing” seg-

ment was defined as areas within the tumor that displayed T1w

postcontrast enhancement compared to T1w precontrast sequence.

The “non-enhancing” segment was defined as tumor areas that did not

exhibit T1w post-contrast enhancement. The vasogenic “edema” seg-

ment was defined as T2w and FLAIR hyperintense areas within the

peri-tumoral white matter (normal or deformed due to mass effect)

that was more extensive than the lesion itself. Meninges, large vessels,

intratumoral cystic regions with a fully suppressing FLAIR signal, and

areas of partial volume averaging artifact were not included in any seg-

ment. The volumetric segmentationswere then exported as label-maps

and used to extract texture features (Figure 2).

2.2.2 Pre-processing and texture features
extraction

Pre-processing techniques and texture features extraction

were performed with an available freeware software (LIFEx;v6;
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4 BARGE ET AL.

www.lifexsoft.org).27 Before extraction, each segment in each

sequence was pre-processed, with the goal of homogenizing images

with respect to pixel spacing, gray-level intensities, and bins of gray-

level histograms. Image interpolation was performed setting the

common in-plane resolution to 1×1 mmwhile maintaining the original

slice thickness. For image discretization, a fixed bin number of 32 was

applied,28–30 and the MRI gray levels within the segmentations were

normalized to the mean ± 3 standard deviations.9 Sixty-one texture

features were then extracted per segment in each sequence, leading to

amaximum of 732 texture values per tumor.

2.2.3 Machine learning models

SupervisedML algorithms require labeled datawith the known ground

truth (i.e., histopathology). Support Vector Machine (SVM), RF, and k-

nearest neighbors (kNN) are supervised ML classifiers used for both

classification and regression problems. An SVM maps each data point

into a dimensional feature space and aims to find a hyperplane that

will separate the data points into different classes (e.g., high-grade vs.

low-grade).31 RF classifiers consist of a combination of decision trees

that classify data into different classes,32 and kNNmodels cluster data

points into different groups and assigns a class to unseen data based

on similarities with prior examples from the training set.33 For each

of these classifiers, a high-level programming language script (Python,

v3.6.9) was written by a second-year diagnostic imaging resident with

prior training in artificial intelligence inmedical imaging (P.B.), using dif-

ferent Python libraries (numpy, pandas, and scikit-learn34) and run on

Google Colab.

Before feeding the models, normalization of the texture values and

dimensionality reduction were performed. Because texture values do

not have unit and their ranges vary among different types, a z-score

normalization was applied to improve their numerical stability, such

as their distribution would have a mean of 0 and a standard devia-

tion of 1.28 Principal Component Analysis (PCA) was performed to

reduce the dimensionality of the dataset (e.g., number of texture vari-

ables) while maximizing the variance and minimizing the information

loss.35,36 It transforms the data into a new coordinate system while

retaining the most useful information,36 with the aim to make the

classifier’s task substantially easier. Given the expected low sample

size, a leave-one-out cross-validation (LOOcv) technique was chosen

to assess the classifiers performance. A grid search cross-validation

was implemented using LOOcv to normalize the data, find the required

number of principal components and best hyperparameters for the

three classifiers.

Different datasets were prepared to feed the models. One included

all extracted texture features, from the three different segments and

four different sequences (whole dataset). Smaller datasets included tex-

ture features of independent segments from independent sequences

(e.g., non-enhancing segment in T2w sequence). This led to a total of 13

datasets.

TABLE 1 Distribution of 40 glioma types and grades among the 38
dogs included.

Low-grade High-grade Total

Oligodendroglioma 6 19 25

Astrocytoma 4 3 7

Oligoastrocytoma 3 3 6

Oligosarcoma 0 2 2

Total 13 27 40

2.3 Statistics and assessment of ML classifiers
performance

Once the best combination of principal components and hyperpa-

rameters was optimized based on the supplied dataset using LOOcv,

predictions were obtained for each classifier. Multiclass classification

models aimed to predict gliomas histologic type (oligodendroglioma vs.

astrocytoma vs. oligoastrocytoma). The predictions were compared to

the histopathological diagnosis and overall accuracy, sensitivity, and

specificity for each class were calculated from confusion matrices.37

Binary classification models aimed to predict gliomas histologic grade

(high-grade [grade III or IV] vs. low-grade [grade II]).5,25 Based on the

predictions, from confusion matrices, accuracy, sensitivity, specificity,

and AUCwere calculated.37

3 RESULTS

Thirty-eight dogs met the inclusion criteria. The population mean age

was 8.6 years (median: 9 years; range: 5 months to 13 years). Thirteen

French Bulldogs, eight Boxers, three Labrador Retrievers, two German

Shepherds, two Jack Russell Terriers, two mixed breed dogs, and one

each of Border Terrier, Bolonka Zwetna, Continental Bulldog, Boston

Terrier, Irish Setter, Bullmastiff, Cane Corso, and Pomeranian, respec-

tively, were included. Twenty patients were females (15 spayed) and

18 were males (8 castrated). Two dogs had two independent masses,

leading to the inclusion of 40 tumors. Their types and grades based

on histopathology (32 postmortem and 8 in vivo stereotactic brain

biopsy) are summarized in Table 1. The single glioblastoma of the study

population was included as a high-grade astrocytoma.25

In six of 38 MRI studies, the slice thickness of the transverse FLAIR

sequencewas thicker (4.0mm) than the remaining sequences (3.5mm).

Motion artifact was identified in four different cases affecting a sin-

gle sequence perMRI study. A 3-channel transmitter and receiver knee

coil was used in 32/38 cases; a 4-channel transmitter and receiver head

coil was used in 6/38 cases. In FLAIR, TR (11000 ms), TE (140 ms), and

TI (2600 ms) were equal among all MRI studies. In T1w sequences, TR

ranged from 400 to 411.63 ms, and TE was constant (15 ms). In T2w

sequences, TR ranged from4372.5 to5979.06ms, andTEwas constant

(100ms).
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BARGE ET AL. 5

TABLE 2 Machine learningmulticlass classification (oligodendrogliomas vs. astrocytomas vs. oligoastrocytomas) test performancemeasures
on thewhole dataset.

Overall accuracy(%) Sensitivity(%) Specificity(%)

SVM RF kNN Average SVM RF kNN Average SVM RF kNN Average

Oligodendrogliomas 79 76 76 77 96 92 92 93 53 46 61 53

Astro-cytomas 29 43 28 33 96 96 100 97

Oligoastro-cytomas 67 50 66 61 96 97 87 93

Abbreviations: SVM, Support vector machine; RF, random forest; kNN, k-nearest neighbor.

TABLE 3 Machine learning binary classification (high-grade vs. low-grade gliomas) test performancemeasures on thewhole dataset.

Classifier Accuracy(%) Sensitivity(%) Specificity(%) AUC

SVM 80 74 92 0.83

RF 67 81 38 0.60

kNN 80 85 69 0.83

Average 76 80 66 0.75

Abbreviations: AUC, area under the curve; SVM, Support vector machine; RF, random forest; kNN, k-nearest neighbor.

All tumors (40/40) demonstrated non-enhancing segments. Perile-

sional edema was present in 21 of 40 tumors. In four (3 high-grade

oligodendrogliomas, 1 oligosarcoma), the edema segment was too

small to extract texture features. Of the remaining 17, 13 were high-

grade (10 oligodendrogliomas, 1 astrocytoma, 1 oligoastrocytoma,

1 oligosarcoma), and four were low-grade (2 oligodendrogliomas, 1

astrocytoma, 1 oligoastrocytoma). An enhancing segment was present

in 26 of 40 tumors. In five (3 low-grade astrocytomas, 2 high-grade

oligodendrogliomas), the enhancing segment was too small to extract

texture features. Of the remaining 21, 20 were high-grade (16 oligo-

dendrogliomas, 2 oligosarcomas, 1 astrocytoma, 1 oligoastrocytoma),

and one was a low-grade oligodendroglioma. Given the low number of

cases, oligosarcomaswere excluded from themulticlass but included in

the binary classificationmodels.

On thewhole dataset,MLmulticlass classifiers had an average accu-

racy of 77% for predicting tumor types. Their average sensitivity and

specificity were respectively 93% and 53% for predicting oligoden-

drogliomas, 33% and 97% for predicting astrocytomas, and 61% and

93% for predicting oligoastrocytomas (Table 2).

On the whole dataset, ML binary classifiers had an average accu-

racy of 76%, sensitivity of 80%, specificity of 66%, and AUC of

0.75 for predicting high-grade gliomas. The SVM and kNN classi-

fiers performed better than RF, having similar accuracy (80%) and

AUC (0.83), with sensitivities of 74% and 85%, and specificities

of 92% and 69%, respectively, for predicting high-grade gliomas

(Table 3).

The enhancing segment was not fed into the binary or multiclass

models as individual segment, as only one low-grade glioma, one

astrocytoma, and one oligoastrocytoma showed enhancement with

available texture features. Therefore eight of 12 small datasets were

used for further analysis.

The SVM multiclass classifier had the best performance for pre-

dicting tumor types on edema segments in T1w precontrast sequence

(overall accuracy 94%), with respective sensitivities and specificities of

100% and 75% for predicting oligodendrogliomas, 50% and 100% for

predicting astrocytomas, and 100% and 100% for predicting oligoas-

trocytomas. The three classifiers had overall poor performances on the

remaining combination of sequences and segments to predict tumor

types, with overall accuracies ranging between 62% and 82%, and

variable sensitivities and specificities (Table 4).

The SVM (accuracy 87%, sensitivity 89%, specificity 85%, AUC0.87)

and kNN (accuracy 80%, sensitivity 81%, specificity 76%, AUC 0.79)

binary classifiers achieved the best performances for predicting high-

grade gliomas on non-enhancing segments in T2w sequence, followed

by the SVM (AUC 0.77) using non-enhancing segments in T1w post-

contrast sequence. The three classifiers had overall poor performances

on the remaining combination of sequences and segments to predict

high-grade gliomas, with accuracies ranging between 43% and 82%,

sensitivities between 58% and 100%, and low specificities (Table 5).

4 DISCUSSION

The results of our study support the use of multiple segments across

the entire tumor volume to allow a more accurate ML classification of

canine glioma types and grades based on MRI-TA compared to con-

ventional MRI. Our TA-based SVM and kNN models demonstrated a

higher accuracy (80%), sensitivity (74%–85%), and specificity (69%–

92%) on the whole dataset to discriminate between high-grade and

low-grade intracranial canine gliomas than conventional MRI.2 This

suggests that intrinsic texture features discriminate intracranial canine

glioma grades and supports the use of TA in combination with ML for
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6 BARGE ET AL.

TABLE 4 Machine learningmulticlass classification (oligodendrogliomas vs. astrocytomas vs. oligoastrocytomas) test performancemeasures
on each combination of segments and sequences.

Sequence Tumor type

Overall Accuracy(%) Sensitivity(%) Specificity(%)

SVM RF kNN SVM RF kNN SVM RF kNN

Non-enhancing Segment

T2w Oligodendroglioma 82 71 74 100 92 96 53 38 38

Astrocytoma 57 43 14 96 93 100

Oligoastrocytoma 33 17 50 100 97 94

FLAIR Oligodendroglioma 76 61 68 92 92 96 84 46 15

Astrocytoma 43 0 14 87 87 100

Oligoastrocytoma 33 0 17 96 87 97

T1w Oligodendroglioma 74 68 68 88 96 96 53 23 15

Astrocytoma 43 28 28 87 93 97

Oligoastrocytoma 33 0 0 96 100 100

T1wC Oligodendroglioma 71 61 71 88 92 88 53 15 38

Astrocytoma 43 0 28 87 87 97

Oligoastrocytoma 33 0 50 96 100 94

Edema Segment

T2w Oligodendroglioma 75 62 75 100 83 100 0 0 0

Astrocytoma 0 0 0 N/A 100 100

Oligoastrocytoma 0 0 0 N/A 86 100

FLAIR Oligodendroglioma 81 69 75 92 91 100 50 0 0

Astrocytoma 50 0 0 100 100 100

Oligoastrocytoma 50 0 0 92 93 100

T1w Oligodendroglioma 94 69 75 100 91 100 75 0 0

Astrocytoma 50 0 0 100 93 100

Oligoastrocytoma 100 0 0 100 100 100

T1wC Oligodendroglioma 75 75 75 100 100 100 0 0 0

Astrocytoma 0 0 0 N/A 100 100

Oligoastrocytoma 0 0 0 N/A 100 100

Abbreviations: SVM, Support vector machine; RF, random forest; kNN, k-nearest neighbor; N/A, not applicable.

TABLE 5 Machine learning binary classification (high-grade vs. low-grade gliomas) test performancemeasures on each combination of
segments and sequences.

Accuracy(%) Sensitivity(%) Specificity(%) AUC

SVM RF kNN SVM RF kNN SVM RF kNN SVM RF kNN

Non-enhancing segment

T2w 87 75 80 89 85 81 85 53 76 0.87 0.70 0.79

FLAIR 75 70 70 100 85 85 23 38 39 0.62 0.62 0.62

T1w 72 70 70 88 81 96 38 46 15 0.64 0.64 0.56

T1wC 80 60 70 85 74 96 69 31 15 0.77 0.52 0.56

Edema segment

T2w 76 59 76 100 77 100 0 0 0 0.50 0.38 0.50

FLAIR 75 65 76 100 84 100 0 0 0 0.50 0.42 0.50

T1w 82 43 75 100 58 100 25 0 0 0.62 0.29 0.50

T1wC 82 65 76 100 77 100 25 25 0 0.62 0.51 0.50

Abbreviations: AUC, area under the curve; SVM, Support vector machine; RF, random forest; kNN, k-nearest neighbor; N/A, not applicable.
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BARGE ET AL. 7

their grading. In a recent study,20 RF models failed to accurately dis-

criminate canine gliomas into types and grades. In that study,20 a single

2D ROI was drawn to feed the model, including both enhancing and

non-enhancing tumor parts while excluding perilesional edema. Our

resultsmay also indicate that SVMperform overall better compared to

RF and kNN for TA-based canine glioma classification.

Texture metrics are difficult to interpret, but their use in combina-

tion with ML offers an alternative for quantitative MRI assessment38

and lesion classification. In dogs, an association between glioma grade

and prognosis has been suggested but not yet proven.39–41 Tex-

ture analysis-based ML may have the potential to improve treatment

planning and prognosis assessment, particularly in cases inwhich ante-

mortem diagnosis cannot be obtained, and may contribute to a better

understanding of the biological behavior of canine gliomas. However,

it is unknown whether glioma types, regardless of the grade, play a

role in prognosis in dogs. When fed with the whole dataset, the three

ML classifiers demonstrated a high overall accuracy for differentiating

tumor types (76%–79%), but a lower sensitivity (28%–43%) and higher

specificity (96%–100%) than conventional MRI features for predicting

astrocytomas,2 which likely indicates that texture features extracted

from thewhole dataset overlap between tumor types.

High-performance measures were achieved for predicting high-

grade gliomas with the SVM and kNN classifiers using non-enhancing

segments in T2w sequence. Therefore, discriminative texture fea-

tures, having the potential to correlate with histopathological findings

not captured on conventional MRI, are likely present in the non-

enhancing part of the tumor. The histopathological diagnosis of oligo-

dendrogliomas grade III and of astrocytomas grade IV relies on the

presence ofmicrovascular proliferation and necrosis.5 Presumably, the

non-enhancing segmentsdidnot containmicrovascular proliferationas

this would be expected in the enhancing segments. Only four low-grade

gliomaswere enhancing and only one had available texture values. This

is in accordancewithprevious studieswhich report a higher prevalence

of enhancement inhigh-gradegliomas.2,3,7 However, the lownumberof

low-grade gliomas with an enhancing segment and only one with avail-

able texture features did not allow these segments to be fed in to the

ML classifiers.

Perilesional edema secondary to compression, considered purely

vasogenic, is typical in low-grade gliomas, while vasogenic edema due

toblood–brainbarrier disruptionbymalignant cell infiltration, referred

as the peritumoral zone, is typical in high-grade gliomas.42 Whereas

ML classifiers were unable to discriminate tumor grades using edema

segments, the SVMclassifier performancewas higher using edema seg-

ments in T1w sequence to differentiate tumor types compared to the

whole dataset. This may indicate underlying texture differences within

the white matter tracks adjacent to the tumors due to differences in

growing pattern or presence of a peritumoral zone. It is likely that

the peritumoral zone was included within the edema segment, as MRI

underestimates the size and extent of brain tumors.3

Using different pre-processing techniques, including one or multi-

ple segments, and using a single 2D ROI or volumetric segmentations,

can produce large variability in texture feature metrics. Similarly, the

signal-to-noise ratio is one of the most influential factors in TA. A

signal-to-noise ratio greater than four is necessary to adequately

represent the textural behavior of the human brain.9 Multiple TA

studies in human medicine apply different pre-processing techniques

and texture feature extraction methods.43–46 Voxel size, TR, TE, field

strength inhomogeneity, and noise, largely influence the result of

texture metrics.29,38,47 Important limitations in our study, due to its

retrospective nature, are the use of different slice thicknesses and

coils according to patients size, and the TR variability particularly in

T2w sequences. These differences may have influenced the TA, but

pre-processing methods were implemented before texture feature

extraction according to other publications,28–30 aiming to homog-

enize images across all segments, sequences, and subjects. These

pre-processing techniques may facilitate multicenter studies, allow-

ing to increase the sample size and improve the generalizability of the

results.

As part of the TA process, feature selection and dimensionality

reduction methods are performed to reduce the data complexity,

keeping only texture features that help differentiate classes. Dimen-

sionality reduction methods, such as PCA, project the relevant texture

features into new variables (principal components), which are also

challenging to interpret.23,48 Further studies assessing the different

texture metrics across glioma types and grades and their correlation

to histopathological findings may yield further information.

Differentmethods for training and testing samples inmachine learn-

ing exist. In our study, LOOcv was the chosen method given the small

sample size, for which the model is applied once for the selected sam-

ple as a single-item test set, using all other samples as the training set,

and this process is repeated as many times as number of samples in

the dataset.18 Sample size is critical in ML. It has been shown that k-

fold cross-validation techniques can produce biased results, are more

likely to overfit ML models, and are therefore less likely to general-

ize well when applied to different datasets.49 However, the aim of our

study was to demonstrate the feasibility of ML and TA synergy for

canine glioma classification in a single academic institution, rather than

creating aML tool that could be applied elsewhere.

This study had other limitations. Motion and partial volume aver-

aging artifacts were identified in four sequences, and few slices were

more rostrally or caudally positioned than others, likely due to respira-

tory motion in the z-axis duringMRI acquisition. These cannot be fixed

with pre-processing techniques or rigid coregistration in 2D sequences

andmay influence TA results. The dataset was imbalanced (higher pro-

portionof oligodendrogliomas andhigh-grade gliomas),which is known

to be problematic for ML but reflects the distribution of intracranial

glioma types andgrades in the caninepopulation.2–4 Whereasdifferent

ML techniques could have been performed to counteract this limita-

tion, such as up-sampling theminority classes,50 this would have led to

a rather artificial dataset and would have increased the risk of model

overfitting. The histopathological criteria for grading gliomas depend

on their tumor type.25 Not differentiating the type to assess the grade

can therefore have introduced bias in the TA and ML performance

results. Studies with larger sample sizes aiming to grade gliomas based

on their types are encouraged to further assess texture feature dif-

ferences. Another important limitation of our study is that we did not

aim to differentiate gliomas from benignmass lesions, such as granulo-

mas, as it has been proved that brain granulomas share common MRI
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features with canine gliomas51. Although another study20 demon-

strated an accuracy of 85% for differentiation between meningoen-

cephalitis and gliomas using texture analysis, further research for

differentiation between solid benign intra-axial masses and gliomas

is encouraged. Lastly, the segmentations were manually performed

by two observers by mutual agreement. It is known that tumor mar-

gin delineation between non-enhancing tumor and perilesional edema

cannot always be made accurately, especially in T2w sequences, and

that tumor margins often exceed the margins established by MRI.3

This may have led to a large number of outliers in the edema region

due to inclusion of the peritumoral zone. A possible solution would

include margin shrinking to avoid wrong labelling, at the cost of

potentially excluding relevant texture metrics. Manual segmentation

is time consuming with a large inter and intra-observer variability.51

In human medicine, the use of automated techniques provide an unbi-

ased brain tumor segmentation with comparable estimates to human

raters.51 Recently, deep learning-based automatic segmentation of

head and neck organs was successfully achieved in dogs for radio-

therapy planning.52 Similarly, automated tumor segmentation could be

implemented in the future in dogs for TA and brain lesion volumetry.

5 CONCLUSIONS

Machine learning models based onMRI-TA, particularly SVM, have the

ability to discriminate intracranial canine glioma types and grades with

respective accuracies of up to 94% and 87%. The most discrimina-

tive texture features for differentiating tumor types and grades appear

related to peri-tumoral edema inT1w images and to the non-enhancing

tumor part in T2w images, respectively. Further multicenter studies

with larger sample sizes are needed to corroborate these results.
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