EGU23-13996
 General Assembly 2023
$23-28$ April, Vienna, Austrii

Simulation Study for Precise Orbit Determination of a Callisto Orbiter and Geodetic Parameter Recovery

W. Desprats ${ }^{1}$, D. Arnold ${ }^{1}$, S. Bertone ${ }^{2}$ M. Blanc ${ }^{4,5}$, A. Jäggi ${ }^{1}$, Lei Li Li 6, Mingetao ${ }^{\text {Li }}{ }^{6}$,
${ }^{1}$ Astronomical Institute, University of Bern, Switzerland ; ${ }^{2}$ Center for Research and Exploration in Space Science \& Technology

Introduction

Callisto, the outermost of the four Galilean satellites,
is a key body to answer pesent origin and the formation of the Jovian system. It appears to be the least differentiated and the least geologically evolved of the Galilean satellites, and therefore the one best reflecting the early ages of the Jovian system. The
Tianwen-4 mission (CNSA) is in his early preparation Tianwe to moressand
stage to explore this system, and to go in orbit around stage to
Callisto.

We perform a closed-loop simulation of spacecraft tracking (2-way Doppler), altimetry, and accelerometer data
of a high inclination, low altitude orbiter. We first use Doppler data only to recover its precise orbit and Callisto's geodetic parameters, e.g., gravity field, rotation, and orientation parameters and the k_{2} tidal Love number. We consider several ways to mitigate the mismodeling of
non-gravitational accelerations, such as using empirical non-gravitational accelerations, such as using empirical
accelerations and pseudo stochastic pulses, and we evaluate the benefits of an on-board accelerometer.
We also investigate the added value of laser altimeter measurements to enable the use of altimetry crossovers to im-
prove orbit determination and geodetic parameters, but also to estimate the recovery of surface tidal variations (via the h_{2} Love number). For our closed-loop analyses, we use both a development version of the Bernese ansss Software
(BSW) and the open source py Xover software.

Simulation pipeline

The orbits are propagated in the BSW starting from 2031-May-01, taking into account Callisto's gravity field and tidal deformation, Jupter (point mass and zonals up to d/o 6), other body atiactions (Galilean moons, Sun and planets)
and non-gravitational accelerations. Callisto's reference synthetic gravity field CALGLMo was derived from Anderson et al. (2001) (d/o 2), by rescaling the Moon's gravity field, up to d/o 100. We simulate 2 -way Doppler obervables (X-band and Ka-band) for the three antennas of the Chinese Deep Space Network (jiamusi, Kahshi and Neuquen) using a realistic 2021) to sim (hap

Figure 1: Simulation flowchart. Blue boxes refers to BSW software, yellow boxes to PyXover software.
The orbital elements are estimated for arcs of about 24 h length. After a first orbit fit using only Doppler observations, the al., 2021). Then for each 7-days combination, we search for all possible crossovers and compute their partial derivatives w.r.t. the estimated parameters in pyXover. These partial derivatives are then used to build normal equation systems (NEQs) in the BSW. Finally, following the Celestial Mechanics Approach (Beutler et al., 2010), the NEQs established for the individual arcs and combinations are stacked for a total of 3 months to estimate all orbit and geodetic parameters.

Geodetic parameter recovery

In this section we focus on the estimation of geodetic parameters, i.e., gravity field, rotation, and orientation parameters and the k_{2} tidal Love number, based on
radio tracking only. The procedure of arc-wise NEQ radio tracking only. The procedure of arc-wise NEQ
accumulation (for 3 months) to solve for global parameters is described in Desprats et al. (2023). Tarameters is described in Desprats et a. (2023). Ta-
ble 1 summarizes the accuracy to which we could recover these parameters from polar and circular orbits $\left(\beta_{\text {Earth }} \approx 80^{\circ}\right)$, using 2-way Doppler data from two
stations of the Cinese Deep Space Network (one stastations of the Chinese Deep Space Network (one sta-
tion operating in X-band and the two other operating in Ka-band) in two cases:
$\mathrm{h}=100 \mathrm{~km}$, Ka-band (Kahshi, China and
Neuquén, Argentina) Neuquén, Argentina)
$\mathrm{h}=200 \mathrm{~km}$, Ka-band (Kahshi, China) and X-band

Figure 4: Gravity field solutions for both cases. Difference (solid) and error (dashed) degree amplitudes.
(Jiamusi, China) ${ }^{\text {Nominal value }} \quad \mathrm{h}=100 \mathrm{k}$

	Nominal value	$\begin{aligned} & \mathrm{h}=100 \mathrm{~km} \\ & \text { Ka-band } \end{aligned}$	$\mathrm{h}=200 \mathrm{~km}$ X/Ka-band	
k2 Love number	0.3	5.3.10 ${ }^{-5}$	2.2.10 ${ }^{-4}$	
R.A. of the pole	268.7 deg	0.095 mdeg	0.26 mdeg	
Dec. of the pole	64.83 deg	0.004 mdeg	0.023 mdeg	Difference degree amplitude:
Angular velocity	$21.57 \mathrm{deg} /$ day 0 deg	$0.089 \mu \mathrm{deg} / \mathrm{day}$ $3.5 \mu \mathrm{deg}$	$0.30 \mu \mathrm{deg} / \mathrm{day}$ $14 \mu \mathrm{deg}$	$\left(\Delta \bar{C}_{n m}^{2}+\Delta \bar{S}_{n m}^{2}\right)$
\bar{C}_{20}	-1.462.10 ${ }^{-5}$	1.62.10 ${ }^{-9}$	$2.34 .10^{-9}$	${ }^{2 n}$
\bar{C}_{22}	-1.580.10-5	7.70.10-10	3.19.10-9	

Table 1: Unconstrained estimation errors of a subset of Callisto geodetic parameters.

Acknowledgements

Calculations were performed on UBELIX, the HPC cluster
at the University of Bern (http:/ /www.id.unibe.ch/hpc). This study has been funded by the Swiss National Science Foundation (SNSF).

Contact address
William Desprats
Astronomical Institute, Uni
Sidlerstrasse 5
3012 Berr (Switzerland)
william.desprats@unibe.ch
william.desprats@unibe.ch

Non-gravitational acceleration mitigation

Non-gravitational accelerations (NGA) are difficult to model. Considering solar and planetary radiation pressure, for a
JUICE-like orbiter, the accelerations reach up to a $15 \mathrm{~nm} / \mathrm{s}^{2}$. We evaluate several ways to mitigate the mismodeling of thicE-like orbiter, the accelerations reach up to a $15 \mathrm{~nm} / \mathrm{s}^{2}$. We evaluate several ways to mitigate the mismodeling o
these non-gravitational accelerations for a 200 km altitude polar orbit with $\beta_{\text {Earth }}$ close to -45° during 3 months, using Ka-band Doppler tracking data only with:

- realistic accelerometer data affected by white noise and biases in 3 directions
- realistic accelerometer data affected by white noise and biace
- pseudo-stochastic pulses (every $80 \mathrm{~min}=1 / 2$ orbital period) . 1 Cycle-Per-Revolution accelerations in 3 directions and one bias in cross-track directio

Figure 2: RMS of orbit differe several mitigation strategies.

Pseudo-stochastic pulses are very efficient reducing the Doppler residuals, but they can have a negative impact on the orbit (Fig. 2) and on the low degree of the gravity field (Fig. 3). Empirical accelerations are a good compromise in case no
accelerometer data are available. The estimation of biases, also necessary if accelerometer data are incorporated, turned out to be challenging. This could partly be explained by the low magnitude of the considered NGA, which forced us to
consider biases which are constant over one Callisto day ((16,7 Earth days).

First analyses of crossovers contribution

As mentioned above, NGA mismodelling might harm the orbit solution. We studied the contribution of altimetric crossovers to orbit determination. We consider a 200 km altitude Combining altimetric crossover discrepancies with the 27,280 Doppler observables in the polar orbit, tracked only by Jiamusi station (X-band only) for 2.5 months, with $\beta_{\text {Earth }} \approx 80^{\circ}$. BSW requires an adaptation of the orbit correction parameterization, as we estimate cor Without any parameter to absorb the NGA deficiency, the RMS error of the estimated error rections on the initial orbital elements of each arc, and not a global shifts of orbit tracks
can reach 16 m . Since the orbital plane is close to perpendicular to the Earth direction, the in Radial, Along-track and Cross-track directions (Fig. 1). Once the NEQ related to the can reach 16 m . Since the orbital plane is close to perpendicular to the Earth direction, the in Radial, Along-track and Cross-track directions (Fig. 1). Once the NEQs related to the
along-track component of the orbit is the worst determined in case of a Doppler-only orbit crossover discrepancy observable are set for each combination, we combine them to the arc fit (see, e.g., Desprats et al., 2023). wise Doppler NEQs by weighing down the crossovers discrepancies by a variance co-factor We first examine the contribution of crossovers alone on an orbit previously fitted using allowed us to improve the orbit (mainly in the along-track direction) up to a factor of 4 (Fig We first examine the contribution of crossovers alone on an orbit previously fitted using allowed us to improve the orbit (mainly in the along-track direction) up to a factor of 4 (Fig
Doppler observations. Using PyXover, we were able to find 442,416 crossovers from the 7). Doppler observations. Using PyXover, we were able to find 442,416 crossovers from the
66 combinations of 7 -days batches of noise-free altimetry data (Fig. 5). Because the orbit
is polar, most of the crossovers are found at high latitude (95% of them located at latitudes We present only first tests here, and the situation is expected to change when estimating $>70^{\circ}$. We then estimate orbit corrections in PyXover, parameterized as biases per track in other geodetic parameters, e.g., gravity field and h_{2} Love Number, and with other mismodthe local orbital frame. The largest corrections are in the along-track direction (Fig. 6), so ellings. We also expect to improve the altimetry contribution with a more careful weighing
that we expect a beneficial contribution when combining altimetry and radio tracking data. scheme.

Figure 5: Resi
discrepancies discrepancies Figure 6: Orbit corrections estimated in pyXo
for each track (i.e. once per orbit revolution). ted $\begin{aligned} & \text { Figure 7: RMS of orbit differences for } \\ & \text { only, and using Doppler + altimetry }\end{aligned}$

References

 Beutler et al., 2010 The celestial mechanics approach: theoretical foundations. J Geod 84:605-624
Desprats, et al., 2023 Influence of loww orbit design and strategeies for gravity field recovery of Europa. Planetary and Space Science: 105631.

