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Abstract

Understanding the interactions between the biomolecules that govern cellular behaviors remains an emergent question in biology.
Recent advances in single-cell technologies have enabled the simultaneous quantification of multiple biomolecules in the same cell,
opening new avenues for understanding cellular complexity and heterogeneity. Still, the resulting multimodal single-cell datasets
present unique challenges arising from the high dimensionality and multiple sources of acquisition noise. Computational methods
able to match cells across different modalities offer an appealing alternative towards this goal. In this work, we propose MatchCLOT,
a novel method for modality matching inspired by recent promising developments in contrastive learning and optimal transport.
MatchCLOT uses contrastive learning to learn a common representation between two modalities and applies entropic optimal transport
as an approximate maximum weight bipartite matching algorithm. Our model obtains state-of-the-art performance on two curated
benchmarking datasets and an independent test dataset, improving the top scoring method by 26.1% while preserving the underlying
biological structure of the multimodal data. Importantly, MatchCLOT offers high gains in computational time and memory that,
in contrast to existing methods, allows it to scale well with the number of cells. As single-cell datasets become increasingly large,
MatchCLOT offers an accurate and efficient solution to the problem of modality matching.
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INTRODUCTION
Single cells are complex dynamical systems where a variety of
biomolecules interact in a coordinated way to produce robust and
adaptive behaviors. At the same time, many of the underlying
mechanisms that govern fundamental cellular functions, such as
replication of DNA, transcription to RNA and translation to pro-
teins, are intrinsically stochastic [1–3]. This stochasticity allows
single cells to differentiate, forming diverse tissues, organs and,
ultimately, whole organisms [4]. Understanding the interactions
between these biomolecules at the intra- and inter-cellular level
is a longstanding question in biology. Such a holistic view on
cellular state and associated stochasticity can not only provide
mechanistic insights on vital cellular functions but can also reveal
how heterogeneity is linked to disease [5].

Recent advances in single-cell technologies have made it
possible to quantify different combinations of (epi)genomic,
transcriptomic and proteomic profiles in the same cell [6].
Integrated assays and workflows that allow simultaneous
measurement of gene expression with chromatin accessibility
[7], DNA methylation [8] or protein abundance [9, 10] are rapidly
gaining popularity. Computational analysis of the resulting
multiomic measurements has the potential to capture multiple
omic views that collectively determine cellular state and thus
elucidate cell complexity and heterogeneity at an unprecedented
scale. However, a number of emerging challenges associated with
the heterogeneity, measurement noise, batch effects and missing
information in the resulting datasets limit this potential [11, 12].
As a result, to date most single-cell datasets are independently
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Figure 1. Modality matching task in single-cell data integration. Given n single-cell profiles of two omic modalities (here, chromatin accessibility in blue
and gene expression in orange), a matching algorithm results in an n × n matrix that contains matching probabilities for all cell pairs. Comparing with
the ground-truth cell correspondence allows us to compute a matching score, shown here as the average matching probability of all real cell pairs.

generated, resulting in unimodal, unpaired datasets with no cell–
cell correspondence.

To address this limitation, a number of computational meth-
ods that attempt to diagonally integrate the unpaired unimodal
single-cell datasets have been proposed. Several of these methods
aim to align the unimodal datasets by projecting them in a
joint embedding feature space using common linear dimension-
ality reduction approaches, such as principal component analysis
(PCA) (e.g. Harmony [13]), canonical correlation analysis (CCA) (e.g.
Seurat v3 [14] and bind-SC [15]) and non-negative matrix factor-
ization (NMF) (e.g. LIGER [16] and Online iNMF [17]). An appeal-
ing alternative to overcome the need for aligning the unimodal
datasets is offered by computational methods able to perform
modality matching, i.e. pair single-cell profiles from different omic
modalities (Figure 1). Notable methods in this category include
UnionCom [18], Pamona [19], SCOT [20], SCOOTR [21], MMD-MA
[22] and GLUE [23]. One main challenge of modality matching
stems from the indistinguishability of cells of the same type,
whose variations in gene expression or protein abundance are
attributed to intrinsic noise and stochastic fluctuations [24]. How-
ever, if successful, such a matching could provide insights into
molecular features and mechanisms that govern this stochas-
ticity. Importantly, an effective matching prediction model could
be used to computationally integrate the increasing number of
generated unimodal single-cell datasets to yield valuable multi-
modal datasets.

Towards this goal, the single-cell community launched a
multimodal single-cell data integration competition at NeurIPS
2021 [24], with modality matching being one of the main tasks.
The organizers generated a unique curated dataset by profiling
bone marrow mononuclear cells (BMMCs) collected from 12
donors at 4 data generation sites using two multiomic single-cell
technologies: cellular indexing of transcriptomes and epitopes
by sequencing (CITE-seq), which captures single-cell RNA gene
expression (GEX) and surface protein levels as antibody-derived
tags (ADT) [9]; and 10X Multiome assay, which integrates the assay
for transposase-accessible chromatin (ATAC) for chromatin acces-
sibility with single-nucleus RNA gene expression levels (GEX) [25].
As both the CITE-seq and 10X Multiome benchmarking datasets
are paired multimodal assays, the actual ground-truth modality
matchings are known and can be used to evaluate method
performance. To date, this is the largest realistic benchmarking
dataset available for multimodal single-cell data integration.

Among a total of 462 submissions to the competition from
23 teams, the winning model in all subtasks was proposed by
Team CLUE [26]. CLUE’s architecture is based on modality-specific

variational autoencoders that learn low-dimensional embeddings
both within and across modalities. The second best-scoring model
was proposed by Team Novel [24], and was based on CLIP [27], a
popular contrastive learning model that learns a common repre-
sentation between text and images. Team Novel’s model uses two
modality-specific encoders that are trained using a contrastive
learning approach to generate similar latent representations for
profiles of the same cell, and orthogonal representations for
non-matching profiles. A post-competition method is scMoGNN
[28], a graph neural network-based method that outperformed
the competition winners. scMoGNN is based on a cell-to-feature
bipartite graph across modalities and uses heterogeneous graph
convolutions to construct a cosine similarity matrix between all
the pairs of cells. In both Novel and scMoGNN, cell matching was
achieved by a maximum weight bipartite graph that generates
hard matchings, i.e. each cell is paired with the top-scoring match.
Additionally, since the algorithm for the maximum-weight bipar-
tite matching is computationally intensive, it does not scale well
with an increasing number of cells. Indeed, in both Novel and
scMoGNN, the similarity matrix is sparsified by discarding the
weights that are smaller than the row- and column-wise 0.995
and 0.95 quantiles, respectively.

In this paper, we propose MatchCLOT, a novel solution for
the modality matching problem. Our work is inspired by recent
promising applications of optimal transport (OT) in various single-
cell data analysis tasks, such as identification of temporal cellular
dynamics [29–31], integration of spatial information with gene
expression [32], improvement of single-cell similarity metrics
[33, 34] and alignment of single-cell multiomics datasets [20,
21]. Drawing inspiration from contrastive learning approaches,
we train two modality-specific encoders to project the single-
cell multimodal measurements onto a unified latent embedding
space, and afterwards employ a novel OT algorithm to perform
soft-matching of the cells between the modalities. MatchCLOT
additionally exploits prior knowledge of the batch label, resulting
in a smaller search space for cell-level modality matching, and
uses a transductive setup that mitigates the effects of distribution
shifts in the test data. By benchmarking MatchCLOT on two mul-
timodal datasets from the NeurIPS competition we show that it
consistently outperforms the competing best method, scMoGNN
[28], achieving a 26.1% higher overall matching probability score
while preserving the underlying biological structure of the inte-
grated multimodal data. Importantly, our OT matching algorithm
offers significant gains in computational time and memory com-
pared to the existing methods and eliminates the need to discard
any measurements. This advantage is an important consideration
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Figure 2. Overview of the MatchCLOT framework. The three primary blocks of the framework, i.e. preprocessing, train, and test, are highlighted in
different colors, and the legends are presented at the bottom of the figure.

with the ever-increasing size of today’s single-cell datasets. Lastly,
by testing the trained model on an independent multimodal
dataset, we show that MatchCLOT consistently outperforms
existing methods, proving its robustness and ability to generalize
to new, previously unseen single-cell multiomic data.

METHODS
MatchCLOT processes the cell measurements from A and
B modalities to identify the cell correspondence. Let xA

i and
xB

j denote the measurements of the ith cell in A and jth cell
in B, respectively. The collective measurement for n cells is
denoted by A ∈ R

n×d1 and B ∈ R
n×d2 , where d1 and d2 are the

corresponding measurement dimensions. MatchCLOT aims to
predict a matching matrix M ∈ R

n×n, with Mi,j indicating the
matching probability between the ith cell in A and the jth cell in B,
by maximizing a matching probability score computed over M. An
overview of MatchCLOT is presented in Figure 2, which highlights
its three primary blocks:

1. A preprocessing block that normalizes the data and projects it
onto a low-dimensional latent space while correcting for the
batch effect in a transductive setting.

2. A training block that employs a contrastive learning approach
to maximize the similarity between matching cell profiles
across modalities in the latent space.

3. An inference block that involves an entropic regularized OT
and utilizes the batch labels for identifying the matching cell
profiles.

Preprocessing block
The first block of MatchCLOT independently preprocesses the
raw single-cell data across the modalities A and B in a transduc-
tive setting by operating on the union of the train and test sets
that are available while training. For each modality, MatchCLOT

normalizes and reduces the dimensions of the combined train
and test set using latent semantic indexing (LSI), a common
method for processing scATAC-seq data [35]. LSI consists of a term
frequency-inverse document frequency (TF-IDF) normalization
coupled to an L1-normalization and a logarithmic transformation,
followed by a truncated SVD and a zero mean and unit variance
scaling, as in Figure 2.

LSI results in preprocessed measurements of lower dimensions
that are in turn corrected for batch effects using Harmony [13],
an established batch effect correction method. Since the data
distribution of the test batches is independent of the training
batches, a correction of the batch effects in a transductive setting
is imperative, which minimizes the impact of the distribution
shifts due to acquisition variations in the data. We note that
during the transductive preprocessing, the two modalities are
processed independently and the ground-truth labels are not
used by the model. Notably, leveraging the unlabeled test data
was a common practice during the NeurIPS integration compe-
tition, where several methods applied unsupervised approaches
to the test data prior to the training of respective computational
methods. The final preprocessed cell measurements are denoted
as xA

ip
and xB

jp
for the cells i ∈ A and j ∈ B, respectively.

Training block
The training block of MatchCLOT is motivated by the contrastive
learning idea of CLIP [27]. The main idea is to transform the
preprocessed single cell measurements xA

ip
, ∀i ∈ A and xB

jp
, ∀j ∈ B

into a unified latent embedding space E, where the embeddings of
the same cell are pulled closer together while pushing away the
embeddings of the other cells. Formally, the embeddings of the ith

cell are denoted as eA
i and eB

i across the modalities A and B. The
aim is to bring together eA

i and eB
i , while pushing away from eA

j

and eB
j ∀j ∈ A and B, where j �= i. The training model consists

of two modality-specific encoders fA and f B, as in Figure 2, to
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produce the cell-level embeddings. Both the encoders are shallow
multi-layer perceptrons (MLPs) with Exponential Linear Unit (ELU)
activation function and dropout layers. The resulting modality-
specific embeddings are unit normalized and multiplied via a dot
product to produce a cosine similarity matrix S. For a pair of
embeddings eA

i and eB
j , Sij is defined as:

Sij = eA
i

‖eA
i ‖ ·

eB
j

‖eB
j ‖

where · denotes the dot product operator.
An InfoNCE [36] objective is then computed for all the embed-

ding similarity pairs in S. InfoNCE is a popular contrastive objec-
tive due to its simplicity, effectiveness, and theoretical guarantees.
It leverages the idea of noise contrastive estimation (NCE) [37],
a probabilistic model aiming to efficiently discriminate a target
datapoint from noise by utilizing the corresponding context infor-
mation, i.e., the distribution of the neighboring datapoints. Given
an embedding eA

i and its context set C = {eB
i } ∪ {eB

j | j �= i}, where
eB

i is a positive embedding and {eB
j | j �= i} denotes a set of k − 1

negative embeddings, the InfoNCE loss is computed as:

LInfoNCE = −E

⎡
⎢⎢⎣log

s(eB
i , eA

i )∑
eB

j ∈C

s(eB
j , eA

i )

⎤
⎥⎥⎦

where s denotes the scoring function defined as s(eA
i , eB

j ) =
exp

(
Sij/τ

)
and τ is a temperature scaling parameter optimized

during training.
The InfoNCE objective matches the embedding of the ith cell

in modality A to the true matching profile of the same cell in
modality B, while pulling away from the negative profiles of other
cells in modality B. During training, the contrastive objective max-
imizes the cosine similarity between profiles corresponding to the
same cell and minimizes the similarity between non-matching
profiles via backpropagation. In particular, we jointly optimize
two InfoNCE objectives during training, i.e. LA→B

InfoNCE and LB→A
InfoNCE,

to match the cell profiles in A to B and vice versa. The InfoNCE
objective is particularly suitable for the modality matching task
as it encourages the model to learn a representation where the
two modalities are aligned at the single-cell level.

During training, we optimize the model and the training hyper-
parameters, namely the LSI reduced dimensions, the dimension of
the encoder hidden layers, dropout rate, learning rate, and weight
decay using Wandb [38], a Bayesian hyperparameter optimization
library. To eliminate the risk of information leakage from the test
set, the model is trained from scratch and the hyperparameters
are tuned on a validation split obtained from the labeled training
set.

Inference block
During the inference on the test set, MatchCLOT involves an
entropic regularized OT to expedite and improve the matching
performance compared to the maximum weight bipartite hard
matching approach employed by existing methodologies. We fur-
ther utilize the batch labels of the cells to optimize the search-
space for the cell matching. Our OT matching module is method
agnostic and can be applied to any kind of similarity matrix.

OT matching
OT is a field of mathematics that studies the optimal way of
transporting a source distribution to a target distribution while

minimizing the costs of displacement. Given two discrete proba-
bility distributions with supports A, B of the same size (|A| = |B| =
n), with densities α, β, costs c(i, j) and probabilistic transportation
plan �(i, j) defined ∀i ∈ A, ∀j ∈ B, the linear program formulation
of the OT is given as:

min
�

∑
(i,j)∈A×B

c(i, j) �(i, j), subject to:

∑
j∈B

�(i, j) = α(i) ∀i ∈ A,

∑
i∈A

�(i, j) = β(j) ∀j ∈ B,

�(i, j) ≥ 0 ∀i ∈ A, ∀j ∈ B

We utilize the linear program formulation of the OT problem to
relax the integer linear program (ILP) formulation of the max-
weight bipartite matching and convert it to an OT problem. Given
a bipartite graph G = (V, E) with bipartition (A, B), weight function
w : E 	→ R, a matching M ⊆ E, let m(i, j) = 1, if (i, j) ∈ M and
0 otherwise. Then, the ILP formulation of the maximum weight
bipartite perfect matching is given as:

max
m

∑
(i,j)∈A×B

w(i, j) m(i, j) subject to:

∑
j∈B

m(i, j) = 1 ∀i ∈ A,

∑
i∈A

m(i, j) = 1 ∀j ∈ B,

m(i, j) ∈ {0, 1}, ∀i ∈ A, ∀j ∈ B

By dropping the integrality constraints on the variables m(i, j),
the problem becomes a linear program and can be converted to
an OT problem with negative weights −w(i, j) as costs c(i, j), a
function of variables 1

n m(i, j) as transport plan �(i, j), and uniform
distributions over A, B with densities α(i) = β(j) = 1

n ∀i ∈ A, ∀j ∈ B.
With the OT formulation, the transport plan � can be interpreted
as a soft matching, where each vertex i ∈ A can be matched with
multiple vertices j ∈ B. Adding an entropic regularization [39] can
speed up the computation of OT and lead to the following final
objective:

min
�

∑
(i,j)∈A×B

c(i, j) �(i, j)︸ ︷︷ ︸
transportation cost

+ ε �(i, j) log �(i, j)︸ ︷︷ ︸
entropic regularization

The term ε controls the strength of the entropic regularization,
with higher values producing noisier transport plans �. In our
case, we use ε = 0.01 to generate a soft matching from the cosine
similarity matrix S. Compared to a hard matching, where every
profile is matched with only one profile, a soft matching has
the advantage of providing additional information by predicting
multiple weighted correspondences for a given profile.

Matching with batch label information
Finally, to avoid matching cell profiles across different batches,
MatchCLOT exploits the test data batch labels to reduce the
search space for the matching algorithm. This is achieved by split-
ting the profiles by batch labels, computing the cosine similarity
matrices and entropic OT matching per batch, and combining the
matching matrices for the final prediction.
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Figure 3. Search space of MatchCLOT’s matching step, without (middle) or with (right) batch constraint.

Table 1. Best hyperparameter configurations for the modality matching model found with Bayesian optimization. ∗The batch size was
set without using Bayesian optimization.

Hyperparameter Search space GEX ↔ ATAC GEX ↔ ADT

LSI dim mod1 {64, 96, 128, 192, 256, 384, 512} 192 192
LSI dim mod2 {64, 96, 128, 192, 256, 384, 512} 256 134
Encoder hidden dim mod1 {128, 256, 512, 1024, 2048, 4096}2 (2048, 1024) (256, 2048)

Encoder hidden dim mod2 {128, 256, 512, 1024, 2048, 4096}2 (2048) (4096, 2048)

Embedding dim {128, 256, 512, 1024} 128 256
Dropout rates mod1 [0.0, 0.7]2 (0.34, 0.47) (0.3, 0.05)

Dropout rates mod2 [0.0, 0.7]2 (0.67) (0.4, 0.2)

Initial temperature log τ [1.0, 5.0] 2.74 4.0
Learning rate

[
10−6, 10−3]

6 · 10−4 1.75 · 10−4

Weight decay
[
10−6, 10−3]

1.25 · 10−4 2 · 10−4

Batch size k∗ – 16 384 16 384

Implementation
We implemented MatchCLOT using PyTorch [40] and conducted
the experiments on NVIDIA Tesla P100 GPU and POWER9 CPU. The
comprehensive list of hyperparameter configurations is presented
in Table 1. The search space of each hyperparameter was set to a
reasonably large range based on the baseline model architecture
and current best practices in hyperparameter tuning.

RESULTS
To evaluate the performance of our method, we tested Match-
CLOT on the CITE-seq and 10X Multiome data from the modality
matching task of the NeurIPS competition that included a total of
90 000 and 70 000 cells, respectively [25]. Different combinations
of the omic profiles in the dataset gave rise to a total of four
subtasks, namely ATAC → GEX and GEX → ATAC for CITE-seq,
GEX → ADT and ADT → GEX for Multiome. The labeled CITE-seq
and Multiome data were split into two sets according to the batch
labels for method validation (1 batch) and training (8–9 batches).
The test data consisted of 15 066 cells for the CITE-seq subtasks
GEX → ADT and ADT → GEX, and 20 009 cells for the Multiome
subtasks ATAC → GEX and GEX → ATAC.

MatchCLOT outperforms existing modality
matching methods
To benchmark MatchCLOT against other methods, we used the
matching probability score of the NeurIPS competition that mea-
sures the modality matching performance of a method in terms of
the weight/probability assigned to the correct cell pairings. Given
a probability matching matrix M ∈ R

n×n for n cells, the matching

probability score is computed as:

1
n

n∑
row=1

n∑
col=1

Mrow, col · 1
{

row = true-match(col)
}

To evaluate the soft matching predictions, we calculated the
Fraction of Samples Closer Than the True Match (FOSCTTM) score
[22]. Given a predicted matching matrix M, the FOSCTTM score
evaluates how many confidence scores in M are higher than the
score given to the true match, with lower values indicating better
matching. The FOSCTTM is computed as:

1
2n2

(
n∑

row=1

n∑
col=1

1

{
Mrow, col > Mrow, true-match(row)

}

+
n∑

row=1

n∑
col=1

1

{
Mrow, col > Mtrue-match(col), col

})

The matching probability scores of MatchCLOT and the
competing methods for the modality matching subtasks GEX
→ ATAC and GEX → ADT, as well as across all subtasks (Overall),
are presented in Figure 4. MatchCLOT achieved state-of-the-art
scores for all subtasks and improved over scMoGNN by 26.1%
for the overall matching score (Figure 4A). Since both CLUE and
MatchCLOT generate soft matchings, we used the FOSCTTM
score to compare their performance, and found that, in all
subtasks, MatchCLOT outperformed CLUE, improving by –62%
for the overall FOSCTTM score (Figure 4B). This significant drop
in FOSCTTM score demonstrates the superiority of the matching
matrix M because for each cell of modality A that we are trying to
match, less than 1% of all other cells in modality B are assigned
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Figure 4. Performance assessment of MatchCLOT. Benchmarking MatchCLOT against existing modality matching methods using the matching
probability score (A) and FOSCTTM score (B). For MatchCLOT, the height of the barplot is set to the mean of four different random seed initializations
of the model, represented as dots. Ablation study of MatchCLOT using the matching probability score (C) and top-5 matching accuracy score (D).

a higher matching probability than their true match. We note
that, since Novel and scMoGNN result in a hard matching, the
FOSCTTM score is not defined in their case. We also note that
MatchCLOT is independent of the sequence of the modality
matching task, i.e. GEX → ATAC = ATAC → GEX, and ADT → GEX
= GEX → ADT, similar to Team Novel and scMoGNN. To ensure
the robustness of MatchCLOT, we repeated the training for three
additional random initializations; the inference results (dots in
Figure 4A and B) indicate that MatchCLOT’s performance is fairly
robust and that MatchCLOT consistently outperforms existing
methods.

To evaluate to which extent individual components of Match-
CLOT contribute to its state-of-the-art performance, we ran a
thorough ablation study, where we progressively removed its dif-
ferent components and recomputed the matching probability
score for all subtasks. As observed in Figure 4C, transductive pre-
processing, hyperparameter tuning, batch effect correction and
OT matching had small yet noticeable contributions to the final
performance. Removing the batch constraint rendered the largest
loss of performance, with the matching probability score dropping
from 0.094 to 0.055. We repeated the ablation study using the top-K
matching accuracy that quantifies if the true match is in the top-K
matching probability scores across the rows/columns of M. The
top-K matching accuracy score is defined as:

1
2n

(
n∑

row=1

1

{ K⋃
k=1

top-k(row) = true-match(row)

}

+
n∑

col=1

1

{ K⋃
k=1

top-k(col) = true-match(col)
})

As observed in Figure 4D, the top-5 matching accuracy is higher
than the matching probability score for all subtasks, indicating

that even in cases where the true match is missed, it is still ranked
within the top 5 scoring cells. We observe the same patterns
as before for transductive preprocessing, hyperparameter tuning,
batch effect correction and batch label constraint. However, we
now observe that OT matching and entropic OT have a much
more noticeable contribution to the top-5 matching accuracy,
suggesting that OT matching is an integral component of Match-
CLOT that contributes to producing accurate matching probabil-
ity matrices that capture cell-cell similarities across all pairs of
cells in both modalities.

MatchCLOT dramatically improves computation
time and memory needs
As previously discussed, a limitation of the maximum weight
bipartite graph matching used by Team Novel and scMoGNN is
its scalability. Indeed, to achieve feasible computation times, both
teams sparsified the matching matrix M by discarding a very
high percentage of the edges (99.5% for Team Novel and 95% for
scMoGNN). To evaluate the speedup in computation time and
gains in memory usage of MatchCLOT, we repeated the inference
step of the GEX → ADT subtask for which M ∈ R

15066×15066, and
computed computation time and max memory usage for a max-
weight bipartite matching and OT matching (Figure 5). We observe
that while the max-weight bipartite matching needs to discard
99% of the edges to render a computation time and memory usage
of ∼125 s and 12 GB, respectively, our OT solution uses 100% of
the edges within 50 s and 16 GB. For equal memory constraint,
the max-weight bipartite matching needed to discard 95% of the
edges. We conclude that apart from contributing to increased
performance in terms of soft-matching, the OT matching compo-
nent dramatically improves the scalability of the matching step.
This is important not only because discarding values in M might
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Figure 5. Comparison of computation time (left) and memory usage (right) between the baseline method using max-weight bipartite matching (baseline
- blue) and OT matching (MatchCLOT - orange) for different proportions of retained matching edges.

inhibit the performance by ignoring valuable information, but
more importantly because the speedup offered by the OT match-
ing allows MatchCLOT to scale to the latest single-cell datasets
that report up to millions of single cells at once. Moreover, our OT
matching algorithm is independent of the previous components,
therefore it can be applied to any representation of cell profiles for
which a similarity function is defined across the two modalities.

MatchCLOT achieves high cell type match scores
As already mentioned, matching cells of the same cell type is par-
ticularly hard due to their indistinguishability. To further under-
stand if the mismatched cells are affected by this, we computed
the cell type score, i.e. the percentage of cells matched with cells
of the same cell type. We observe that MatchCLOT achieves
a very high cell type score of ≈0.88, scoring second just after
CLUE (Figure 6A). Visualizing the score per cell type (Figure 6B),
we observe that for 15 out of the 20 cell types the score is higher
than 0.84, reaching and exceeding a score of 0.9 for 9 cell types.
The cell types where the score had noticeably lower values are
activated and naive CD4+ cells and naive CD8+ cells. To further
understand between which cell types the mismatches occur, we
computed a confusion matrix of all pairwise cell types (Supple-
mentary Figure S1). We observe that several mismatchings are
between closely related cell types, whose profiles are possibly very
close in the epigenomic and transcriptomic space. For example,
activated CD4+ cells were often mismatched with naive CD4+

cells, and vice-versa, and naive CD8+ cells were also confused
as activated or naive CD4+ cells. Comparing MatchCLOT to team
Novel’s model, we observe noticeable gains in the cell type scores
for these frequently mismatched cell types (Figure 6B).

MatchCLOT preserves the underlying structure
of integrated single-cell datasets
We next asked how well MatchCLOT preserves the biological
patterns found in the multi-omic single-cell datasets. To evaluate
the outcome of the MatchCLOT embedding and matching, we
performed dimensionality reduction using Uniform Manifold
Approximation and Projection (UMAP) [41] of the 10X Multiome
test data before any preprocessing (Figure 7A) and after LSI
preprocessing, batch effect correction and encoder embedding
(Figure 7B). As expected, although the UMAP projection of the
raw data does capture some cell-type-specific clusters, after
MatchCLOT preprocessing and encoder embedding the UMAP
projection is able to disentangle these coarse clusters into

detailed trajectories of cell-type evolution (for example, notice
the Megakaryocyte and Erythrocyte Progenitor → Proerythroblast
→ Erythroblast → Normoblast trajectory indicated by a black
arrow in Figure 7B). Notice that activated CD4+ cells, naive CD4+

cells and naive CD8+ cells, indicated in Figure 7 by orange, green
and purple, respectively, are highly mixed in the UMAP space, in
accordance with the previous observation that these cell types are
often mismatched because of the similarity of their omic profiles.

Interestingly, the UMAP projection of the data using the pre-
dicted MatchCLOT matching (Figure 7C) is highly similar to that
of the real matching (Figure 7B), with all major clusters and
trajectories maintained. This observation indicates that single-
cell multi-omic integration using MatchCLOT fully preserves the
true underlying biological structure and topology of the data,
and suggests that even for the cases where MatchCLOT misses
the real match, the predicted match is close enough to the omic
profile of the real match that there are no noticeable effects that
could disturb observed biological patterns. To further validate this
result and ensure that the UMAP projection was driven by the
integrated multi-omic profile of each cell and not dominated by
a single modality, we performed a UMAP projection of randomly
matched single cells (Supplementary Figure S2), where we clearly
observe that the previous structure is distorted and the cell-type-
specific clusters and trajectories are now split and dispersed in
different locations of the UMAP space.

MatchCLOT efficiently generalizes to unseen
datasets
To assess the generalization ability of MatchCLOT, we tested
the model trained on the competition 10X Multiome dataset
on an independent, non-competition 10X Multiome dataset in a
zero-shot fashion. While the competition dataset contains paired
ATAC and GEX measurements from bone marrow mononuclear
(BMMC) cells, the new dataset contains paired ATAC and GEX
measurements from peripheral blood mononuclear cells (PBMCs)
[42]. This makes it of particular interest to test the generaliza-
tion ability of the model: although PBMC and BMMC samples
share many cell types, we expect notable differences in both the
presence and frequency of cell types between the two. We first
preprocessed the 10X Multiome PBMC dataset as described in
the Supplementary Methods and then fed it to MatchCLOT that
matched the cells from the two modalities. We compared our
results with several single-cell data integration methods based
on a variety of approaches, such as PCA (Harmony [13]), CCA
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Figure 6. Matching score at the cell type level. (A) Cell type match score for the ATAC → GEX subtasks by top scoring teams. (B) Comparison of Team Novel
and MatchCLOT scores for each cell type independently. Cell type abbreviations: HSC: Hematopoietic stem cell, MK/E: Megakaryocyte and Erythrocyte,
cDC2: classical dendritic cells type 2, pDC: plasmacytoid dendritic cells, G/M: Granulocyte–Macrophage.

Figure 7. Dimensionality reduction of the 10X Multiome (RNA & ATAC) test data. UMAP embeddings of the raw (A) and preprocessed and embedded
data using the real (B) and predicted (C) matching. Cell-type abbreviations as in Figure 6.

(Seurat v3 [14] and bind-SC [15]), NMF (LIGER [16] and Online
iNMF [17]), graph neural networks (GLUE [23]), OT (Pamona [19])
and optimization (UnionCom [18], MMD-MA [22]). As observed
in Figure 8A, MatchCLOT consistently outperforms all methods,

with a mean FOSCTTM score of only 0.015, an improvement of
44.4% over the top performing method GLUE [23] (mean FOSCTTM
equal to 0.0342). This is a very encouraging result considering
that, unlike GLUE, MatchCLOT has not been trained on the PBMC
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Figure 8. Testing MatchCLOT on an unseen 10X Multiome test dataset of PBMC cells from a healthy donor. (A) Benchmarking MatchCLOT against several
existing algorithms using the FOSCTTM score. Bar heights correspond to the mean across independent runs of the models with random initializations
shown as dots, and errorbars indicate 0.95 confidence intervals. For fair comparison, we used the same preprocessed data and scores of the previous
methods from [23] (B) Matching score per cell type for all PBMC cell types. (C and D) UMAP embeddings of the preprocessed and embedded data using the
real (C) and predicted (D) matching. Cell-type abbreviations: TCM/TEM: central memory/effector memory T cells, MAIT: mucosal-associated invariant
T cells, Treg: Regulatory T cells, gdT: Gamma Delta T cells; all other cell type abbreviations as in Figure 6.

dataset. Assessing the match score per cell type (Figure 8B and
Supplementary Figure S4), we observe that, for 17 out of the 19
PBMC cell types, MatchCLOT achieves a matching score higher
that 0.8. As expected, many of the cell types with relatively lower
matching scores correspond to novel cell types that did not exist in
the BMMC dataset used to train MatchCLOT (e.g. gdT cells, CD4+

TCM and TEM).
To evaluate how well MatchCLOT preserves the underlying

structure of the new PBMC dataset, we again performed UMAPs of
the preprocessed and embedded multimodal data using the real
and predicted matching. We observe that the UMAP projection
of the single-cell data as matched by MatchCLOT (Figure 8D) is
highly similar to that of the real matching (Figure 8C). In both
cases, clusters reflecting different PBMC cell types are visible and
highly preserved between the two UMAPs, indicating that Match-
CLOT does not distort the underlying topology. Interestingly, the
MatchCLOT UMAP projection appears more noisy, with several
small clusters appearing in the periphery of larger clusters, such
as CD14+ Monocytes (pink), Naive CD8+ T cells (red) and Naive
CD4+ T cells (blue). A potential explanation of this effect is that
the soft matching that comes as a result of the entropic regu-
larization allows some weakly matched cells to simultaneously
match to the same cell, creating small and tight sub-clusters. To
reduce the noise level in the UMAP, one could set the entropic
regularization to zero at the cost of a slightly worse matching

score (Supplementary Figure S5). We also observe that several of
the novel cell types with low matching scores appear to be mixed
the UMAP embedding (e.g. gdT cells (light cyan) with CD8+ TEM
2 cells (brown) and CD4+ TEM (green) with CD4+ TCM (orange)).
As this observation is true also in the UMAP of the real matching,
it suggests that the mismatchings can also be attributed to a
high similarity between these cell types in the multi-omic feature
space.

CONCLUSION
In this work, we proposed a novel computational framework that
addresses the problem of matching cells across multiomic single-
cell data. Our method MatchCLOT employs a contrastive learning
setup that maximizes the similarity between matching cell pro-
files across modalities in the latent space, and a novel entropic
regularized OT matching algorithm that replaces the common
step of maximum weight bipartite graph matching to identify
the matching cell profiles. MatchCLOT achieves state-of-the-art
performance on two multiomic benchmarking datasets, achieving
high overall and cell-type-level scores while preserving the under-
lying topology of the integrated data. Importantly, MatchCLOT is
significantly more efficient in terms of computational time and
memory usage, a critical advantage at a time where single-cell
datasets routinely profile millions of cells at once.
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Moreover, MatchCLOT achieves state-of-the-art zero-shot per-
formance when evaluated on an unseen multiomic dataset con-
taining cells of different origins than the original training dataset,
clearly outperforming even previous methods that were trained
on the unseen dataset. To our knowledge, this makes Match-
CLOT the first example of CLIP-based zero-shot generalization
in the domain of single-cell multiomic integration. Importantly,
the ability of MatchCLOT to generalize well to unseen data of
different biological origins suggests that the model learns bio-
logically relevant relations governing the behavior of the mea-
sured biomolecules that are common across different biological
contexts. This suggests that creating a collection of MatchCLOT
models pretrained on curated benchmarking multiomic datasets
can serve as a basis to enable modality matching across dif-
ferent organs, species or conditions. This ability to generalize
is strengthened by the fact that, in contrast to several existing
methods, at inference time MatchCLOT does not require any prior
knowledge or cell-type annotation, making it highly applicable
to any single-cell multiomic data without the need for manual
labeling.

Despite its many advantages, further improvements could
address some of MatchCLOT’s current limitations. A key
challenge is to define reasonable data augmentations of single-
cell omics, crucial for contrastive learning [43]. Future works
in this direction can address this challenge by exploring the
recent advances in contrastive learning techniques. Another
limitation stems from the fact that MatchCLOT’s architecture
is designed to enable the integration of only two single-cell omic
modalities. However, emerging data acquisition methods that
profile three or more omics at once [44] present an opportunity
to train models able to match more than two modalities. This can
be achieved by future adaptations of MatchCLOT that employ
more sophisticated architectures and contrastive learning losses,
similar to recent applications integrating language, audio and
visual in multimodal sentiment analysis [45]. At the same time,
more powerful encoding models based on transformers [46] could
be employed together with larger datasets to potentially improve
the results. Finally, approaches that are not only able to match
cells but also identify interpretable omics features that drive the
generated matchings are a very promising direction for future
research [21]. Still, our vision is that MatchCLOT will be widely
adopted to match the ever-growing single-cell dataset and open
new avenues for integrated single-cell analysis.

Key Points

• MatchCLOT is a computational framework that is able
to match single-cells measured using different omic
modalities.

• MatchCLOT outperforms existing modality matching
methods in terms of matching score and computational
efficiency.

• MatchCLOT is able to preserve the underlying topology
and structure of the multiomic data.
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