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A B S T R A C T

Volumetric assessment based on structural MRI is increasingly recognized as an auxiliary tool to visual read-
ing, also in examinations acquired in the clinical routine. However, MRI acquisition parameters can signifi-
cantly influence these measures, which must be considered when interpreting the results on an individual
patient level.
This Technical Note shall demonstrate the problem. Using data from a dedicated experiment, we show the
influence of two crucial sequence parameters on the GM/WM contrast and their impact on the measured vol-
umes. A simulated contrast derived from acquisition parameters TI/TR may serve as surrogate and is highly
correlated (r=0.96) with the measured contrast.
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Background and motivation

Quantitative image analysis of the brain is increasingly recognized
as complementary to visual reading by neuroradiologists in the clini-
cal routine and is usually performed on 3D T1-weighted MR images.
In multiple sclerosis (MS) diagnosis, the latest No Evidence of Disease
Activity (NEDA-4) criteria include brain atrophy measurement as
imaging biomarker for disease progression.15 Reliably assessing corti-
cal atrophy on an individual patient level practically requires auto-
mated quantification of brain volume across multiple time points.
While brain morphometry has contributed substantially to the
understanding of brain structure in health and disease and is being
used extensively in research, translation into the clinical routine
remains challenging.1,23 There is a long way from the carefully crafted
cohort studies with data acquired in a well-controlled research set-
ting, with analysis performed by technical experts using scientific
tools, to the application on individual patient data acquired in the
clinical routine. Commercial products try to bridge this gap and make
brain volumetry and morphometry accessible in clinics providing
certified products for off-the-shelf use, although technical validations
are sparse and there is a considerable lack of clinical validation
studies.20 In MS, quantification of brain atrophy is increasingly used
as secondary outcome measure in clinical trials, but it’s use in clinical
routine is still under debate due to various challenges.27,32

We fully embrace the trend to bring recent advances in neuroim-
aging research closer to the patients. Therefore, we would like to
draw the attention to an, in our experience, often underestimated
limitation. MR acquisition sequence parameters are known to influ-
ence quantitative image analysis methods to a much larger extent
than expert reading,9,11,12,16,21 a fact that is often neglected in clinical
routine. This Technical Note shall demonstrate the issue, starting
with an example of a patient with MS from the clinical routine and a
simple visualization of the most relevant technical parameters of the
T1-weighted MP-RAGE protocol.3,17 Further, we propose a simulation
of the expected image contrast and validate this concept with own
experiments. The acquired data will be made publicly available for
the clinical and scientific community as well as to vendors of com-
mercial morphometry software to support validation studies in dif-
ferent environments using the same dataset.

Example: Patient from the clinical routine at our department
visualizing the motivation behind our letter. The female patient with
relapsing-remitting MS was referred for elective routine follow-up
imaging. The EDSS at the time of referral was 3.5, the patient received
no neuro-modulating treatment. A standard contrast enhanced MS
protocol was acquired at 1.5 T MR. The examination showed no new
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MS lesion or contrast enhancement. The longitudinal volumetry sug-
gests approx. 10% decrease in cortical gray matter (GM) volume
(Fig. 1).
Materials and methods

Simulated MR contrast

Cortical gray matter segmentation is ultimately dependent on the
gray (GM)/white (WM) contrast,16,34 i.e., the MR signal difference of
these adjacent tissue classes.18 For the sake of the argument, we
restrict to the generic inversion recovery (IR) pulse sequence 13 here
and discuss possible extensions to other sequences in the Discussion
section. Based on fundamental MR physics, we calculate a “simulated
GM/WM contrast” defined by the parameters predominantly influenc-
ing the signal: inversion time (TI) and repetition time (TR). The signal
intensity Sx of a voxel in tissue class x is given by

Sx ¼ K ¢rx ¢ ð1� 2 ¢ e�TI=T1x þ e�TR=T1x Þ ð1Þ
where K is a constant irrelevant for our present purposes, rx is the
proton density and T1x is the spin-lattice (longitudinal) relaxation
time specific to a tissue class x. TI and TR can be easily extracted from
the standard DICOM header of the chosen MRI protocol. The contrast
between GM andWM signals is given by

Contrast ¼
�
�
�
�

Sgm � Swm

Sgm þ Swm

�
�
�
�

ð2Þ

Assuming constant tissue properties across the whole brain of r=85/
70 13 and T1=1820/1084 ms 30 for GM/WM results in the contrast
depending on the two sequence parameters TI and TR. We suggest
depicting the sequence parameters on a heatmap of the simulated
contrast to visualize changes in technical acquisition parameters that
might impact morphometric measures (cf. Fig. 1).
Validation with experiments on the ”Phantom of Bern”

In an experiment, we acquired nine same-session scans of two
healthy volunteers with eight different combinations of the sequence
parameters TI and TR 5 and compared the suggested simulated con-
trast to the GM/WM contrast 26 measured with the freely available
software package FreeSurfer 6.0 6,7 and its impact on cortical GM
Fig. 1. swimming in cold waters: Longitudinal assessment of cortical gray matter volume in
patient acquired at the same scanner highlighted in red and normative dataset in pale green;
controls). The latest examination suggests a significant drop in GM volume suspected as an a
for the description of the contrast map see Materials and Methods section). Corresponding r
lastest scan: TR 2300 ms, TI 900 ms, TE 2.57 ms, voxel size 1 mm. The previous scans were ac
the references to colour in this figure legend, the reader is referred to the web version of this

2

volume by calculating Pearson correlation coefficients (r). Baseline
was the ADNI-3 protocol 8,33 from which we modified TR/TI combina-
tions while the remaining parameters remained unchanged. The
results were also replicated with SIENA 28 using the longitudinal
pipeline to quantify relative brain volume change, with DL+DiReCT 22

to estimate cortical thickness, and with FSL-FAST 29,36 for total brain
volume.
Results

The simulated contrast showed a very high correlation to the
measured global mean GM/WM contrast of FreeSurfer (r ¼ 0:96). The
repeated acquisitions with the MR sequence according to the original
ADNI-3 protocol, which had the highest (simulated and measured)
contrast were separated by only » 5% of the total variability of the
measured contrast between 18% and 30%, showing very high repro-
ducibility between start and end of the scan session of about 45
minutes duration (Fig. 2). Moreover, cortical GM volumes were sub-
stantially negatively correlated (r ¼ �0:54, r ¼ �0:64) with the simu-
lated contrast. In our experiments we have observed up to 2.5%
variation of the estimated GM volume from same-session acquisi-
tions, which can only be attributed to changes in TI and TR, since all
other parameters remained unchanged. A qualitative example com-
paring the images with the lowest to the highest contrast is shown in
Fig. 3.

The repeated scans with identical scanning-parameters in both
subjects revealed an uncertainty of about 2 ml for measurement
of total GM volume (about 0.5%). The variability due to different
contrast and sequence parameters is much larger than these values
(» 9.5 to 12.5 ml, i.e. »2:0 to 2.5% of the total GM volume).

Similar effects were observed for relative brain volume using
SIENA (Supplementary Section S1), for global mean cortical thickness
using DL+DiReCT (Supplementary Section S2), and for total brain vol-
ume using FSL-FAST (Supplementary Section S3).
Discussion

Motivated by the growing interest to apply quantitative assess-
ment of structural MRI in the clinical routine, it is essential to high-
light the impact of MRI acquisition parameters on volumetry, which
users like neuroradiologists or neurologists need to consider when
an MS patient contrasted to healthy controls (left panel, follow-up examinations of the
green dashed line represents a polynomial fit to the normative measures of the healthy
rtifact resulting from a change in MR sequence parameters in the clinical routine (right,
esults using SIENA can be found in Supplementary Figure S1. Image parameters of the
quired with TR 1790 ms, TI 1100 ms, TE 2.58 ms, voxel size 1 mm. (For interpretation of
article.)



Fig. 3. Qualitative comparison of the MRIs with lowest (left) and highest GM/WM contrast (right) in subject POBHC0002 of the "Phantom of Bern". To allow better judgment of the
contrast between tissue classes, FreeSurfer’s pial surface (red) and GM/WM boundary (blue) are shown in the left hemisphere only (displayed on the right side of the image in radio-
logical orientation). Quantitative analysis reveals that the remarkably small differences in placement of the boundaries detectable by visual inspection accumulate systematically
with all used software packages (see Fig. 2, Supplementary Figures S2,S4,S6). Left MRI: TI=1.1 s, TR=1.84 s, TE=2.96 ms, cortical GM volume=511 ml, mean GM/WM contrast=19.0%.
Right MRI: TI=0.9 s, TR=2.3 s, TE=2.96 ms, cortical GM volume=489 ml, mean GM/WM contrast=29.8%. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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interpreting data from individual patients. We have designed a dedi-
cated experiment with two healthy volunteers to depict the issue.
Our results confirm and visualize that acquisition parameters like TI
and TR can introduce a systematic bias in volumetric and morpho-
metric measures.9

Our observed within-session reliability of repeated acquisitions
with identical parameters (0.5%) is consistent with previous stud-
ies,16 which roughly corresponds to the threshold 0.4% for annual
brain volume loss required to diagnose no evidence of disease activity
according to NEDA-4. Deriving annual brain atrophy rate across more
than two time points for longitudinal assessments might partially
alleviate this problem. However, a volume variability of up to 2.5%,
which can be attributed to different sequence parameters, signifi-
cantly exceeds this threshold, clearly demonstrating the importance
of considering this confounding influence. Consequently, we agree
with the general recommendation to keep acquisition parameters
fixed,11,35 but stress that this is often only possible in well-controlled
research settings. For clinical applications, morphometry tools should
clearly indicate such protocol deviations, prompting users like
Fig. 2. Left: Correlation of simulated contrast with measured GM/WM contrast. Middle: Corr
subject-specific to emphasize the effect). Right: Heatmap of the simulated contrast calcula
acquisition parameters TI/TR in our experiment.

3

neurologists and neuroradiologists to critically assess the generated
output.

Calculating a simulated contrast based on two MR parameters
yielded a highly accurate (r=0.96) prediction of the true (measured)
GM/WM contrast. This metric might be used to scrutinize the compa-
rability of different acquisitions. A current limitation is that our argu-
ment is based on a generic IR sequence, whereas in practice other T1-
weighted sequences might be used, like the MP-RAGE protocol 3,17 in
our own experiment. However, based on our experience, the general
effects are very similar for the MP-RAGE sequence while the formula
for the IR sequence depends only on parameters readily available
from the standard DICOM tags which simplifies applicability.

Future methodological improvements might mitigate part of the
problem, e.g., generalizing the formula for the synthetic contrast to
other sequences, or statistical models correcting for the influence of
acquisition parameters 24 for which the simulated contrast might
serve as confounding factor. Post-processing techniques, such as AI-
based solutions for de-noising 14 or harmonizing MRI contrast 4

might be worthwhile investigating. Exploring learning-based
elation with cortical GM volume for the two subjects (y-axis scales are intentionally left
ted from TI and TR. Black crosses show the eight different choices of combinations of
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segmentation methods agnostic to image contrast, e.g., by leveraging
large amounts of images with different contrasts as training data for
semi-supervised learning,2 might be another approach.

Quantitative assessments of MRI in clinical routine is currently
performed on a regular basis only by a minority of institutes,31 but
likely to increase in the future with the adoption of NEDA-4. Data
from our experiment can be used to assess the reliability of existing
morphometry tools or check the robustness of new solutions against
varying sequence parameters, which should be part of quality control
when evaluating solutions.10,19 Our experiments were performed
using FreeSurfer, one of the most widely used and evaluated software
for brain morphometry.20,31 The findings were confirmed using
SIENA, the reference method for NEDA-4,15,27 DL+DiReCT,22 a novel
deep learning-based method that has recently proven excellent accu-
racy regarding atrophy detection,25 and FSL-FAST.29,36 We strongly
assume that other tools including commercial products are likely
affected to similar extent.

Conclusions

Using the example of total cortical GM volume and the free soft-
ware FreeSurfer, we demonstrated that changes in MR acquisition
parameters can significantly influence estimates of quantitative
measures of brain morphometry and therefore influence clinical deci-
sions. Users interpreting such measures for diagnostic purpose
should be aware of these limitations and software tools should ide-
ally display related uncertainties. This is of utmost importance when
applying brain morphometry in clinical routine with varying levels of
sequence standardization and inherent variations over time. Depict-
ing parameters of the various acquisitions on a visual heatmap of the
simulated GM/WM contrast makes relevant heterogeneity immedi-
ately visible to non-technical readers, guiding them to interpret
results in this context. We believe that the widespread adoption of
quantitative assessments like No Evidence of Disease Activity (NEDA-
4) in the clinical routine can only be successful if the generated mor-
phometric data is highly reliable and reflects true biological findings.

Data availability

The MRI dataset with repeated acquisitions of healthy subjects
used for this study is available from https://openneuro.org/datasets/
ds004560.
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