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Abstract

Parallel test versions require a comparable degree of difficulty and must capture the same

characteristics using different items. This can become challenging when dealing with multi-

variate items, which are for example very common in language or image data. Here, we

propose a heuristic to identify and select similar multivariate items for the generation of

equivalent parallel test versions. This heuristic includes: 1. inspection of correlations

between variables; 2. identification of outlying items; 3. application of a dimension-reduction

method, such as for example principal component analysis (PCA); 4. generation of a biplot,

in case of PCA of the first two principal components (PC), and grouping the displayed items;

5. assigning of the items to parallel test versions; and 6. checking the resulting test versions

for multivariate equivalence, parallelism, reliability, and internal consistency. To illustrate

the proposed heuristic, we applied it exemplarily on the items of a picture naming task. From

a pool of 116 items, four parallel test versions were derived, each containing 20 items. We

found that our heuristic can help to generate parallel test versions that meet requirements of

the classical test theory, while simultaneously taking several variables into account.

Introduction

Parallel versions of psychometric tests are typically used to control for systematic measurement

errors, such as biases due to learning effects or fatigue. They are often used in longitudinal

studies, for example to assess the course of neurological diseases. To ensure that parallel test

versions are equivalent, they must capture the same characteristics while, at the same time,

using different items and showing a comparable degree of difficulty.

Thereby, classical Test Theory (CTT) assumes that each item is equally difficult [1]. While

CTT attempts to estimate the true score of the characteristic to be measured based on the

responses in several items and focuses on the accuracy of a given measurement as well as on

the magnitude of the measurement error, it can only address one variable at a time [2]. At the

same time, the selection of the test items is typically performed iteratively by hand. Though,
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Citation: Göbel N, Cazzoli D, Gutbrod C, Müri RM,
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Gulliksen proposed already in 1950 to plot item analysis results, such as the reliability and

validity indices of the item scores, in order to select the best items [3].

Unlike CTT, item response theory (IRT) does not assume that each item is equally

difficult [1]. The difficulty of each item is treated as an information that is incorporated

into the item characteristic curves (ICC). Thereby, the ICC represents the difficulty of the

item by the probability curve of answering the item correctly as a function of the subject’s

underlying trait. As opposed to CTT, which focuses on the test, IRT focuses on the item.

To date, several automated algorithms for constructing parallel test forms that make use

of the item information function from IRT have been suggested [4–9]. IRT assumes mani-

fest variables (i.e., the response behavior to test items) and a latent variable (i.e., an under-

lying characteristic of the subjects). Despite its clear advantages (e.g., items with different

difficulty levels and sample independence of test characteristics), IRT approaches usually

assume only one latent variable, which is reflected in the correlation between the manifest

variables [10–13].

Importantly, both CTT and IRT usually consider only one variable, respectively one latent

variable at a time. In practice, however, it can be of interest to describe the items with respect

to several variables, to derive more than one latent variable, and to divide these items among

parallel test versions such that they are comparable with respect to all variables. In this regard,

it might be of interest to consider approaches dealing with the detection of multivariate simi-

larity of items that are applied in other domains. For example, in order to select stimuli for

experiments with a factorial design satisfying an extensive list of experimental requirements,

Guasch et al. [14] proposed a method that is halfway between a manual and an automated

stimuli selection. In this approach, small and tight clusters of words matching within the vari-

ables of interest were identified by means of k-means clustering.

To date, several automated methods for multivariate stimulus selection were proposed

[15–18]. For example, in the optimization approach, items selected for previous test versions

are removed from the item pool, thus causing the later test versions to be less likely parallel

than the earlier ones. Chen et al. argue that, in contrast, a random search approach may result

in more uniform test versions [7]. Yet, Guasch et al. [14] highlighted the advantages of his

half-automated procedure over the automated methods: “Picking items by hand is tedious

(. . .)” and “a fully automated selection (. . .) leaves open the question if a better solution could

have been found”.

This approach is not only relevant for stimulus selection, but it could also be of advantage

for multivariate item selection in the context of parallel test generation. In their work, Guasch

et al. [14] used k-means clustering, yet other dimension-reduction methods are also applicable,

e.g., Multidimensional Scaling (MDS) in the case of mixed data [19], or newer methods for

numerical data such as e.g., Stochastic Neighbor Embedding (t-SNE) [20]. Given its wide and

common use in psychological research, in the current work we used Principal Component

Analysis (PCA) as a dimension-reduction method. The main advantages of PCA are its suit-

ability for numerical data, its lack of requirements with respect to distributional assumptions,

its suitability for highly correlated variables, along with its usefulness even in the case of rela-

tively large number of variables with respect to observations [21–23].

In the following, we present the utility of PCA as a dimension-reduction method for select-

ing multivariate items for parallel test versions. To this end, a heuristic is first presented as a

general procedure and further applied on a practical example. Our example deals with the

development of four parallel test versions of the Bern word-finding test (B-WFT, unpub-

lished), a picture naming test used to detect word-finding disorders. Up to date, the B-WFT

consisted of two test versions. By using its original pool of 116 multivariate items, and by

applying principal component analysis (PCA) as a dimension-reduction method, we created a
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set of four parallel test versions (ABCD). Finally, these test versions were tested for multivariate

equivalence, parallelism, reliability, and internal consistency.

Method

The studies involving human participants were reviewed and approved by the Ethics Commit-

tees of the Cantons of Luzern and Bern, Switzerland (EKNZ 2015–256; KEK BE 151/15). The

participants provided their written informed consent to participate. The data were analyzed

anonymously for this study.

To generate parallel test versions, a sufficient pool of items is required, in order to allow for

the exclusion of potential outliers. Moreover, when using PCA within the proposed heuristic,

the items must be described by several, numeric, intercorrelated variables. These are often

obtained by presenting the items to a number of subjects, asking them to name and rate the

items on several dimensions. The general procedure requires two types of data tables. One

table contains the raw data of each subject, and it is primarily used to check the results.

Another table contains all items with the respective mean values of the variables, and it is

mainly required for dimension-reduction. If these prerequisites are met, the following heuris-

tic can be applied:

1. Inspect correlations between items: Compare pairwise all numeric variables of the test

items in order to ascertain whether there are any correlations between them. If there are no

correlatons between the items, the heuristic may not work.

2. Identify outliers: Since dimension-reduction methods can be sensitive to outliers, it is advis-

able to identify them and consider their exclusion from the item pool. Outliers can be iden-

tified by means of robust PCA [24], a modification of the classical PCA [25].

3. Reduce dimensions: A common approach to reduce dimensions in binary or numerical

data is PCA. It reduces the dimensionality of the multivariate data set, while accounting for

as much of the original variance as possible. This results in a new set of variables, so-called

principal components (PC), which are linear combinations of the original variables. PC1

represents the direction of the data cloud with the highest variance, while PC2 represents

the direction of the data cloud with the second highest variance [21].

4. Plot and group similar items: By plotting the resulting 2D map of the first two PCs, similar

items can be identified by their spatial proximity, hence can be easily grouped together.

Items with medium item difficulty usually have the best discriminatory power [26]. There-

fore, it is recommended to select the items from the center of the resulting plot and ignore

the items in the border areas. Group size depends on how many parallel test versions are to

be derived. Additional items in a group allow for a better fine-tuning. If, for instance, four

parallel test versions with 10 items each would be required, one would have to identify 10

groups with at least four items plotted close to each other.

5. Assign items to test versions: From every group, select exactly one item per parallel test ver-

sion. Try to achieve additional balance through quasi-randomization (e.g., use assigning

order ABCD, BCDA, CDAB, DABC). Check for equality of mean values and variances by

generating correlation plots or boxplots. Use extra items to replace less suitable ones.

6. Check resulting test versions: To assess whether all variables were equally well addressed

by the PCA, perform a multivariate comparison of the final parallel test versions, such as

analysis of variance (MANOVA) or multivariate Kruskal-Wallis. If any of the variables

becomes significant, test versions would be different with respect to individual variables.
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Also, perform the customary analyses to determine whether the requirements of parallel-

ism, reliability, and internal consistency have been met.

Results

To illustrate this item sorting heuristic, a practical example is provided. All statistical analyses

were performed with R, Version 4.2.2. Please ensure that you download all files, update the

path to the data set in the R file, and load the R packages, which are required for the libraries

used. The data and materials for all analyses are available at URL: https://osf.io/3a4c5 with

DOI 10.17605/OSF.IO/3A4C5.

1. Inspect correlations of items

In this example, four parallel test versions of the B-WFT, with 20 items each, were to be

derived from an already existing pool of items. The original item pool consisted of 116 simple,

black-and-white line drawings. Half of the drawings represented living and the other half non-

living objects. As an additional requirement, parallel test versions had to contain 10 living and

10 non-living items. Items were selected from the image corpus by Snodgrass and Vanderwart

[27], the image archive of Dr. Dorothea Weniger, and a pool of line drawings by the Inselspital,

Bern University Hospital (Berger EM et al. [Unpublished], S1 File).

The drawings were presented to 52 healthy, (Swiss-)German speaking adults (M = 42.79,

SD = 21.17, age range 22–81 years, 27 male and 25 female, 3 left-handers), with an average of

14.12 years of education (SD = 2.55). Since the procedure was applied to already existing data,

no influence on the sample size could be taken. The subjects were asked to name all of the 116

items.

Variables measured are presented in Table 1: object class, naming agreement, image agree-

ment, image complexity, object familiarity, accuracy, and response time. The overall Kaiser-

Meyer-Olkin value was sufficient to perform factor analytic procedures (KMO = 0.608). As

indicated in Table 2, response time was strongly and positively correlated with accuracy

(r = 0.68), and accuracy was strongly and positively correlated with image agreement

(r = 0.71). Hence, the requirement of inter-variable correlation for PCA was met.

Table 1. Variables collected.

Variable Abbreviation Definition

Object class ObCl Whether the item is living (e.g., plant) or non-living (e.g., tool).

Naming

agreement

NaAg The number of different terms used to name an item. The higher the value, the

more often the item was named differently.

Image

agreement

ImAg How well the image matched with the subject’s idea of the depicted concept. This

was rated by the subjects on a Likert scale ranging from 1 to 5, with lower values

corresponding to a higher ImAg.

Image

complexity

ImCo The level of detail in which the item was drawn. This was rated by the subjects on

a Likert scale ranging from 1 to 5, with lower values indicating fewer details and

strokes.

Object

familiarity

ObFa Rated by the subjects on a Likert scale ranging from 1 to 5. The lower the value,

the more familiar the subjects were with a given item.

Accuracy ACC This variable was computed as an index, i.e., the proportion of subjects who

identified and named a given item correctly. A higher value indicates a higher

proportion of correctly named items.

Response time RT How long subjects took to answer, in milliseconds.

Note. Except for object class, all variables consisted of mean values based on 52 healthy subjects.

https://doi.org/10.1371/journal.pone.0284768.t001
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2. Identify outliers

Classical PCA tilts the PCA subspace towards outliers. Hence, to identify potential outliers in

advance, robust PCA was applied, which first fits most of the data and subsequently flags data

points that deviate from the main body of data (Fig 1). Regular observations have both a small

orthogonal distance (y-axis) and a small score distance (x-axis). Items with a high score dis-

tance but a small orthogonal distance (leverage points) can improve the accuracy of the fitted

Table 2. Pairwise comparisons between all variables.

ObCl NaAg ImAg ImCo ObFa ACC RT

ObCl –

NaAg -.26 ** –

ImAg .22 * .04 –

ImCo .07 .10 .01 –

ObFa .41 *** -.15 .17 .54 *** –

ACC .18 .00 .71 *** .07 .27 ** –

RT -.06 .36 *** .59 *** .12 .08 .68 *** –

Note. Correlations indicate that PCA is applicable. ObCl = object class, NaAg = naming agreement, ImAg = image agreement, ImCo = image complexity,

ACC = accuracy, RT = response time. Significance levels:

***<0.001,

**<0.01,

*<0.05.

Test statistics based on Pearson’s product moment correlations and polychoric correlation coefficients.

https://doi.org/10.1371/journal.pone.0284768.t002

Fig 1. Plot of robust PCA. Regular observations have both a small orthogonal distance (y-axis) and a small score distance (x-axis).

Items 93, 23, 66, 55, and 57 can be considered as outliers.

https://doi.org/10.1371/journal.pone.0284768.g001
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PCA subspace. In our example, items 93 and 23 are orthogonal outliers with a large orthogonal

distance but a small score distance. Items 66, 55, and 57 have both a large orthogonal distance

and a large score distance (bad leverage points) [28]. Simply put, items 93, 23, 66, 55, and 57

can be considered as outliers, which may potentially be excluded from the further procedure.

In the current example, due to the limited number of items, we retained all items in the item

pool.

3. Reduce dimensions of items

For dimension-reduction, classical PCA with data scaling was chosen. A total of six PCs were

identified, of which the first three PCs accounted for 84.16% of the variance in the data. PC1

explained most of the variance (40.79%), and included the correlating variables response

time, accuracy, and image agreement. PC2 explained the second largest part of the variance

(24.57%) and contained the correlating variables image complexity and object familiarity. PC3

explained the third largest part of the variance (18.79%) and contained the variable naming

agreement.

4. Plot and group similar items

A 2D map of the data was obtained by plotting the first two PCs, i.e., PC1 and PC2 (Fig 2).

The items that are similar with respect to the variables lie closely together in the graph. In the

current example, the aim was to generate four parallel test versions with 20 items each. There-

fore, 20 groups of at least four similar items were identified. Note that grouping is performed

visually and may therefore slightly vary for subjective reasons. However, even though item

selection may be an iterative process, the quality of the resulting test versions is objectively

evaluated in the final step.

The embedded biplot (arrows in Fig 2) illustrates how the variables contributed to the dis-

tribution of the items in the 2D plot. Numbers from 1 to 116 represent the items. Arrows rep-

resent the direction in which the corresponding variables run. Small-angled arrows (such as,

e.g., for response time, image agreement, and accuracy) indicate high correlations between the

corresponding variables. Items that follow the direction of a given arrow have high values in

the corresponding variable (e.g., item 110 has high values in image complexity and object

familiarity).

PC1 and PC2 are represented by the axes. Since PC3 consists only of naming agreement, its

direction can be read from the corresponding variable arrow. The fact that naming agreement

has a shorter arrow indicates that this variable was not as well captured by the 2D plot as the

other variables. Nevertheless, the arrow corresponding to naming agreement gives an overall

idea of the direction of PC3.

5. Assign items to test versions

In the next step, the items were distributed into four test versions (i.e., A, B, C, and D). The

distribution procedure followed a quasi-randomized assignment order (i.e., ABCD, BCDA,

CDAB, DABC), considering that each version had to contain 10 living and 10 non-living

objects.

Boxplots of the test versions (Fig 3) indicate that test version B may differ from the other

versions A, C, and D with respect to the variable response time. Test version C shows less vari-

ance in response time and more variance in accuracy than the other test versions. Also, accu-

racy shows a strong ceiling effect, indicating that the task was too simple for the 52 healthy

subjects. The ceiling effect is not surprising, since the test was aimed at identifying word find-

ing disorders in patients. Also, other variables (e.g., response time) show a slightly skewed
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distribution, suggesting the necessity of performing a transformation. Although according to

the visual inspection of the quantile-quantile plot, the log- as well as the box-cox-transformed

variable response time seemed normally distributed, the normal distribution assumption had

to be rejected with the Kolmogorov-Smirnov (K-S) test (p-value <.001).

Fig 2. Biplot of PC1 and PC2. Axes: left and bottom = normalized principal component scores of each item; top and right = factor loadings of each

variable. Items are symbolized by numbers ranging from 1 to 116. Spatial proximity of the items corresponds to their similarity with respect to the

considered variables. 20 groups of at least four similar items are circled in grey. Arrows = direction of variables; abbreviations on top of the

arrows = variable names (NaAg = naming agreement, RT = response time, ImAg = Image Agreement, ACC = accuracy, ImCo = image complexity,

ObFa = object familarity); short arrows = variables that are not well captured by the 2D plane; right-angled arrows = no correlation between the

corresponding variables; small-angled arrows = high correlations between the corresponding variables.

https://doi.org/10.1371/journal.pone.0284768.g002
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If differences in mean values or in variances between the four test versions ABCD would

have become visible in the boxplots for any of the variables, the causing items could have been

exchanged between versions.

6. Check resulting tests versions

There are different criteria that need to be met for test versions to be considered as equivalent.

Parallelism is given if mean values and variances are equivalent [29]. Parallelism can be tested

with the Bradley-Blackwood test, and equality of means with the two-one-sided tests (TOST).

ANOVA can provide insight as to whether the subjects differ in their performance on the

parallel test versions, and on how the residuals behave. If test versions are parallel, Pearson’s

product moment correlations can be taken as an estimate of the reliability of the test versions.

Furthermore, Cronbach’s alpha provides information about internal consistency. Since the

proposed method to generate parallel tests takes multiple variables into account, we also pro-

pose a parametric multivariate analysis of variance (MANOVA) or a non-parametric multivar-

iate Kruskal-Wallis test as a mean to compare test versions.

Multivariate equivalence of the items. For a multivariate comparison of the test versions

ABCD, both a MANOVA and a multivariate Kruskal-Wallis (MKW) test were performed on

the items’ data, since the normality assumption was rejected by the K-S test. The parallel test

version was defined as a treatment factor, and the following as response variables: object class,

Fig 3. Boxplots of the variables of concern. The y-axis corresponds to units and the x-axis to test versions A, B, C, D, and unused items X that were

not assigned to any test version.

https://doi.org/10.1371/journal.pone.0284768.g003
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naming agreement, image agreement, image complexity, object familiarity, accuracy, and

response time. Mean values of the response variables were based on the results of the 52 sub-

jects described earlier. If a given response variable had been significant in the MANOVA or

MKW test, it would have meant that at least one test version was different from the others con-

cerning this particular variable. Statistical power was calculated post-hoc with G*Power, ver-

sion 3.1.9.2, to be 0.96. Parameters considered to assess statistical power were effect size of 0.1,

total sample size of 116 items, 4 test versions, and 7 response variables.

As shown in Table 3, the test versions did not significantly differ on any of the considered

variables (p = 1.00 for ABCD for all variables), with naming agreement showing the lowest p-

value (MANOVA: p = 0.75, MKW: p = 0.54). Naming agreement constituted PC3 and was

therefore not particularly well represented by the plot of PC1 and PC2. Yet, it is important to

note that the p-value is not the probability that the null hypothesis is true, i.e., that the parallel

tests are equal [30]. For this reason, it is indispensable to examine the confidence intervals; in

this case, however, this would lead to six pairwise comparisons for each of the seven variables.

For instance, the confidence interval for the difference in response time between version B

and C ranged from -253 to 302 milliseconds. This illustrates that the null hypothesis cannot be

rejected, but also that the null hypothesis is not necessarily correct. Rather, the question must

be asked as whether a difference of 300 milliseconds would be acceptable to be considered

as similar enough. Data of a larger number of subjects would help to reduce the confidence

interval.

Bradley-Blackwood test for parallelism. From now on, we will focus on the raw data

of all subjects in response time. This variable was chosen for practical reasons. To control all

variables would go beyond the scope of this paper. Accuracy is not considered suitable as the

scores obtained by healthy subjects indicated a ceiling effect. The ceiling effect is not surprising

since the test used in the current example is aimed at identifying word finding disorders in

patients.

As stated in the section “Multivariate equivalence of the items”, parallelism cannot be auto-

matically assumed if the null hypotheses of equality of the observed means cannot be rejected.

The Bradley-Blackwood paired-samples omnibus test [31], as proposed by Garcı́a-Pérez [29],

is nevertheless valuable in order to indicate possible differences in means and also variances

between test versions. In the present example, this test is being applied with the R-function

from the textbook by Hedderich & Sachs [32].

Since the regression model implied in this test assumes a normal distribution of the data,

the quantile-quantile plot was consulted first (Fig 4). The output of the plot confirmed the

necessity of performing a transformation of the response time before further analyses could be

performed. Otherwise, the assumption of normal distribution could not have been warranted.

We found logarithmic and box-cox-transformation to deliver a very similar result.

The Bradley-Blackwood test indicated no significant differences in response time between

the mean values and variances of the ABCD parallel test versions. Nonetheless, it must be

Table 3. Multivariate comparison of the parallel test versions ABCD.

ObCl NaAg ImAg ImCo ObFa ACC RT All

MANOVA 1.00 0.75 0.99 0.84 0.80 0.95 0.99 1.00

MKW 1.00 0.54 0.99 0.97 0.87 0.86 0.95 1.00

Note. Abbreviations: ObCl = object class, NaAg = naming agreement, ImAg = image agreement, ImCo = image complexity, ACC = accuracy, RT = response time,

MKW = Multivariate Kruskal-Wallis test. Numbers are indicating p-values.

https://doi.org/10.1371/journal.pone.0284768.t003
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noted that versions B and C are approaching a weak trend of being significantly different

(p = 0.16, Table 4).

Two one-sided tests (TOST) for equivalence of means. In order to investigate the equal-

ity of the test versions in more detail, the two one-sided test (TOST) procedure was applied as

described in the tutorial by Lakens, Scheel and Isager [33]. In addition to testing against zero,

TOST can be used to check for equivalence and to reject the presence of a smallest effect size

of interest (SESOI). The TOST procedure helps to ascertain whether an observed effect is

surprisingly small, considering that there is a real effect at least as extreme as the SESOI. The

TOST procedure requires the following input: means, and standard deviations of the com-

pared test versions, sample size, lower and upper equivalence bounds expressed as standard-

ized mean differences (Cohen’s d), alpha level (default = 0.05), and whether the equality of

variances assumption is expected to be met.

With lower equivalence bounds of -0.6 and upper equivalence bounds of 0.6, all equivalence

tests were significant in our parallel test versions. This means that the test versions do not dif-

fer by more than 60% of a standard deviation concerning response time. According to Cohen

[34], this would represent a medium effect size. The four test versions can therefore be consid-

ered as parallel.

ANOVA model and analysis of residuals. To evaluate whether the subjects differed in

their performance on the parallel test versions, and to analyze how the residuals behave, the

Fig 4. Quantile-Quantile plot. Response time (left), logistic-transformed response time (middle), and box-cox-transformed response time (right).

https://doi.org/10.1371/journal.pone.0284768.g004

Table 4. Bradley-Blackwood paired-samples omnibus test on the log-transformed response times of the parallel

test versions ABCD.

versions mean variance F p-value

A—B -0.032 0.0337 1.143 .33

A—C 0.016 0.0212 0.366 .70

A—D -0.028 0.0195 1.341 .27

B—C 0.048 0.0342 1.893 .16

B—D 0.004 0.0294 0.041 .96

C—D -0.044 0.0299 1.713 .19

Note. p-values refer to differences between both mean values and variances.

https://doi.org/10.1371/journal.pone.0284768.t004
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data were analyzed using the following mixed effects model:

Yij ¼ mþ ai þ bj þ gk þ �ijk: ð1Þ

Yij are the logarithmically transformed response times, αi is the fixed effect of parallel test ver-

sions, βj is the random effect of subjects, γk is the fixed effect of age group. Model assumptions

are: Nð0; s2
b
Þ and N(0, σ2). Here, subject is a random block factor, since a random sample of

subjects were tested on all items contributing to the parallel test versions.

The ANOVA output of the ABCD test versions indicated highly significant differences

between the subjects (p<0.001, CI = 0.160, 0.244), almost significant differences between the

age groups (p = 0.052, CI = 0.002, 0.235), and no significant differences between the parallel

test versions (p = 0.120, CIA−B = -0.013, 0.078, CIA−C = -0.061, 0.029, CIA−D = -0.017, 0.073).

The analysis of the residuals indicated that the error variances were equally distributed,

and that the errors, as well as the random effect of subjects, were approximately normally

distributed.

Pearson’s product moment correlations of test versions. Correlations between the par-

allel test versions ranged from 0.70 to 0.82 (Table 5). Since the ABCD test versions have been

found to be parallel, the correlation between test versions can be held for an estimate of the

reliability of the test [29].

Cronbach’s alpha for internal consistency. According to Cronbach [35], alpha is the

mean of all possible split-half coefficients. Hence, it is the value expected when two random

samples of items from a given pool (like, e.g., those in the given example of parallel test ver-

sions) are correlated. As such, Cronbach’s alpha is an indicator of homogeneity within parallel

test versions [35].

Cronbach’s alpha was calculated for the response times of the 52 subjects for each of the

four parallel test versions. The resulting internal consistencies of the parallel test versions

ABCD were good, with α ranging between 0.81 and 0.84 (A: 0.81, B: 0.81, C: 0.81, D: 0.84).

Discussion

We devised and tested a heuristic to generate multiple, equivalent parallel test versions from a

multivariate pool of items. The core of our heuristic is based on the reduction of multivariate

items to two dimensions, which is neither a CTT nor an IRT approach, but could be consid-

ered related to IRT. Similar to IRT, we assume that items vary in difficulty, which in our case is

represented by the different values of the items on the first principal component (Fig 2).

Our items and variables, on which these principal components are based, were generated,

and collected in the past. Among them, Response Time and Accuracy would be the variables

most comparable to typical item response variables. These two, along with Image Agree-

ment, form the first principal component, which accounts for 40.79% of the variance in the

Table 5. Pairwise comparisons of all parallel test versions.

A B C D

A –

B .70 –

C .80 .71 –

D .82 .76 .74 –

Note. All correlations are significant at p = .001. Test statistics are based on Pearson’s product moment correlations.

https://doi.org/10.1371/journal.pone.0284768.t005
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data. This noteworthy relationship might have escaped our attention, had we used the IRT

approach.

Given that unidimensionality is considered a prerequisite for IRT and bidimensionality is

a prerequisite for our dimension-reduction heuristic, it seems a legitimate question how high

the proportion of explained variance should be in order to be considered an indicator of unidi-

mensionality or bidimensionality.

Hattie [36] refers to authors who propagate 20% or 40% for unidimensionality. However,

in his conclusion, he suggests that it may be unrealistic to search for indications of unidimen-

sionality, and that the test score is basically a weighted composite of all the underlying

variables. We share and address this idea by suggesting the use of multivariate items and

dimension-reduction procedures.

A common criterion for dimension-reduction methods is to retain as many components

until about 70–90% of the variance is explained [21–23]. In our heuristic, by relaying on two

principal components, we achieve an explanation of the variance of 65.36%. Whereas the first

principal component (composed of Response Time, Accuracy, and Image Agreement)

accounts for 40.79% of the variance in the data, the second principal component (composed

of Image Complexity and Object Familiarity) accounts for 24.57% of the variance in the data.

Even if the latter has no direct influence on Response Time or Accuracy, it may still influence

the subjects’ responses, e.g., in the form of faster fatigue over the duration of a test.

In summary, while IRT usually assumes one latent variable, we assume two principal com-

ponents from a variety of variables that ideally cover a large portion of the variance in the

data. This approach helps to represent items on a two-dimensional graph, in which similarity

of items is represented by spatial proximity.

For the selection process, we proposed a semi-automatic approach as opposed to fully auto-

matic methods. While in the latter, similar items such as e.g., “hen” and “rooster” might be

potentially selected in the same parallel test version (shall semantic similarity not be expressed

as a distinct variable), a semi-automatic approach allows correction of such biases.

Within the proposed heuristic, PCA appears to be a good choice as a dimension-reduction

method. Based on the plots of the first two PCs, similar items could easily be identified and

further assigned to parallel test versions. An important advantage of PCA is that it does not

require any distribution assumptions. However, since this approach is based on the empirical

covariance matrix of the data, it is sensitive to outliers. Given that in the current example we

were restricted by a limited number of items, we retained the outliers in the item pool.

In order to confirm that the resulting test versions met multivariate as well as CTT criteria

(i.e., multivariate equivalence, parallelism, equivalence of means, reliability, and internal con-

sistency), we performed both multivariate procedures (i.e., MANOVA and multivariate Krus-

kal-Wallis) as well as univariate procedures (i.e., Bradley-Blackwood test, TOST, ANOVA,

Pearson’s product moment correlations, and Cronbach’s alpha), most of which are known

from CTT. The usual iterative process of the item selection of the CTT could be omitted. With

the example provided, we could demonstrate that the proposed heuristic generated a set of

four parallel test versions ABCD, satisfying requirements of multivariate equivalence, parallel-

ism, reliability, and internal consistency.

Applying a MANOVA as well as a multivariate Kruskal-Wallis test, which better fits our

data, we simultaneously examined all variables, and demonstrated that the ABCD test versions

did not significantly differ with respect to any of the variables considered. As previously noted,

the p-value does not represent the probability that the parallel tests are equal. We therefore

propose to examine confidence intervals. In the present example, for instance, the confidence

interval for the difference in response time between version B and C of the ABCD parallel test

versions ranges from -253 to 302 milliseconds. Even though the null hypothesis (i.e., that the
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test versions are identical) cannot be rejected, response times in the respective test versions

can still differ up to 302 milliseconds. Hence, the critical question to be asked in parallel test

generation may be as to which difference is still acceptable to be considered as similar enough.

Data from more subjects would clearly help reducing the confidence interval. However, our

item set as well as the parallel test versions have an exemplary character here, hence are solely

used for demonstration purposes. Further application in other data sets needing parallel ver-

sion creation would show other peculiarities, but the methodology seems flexible enough to

adapt to these.

The distinctive feature of the proposed heuristic is that it allows for the generation of

multiple test versions while taking several variables into account that have more than one

underlying latent variable. Yet, for reasons of practicability, we did not assess all variables with

all methods. In our verification approach, except for MANOVA and multivariate Kruskal-

Wallis, we focused on the variable response time. Nonetheless, each of these methods could be

extended to any further variables.

When checking for parallelism, the parallel test versions passed the Bradley-Blackwood test.

The ANOVA results indicated that differences in response time between the subjects were highly

significant, and differences between the age groups were almost significant; critically, however,

differences between the parallel test versions were not significant. Pearson’s product moment

correlations, as well as Cronbach’s alpha, showed good results for the parallel test versions.

Given parallelism, these can be considered reliability and internal consistency measures. How-

ever, Cronbach’s alpha is a typical CTT measure that reflects the degree to which items within a

test version are similar with respect to that dimension. This is not central to our heuristic; on the

contrary, we want to allow for item difficulty to vary within a test version, while not leading to

different difficulty distributions across test versions. The fact that we nevertheless obtained good

results in terms of internal consistency is probably due to the homogeneity of the items in terms

of response time and to the fact that the items were mostly selected from the center of the biplot.

Regarding the parallel test versions in our example, the next step shall entail a validation

with aphasic patients, with a focus on the variable accuracy. Simulation studies and replica-

tions using different kinds of data and dimension-reduction methods, such as Multidimen-

sional Scaling (MDS) in the case of mixed data [19], or Stochastic Neighbor Embedding (t-

SNE) [20] in the case of numerical data, would further help to prove the generalizability of the

proposed heuristic.

Using an example data set, we demonstrated that PCA can be applied to derive equivalent

parallel test versions while accounting for the multivariance of the items.
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