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electrocochleography dataset - from 
raw data to objective analysis using 
deep learning
Klaus Schuerch  1,2, Wilhelm Wimmer1,2, Adrian Dalbert3, Christian Rummel4, 
Marco Caversaccio  1,2, Georgios Mantokoudis1, Tom Gawliczek  1 & Stefan Weder1,2 ✉

Electrocochleography (ECochG) measures electrophysiological inner ear potentials in response 
to acoustic stimulation. These potentials reflect the state of the inner ear and provide important 
information about its residual function. For cochlear implant (CI) recipients, we can measure ECochG 
signals directly within the cochlea using the implant electrode. We are able to perform these recordings 
during and at any point after implantation. However, the analysis and interpretation of ECochG 
signals are not trivial. To assist the scientific community, we provide our intracochlear ECochG data 
set, which consists of 4,924 signals recorded from 46 ears with a cochlear implant. We collected data 
either immediately after electrode insertion or postoperatively in subjects with residual acoustic 
hearing. this data descriptor aims to provide the research community access to our comprehensive 
electrophysiological data set and algorithms. It includes all steps from raw data acquisition to signal 
processing and objective analysis using Deep Learning. In addition, we collected subject demographic 
data, hearing thresholds, subjective loudness levels, impedance telemetry, radiographic findings, and 
classification of ECochG signals.

Background & Summary
Electrocochleography (ECochG) measures electrophysiological inner ear potentials in response to acoustic 
stimulation. These potentials reflect the state of the inner ear and provide important information about its resid-
ual function. ECochG is an umbrella term covering four different signal components, i.e., i) the cochlear micro-
phonic (CM, outer hair cell response), ii) the auditory nerve neurophonic (ANN, early neural and inner hair 
cells response), iii) the compound action potential (CAP, early auditory nerve response), and iv) the summating 
potential (SP, mainly inner hair cell response)1–5.

In cochlear implant (CI) patients, using the implant electrode, we can measure ECochG signals directly 
within the cochlea. The measurements can be performed during and after implantation. During the implan-
tation process, studies have shown that abrupt signal changes can be caused by traumatic forces6–14. Hence, 
real-time ECochG traces can complement the haptic perception of the surgeon6,8–11,15–20. ECochG can also be 
useful in the post-operative phase, where patients may lose residual cochlear function21,22. Most commonly, 
such losses occur during the first six to twelve months after implant surgery23–25 due to different intra-cochlear 
factors (e.g., immune response to the electrode, intracochlear inflammatory reactions, and intracochlear scar 
tissue formation)14,26,27. However, the underlying mechanisms remain poorly understood and require further 
research24. In summary, in CI recipients, during and after implant surgery, ECochG measurements map coch-
lear health and thus have great potential to improve our understanding of cochlear function in response to the 
implant electrode.
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The interpretation of ECochG signals, however, is not trivial and requires training. The signal amplitude and 
signal-to-noise ratio (SNR) can vary greatly among individuals. Furthermore, the morphology and latency of 
ECochG traces are affected by the remaining neurosensory cells10,28–30.

Until recently, the evaluation of ECochG signals was based on visual analysis by experts. This approach has 
several disadvantages, e.g., a high level of experience is needed, and expert-dependent analysis can lead to a 
lack of reproducibility, limiting the application of these measurements. We previously introduced a machine 
learning-based, objective method to determine whether an ECochG signal is present or not31. Thereby, three 
experts labelled more than 4,000 ECochG signals to train and test the machine learning algorithm (consisting of 
preprocessing steps and a convolutional neural network, CNN).

The aim of this data descriptor is to provide the research community access to our comprehensive electro-
physiological data set and algorithms (i.e., raw data with access down to single epoch level, pre-processing and 
SNR enhancing algorithms, visually labeled data by three independent human experts, and the trained deep 
learning network AlexNet)31. These data are complemented by the measured hearing thresholds, subjective 
loudness data, demographic data, impedance telemetry measurements, and radiographic parameters.

Potential applications of this data set include, but are not limited to (i) refinement and further use of the 
deep learning network31, (ii) improvement of pre-processing and SNR-enhancing algorithms and data analy-
sis16,31–33, (iii) correlation of ECochG signal components and impedance measurements with hearing thresh-
olds15,16,21,22,34, (iv) longitudinal evaluation and repeatability assessment of ECochG data21, and (v) correlation of 
multi-frequency and broad-band ECochGs with pure tone ECochGs and hearing thresholds35.

Methods
The data presented in this descriptor were collected in a study that was approved by our local institutional review 
board (The Cantonal Ethics Committee of Bern, BASEC ID 2019-01578). All participants gave written consent 
and consent to the use of properly anonymized data before participation.

Subject demographics. We recorded ECochG traces from 41 adult subjects (n = 46 ears) using a cochlear 
implant (MED-EL, Innsbruck, Austria). The subjects’ mean age was 58 years (SD = 17.4 yrs, range: 21 to 86 yrs). 
Pure tone audiograms were performed in a certified acoustic chamber with a clinical audiometer (Interacoustics, 
Middelfart, Denmark). Hearing thresholds were collected either immediately pre-operatively (cohort A) or, in the 
case of post-operative measurements (cohort B), on the day of ECochG measurement. We obtained pure tone air 
conduction hearing thresholds in dB hearing level (HL) at 125, 250, 500, 750, 1000, 1500, 2000, and 4000 Hz. For 
cohort A, we only included subjects with a hearing threshold at 500 Hz of 100 dB hearing level (HL) or better. For 
cohort B, we only considered subjects with stable acoustic hearing six months or longer after the implantation. 
The acoustic hearing was considered stable if the hearing thresholds varied less than 10 dB. In cohort B, subjects 
categorized the loudness of the acoustic stimulus according to Fig. 136.

ECochG data. ECochG recordings were performed using MED-EL Maestro research software (versions 8.03 
AS and 9.03 AS). The acoustic stimulus was generated by a Dataman 531 waveform generator (Dataman, Maiden 
Newton, UK) and converted to sound by an Etymotic ER-3C transducer (Etymotic, Grove Village, IL, USA). The 
acoustic stimulus was triggered via the MED-EL MAX interface. Further details are available in19.

We measured ECochG signals in response to pure tone, click, and SPL chirp stimulus (see Table 1 and Fig. 2). 
We recorded two polarities (condensation, CON, and rarefaction, RAR) and 100 repetitions (epochs) each. 
All ECochG recordings were measured in a stable electrode position; either in the operating room after com-
pleted electrode insertion (cohort A, 25 ears, the measurement setup can be found in19,37) or in a post-operative 
setting (cohort B, 21 ears) in a certified acoustic chamber. We thereby measured ECochG traces at electrodes 
1 (most apical electrode), 4, 7, and 10 and in response to 3 different sound intensity levels (supra-threshold 
level, near-threshold level, sub-threshold level). The intensity levels were calculated using the individual hearing 
thresholds measured before the experiment. Our goal was to evoke responses with different SNRs. For cohort B,  
to obtain longitudinal data, we repeated ECochG recording three times: i) at least 6 months after insertion;  
ii) within 2 to 48 hours after the first measurement; and iii) 2 to 4 months after the first measurement.

Data preprocessing. To pre-process ECochG signals, we implemented the following steps (see31 for fur-
ther details): i) if needed, removal of stitching artifacts; ii) application of a Gaussian-weighted averaging method 
adapted from33 to remove uncorrelated epochs; and iii) application of a second-order Butterworth band-pass 
filter in forward-backward filtering mode (cutoff frequencies at 10 Hz/5 kHz for visual analysis, and 100 Hz/5 kHz 
for the objective algorithms). The SNR was calculated using the ± averaging method38. The pre-processing steps 
above were performed using the Python script do_preprocessing.py, which is available at39.

Data analysis. For further analysis, we calculated the different ECochG signal components. We highlighted 
the CM signal by subtracting the CON and RAR responses40. Since the subtracted result can also contain other 
ECochG components, we will refer to the term “CM/DIF” signal in the following text32. We calculated the ANN 
signal by adding the ECochG response to CON and RAR stimulus3. For the following text, we will refer to it as 
“ANN/SUM” response.

For the visual analysis, the data were labeled by three independent experts with several years of experience in 
the field. Data were presented using Labelbox41 presenting a figure showing i) the CM/DIF trace, ii) the ANN/
SUM trace, iii) the CON and RAR traces, and iv-vi) their corresponding Fast Fourier Transform (FFT) magni-
tude spectra. An example is shown in Fig. 3. During the labeling process, the focus lay on the identification of 
CM/DIF responses and their binary labeling (ECochG response visible/not visible). Thereby, the experts were 
forced to make a judgment; otherwise, it was not possible to proceed to the next signal trace. For the labeling of 
the ANN/SUM and CAP responses, however, in case of ambiguity, the answer could be skipped. The examiners 
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Fig. 1 Categories of subjective loudness. Subjects from cohort B classified each acoustic stimulus intensity to 
one of these categories.

Stimulus type Frequency (Hz)
Stimulus 
duration (ms)

Measurement 
window (ms)

Pure tone 250 12 19.1

Pure tone 500 8 9.6

Pure tone 750 6.67 9.6

Pure tone 1000 5 8.0

Pure tone 1500 4 8.0

Pure tone 2000 3 6.5

Click NA 0.1 6.5

SPL chirp v1 500 6 12.8

1000

2000

4000

SPL chirp v2 250 12 19.1

500

1000

2000

4000

Table 1. Table 1 shows the different stimulation modalities with the three stimuli used, the frequencies, the 
stimulus duration, and the measurement window. SPL chirp stimuli are superpositions of multiple pure tone 
frequencies (see Fig. 2).
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did not discuss their evaluation to avoid bias in the assessment. Signals that were classified as visible CM/DIF 
responses by two examiners and as noise by the third examiner were presented a second time. Only, if all three 
experts rated a signal as visible (in the second round), it was marked as such. This was done to avoid volatility 
errors. Finally, we used the labeled responses to train the deep learning algorithm presented in31.

Impedance telemetry. Before each measurement session, we performed impedance telemetry measure-
ments. We used the default settings of the recordings, recommended by the manufacturer. A charge-balanced, 
rectangular biphasic cathodic first pulse with a duration of 26.67 μs and an amplitude of 302.4 cu (one current  
unit, cu, is equivalent to approximately one μA) was used for stimulation resulting in a stimulation charge of 8.06 qu  

Fig. 2 Electrical signals (left) and acoustic signals (right) generated by the waveform generator and transducer, 
respectively: A) 500 Hz pure tone, B) click, C) SPL chirp v1, and D) SPL chirp v2 stimulus. Note the different 
time axes (X-axis) scaling. The amplitude axes (Y-axis) were normalized. Acoustic signals were measured using 
a head and torso simulator (Type 5128-C-111, Brüel & Kjær, Virum, Denmark) and an audio analyzer (XL2, 
NTi Audio AG, Schaan, Lichtenstein). Electrical signals were measured using an oscilloscope (TDS 1002B, 
Tektronix, Beaverton OR, USA).
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(one charge unit, qu, is equivalent to approximately one nC)42. The voltage potential was measured at the end of 
the anodic phase with respect to the ground electrode located at the implant housing43,44.

anatomy. Anatomical features were extracted from the Computed tomography (CT) scans using Otoplan 
(ver. 1.02, CAScination, Bern, Switzerland)45. CT images with a slice thickness equal to or less than 0.3 mm were 
used. Markers to define the cochlea were set (A value, distance between the round window and the contralateral 
wall of the cochlea, B value, width of the cochlea perpendicular to the A value, H value, distance from the basal 
turn to the apical center)46,47.

Data Records
All data created during this research project are accessible from the Dryad repository39. The dataset is stored 
in the Bern ECochG SQL database, and consists of seven tables, as shown in Fig. 4. Each table can be accessed 
individually. All tables except the Analysis table use the common Subject id attribute, which can be employed to 
connect the tables.

Subject demographics. The subject’s demographic data is stored in the Demographics table. A list of all 
attributes is available in Table 2. The Subject id is stored as XX_Y, where XX is post-insertion (PI) or post-operative 
(PO) and Y is an incrementing number for each subject. The Python script demographics.py illustrates how to 
access the demographic data.

Hearing thresholds. The subjects’ hearing thresholds are stored in table Hearing thresholds. A list 
of all attributes can be found in Table 3. For cohort A, we provide immediate, pre-operative and 3–5 weeks 
post-operative hearing thresholds. For cohort B, we list the hearing threshold before the first post-operative 
ECochG recording (post-operative) and before the third post-operative recording (post-operative 2). In case of a 
missing hearing threshold, we left cells blank.

ECochG data. The table ECochG contains all ECochG raw data. A list of all attributes can be found in Table 4. 
The measurement date shows when the measurement was performed. Measurement session indicates to which 
session the measurement belongs (0: post-insertion, cohort A, 1–3: post-operative measurements, cohort B). 
Measurement number is an ascending number for each session. stimulus type indicates which acoustic stimulus 
was used for the recording. Stimulus duration indicates the duration of the acoustic stimulus in milliseconds (ms). 
Polarity indicates whether a CON or RAR stimulus was used. The acoustic amplitude of the stimulus is given 
in dB hearing level (dB HL) for pure tones or in dB peak equivalent sound pressure level dB p.e. SPL for click 
and SPL chirp stimulus29. The Recording window indicates the length of the recording in ms. The Measurement 

Fig. 3 Visual analysis of ECochG traces was performed using six subplots. A) CM/DIF trace, C) ANN/SUM 
trace, E) CON and RAR traces, and B, D, F) their FFT traces. The gray vertical lines indicate the stimulus period. 
The dashed vertical lines indicate the expected frequency of the response.
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delay specifies the delay between the start of the acoustic stimulus and the start of the measurement window. In 
most cases, Measurement delay is set to 1 ms. Timeaxis and Signal are Numpy arrays stored as JSON strings48,49. 
The Timeaxis was stored as a 1 × N array, where N indicates the time samples. The Signal was stored as M × N, 
where M indicates the recorded epochs and N indicates the recording samples. Subjective loudness represents the 
loudness of the acoustic stimulus as perceived by the subjects (cohort B). Available responses are shown in Fig. 1.

preprocessed. The Preprocessed table contains data generated after the pre-processing steps. The attributes 
are listed in Table 5. The signal is indicated by s.

analysis. The Analysis table contains the visual and objective analysis of the signals. The analyzed signals 
consist of a pair of CON and RAR recordings. The recordings can be traced using the Id, which is represented as 

Fig. 4 The Bern ECochG database contains seven tables.

Attribute Data type Description

Subject id String PI: post-insertion, PO: post-operative

Gender String F: female, M: male

Age Int Subject age (years)

Implant side String L: left, R: right

Insertion depth Int Number of electrodes inside the cochlea

Etiology String Cause of hearing loss

Array String Implant electrode array type

ToM Int First recording time after surgery (months)

Table 2. Structure of the subject Demographics table.

https://doi.org/10.1038/s41597-023-02055-9
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XX_Y.SESSION_NR.NR_CON.NR_RAR. Where XX is PO or PI, Y represents the subject’s incrementing identi-
fication number, SESSION_NR is the session number, and NR_CON and NR_RAR represent the measurement 
numbers (e.g., PO_1.1.010.011 consists of recordings #10 and #11 of post-operative subject 1 and session 1, 
respectively). 

Analysis was performed for CM/DIF (DIF), ANN/SUM (SUM), and CAP components. ECochG components 
were labeled by the examiners (l1 - l3) and the deep learning (DL) algorithm.

Objective analysis of the CM/DIF signals is only available for pure tone stimulus. Unlabeled components 
were left blank. Table 6 shows an overview of all attributes available in the Analysis table.

anatomy. The Anatomy table contains the anatomical features. A list of all attributes can be found in Table 7. 
Type indicates whether the anatomical features were extracted from pre-operative or post-operative CT images. 
The shape of the cochlea is indicated by the A, B, and C values, and the cochlear duct length (CDL)46. General 
statistics about the anatomical features are shown in Table 8

Impedance telemetry. The table Telemetry contains the recorded values during clinical routine telemetry 
measurements. A list of all attributes can be found in Table 9. The Clinical impedances represent the impedances 
from the electrodes (1 to 12) to the ground electrode. General statistics about clinical impedances are shown in 
Table 10

Attribute Data type Description

Subject id String PI: post-insertion, PO: post-operative

Type String pre-operative, first post-operative, 
post-operative, post-operative 2

125 Hz Int

250 Hz Int

500 Hz Int

750 Hz Int

1000 Hz Int

1500 Hz Int

2000 Hz Int

3000 Hz Int

4000 Hz Int

6000 Hz Int

8000 Hz Int

Click Int

SPL chirp v1 Int

SPL chirp v2 Int

Table 3. Structure of the Hearing thresholds table. Hearing thresholds were measured in dB hearing level (HL).

Attribute Data type Description

Subject id String PI: post-insertion, PO: post-operative

Measurement date String YYYY-MM-DD

Measurement session Int 0: post-insertion, 1–3: post-operative

Measurement number Int Incrementing number

Stimulus type String Pure tone, Click, SPL chirp v1, SPL chirp v2

Frequency Int In Hz; 0 for non-pure tones

Stimulus duration Float ms

Polarity String CON, RAR

dB HL Int Stimulus intensity (dB HL)

dB SPL Int Stimulus intensity (dB SPL)

Recording electrode Int

Recording window Float Recording window duration (ms)

Measurement delay Float Recording delay (ms)

Maestro version String Software version used for recording

Timeaxis Array Timeaxis of the recording

Signal Array Recorded epochs

Subjective loudness String Subjective perception of the stimulus

Table 4. Structure of the ECochG table.

https://doi.org/10.1038/s41597-023-02055-9
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technical validation
The ECochG system was calibrated by the manufacturer. No changes were made to the recorded raw data. To increase 
the reliability of the measurements in cohort A, we used sterile eartips for recording and applied the guidelines pre-
sented in37. In cohort B, we compared hearing thresholds measured with the ECochG hardware with the audiogram 
before each measurement session. In this way, we were able to verify that the eartips were placed correctly. For this 
purpose, we used the customized software AcousticStimulatorGUI, available from39. This software interacts directly 
with the Dataman waveform generator and allows the use of customized acoustic stimulus. The software with the 
corresponding hardware was calibrated on a head and torso simulator (Brüel & Kjær, type 5128, Nærum, Denmark).  
The AcousticStimulatorGUI was calibrated with our hardware. Using this software together with other hardware 
requires a new calibration. The calibration parameters can be adjusted in the GetFrequencyOffset method of the 
Dataman class.

Usage Notes
The database has been split into seven data parts and the empty Bern_ECochG database to facilitate down-
loading. Each part is saved as a .sql file and can be imported into the Bern_ECochG database individually. We 

Attribute Data type Description

Subject id String PI: post-insertion, PO: post-operative

Measurement session Int 0: post-insertion, 1–3 post-operative

Measurement number Int Incrementing number

s approx Array Mean of all epochs

s approx filt Array Bandpass filtered mean of all epochs

s ga Array Mean of correlated epochs

s ga filt Array Bandpass filtered mean of correlated epochs

s indexes Array Indexes of correlated epochs

snr raw Float SNR of raw signal

snr s approx Float

snr s approx filt Float

snr s ga Float

snr s ga filt Float

Table 5. Structure of the Preprocessed table.

Attribute Data type Description

Id String XX_YY.SESSION_NR.nr_CON.nr_RAR

DIF l1 Bool examiner 1

DIF l2 Bool examiner 2

DIF l3 Bool examiner 3

SUM l1 Bool

SUM l2 Bool

SUM l3 Bool

CAP l1 Bool

CAP l2 Bool

CAP l3 Bool

Artifact Bool Artifact present yes (1)/no (0)

DIF DL Bool Deep learning

Table 6. Structure of the Analysis table.

Attribute Data type Description

Subject id String PI: post-insertion, PO: post-operative

Type String pre-operative, post-operative

A value Float

B value Float

H value Float

CDL Float Cochlear duct length

Table 7. Structure of the Anatomy table.

https://doi.org/10.1038/s41597-023-02055-9
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recommend downloading all parts and assembling them using sqlitebrowser available at https://sqlitebrowser.org/.  
The Python scripts provided will only work when the database is fully assembled. The Python scripts show how to 
access the database. Along the Python scripts, a .yml file is provided to install all dependencies to run the scripts.

Code availability
The code used to create and process the presented data is provided in39 or is part of open-source repositories48–53.

Received: 27 September 2022; Accepted: 8 March 2023;
Published: xx xx xxxx
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