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Introduction: Osteoporosis is currently diagnosed based on areal bone mineral
density (aBMD) computed from 2D DXA scans. However, aBMD is a limited surrogate
for femoral strength since it does not account for 3D bone geometry and density
distribution. QCT scans combined with finite element (FE) analysis can deliver
improved femoral strength predictions. However, non-negligible radiation dose
and high costs prevent a systematic usage of this technique for screening
purposes. As an alternative, the 3D-Shaper software (3D-Shaper Medical, Spain)
reconstructs the 3D shape and density distribution of the femur from 2D DXA
scans. This approach could deliver a more accurate estimation of femoral strength
than aBMD by using FE analysis on the reconstructed 3D DXA.

Methods: Here we present the first independent evaluation of the software, using
a dataset of 77 ex vivo femora. We extend a prior evaluation by including the
density distribution differences, the spatial correlation of density values and an FE
analysis. Yet, cortical thickness is left out of this evaluation, since the cortex is not
resolved in our FE models.

Results:We foundan average surfacedistanceof 1.16mmbetween3DDXAandQCT
images, which shows a good reconstruction of the bone geometry. Although BMD
values obtained from 3D DXA and QCT correlated well (r2 = 0.92), the 3D DXA BMD
were systematically lower. The average BMD difference amounted to 64mg/cm3,
more than one-third of the 3DDXA BMD. Furthermore, the low correlation (r2 = 0.48)
between density values of both images indicates a limited reconstruction of the 3D
density distribution. FE results were in good agreement between QCT and 3D DXA
images, with a high coefficient of determination (r2 = 0.88). However, this correlation
was not statistically different from a direct prediction by aBMD. Moreover, we found
differences in the fracture patterns between the two image types. QCT-based FE
analysis resulted mostly in femoral neck fractures and 3D DXA-based FE in subcapital
or pertrochanteric fractures.

Discussion: In conclusion, 3D-Shaper generates an altered BMD distribution
compared to QCT but, after careful density calibration, shows an interesting
potential for deriving a standardized femoral strength from a DXA scan.
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1 Introduction

Osteoporosis is characterized by a loss of bone mass which
induces a decrease in bone strength. The disease is generally silent
until a fragility fracture occurs, often resulting in a loss of
independence and quality of life for the patient (Kanis et al.,
2021). The diagnosis of osteoporosis is currently defined as a low
T-score, which is computed from the areal bone mineral density
(aBMD) extracted from 2D dual-energy X-ray absorptiometry
(DXA) images at the lumbar spine and the proximal femur. If a
quantitative computer tomography (QCT) scan including the
proximal part of the femur is available, an equivalent aBMD
score can be computed by projecting the image onto a 2D plane
(Khoo et al., 2009).

However, aBMD is a limited surrogate for bone strength since it
does not account for bone geometry and spatial distribution of bone
density. Moreover, fracture risk depends on additional factors. The
FRAX tool (McCloskey et al., 2012) relies on different clinical risk
factors (e.g., BMI, current smoking status) in combination with or
without aBMD to compute a 10-year fracture risk. More
“mechanistic” models of hip fracture risk (Schechner et al., 2010;
Bhattacharya et al., 2019) may further improve fracture risk
estimation. However, these “mechanistic” models require an
estimate of femoral strength in dimension of force (N) rather
than an aBMD value. Increasing evidence shows that femoral
strength can be predicted precisely by finite element (FE) analysis
of QCT scans (Engelke et al., 2015; Bouxsein et al., 2020). Thus,
instead of projecting QCT images to get DXA-equivalent scores, it is
meaningful to reconstruct the DXA images into 3D models of the
femur and compute femoral strength with FE analysis (Thevenot
et al., 2014; Väänänen et al., 2015; Grassi et al., 2017; RuizWills et al.,
2019; Grassi et al., 2021).

Most reconstruction methods so far use statistical models of
shape and density (Reyneke et al., 2019) to recover a 3D image of the
bone from a single (Langton et al., 2009; Whitmarsh et al., 2011) or a
few (Zheng et al., 2009; Ehlke et al., 2013) 2D projection(s). The
commercial software 3D-Shaper (3D-Shaper Medical, Spain)
provides the 3D reconstruction of the proximal part of the
femur, as well as other metrics related to bone strength, based on
a single DXA scan (Humbert et al., 2017). In brief, the software uses
a statistical model of shape and density derived from a dataset of
QCT scans of the femur. Iteratively, the femur model is repositioned
and deformed, before being projected and compared to the original
2D DXA scan. The model instance producing the projection closest
to the DXA image is selected as reconstruction. Lately, the 3D-
Shaper software has experienced a growing interest in the clinical
community. Indeed, 3D-Shaper has recently been used to evaluate
different treatment strategies for conditions of skeletal fragility,
where especially differential effects of the treatment on cortical
and trabecular bone densities were examined (Lewiecki et al.,
2022; Winzenrieth et al., 2022). In another initiative, the effect of
exercise on femoral neck strength was evaluated using 3D DXA-
based FE analysis (O’Rourke et al., 2022).

However, so far, the method’s performance has only been
evaluated by the team who developed the reconstruction
algorithm (Whitmarsh et al., 2011; Humbert et al., 2017), except
for the repeatability, which was evaluated by a separate team
(O’Rourke et al., 2021). The present work aims to provide both

an independent verification and an extension of the initial
evaluation, while a separate study will assess the repeatability. We
intend to assess if 3D DXA reconstructed with 3D-Shaper is an
adequate surrogate for QCT and if it has the potential to improve
fragility fracture risk estimation. For that purpose, we use a new and
independent dataset of anatomic specimens of non-embalmed
human femora. In addition to the metrics presented by Humbert
et al. (2017), such as surface distance and bone mineral density
(BMD), we analyze the distribution of the density differences,
compute the spatial correlation of BMD values and conduct an
FE analysis on both QCT and 3D DXA images. Differences in scalar
strength outcomes as well as scalar fields describing the damage of
bone tissue are analyzed to get a better picture of the differences
between the two methods. On the other hand, we decided to leave
cortical thickness out of the analysis. Indeed, cortical thickness is a
measurement with high variability since it depends on the resolution
of the image and because the definition of the inner cortical surface
remains controversial (Zebaze and Seeman, 2015). In addition,
cortical thickness as a measure is not relevant for the FE analysis
since the cortex is not resolved in our FE models.

To sum up, the aim of our analysis is to shed light on the
limitations and potential of 3D DXA for prediction of femoral
strength and possibly other clinical applications of the technique.

2 Materials and methods

2.1 Dataset

Eighty-three human femora were collected from forty-two
donors by the Division of Anatomy of the Medical University of
Vienna. The human bone material was collected with prior consent
of the donor and no payment was received. Six femora were
excluded due to pre-existing neck fractures or to the presence of
large air bubbles (visible in the CT scan), resulting in a dataset of
seventy-seven femora from forty-one donors. The dataset is
described in Table 1. One donor had unknown sex and age.
Osteopenia and osteoporosis were defined based on the DXA-
based neck T-score. For pairs of femora from the same donor,
the worst of both T-scores was used to classify the donor, resulting in
a larger proportion of osteoporotic donors than femora. The study
focuses on the proximal part of the femur, which is called proximal
femur in the following text for simplicity.

QCT scans were realized in October 2017 (17 femora, subset I)
and in March 2019 (66 femora, subset II) at the Institute of Forensic
Medicine in Bern, on a CT scanner (SOMATOM Definition AS,
Siemens, Germany) with a calibration phantom (BDC 700 mm with
six inserts, QRM, Germany). The CT images were cropped
approximately 1 cm distal to the lesser trochanter and resampled
to an isotropic resolution of 1 mm (the same resolution as the
reconstructed DXA images) for the following analysis.

DXA scans were taken in February 2020 on a regularly
maintained and calibrated Lunar iDXA (GE, United States) at a
satellite site of the Department of Osteoporosis, Inselspital Bern. To
replace soft tissues, the femora were placed between two plastic bags
filled with water, as illustrated in Figure 1, resulting in a total setup
height of approximately 15 cm. A water bath of 15 cm depth is
frequently encountered in literature to replace soft tissues in DXA

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Dudle et al. 10.3389/fbioe.2023.1111020

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1111020


scans (Boehm et al., 2008; Holzer et al., 2009; Roberts et al., 2010).
The condyles were placed on a flat surface and the resulting angle of
the femoral head was maintained while placing the bags, to
reproduce the anatomical position of the femur.

2.2 CT calibration

The position of the six phantom inserts in the CT image was
detected automatically and the average Hounsfield unit (HU) value
in the inserts was computed for each slice. The HU values in the
inserts showed considerable fluctuations over the scan length. This is
probably due to the current modulation used to optimize the
radiation dose according to the mass present in each slice.
Therefore, the images were calibrated slice per slice, using a
moving average of the HU values in the inserts over five slices to
remove noise. In five images from subset I and six images from
subset II, the calibration phantom was not visible on the whole scan
length. For these scans, we computed the relation between the HU
values in the inserts and the average HU value in the slice, used as a
surrogate for the mass present in each slice. With the help of that
relation, the phantom values were extrapolated to the remaining
slices. The images were then calibrated as described previously.

2.3 Segmentation

To compare both image types, the bone had to be isolated from
the image background. For the 3D DXA, we used the cortical surface
mesh available in the 3D-Shaper output to define the bone contour.

The 3D image and the mesh were overlaid and all image voxels
inside the mesh were labeled as bone, while the others were labeled
as background. For the QCT images, segmentation masks had to be
defined. However, the presence of tissue around the bone reduced
the contrast of the bone surface and prevented the use of a
thresholding method. Instead, we chose a deep learning
approach, starting by segmenting a dozen of images manually. A
small U-Net-inspired 3D neural network (Ronneberger et al., 2015)
was then trained with these image-segmentation pairs. More details
on the network architecture can be found in the Supplementary
Material. After training, the neural network was used to predict the
segmentation for another group of scans. The predictions were
corrected manually and added to the training set. The neural
network was then re-trained and used again to predict the
segmentation of a further group of scans. The procedure was
repeated until segmentation masks were available for all CT images.

2.4 DXA reconstruction

DXA scans were reconstructed with the 3D-Shaper software
(version 2.10, 3D-Shaper Medical, Barcelona, Spain) following the
provided guidelines. First, the DXA image was imported in the
software. Three landmarks are required for the reconstruction and
are automatically placed by the software. This automatic positioning
failed in our case, probably because of the missing pelvis bone, and had
to be corrected manually. After positioning the landmarks, a 3D image
of the proximal femur was reconstructed iteratively by the software, as
described in the introduction. Finally, the software saved the output as
images and meshes. Among these output files, we used the 3D image
containing the BMD values in the proximal femur, the segmentation
mask defining the femoral neck, greater and lesser trochanter regions,
and the mesh describing the external cortical surface.

2.5 Registration CT-3D DXA

Since the CT and the DXA scans were not performed in the same
position, both images had to be aligned before they could be
compared. All registrations were performed using the
SimpleElastix Python library (version 0.10.0), based on the open-
source software Elastix (Klein et al., 2010). To align the CT and the
3D DXA images, we started by computing the registration between
both segmentation masks, without taking the BMD values into
account. This step allowed to obtain a robust first guess for the
alignment by avoiding possible local minima due to the BMD values.
As a second step, the alignment was refined according to the BMD
distributions. In both cases, the registration transform was rigid,
allowing only rotation and translation, so the shapes were not
deformed. A pyramidal scheme with four different resolutions

TABLE 1 Description of donor demographics.

Female Male Gender unknown Mean age (range) Normal BMD Osteopenia Osteoporosis

Donors 21 19 1 81 ± 9 (57–96) 3 8 30

Femora 39 36 2 80 ± 9 (57–96) 7 18 52

FIGURE 1
DXA scanning setup: femur between two water bags.
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was adopted, starting the registration process with a downsampled
image and iteratively increasing the resolution to refine the
alignment. Mutual information (MI) (Unser and Thevenaz, 2000)
was used as an optimization metric. A B-Spline interpolator of the
third order was used to compute the BMD values after the
transformation (Unser, 1999).

2.6 Regions of interest

The results were evaluated for the femoral neck, the regions of
the greater and lesser trochanter (GT and LT, named trochanter and
shaft in Humbert et al., 2017), the combination of these three
regions, as well as for the femoral head, as shown in Figure 2.
The femoral head was evaluated separately because the
corresponding region in the DXA image is usually superimposed
with the acetabulum and thus not considered in the reconstruction.
These regions were based on the labels present in the 3D-Shaper
output. For the CT image, the region boundaries were adapted to fit
the bone surface, without moving the planes separating the regions.

2.7 Geometrical comparison

First, the volume of each region of interest was computed for the
3D DXA and the CT images. Next, we determined the average and

maximal distances between the bone surfaces for each pair of
images. The exterior cortical mesh of the 3D DXA was available
in the 3D-Shaper output, with anatomically corresponding nodes for
all reconstructions. For every node of the 3D DXA mesh, we
searched for the nearest point on the registered CT segmentation
surface and measured the unsigned distance between them. The
average and maximal distances were computed for each region of
interest and averaged over all femurs. We also analyzed the spatial
distribution of the surface distances. For each node, the average
distance over all femora was computed and projected onto the
surface mesh of a femur representative of the dataset according to a
distance metric presented in Chandran et al. (2017), and called
“standard femur” in the following.

2.8 BMD comparison

Bone mineral density (BMD) and content (BMC) values of the
3D DXA and CT images were averaged for each region of interest.
The voxel-voxel BMD correlation between the CT and 3D DXA
images was then computed in the region where the bones overlap. In

FIGURE 2
Regions of interest, indicated on a coronal cross-section of a
proximal femur. GT and LT stand for greater and lesser trochanter,
respectively. FIGURE 3

Implicit coordinate systemof the proximal femur. The coordinate
system consists of an estimate of the femoral neck axis and the
proximal shaft axis of the femur, which intersect at a closest point (red
dot) defined from two generally not intersecting initial guesses.
The orange dot depicts the center of the femoral head, the yellow
depicts the distal point used for the definition of the femoral shaft axis,
and the purple dot is the peak of the lesser trochanter.
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addition, we analyzed the distribution of the density differences
between the CT image and the 3D DXA reconstruction. For that
purpose, the images were first downsampled to an isotropic
resolution of 3 mm to avoid local density outliers. All 3D DXA
reconstructions were then registered non-rigidly to the standard
femur. For each femur, the resulting transformation was also applied
to the corresponding CT image. After registration, all images were
cropped at the same height along the shaft, to keep only the area
common to all images. Finally, we computed the BMD difference for
all pairs of CT and 3D DXA images and averaged the results for each
voxel.

2.9 FE analysis

Isotropically resampled, masked, and calibrated CT images and
3DDXA images were used as input for an FEmodeling pipeline. The
fully automated pipeline created voxel-based FE models and ran
non-linear quasi-static FE analyses. The pipeline was implemented
in Python and developed and adjusted to enable an integration in the
clinical workflow. This required short processing times and a
minimum of user input. All code is on GitHub and can be made
available upon request.

2.9.1 Implicit coordinate system of the proximal
part of the femur

To transform the extracted femoral geometry to the desired
experimental position, an implicit coordinate system (Figure 3) of
the proximal part of the femur, inspired by Chandran et al. (2017),
was established. The coordinate system consisted in an axis
characterizing the neck and another axis characterizing the shaft
of the proximal femur. An iterative procedure was adopted to obtain
two intersecting axes from non-intersecting initial guesses. Thus, the
definition could be reduced to three points: one in the center of the
femoral head, a second one at the intersection point of the two axes
and a third point at the distal end of the proximal femur. The
location of the section used to make an initial guess for the shaft axis
was placed at a clearly defined height with respect to the lesser
trochanter (LT), which was detected along with the two axes. This
approach was chosen in order to reduce the influence of the
curvature of the femoral shaft and the location of the distal cut
plane on the estimated shaft axis. A sphere fit to the femoral head
allowed to estimate the radius and center of the femoral head. For a
more detailed description of the procedure used to establish the
implicit coordinate system, the reader is referred to Supplementary
Section S1.2.1.

2.9.2 FE model
The FE model was created based on the implicit coordinate

system established above. The axes of the implicit coordinate system
were used to transform the mask rigidly in a configuration
mimicking a fall to the side with an impact on the greater
trochanter (GT). In this configuration, the shaft is inclined by 10°

with respect to the horizontal ground, as shown in Figure 4. The
plane formed by shaft and neck axes is oriented vertically. This
configuration corresponds to an internal rotation that compensates
for anteversion and therefore models a side fall slightly oriented
backward. Before converting the voxels in the mask to finite

elements, the image was downsampled to a voxel size of 3 mm.
This element size yielded a reasonable compromise between
computation time and precision in the FE simulations (Dall’Ara
et al., 2013; Panyasantisuk et al., 2018).

The material properties of bone were mainly governed by bone
volume fraction (BV/TV). BV/TV was obtained by converting the
local BMD values (Dall’Ara et al., 2013) (Supplementary Material:
1.2.4 BMD to BV/TV conversion). For each FE element, a spherical
region of equivalent volume was defined in the original image. The
BMD values were then averaged within the region and mapped to
the transformed mask using the same rigid body transform as above.

An isotropic elastic-perfectly plastic material model was
chosen, which includes an isotropic damage formulation with
the cumulative plastic strain as the driving quantity for the
damage variable (Schwiedrzik and Zysset, 2013). The isotropic
damage variable can vary between 0 (undamaged) and 1 (fully
damaged) and affects all components of the elastic stiffness tensor
alike. Yielding was defined by the isotropic formulation of the
generalized quadric criterion by Schwiedrzik et al. (2013). Elastic
and yield constants were extrapolated from the experimental
results by Rincón-Kohli and Zysset (2009) who tested human
trabecular bone. A piecewise function as described by Dall’Ara
et al. (2013) was used to scale elasticity and yield properties with
BV/TV. This is a modification of the formulation for trabecular
bone by Zysset (2003) and aims at getting more realistic properties
for elements with BV/TV above 0.5, which contain a large fraction
of cortical bone. The parameters of the piecewise function were
chosen so as to obtain an elastic modulus of 24 GPa and tensile
and compressive yield stresses of 199 MPa respectively 264 MPa
for idealized pore-less bone (BV/TV = 1). These values may seem
rather high for cortical bone tissue. However, given a typical BV/
TV of 0.907 (Boughton et al., 2019), the elastic modulus reduces to
15.9 GPa and the tensile and compressive yield stresses to
131 MPa resp. 175 MPa, where the tensile and compressive
yield strains remain constant at 0.83% respectively 1.1%.
Overall, these numbers are in line with literature values (Reilly
and Burstein, 1974; Cezayirlioglu et al., 1985; Bayraktar et al.,
2004; Öhman et al., 2011). The material model is detailed in the
Supplementary Material: 1.2.3 Constitutive model;
Supplementary Figure S3.

To replicate the experimental setup by Dall’Ara et al. (2013), the
most lateral aspect of the GT and the most medial part of the femoral
head in the experimental position were embedded in polyurethane
contained in a steel cylinder (Figure 4B). Since the embedding depth
in the experiment was 10 mm, three to four layers of voxels were
chosen as embedding depth in the FE model. The femur was cut one
head radius distal to the LT. Voxels were directly converted into
linear isotropic hexahedral (8-node linear brick—C3D8) finite
elements. The FE models consisted in 8,500–15,500 elements and
10,500–18,800 nodes.

Nodes on the distal cut surface were fully constrained. Nodes on
the lower surface of the GT embedding were constrained only in the
vertical direction. A vertical displacement was assigned to a node in
the head center. A kinematic coupling between the driving node in
the head center and the upper surface of the embedding of the
femoral head was introduced (Figure 4A), in order to simulate a
possible sliding motion between the surface of the femoral head and
the embedding polyurethane in the experiment (Panyasantisuk
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et al., 2018). The reaction force at the driving node was recorded for
each increment in the FE analysis.

The primary outcome of the simulations was the strength of the
proximal part of the femur with a dimension of force (N). With the
perfectly plastic post-yield behavior, no clear maximumwas reached
in most force-displacement curves. The inclusion of softening in the
post-yield domain, on the other hand, led to pronounced strain
localization in several cases. Consequently, strength was defined as
the reaction force on the driving node at the femoral head center
when a displacement corresponding to 4% of the distance femoral
head center-GT was reached. This definition corresponds to the one
adopted by Orwoll et al. (2009) and Kopperdahl et al. (2014).

Simulations were run on Abaqus 2021.HF4 (Dassault Systèmes,
Vélizy-Villacoublay, France) on a small local cluster. The cluster was
comprised of Intel Xeon CPU E5-2690 v3 (2.60 GHz) processors,
which ran Red Hat Enterprise Linux 8.4. Pre- and postprocessing
operations were carried out on a single CPU, whereas Abaqus
simulations were run on 8 CPUs. Total processing times varied
between 3 and 9 min per model.

Likewise, FE models were created for a position mimicking the
stance phase of the gait cycle. Details for this case and the
corresponding results are included in the Supplementary
Material: 1.2.2 Stance configuration; Supplementary Figures S2,
S4, S5.

2.9.3 Adjustment of bone mineral content
In the first iteration, QCT and 3D DXA data were processed

independently through the FE pipeline using their original density
values. At the same time, the voxel-based meshes were saved as
image files with each voxel containing the local BMD value. The
BMC was computed for each mesh as the volume integral of local
BMD values over the whole volume of bone present in the respective
mesh. As significant differences were discovered between the BMC
values based on QCT and 3D DXA images in the foregoing analysis,
two corrections were introduced for the BMC computed from the
3D DXA-based meshes: A “collective correction” to remove the

calibration errors between the DXA and QCT machines and an
“individual correction” to observe the effects of density distribution
differences on strength outcomes based on QCT and 3D DXA
respectively. The two following paragraphs explain the two
corrections. Both corrections were computed for the sets of
meshes representing fall and stance load cases separately. This
was necessary, as the most distal part of the mesh differs
between fall and stance, due to a different orientation of the
femoral shaft with respect to the transverse plane along which
the meshes were cut.

First, a linear regression analysis was performed between the
BMC values computed from QCT and 3D DXA-based meshes. The
linear regression equation was then used to estimate the BMC of the
QCT-based mesh corresponding to the respective 3D DXA-based
mesh ( ̂BMCQCTfall). The ratio between estimated BMC of the QCT-
based mesh and the BMC of the 3DDXA-based mesh (fcollective) was
then used to scale the local BMD values of all elements in the 3D
DXA-based mesh. The equations below summarize the correction
procedure.

̂BMCQCTfall � m · BMC3DDXAfall + b

fcollective �
̂BMCQCTfall

BMC3DDXAfall

BMDi
3DDXAfall collective �fcollective · BMDi

3DDXAfall

for 1≤ i≤Nbr. bone elements

The FE simulation was rerun for the corrected 3D DXA-based
meshes, and the corresponding femoral strength values were
extracted as described above. Such a procedure, based on a
calibration equation, could be applied in clinics to correct for the
average density differences between QCT and 3D DXA images. In
the following this set of simulations is called “collectively corrected
simulations.”

For the second correction, the ratios of BMC computed from the
QCT-based meshes to the BMC of their respective 3D DXA-based
meshes were computed (findividual). The local BMD values of all

FIGURE 4
FE mesh with embedding caps. (A) Kinematic coupling between the driving node at the center of the femoral head and the upper surface of the
embedding cap. (B) 10° inclination of the proximal shaft axis. Nodes on the distal cut surface were fully constrained. Nodes on the lower surface of the GT
embedding were constrained in the vertical direction and free to move laterally.
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elements in the 3D DXA-based mesh were scaled with the so-
obtained constant scaling factor resulting in pairs of corresponding
QCT- and 3D DXA-based meshes with the same BMC value. The
correction of a given 3D DXA-based mesh with respect to its
respective QCT-based mesh is summarized in the equations below.

findividual � BMCQCTfall

BMC3DDXAfall

BMDi
3DDXAfall individual �findividual · BMDi

3DDXAfall

for 1≤ i≤Nbr. bone elements

The FE simulations were repeated with this set of corrected 3D
DXA-based meshes and femoral strength was extracted as described
above. In addition, the spatial distribution of damage was extracted
at the point of the estimated femoral strength. This second
correction aimed to isolate the effect of differences in shape and
density distribution between QCT- and 3D DXA-based simulations
on the strength and fracture patterns. This set of simulations is
termed “individually corrected simulations.”

2.9.4 Statistical analysis of FE-based strength
outcomes

We performed linear regression analysis between QCT- and 3D
DXA-based femoral strength measures for uncorrected 3D DXA-
based simulations and the collectively and individually corrected sets
of 3D DXA-based simulations. The coefficient of determination and
the concordance correlation coefficient (Lin, 1989) were computed.
A bootstrapping approach was applied to obtain confidence
intervals (95%) for the coefficient of determination. The linear
regression analysis was repeated for QCT-based strengths versus
DXA-based aBMD. The coefficient of determination and its
confidence interval were computed using the same approach as
above. We determined the means and standard deviations of
predicted and predictor variables and the standard error of the
estimate (SEE) for the linear regressions. In addition, we calculated
the mean absolute error (MAE) between paired 3D DXA and QCT-
based strengths and the corresponding coefficients of variation (CV
of MAE).

Statistical analysis was performed in Python 3.10. using the
package SciPy (version 1.9.0).

2.10 Spatial distribution of damage

This analysis was performed based on the individually corrected
simulations, where the BMC of 3D DXA-based meshes was adjusted
to the BMC of QCT-based meshes for the simulation. The spatial
distribution of damage (damage map) was extracted in an FE
postprocessing step for both QCT and 3D DXA-based
simulations to visualize the effect of shape and density
distribution differences between QCT-based and 3D DXA-based
simulations on the fracture pattern.We created damagemaps for the
point where strength was reached in the force-displacement curve of
each case. Each damage map consisted of a 3D image of the
corresponding femur at an isotropic resolution of 3 mm, where
each voxel contained a value between 0 (undamaged) and 1 (fully
damaged). All QCT damage maps were registered non-rigidly to the
standard femur. Binary masks of both target and moving images

were used to compute the registration to avoid the influence of
damage values in the registration. After aligning the damage maps,
the damage values for each voxel were averaged to produce a mean
QCT damage map. The same was repeated for the 3D DXA damage
maps.

3 Results

3.1 Example

Figure 5 compares the BMD values in the CT scan (first row)
with those in the 3D DXA reconstruction (second row). The third
row shows the absolute BMD difference between the two images
and the joint histogram, on which the MI score is based. The
average dice score between segmentation pairs of the whole dataset
is 0.89 ± 0.02.

3.2 Geometry

The volume of the proximal femur is generally smaller in the 3D
DXA than in the CT image, with an average difference of 3% in the
lesser trochanter, 11% in the greater trochanter, 9% in the neck, 7%
in these three regions together and 13% in the head. All differences
are significant with p-values < 0.01.

The results for the average and maximal surface distances are
shown in Table 2 for the regions presented above and for the whole
reconstructed proximal femur. For comparison, Table 2 also shows the
results from Humbert et al. (2017), who used a comparable method.
The average distances are lower than our results by 18%–21%, except
for the femoral head, where they are larger by 42%. Furthermore, the
maximum values Humbert et al. (2017) reported are higher for all
regions. All differences are significant with p-values < 0.01.

We observe that the average surface distance corresponds
roughly to the image resolution (1 mm). To estimate the
registration precision, we resampled one CT image with shifts of
1/3 and 2/3 voxel spacing along the different axes and computed the
registration anew. The resulting differences in the average surface
distance are smaller than 1/20 voxel spacing.

The spatial distribution of the surface distances is illustrated in
Figure 6, where we observe low distances around the femoral neck,
coherently with the results above. The largest distances are found at the
fovea for the ligament of the femoral head; however, this region is
particularly prone to segmentation mistakes due to the junction
between bone and ligament. Large distances are also found around
the lesser trochanter, which could be responsible for the comparatively
large average distance observed in the shaft region in Table 2.

3.3 Bone mineral density

In Table 3, the integral BMD results for the CT and 3D DXA
images are presented, as well as the density differences and the
correlation coefficients. Although all regions show a high correlation
between CT and 3D DXA values, we observe large differences in the
absolute values. Indeed, the average 3D DXA BMD values are
systematically lower than the CT BMD values by up to 30%.
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As a comparison, Table 3 also shows the results fromHumbert et al.
(2017) for the same regions except the femoral head. The correlation
coefficients are very similar to the ones obtained in our evaluation.
However, we observe a systematic density difference in the opposite
direction, with larger densities in the 3D DXA than in the CT images.
The DXA and the CT densities are significantly larger (p < 0.01) in the
results from Humbert et al. (2017) compared to our study, with a
particularly large difference between DXA densities.

Corresponding results for the integral BMC are shown in
Table 4. As in the BMD results, the 3D DXA shows
systematically lower values than the CT image in our evaluation,
while the results from Humbert et al. (2017) present a systematic
difference in the other direction.

3.4 BMD distribution

Although the overall density results shown in Table 4 correlated
quite well, we see in Table 5 that the BMD values of the individual
voxels show much lower correlation coefficients, especially in the
trochanter and head regions. Thus, the density differences do not
seem to be homogeneously distributed. The correlation is significant
with p < 0.01 for all pairs, except for the correlation in the head
region of one femur. Indeed, the CT scan of this femur shows a
region of high densities inside the femoral head which is not present
in the 3D DXA image.

To identify the regions where the density distribution is not
properly reconstructed, we analyze the distribution of the density

FIGURE 5
Example with average registration performance (MI = 0.10, r2 = 0.52, dice = 0.91).

TABLE 2 Mean and standard deviation of the average and maximal surface distances. LT and GT stand for lesser and greater trochanter, respectively, and were
named shaft and trochanter by Humbert et al. (2017).

Evaluation Humbert et al. (2017)

Avg. dist. (mm) Max. dist. (mm) Avg. dist. (mm) Max. dist. (mm)

Neck 1.06 ± 0.23 3.09 ± 0.76 0.87 8.31

LT/Shaft 1.22 ± 0.23 4.47 ± 1.26 1.00 6.55

GT/Trochanter 1.18 ± 0.25 4.23 ± 1.04 0.89 7.12

Total (3 ROIs) 1.17 ± 0.18 4.84 ± 1.21 0.93 8.31

Head 1.24 ± 0.49 3.81 ± 1.21 1.77 8.46

Total proximal 1.18 ± 0.21 5.00 ± 1.23 N/A N/A
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differences between the CT image and the 3D DXA reconstruction.
Figure 7 shows the unsigned BMD difference for three image slices.
The largest differences are found in the shaft cortex and the lower

neck cortex, with differences of up to 620 mg/cm3. The two lines
visible in the shaft cortex could indicate that the cortical thickness or
position does not match between CT and 3D DXA.

FIGURE 6
Average unsigned distance between the proximal femur surfaces obtained from the CT and the 3D DXA images, mapped on the standard femur.

TABLE 3Mean and standard deviation of the integral BMD results (mg/cm3). The density differences and correlation coefficients associated with p-values < 0.01 are
marked with two stars. The remaining differences were associated with p-values > 0.05. LT and GT stand for lesser and greater trochanter, respectively, and were
named shaft and trochanter by Humbert et al. (2017).

BMD (mg/cm3) CT 3D DXA Difference r2**

Evaluation Neck 252 ± 73 188 ± 65 −63 ± 28** 0.85

LT/Shaft 312 ± 8 235 ± 73 −78 ± 27** 0.91

GT/Trochanter 184 ± 64 128 ± 55 −56 ± 20** 0.92

Total (3 ROIs) 250 ± 73 185 ± 62 −64 ± 21** 0.93

Head 197 ± 71 162 ± 54 −35 ± 28** 0.87

Humbert et al. (2017) Neck 300 ± 35 312 ± 35 13 ± 27 0.85

LT/Shaft 339 ± 39 353 ± 42 14 ± 28 0.88

GT/Trochanter 216 ± 27 220 ± 29 4 ± 20 0.86

Total (3 ROIs) 284 ± 32 294 ± 34 10 ± 21 0.90

TABLE 4 Mean and standard deviation of the integral BMC results (g). The content differences and correlation coefficients associated with p-values < 0.01 are
marked with two stars. The remaining differences were associated with p-values > 0.05. LT and GT stand for lesser and greater trochanter, respectively, and were
named shaft and trochanter by Humbert et al. (2017).

BMC (g) CT 3D DXA Difference r2**

Evaluation Neck 4.5 ± 1.8 3.1 ± 1.5 −1.4 ± 0.5** 0.95

LT/Shaft 13.7 ± 5.2 10.0 ± 4.3 −3.7 ± 1.2** 0.97

GT/Trochanter 7.7 ± 3.5 4.9 ± 2.7 −2.8 ± 1.0** 0.96

Total (3 ROIs) 25.9 ± 10.3 18.0 ± 8.4 −7.9 ± 2.5** 0.97

Head 8.6 ± 4.0 6.4 ± 3.1 −2.3 ± 1.3** 0.92

Humbert et al. (2017) Neck 4.4 ± 0.8 4.5 ± 0.8 0.1 ± 0.4 0.94

LT/Shaft 12.9 ± 2.2 13.1 ± 2.4 0.2 ± 1.0 0.96

GT/Trochanter 7.4 ± 1.5 7.3 ± 1.5 −0.1 ± 0.7 0.94

Total (3 ROIs) 24.7 ± 4.4 25.0 ± 4.6 0.2 ± 1.7 0.96
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3.5 FE analysis

3.5.1 Regression results and error computation
Mean femoral strengths computed based on QCT and 3D DXA

were: 3,144 ± 1,686 N (QCT), 2,463 ± 1,406 N (uncorrected 3D
DXA), 3,245 ± 1,754 N (collectively corrected 3DDXA), and 3,262 ±
1,793 N (individually corrected 3D DXA). Figure 8 shows the linear

regression results for QCT and 3D DXA-based simulations. The
uncorrected 3D DXA-based strength outcomes correlate well with
the QCT-based strength [r2 = 0.882, 95% CI (0.830, 0.918)]. A
similar coefficient of determination (r2 = 0.884) is obtained using the
collectively corrected 3D DXA-based meshes, which account for
average differences between the BMC values of QCT and 3D DXA.
However, both these values are not significantly different from the
coefficient of determination between DXA-based femoral neck (FN)
aBMD and QCT-based strength [r2 = 0.868, 95% CI (0.797, 0.913)].

The slope (1.13 ± 0.09) and the intercept (369.58 ± 269.2 N) of
the linear relationship illustrate that the uncorrected 3D DXA-based
simulations underestimate the strengths computed with the QCT
images. It can also be noted that the slope is significantly different
from unity, and the intercept is significantly larger than zero at a
95% confidence interval. This difference is not surprising given the
overall shift in BMC values found in the preceding analysis.

The shift of the strength values is largely corrected when
adjusting the BMC of 3D DXA-based meshes, either using the
collective or the individual correction (Figure 8; Table 6).

FIGURE 7
Average unsigned BMD difference between CT and 3D DXA (mg/cm3) shown on an axial (left), a coronal (center) and a sagittal (right) plane of the
standard femur.

FIGURE 8
Linear regression between QCT-based and 3D DXA-based femoral strengths (FS) for the side fall configuration. (A) Uncorrected 3D DXA-based FE
simulations (B) BMC of 3D DXA-based meshes adjusted to BMC of QCT-based meshes (collectively corrected 3D DXA-based FE simulations).

TABLE 5Mean and standard deviation of the voxel BMD correlation coefficient.

Voxel-voxel BMD correlation (r2)

Neck 0.47 ± 0.10

Lesser trochanter 0.51 ± 0.10

Greater trochanter 0.27 ± 0.12

Total (3 ROIs) 0.48 ± 0.09

Head 0.21 ± 0.11

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Dudle et al. 10.3389/fbioe.2023.1111020

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1111020


However, with both adjustments, the slope is still significantly
different from 1, whereas the intercept is not significantly
different from 0 at a 95% confidence interval. Table 6
summarizes the linear regression results, error measures, and
concordance between 3D DXA and QCT-based FE analysis. As
could be expected, the adjustments of BMC values for the 3D DXA-
basedmeshes lead to an increase in the concordance coefficient from
0.880 (uncorrected) to 0.937 (collectively corrected), respectively
0.955 (individually corrected). Accordingly, the coefficient of
variation of the mean absolute error (CV of MAE) decreases
from 23.6% to 14.7%, respectively 11.7%, and the CV of SEE
decreases from 18.7% to 18.5%, respectively 14.8%. Compared to
the CV of the SEE of the relation between FN aBMD andQCT-based
strength (19.8%), this indicates a possible advantage of 3D DXA-
based strength over a simple regression between FN aBMD and
QCT-based strength.

It can be noted in Figure 8 that the scatter is substantially
larger for high-strength femurs (>5,000 N) than for low-strength
femurs. These cases contribute substantially to the MAE and CV.
However, for identifying people at risk of fracture, performance
in the low-strength range is more relevant than in the high-
strength range.

The trends are essentially the same for the simulation results in
the stance configuration. However, it can be highlighted that
differences in the coefficient of determination (r2) between 3D
DXA-based regressions and FN aBMD-based regressions are
more pronounced in the stance than in the side fall
configuration. Indeed, the coefficient of determination is r2 =
0.878 [95% CI (0.823, 0.920)] for the uncorrected 3D DXA-based
meshes and r2 = 0.831 [95% CI (0.753, 0.885)] for the regression
between FN aBMD and QCT-based strength. Detailed results of the
simulations in stance configuration can be found in Supplementary
Table S2 and Supplementary Figure S4.

3.5.2 Damage maps
The average QCT and 3D DXA damage maps are shown in

Figure 9 for the side fall configuration. In the QCT map, high
damage values (>0.2) are concentrated in the upper neck region,
while the 3D DXA damage map shows high values from the greater
trochanter region up to the boundary between the neck and head.
This broader spatial distribution of the 3D DXA damage could be
due to the smoother density distribution in 3D DXA images. In
contrast, the QCT densities show sharper density gradients between
the head and neck, for example.

For the stance configuration (Supplementary Figure S5), the
average QCT and 3D DXA damage maps were similar, with high
damage values located mainly in the inferior part of the
femoral neck.

4 Discussion

The 3D-Shaper software was able to reconstruct the geometry of the
proximal femur from 2D DXA scans with average surface distances
smaller than 2 mm for all femora but a slightly underestimated volume.
Our results for the average surface distance were 18%–21% higher than
those by Humbert et al. (2017), except in the femoral head, where they
were 42% lower. The latter can be explained by the fact that the
acetabulum covers the femoral head in the clinical images used by
Humbert et al. (2017), while in our scans, the head is fully visible and
can thus be reconstructed more accurately. Therefore, our results are
likely to underestimate the average surface distance of the femoral head
reconstruction from clinical DXA images. In all regions, the maximal
distances were substantially smaller in our study. However, it should be
noted that the maximal distance can be determined by a single outlier
and is thus strongly dependent on the smoothness of the segmentation
method, which was different in both evaluations.

TABLE 6 Summary of linear regression results, error measures, and concordance.

QCT vs. uncorrected 3D
DXA-based simulations

QCT vs. collectively
corrected 3D DXA-based

simulations

QCT vs. individually
corrected 3D DXA-based

simulations

QCT-based simulation
vs. DXA-based FN

aBMD

N 77

r2 0.882 0.884 0.926 0.868

Slope (95% CI) 1.13 ± 0.09 (-) 0.90 ± 0.08 (-) 0.90 ± 0.06 (-) 9,151 ± 822 [ N
g

cm2
]

Intercept (95% CI) (N) 369.6 ± 269.2 192.3 ± 219.5 211.3 ± 277.9 −3,102 ± 578

SEE (N) 588 582 466 621

Mean predictor
strength (3D
DXA) (N)

2,463 ± 1,406 3,245 ± 1754 3,262 ± 1793 N/A

Mean predicted
strength (QCT) (N)

3,144 ± 1,686

CV of SEE (%) 18.7 18.5 14.8 19.8

MAE (N) 742 461 369 N/A

CV of MAE (%) 23.6 14.7 11.7 N/A

Concordance
correlation coefficient

0.880 0.937 0.955 N/A
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While the density difference between QCT and 3D DXA BMC
was small in Humbert et al. (2017), it was significant in our study.
Part of this larger density gap can be attributed to the fact that
Humbert et al. (2017) performed their evaluation on clinical images
while we used ex vivo scans. The impact of this difference on QCT
scans is limited, but DXA results depend on the soft tissue
composition. Like previous ex vivo DXA studies, we scanned the
femora between water bags to account for soft tissues. However,
water is an adequate surrogate for lean but not for fat tissues, which
have similar coefficients of attenuation at high but not at low energy
(Jonson, 1993). The respective amount of each tissue type differs in
every patient and is generally unknown, which is a well-known
limitation of DXA scanners (Bolotin, 1998; Hakulinen et al., 2003)
and makes any choice of soft tissue surrogate inexact. Since the
attenuation coefficient of water differs slightly from the value used
by the DXA software for soft tissues, the computed bone density is
not entirely independent of water thickness. A small test with water
bags of different thicknesses was conducted, which showed a few
percent variations in the aBMD values. Nevertheless, using the same
water bags for all DXA scans allowed to compare bone densities
between femora without the uncertainty induced by variable soft
tissue compositions and thicknesses, which is an advantage of ex
vivo scans. Moreover, Humbert et al. (2017) used a liquid phantom
(with K2HPO4) as calibration reference for their QCT device, while
we used a solid phantom (with Ca10(PO4)6(OH)2). Since differences
between the calibration results of liquid and solid phantoms have
been reported (Faulkner et al., 1993), this might increase the
differences between both studies. Despite the density gap, which
shows that the calibration of QCT and DXA devices should be
treated very carefully, we obtained a good correlation between QCT
and 3D DXA BMC values.

The reconstruction of the density distribution seemed to be
more problematic. As shown in the histogram comparison of a
representative femur, the 3D DXA densities were smoother and
missed the second peak, which typically corresponds to the cortical
densities. Furthermore, the spatial density distribution analysis

revealed a heterogeneous distribution of the density
reconstruction error. High-density regions, such as the cortex,
showed more variation than low-density regions. In particular we
observed large density differences of up to 620 mg/cm3 in the neck
cortex, which is a critical area for fractures. In addition, the low voxel
BMD correlation values showed that the algorithm failed to
reconstruct the inner structure of the bone at the level of detail
of a CT scan. It should be noted that the density reconstruction in
the femoral head would be even more challenging for clinical DXA
scans. Indeed, the acetabulum would cover the femoral head, which
was not the case in our ex vivo scans. This part of the reconstruction
could be improved by mapping the density distribution from a
standard or similar CT onto the 3D DXA image.

Bone volume fraction, which is closely related to vBMD in
clinical CT images, dictates the mechanical properties of bone to a
high degree (Maquer et al., 2015; Musy et al., 2017). Consequently, it
is not surprising that a shift in BMC led to a shift in bone strength
estimated by FE analysis, as seen in Figure 8. The largest absolute
errors were produced in the strength range above 4,000 N, which is
the uncritical range regarding fracture risk (Kopperdahl et al., 2014).
However, at first sight the relative errors of 3DDXA-based strengths
with respect to QCT-based strengths seem to be elevated in the low
strength region, which may be a limiting factor for the reliability of
the 3DDXA-based strength analysis for fracture risk prediction. The
match between strength values obtained from QCT and 3D DXA
was improved by adjusting the BMC of the 3D DXA-based meshes
to the one based on QCT. However, neither the regression between
the uncorrected 3D DXA-based simulations and the QCT-based
simulations nor the one between the collectively corrected 3D DXA-
based and the QCT-based simulations were significantly better than
the regression between FN aBMD and strengths obtained from
QCT-based simulations. Nevertheless, the 3D DXA allows
calculating a femoral strength from a DXA scan that can be
compared directly to standardized QCT-based definitions of
fragile, low, or normal strength and could be used directly within
a more “mechanistic” model for fracture risk estimation.

FIGURE 9
Average damage maps for QCT and 3D DXA mapped on the standard femur.
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Furthermore, the differences in BMD distribution led to different
fracture patterns in 3D DXA-based and QCT-based simulations in the
side fall configuration. Fractures were predicted in the pertrochanteric
region by 3DDXA-based simulations and in the femoral neck region by
QCT-based simulations. These different fracture patterns can be
explained by the density distribution differences between 3D DXA
and QCT. Indeed, as mentioned before, the density distribution is
smoother in the 3D DXA and does not show the same level of detail as
the QCT scan.

Our evaluation is limited by the following aspects. Due to the
nature of the dataset, the age range of the subjects covers mainly the
elderly population, with only a few middle-aged donors. Thus, these
results should be verified on younger subjects. As mentioned above,
scanning the bones between bags of water produces different results
than clinical DXA scans, while reducing the uncertainty. In addition,
the incomplete coverage of the CT scans by the calibration phantom
forced us to extrapolate the phantom HU values for 11 images.
However, excluding these images from the dataset did not change
the results significantly. A further limitation is the presence of air
bubbles in the proximal part of the femur, although mostly located
in the medullary canal and therefore not included in the analysis.

In general, the reconstruction algorithm depends on the quality of
the dataset used to create the statistical model of shape and density. In
the case of 3D-Shaper, Humbert et al. (2017) used 111 subjects scanned
in two centers. It is therefore likely that diversifying and increasing the
number of bone samples in that dataset would improve the
generalization ability of the algorithm. In addition, other
reconstruction algorithms should be considered to improve the
spatial distribution of the densities, such as the method by (Ahmad
et al., 2010), which uses four DXA images taken at different angles to
reconstruct a 3D image of the femur. The repeatability has not been
addressed in this work, but was investigated by a previous study
(O’Rourke et al., 2021) and will be the object of a future analysis of
repeated DXA scans in our laboratory.

In conclusion, the algorithm implemented in 3D-Shaper performs
well in reconstructing the geometry of the femur but requires careful
calibration of BMD and shows limitations in recovering the spatial BMD
distributions. Therefore, the potential of 3D-Shaper for assessing changes
in spatial BMD distribution, for example, with age or with medication,
may be limited. Despite distinct damage distributions in the FE analyses,
the 3D DXA-based FE strength outcome correlated well with the QCT-
based strengths, although the improvement with respect to aBMD was
not significant. With the clinical application in mind, future work needs
to address the repeatability of the 3D DXA technique and its potential to
outperform simple DXA outcomes to predict, fracture risk.
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