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The ratio '(�) of the cross-sections for 4+4− → hadrons and 4+4− → `+`− is a valuable energy-dependent
probe of the hadronic sector of the Standard Model. Moreover, the experimental measurements of '(�) are
the inputs of the dispersive calculations of the leading hadronic vacuum polarization contribution to the muon
6 − 2 and these are in significant tension with direct lattice calculations and with the muon 6 − 2 experiment.
In this talk we discuss the results of our first-principles lattice study of '(�). By using a recently proposed
method for extracting smeared spectral densities from Euclidean lattice correlators, we have calculated '(�)
convoluted with Gaussian kernels of different widths f and central energies up to 2.5 GeV. Our theoretical
results have been compared with the KNT19 [1] compilation of experimental results smeared with the same
Gaussian kernels and a tension (about three standard deviations) has been observed for f ∼ 600 MeV and
central energies around the d-resonance peak.
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1. Introduction

The '-ratio between the 4+4− cross-section into hadrons with that into muons has played a fundamental
rôle in particle physics since its introduction in Ref. [2]. In recent years, the importance of the '-ratio has
been mainly associated with the fact that the experimental results for '(�) are the input of the dispersive
calculations of the leading hadronic contribution (HVP) to the muon anomalous magnetic moment (0`). The
data-driven dispersive determinations of 0HVP

` , reviewed in detail in Ref. [3], are in strong tension (about four
standard deviations) with the experimental measurement of 0`. On the other hand, lattice determinations of
(partial) contributions to 0HVP

` , obtained without any reference to the experimental measurements of ', are
in much better agreement with the 0` experiment [4].
In our recent work [5] we performed a lattice QCD study of '(�) and obtained first-principle results,
discussed in this talk, that we then compared directly with 4+4− collision experiments with no reference to
the muon 6 − 2. More precisely, by using the method proposed in Ref. [6] and recently validated in Ref. [7],
we extracted the '-ratio smeared with normalized Gaussian kernels, �f (l) = exp(−l2/2f2)/

√
2cf2,

according to

'f (�) =
∫ ∞

0
3l�f (� − l) '(l) . (1)

We then compared our theoretical determinations of 'f (�) with experiments by smearing the '(�) mea-
surements with the same Gaussians. In this way, by varying � and f, we probed the '-ratio in Gaussian
energy bins of different widths. Around the d-resonance peak and at f ' 600 MeV we managed to compute
'f (�) with an accuracy at the 1% level. In this region our results are in tension by about three standard
deviations with experiments.

2. Methods

In order to compute 'f (�), we relied on our effort within the Extended TwistedMass Collaboration (ETMC)
that produced a collection of state-of-the-art isospin symmetric QCD ensembles with four dynamical Twisted
Mass quark flavours [8] at physical pion masses (see Table 1 and Ref. [9]), together with the two-point
Euclidean correlators of the quark electromagnetic current

+ (C) = −1
3

3∑
8=1

∫
33G T〈0|�8 (G)�8 (0) |0〉 . (2)

In the previous formula �` =
∑
5 @ 5 k̄ 5 W`k 5 with 5 = {D, 3, B, 2, 1, C}, @D,2,C = 2/3 and @3,B,1 = −1/3.

The connection between the correlators + (C) and the '-ratio is given by the well known formula

+ (C) = 1
12c2

∫ ∞

�Cℎ

3ll2'(l) 4−Cl , (3)

where the threshold energy �Cℎ is 2<c in iso-symmetric QCD. Theoretically '(l) is a distribution, the
spectral density of the correlator + (C), and can conveniently be probed by using suitable smearing kernels.
We considered Gaussian smearing kernels, providing a class of observables that are well localized in the
energy domain, and computed 'f (�) on the lattice by using the method of Ref. [6]. The starting point of
this approach is the following exact representation of the smearing kernel for l > 0,

12c2�f (� − l)
l2 =

∞∑
g=1

6g 4
−0lg , (4)

2
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where g is an integer variable and 0 is an arbitrary scale that, on the lattice, we identify with the lattice
spacing. Once the coefficients 6g ≡ 6g (�, f) are known, 'f (�) can be computed according to

'f (�) =
∞∑
g=1

6g + (0g) . (5)

Since the sums in Eqs. (4) and (5) have necessarily to be truncated, the goal is to find a finite set of
coefficients such that both the systematic and statistical errors on the resulting approximation to 'f (�)
can be kept under control. As known, this numerical problem rapidly becomes ill-posed for � > �Cℎ and
f � � (see Refs. [6, 7] for illustrative numerical evidences of this fact). The algorithm of Ref. [6] provides
a regularization mechanism to the problem. We refer to Refs. [6, 7] for extended discussions of this point.
In the method of Ref. [6] smearing kernels are represented as

 (l; ®6) =
gmax∑
g=1

6g

{
4−0lg + 4−0l () −g)

}
, (6)

where the second exponential takes into account the fact that on a lattice of finite temporal extension ) , and
with periodic boundary conditions in time, the correlator + (0g) is given by

+ (0g) = 1
12c2

∫ ∞

�Cℎ

3ll2'(l)
{
4−0lg + 4−0l () −g)

}
. (7)

In the implementation of the method described in full details in Ref. [5], the distance between the target
kernel and its representation in terms of the coefficients 6g has been measured by the functionals

�n [ ®6] =
∫ ∞

�0

3l Fn (l)
���� (l; ®6) − 12c2�f (� − l)

l2

����2 , (8)

depending on the algorithmic parameter �0 < �Cℎ and corresponding to a class of weighted !2-norms in
functional space. We have considered the following weight functions

FU (l) = 40lU , U =

{
0,

1
2
, 2−

}
, F2 (l) =

1
√
40 (l−�0) − 1

, (9)

that we distinguish by using the tag n = {0, 1/2, 2−, 2}. The regularization method adopted in Ref. [6] is
the model-independent mechanism originally proposed by Backus and Gilbert [10]. The coefficients ®6 are
obtained by minimizing a linear combination,

,n [ ®6] =
�n [ ®6]
�n [®0]

+ _ �[ ®6] , (10)

of the norm-functional �n [ ®6] and of the error-functional

�[ ®6] = �norm

gmax∑
g1 ,g2=1

6g16g2 Cov(g1, g2) , (11)

whereCov(g1, g2) is the covariancematrix of the lattice correlator+ (0g). The relative normalization between
the norm and error functionals has been set to

�norm =
�6

(+ (0gnorm))2
. (12)

At fixed values of the algorithmic parameters ®? = (n, _, �0, gmax, gnorm), the linear minimization problem

m,n [ ®6]
m6g

����
®6=®6 ®?

= 0 (13)

3
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!t

ID !3 × ) 0 fm 0! fm <c GeV
B64 643 · 128 0.07961(13) 5.09 0.1352(2)
B96 963 · 192 0.07961(13) 7.64 0.1352(2)
C80 803 · 160 0.06821(12) 5.46 0.1349(3)
D96 963 · 192 0.05692(10) 5.46 0.1351(3)

Table 1: ETMC gauge ensembles used in this work, see Ref. [9] for more details.

provides the coefficients ®6 ®? and the corresponding approximation of 'f (�) according to

'f (� ; ®6 ®?) =
gmax∑
g=1

6
®?
g + (0g) . (14)

The behaviour of 'f (� ; ®6 ®?) as function of the algorithmic parameters ®? and the procedure adopted to select
our best estimates for 'f (�) are briefly discussed in Section 4 (see Ref. [5] for more details).

3. Materials

The lattice gauge ensembles used in this work, generated by the ETMC, are listed in Table 1 and detailed in
Ref. [9]. In particular, in order to better estimate the systematics associated with continuum extrapolations,
we used the same mixed-action setup as described in Ref. [9, 11] and analyzed both the so-called Twisted
Mass (TM) and Osterwalder-Seiler (OS) lattice regularized correlators+ (C). The results for 'f (�) obtained
in the two regularizations differ by $ (02) cutoff effects [12, 13] and must coincide within errors in the
continuum. As customary, we considered separately the contributions corresponding to connected (C) and
disconnected (D) fermionic Wick contractions to + (C) and, in the case of the connected ones, also the
contributions coming from the different flavours. We use e.g. the notation 'BB,�,TM

f (�) for the “strange-
strange connected” contribution to 'f (�) obtained from the correlator + (C) in which the electromagnetic
currents, in the Twisted Mass regularization, are both given by −B̄W`B/3 and only fermionic connected Wick
contractions are considered. The disconnected contribution, computed only in the OS regularization and
including all flavours, will be denoted as '�f (�).
In order to compare our theoretical results with experiments, we relied on the KNT19 compilation [14] of
experimental results for the '-ratio, providing 'exp (�) in the range � ∈ [0.216, 11.1985] GeV together with
the full covariance matrix that takes into account the correlation between the different experiments.

4. Data analysis

We considered three different values of f, namely f1 = 0.44 GeV, f2 = 0.53 GeV, f3 = 0.63 GeV and
central energies � in the range [0.21, 2.54] GeV. All our results have been obtained by fixing �0 = 0.21 GeV
and gmax = )/2+1, corresponding respectively to 65, 97, 81 and 97 on the B64, B96, C80 andD96 ensembles.
The analysis described in the following has been performed for all the correlators, ensembles, regularizations,
values of energy and f.
On each gauge ensemble we set gnorm = 1 in the case of the connected contributions and gnorm = 0 in the
case of the disconnected contributions, see Eq. (12). In order to quantify the systematic error associated with
the necessarily imperfect reconstruction of the smearing kernel, we studied 'f (� ; ®6 ®?) as a function of the

4
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Figure 1: Top-panel: Example of the stability analysis procedure in the case of the light-light connected contribution
to 'f (�) for the TM regularization, on the C80 ensemble, at energy � = 0.74 GeV and f = 0.63 GeV. The errors
on the points are statistical and the different colours refer to different weight functions, see Eq. (9). The plot shows
the variation of the results for different values of the reconstruction figure-of-merit 3 ( ®6 ®?) defined in Eq. (15). The two
points 'f (� ; ®6★) and 'f (� ; ®6★★), that we use respectively to pick the central value of 'f (�) and to estimate the
residual systematic error (see Eq. (16)), are marked by vertical dashed lines. The horizontal red band is the error Δ̄f (�),
calculated according to Eq. (19), that takes into account both the statistical and the systematic uncertainties. Different
weight functions have a significant impact on the stability of the 'f (�) at varying 3 ( ®6?). The points obtained by setting
n = 2− (blue points) are remarkably stable also at large values of 3 ( ®6?).

normalized !2–norm at n = 0 (also in the case where ®6 ®? has been obtained with n ≠ 0),

3 ( ®6 ®?) =
√
�0 [ ®6 ®?]
�0 [®0]

. (15)

We quoted our best estimate for 'f (�) by selecting a result from the region of the statistically dominated
regime (see Figure 1 for an example of this analysis), i.e. the region of small values of 3 ( ®6 ®?) where the
results are stable, within the statistical errorsΔstat

f (� ; ®6 ®?). For large values of 3 ( ®6 ®?) the results corresponding
to the different weight functions and/or different values of _ are substantially different, simply because
the reconstructed kernels are very different from the target ones and among themselves. Conversely, for
sufficiently small values of 3 ( ®6 ®?) the results of 'f (� ; ®6 ®?) tend to agree within the statistical errors that in
this regime grow because of the ill-posedness of the numerical problem.
We selected our central-value estimates for 'f (�) and quantified the residual systematic error from the
results for 'f (� ; ®6 ®?) corresponding to the conditions

�2− [ ®6★]
�2− [®0]

= 10�[ ®6★] , �2− [ ®6★★]
�2− [®0]

= �[ ®6★★] . (16)

The central values of our results correspond to 'f (�) ≡ 'f (� ; ®6★) and the associated statistical errors to
Δstat
f (�) ≡ Δstat

f (� ; ®6★). Our choice of the relative normalization of the functionals in Eq. (10) is such that
'f (� ; ®6★) and 'f (� ; ®6★★) are both inside the region of the statistically dominated regime in most of the
cases. When this didn’t happen the difference 'f (� ; ®6★) −'f (� ; ®6★★) has been found to give a conservative
estimate of the residual systematic uncertainty. In particular, we introduced the quantity

%f (�) =
'f (� ; ®6★) − 'f (� ; ®6★★)

Δstat
f (� ; ®6★★)

(17)

as a measure of the statistical compatibility with zero of the difference between the results obtained at ®6★
and ®6★★ and estimated the systematic error Δrec

f (�) due to the imperfect reconstruction of the target kernel

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
0
7

A. De Santis

according to

Δrec
f (�) =

��'f (� ; ®6★) − 'f (� ; ®6★★)
�� erf

(
|%f (�) |√

2

)
. (18)

The error Δ̄f (�) resulting from the stability analysis procedure is thus given by

Δ̄f (�) =
√[
Δstat
f (�)

]2 + [Δrec
f (�)]2. (19)

We performed a data-driven estimation of the systematic errors associated with finite-volume effects by
using the results obtained on the B64 and B96 ensembles differing only for the number of lattice points and,
therefore, for the physical volumes. In particular we considered the quantity

%!f (�) =
'f

(
� ; 3!

2

)
− 'f (� ; !)√[

Δ̄f

(
� ; 3!

2

)]2
+

[
Δ̄f (� ; !)

]2
, (20)

where Δ̄f (� ; !) is the error on 'f (� ; !) extracted from the stability analysis performed on the B64 ensemble
(0! ∼ 5 fm) while Δ̄f (� ; 3!/2) and 'f (� ; 3!/2) are the corresponding quantities extracted from the B96
ensemble. An estimate of the systematics associated with possible residual finite-volume effects has been
obtained by considering

Δ!f (�) = max
reg={OS,TM}

{ ����'reg
f

(
� ;

3!
2

)
− 'reg

f (� ; !)
���� erf

©«
���%!,reg
f (�)

���
√

2

ª®®¬
}
. (21)

We performed both constrained (for the connected contributions) and unconstrained continuum extrapolations
of the OS and TM lattice data by considering fit functions of the form 5 reg (0) = �reg + �reg02. In the
constrained extrapolations we fitted together the OS and TMdata by performing a correlated j2-minimization
and by imposing �TM = �OS = �. An example of continuum extrapolations for the different contributions
to 'f (�) at � = 0.79 GeV and f = 0.63 GeV is shown in Figure 2.
To quantify the systematic error associated with our continuum extrapolations we studied the compatibility
between constrained and unconstrained extrapolations. We considered the quantity

%
0,reg
f (�) = � − �reg√

[Δ�]2 + [Δ�reg]2
, (22)

where � is the result of the combined extrapolation at the given values of f and � , Δ� its error while �reg

and Δ�reg are the results and errors of the unconstrained extrapolations. We extracted the central values and
errors of our continuum results from the constrained fits and estimated the systematic errors associated with
the continuum extrapolations by considering

Δ0f (�) = max
reg={OS,TM}

{
|� − �reg | erf

( ��%0,reg
f (�)

��
√

2

)}
. (23)

Our estimate of the total error, Δf (�), has been finally obtained by summing in quadrature Δstat
f (�), Δrec

f (�),
the errors associated with finite-volume effects (Δ!f (�)) and continuum extrapolations (Δ0f (�)). The quoted
final result for 'f (�) is given by the sum of 'ℓℓf (�), 'BBf (�), '22f and '�f (�).
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Figure 2: Continuum extrapolations of the different contributions to 'f (�) at � = 0.79 GeV and f = 0.63 GeV. The
blue and green points correspond respectively to the OS and TM lattice regularizations. In the case of the connected
contributions we performed both correlated-constrained (red) and uncorrelated-unconstrained linear extrapolations in 02

and found them to be compatible within errors in all cases. The disconnected contribution has been computed in the
OS regularization only and extrapolated linearly in 02. In the case of 'ℓℓ,�f (�) and 'BB,�f (�) there are two points for
each regularization at the coarsest lattice spacing (slightly displaced on the G-axis to help the eye) corresponding to the
ensembles B64 and B96 and, therefore, to different volumes. No significant finite-volume effects have been observed for
all considered values of � and f.

5. Results

The comparison of our first-principles determination of 'f (�) with the experimental results 'exp
f (�) is

shown in the left-plots of Figure 3. The plots show 'f (�) (blue points) and 'exp
f (�) (red points) as

functions of � for f = 0.44 GeV (first row), f = 0.53 GeV (second row) and f = 0.63 GeV (third row). Our
quoted final errors include the estimates of the different systematic uncertainties discussed in the previous
section (see Figure 4 of Ref [5] for the relative error budget).
In order to properly interpret Figure 3 it is very important to realize that the information contained into 'f (�)
and 'f (� ′) for central energies such that |� − � ′ | � f is essentially the same. Moreover, our theoretical
results at different values of � and f are obtained from the same correlators and, therefore, are correlated. It
is also very important to stress that our lattice simulations have been calibrated by using hadron masses to fix
the quark masses and the lattice spacing and, therefore, 'f (�) is a theoretical prediction obtained without
using any input coming from '

exp
f (�). In view of these observations, and of the fact that the extraction of

spectral densities from Euclidean correlators is a challenging numerical problem, we consider the overall
agreement between the theoretical and experimental data quite remarkable.
Although our theoretical errors, Δf (�), are still substantially larger than the experimental ones, Δexp

f (�),
there is a tension between 'f (�) and 'exp

f (�) in the region around the d resonance. This can be better
appreciated in the right panels of Figure 3 where, for � < 1.3 GeV, the plots show the “pull”

Σf (�) =
'f (�) − 'exp

f (�)√
[Δf (�)]2 +

[
Δ

exp
f (�)

]2
. (24)

Before ascribing this tension, of about three standard deviations, to new physics or to underestimated

7
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Figure 3: Left-plots: Comparison of 'f (�) (blue points) and 'exp
f (�) (red points) as functions of � for f = 0.44 GeV

(first row), f = 0.53 GeV (second row) and f = 0.63 GeV (third row) with 'expf (�). '
exp
f (�) has been obtained by

generating 2000 bootstrap samples from the KNT19 compilation, each one simulating an independent measurement.
Each sample has been integrated with the same Gaussian that defines 'f (�) and the final results for 'expf (�) has been
obtained by taking the bootstrap average and standard deviation of the 2000 integrated samples. Right-plots: The quantity
Σf (�) of Eq. (24) for � < 1.3 GeV and for the three values of f. Around 0.8 GeV and for f = 0.63 GeV a tension
of about three standard deviations is observed. The fact that the tension is smaller at smaller values of f is due to the
increase of the theoretical error on 'f (�) since the reconstruction procedure becomes increasingly more difficult by
lowering f.

experimental uncertainties an important remark is in order.
The calculation of 'f (�) that we have performed in Ref. [5] is based an iso-symmetric = 5 = 2+ 1+ 1 lattice
QCD calculation and, therefore, we have not calculated yet, from first principles, the contributions to 'f (�)
coming from 1-quarks and from the QED and strong isospin breaking corrections. Concerning the 1-quark
contribution, if sizeable, this would represent a positive correction to 'f (�) and thus, given the fact that
'

exp
f (�) is below 'f (�) in the region in which these are in tension, it can only lead to an enhancement of

the observed discrepancy.
Isospin breaking effects definitely have to be evaluated from first principles. Indeed, for very small values of
f very large isospin breaking effects have to be expected at certain values of � , e.g. at very low energy where

8
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Figure 4: The Gaussian kernels with central energy 0.5 GeV and width 0.53 GeV (red) and central energy 0.8 GeV

and width 0.63 GeV (green) are compared with the intermediate window kernel Θ̃, ·  ̃ ·
(
�
<`

)3
(see e.g. Ref. [9] for

the explicit expression). The red Gaussian is centred at the peak of the intermediate window kernel (vertical red line)
that is shown in blue and normalized such that the heights of the two peaks coincide. The green Gaussian is centred at
the energy (vertical green line) where we observe the most significant tension (about 2.5% and 3 standard deviations)
between 'f (�) and 'expf (�). Using the red Gaussian we observe instead a 5% tension corresponding to 2.2 standard
deviations, see Figure 3.

the channel c0 + W opens in QCD+QED and also close to other thresholds (see Refs. [15, 16]). Nevertheless,
we notice that in order to explain the observed tension at � ∼ 0.8 GeV and f ∼ 0.6 GeV an isospin breaking
effect larger than 2% would be needed and this is hard to reconcile with the first principle lattice calculation
performed in Ref. [4] of the isospin breaking corrections on closely related quantities, in particular on the
intermediate window (0HVP,,

` ) contribution to 0HVP
` . Indeed, the smearing kernel that in energy space

defines 0HVP,,
` is very similar in shape to the Gaussian kernel with central energy � = 0.5 GeV and width

f = 0.53 GeV (see Figure 4) and the isospin breaking effect on 0HVP,,
` is found to be at the two permille

level. We also note that, when '(�) is convoluted with the quite different (but always very much spread out
in energy) kernels that define the long and short distance contributions to 0HVP` (see Ref. [17]), the isospin
breaking corrections w.r.t. iso-symmetric QCD remain very small, namely of about one permille [4] and
three permille [18] respectively.

6. Conclusions

We presented the results of our recent non-perturbative theoretical study of the 4+4− cross-section into
hadrons. We have calculated the '-ratio convoluted with Gaussian smearing kernels of widths between
440MeV and 630MeV and center energies up to 2.5GeV.We compared our first-principles theoretical results
with the corresponding quantity obtained by using the KNT19 compilation [14] of '-ratio experimental data
courteously provided by the authors.
In the region around the d resonance we observe a tension between our theoretical determination and the
experimental one, of about three standard deviations at � ∼ 800 MeV and f ∼ 600 MeV. While the origin
of this tension can be partly attributed to QED and strong isospin breaking corrections, we have remarked
that an isospin breaking corrections larger than 2% would be required to fully reconcile our lattice data with
experiments and that such a large correction is hardly conceivable in view of the few permille effects found
in the related intermediate window contribution to 0HVP

` in ref. [4].
A solid evidence of a significant tension between theory and experiment already emerged also from the
comparison of the lattice calculations [4, 9, 19, 20] of the (window) contributions to 0HVP

` and the corre-
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sponding dispersive determinations [14]. Our results corroborate this evidence and, being totally unrelated
to the muon 6 − 2 experiment, highlight the fact that the tension is between experimental measurements of
the 4+4− inclusive hadronic cross-section at energies around the d resonance and first-principles Standard
Model theoretical calculations. A phenomenological puzzle that certainly deserves further attention in the
future.
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